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A B S T R A C T   

To provide stability and a continuous supply of power, the detection and classification of faults in the trans-
mission lines (TLs) are crucial in this modern age. It is required to remove a faulty section from a healthy section 
to provide safety and to minimize power loss due to the fault. In the contemporary world, machine learning (ML) 
is extensively used in every aspect of life. In this study, a spontaneous fault detection (FD) and fault classification 
(FC) system based on ML has been proposed. MATLAB Simulink was employed to simulate two different TLs and 
to generate normal and fault data (Per unit voltage and current) of ten different types. TL-1 consisted of a single 
generator and a single load whereas TL-2 consisted of two generators and three loads. Upon normalizing the data, 
an extreme learning machine (ELM) algorithm was used as the classifier. Two different ELM models were 
developed for FD and FC purposes through training. The method achieved fault classification accuracies of 
99.18% and 99.09% for the TL-1 and TL-2 respectively. On the other hand, fault detection accuracies of 99.53% 
and 99.60% were achieved for the TL-1 and TL-2. The proposed ELM model compared to a traditional artificial 
neural network (ANN) model demonstrated relatively a shorter processing time and reduced computational 
complexity. In addition, the proposed method outperformed the existing state-of-the-art methods.   

1. Introduction 

In the current era of Industry 4.0, the electrical power demand is 
increasing continuously. To fulfill the demand, the number of power 
generation units is also increasing. All these units are connected through 
a complex power system network (PSN) [1], which has basically three 
major components: power generation, transmission, and distribution 
[2]. Power is transferred from one place to another place through the 
transmission lines. Reliable and stable operation of the power system is 
essential to minimize its impacts on industry, business, transportation 
and domestic sectors. Any fault in the power system can cause major 
disruption causing significant financial loss. Hence, uninterrupted and 
secured power transmission is absolutely vital to ensure a country’s 
economic activities [3] 

Power outages occur due to different reasons such as transmission 
line insulation breaks, thunderstorms, equipment failure, human inter-
vention, animal interference, fallen trees and so on [4,5]. Transmission 
lines are short-circuited due to these reasons and make the power system 
unstable. A huge amount of power is lost during a short-circuit fault [6]. 
To provide stability, it is compelled to instantaneously detect the fault 
type and its physical location accurately. Afterwards, the faulty section 
must be removed from the healthy section to guarantee a smooth flow of 
power. 

In real-life scenarios, a relay and circuit breaker perform this oper-
ation. However, actuating the relay is time-consuming and this opera-
tion can be made faster using machine learning (ML). ML is widely used 
in every aspect of life because of the availability of relevant data. Using 
available fault data such as fault voltage and current a ML model can be 
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trained to identify and classify new cases. In the area of power systems, 
researchers have focused on detecting and classifying faults using 
different Deep Learning (DL) and ML algorithms. 

For fault detection and classification, numerous neural network- 
inspired algorithms, including a convolutional neural network (CNN) 
and artificial neural network (ANN), have been widely used. Tong et al. 
[7] proposed a CNN model for the detection and classification of tran-
sient faults in the power transmission lines. They have considered a total 
of five types of faults and achieved an average classification accuracy of 
98.24% and an area under the curve (AUC) of 0.9994. Again Guo et al. 
[8] used CNN for the classification of faults in the power distribution 
system where small currents are grounded. The authors utilized the 
Hilbert-Huang transform (HHT) filter for creating time-frequency en-
ergy and achieved an average accuracy of 99.92% with ten types of 
faults. Lee et al. [9] proposed CNN for the detection and classification of 
faulty battery sensors and communication data. Using CNN, they were 
able to detect four different types of faults and attain an accuracy of 
98.00%. Tawfik and Morcos [10] used an ANN model for the identifi-
cation of fault locations using the Prony method to fit the time signal. 
Their ANN model consisted of two hidden layers, and the maximum 
error of the ANN model was limited to 2%. Abdullah [11] extracted the 
high-frequency components using discrete wavelet transform (DWT) 
and used ANN to detect the faults in the TLs that achieved an accuracy of 
98%. 

Fahim et al. [12] developed an unsupervised framework to detect 
and classify faults in the TLs using a sparse filter (SF) to the capsule 
network (CN) named CNSF. The authors have used eleven types of faults 
and four TLs and achieved an average accuracy of 99.72%. Vyas et al. 
[13] identified a new fault zone using an undecimated DWT and a 
Chebyshev neural network (NN) using 52,200 numeric data and ach-
ieved an accuracy of 98.69% while identifying ten types of faults. Saini 
et al. [14] suggested a hybrid technique that combines two hidden layers 
of a back-propagation NN with a DWT to accurately identify and classify 
faults in parallel TLs. Mukherjee et al. [15] extracted the features of the 
fault using probabilistic NN from the three-phase intensity index and 
achieved an accuracy of 99.33%. Xuebin et al. [16] proposed a deep 
belief network for the detection of cable faults in the underground dis-
tribution system. Their network consisted of three hidden layers. 
Furthermore, they employed sixteen cables and considered nine faults 
and achieved an accuracy of 97.8%. 

In parallel with the neural network inspired algorithm, several ML 
algorithms have also been used for fault detection and classification, 
which include ELM, support vector machine (SVM), decision tree (DT), 
and k-nearest neighbors (K-NN). Chen et al. [17] presented fault clas-
sification using summation wavelet transmission with ELM (SW-ELM) 
and summation gaussian transmission with ELM (SG-ELM). Their 
method was not dependent on ad-hoc feature extraction. However, it is 
less accurate. Zhang et al. [18] used two ML algorithms: long short-term 
memory networks (LSTM) and SVM for the prediction of transmission 
line faults. Dropout and batch normalization were proposed to handle 
the overfitting problem and obtained an accuracy of 97.7%. Ray et al. 
[19] developed a hybrid machine learning approach for feature 
extraction by using the wavelet packet model. Furthermore, they clas-
sified the fault using SVM. Majd et al. [20] identified and classified the 
faults using KNN while considering ten types of faults and achieved an 
accuracy of 98.6% but the proposed system delay was 15 ms. Dasgupta 
et al. [21] proposed cross-correlation and kNN models for the detection 
and classification of the TL faults after considering ten types of faults and 
achieved a classification accuracy of 99.67%. Jamehbozorg and Shahr-
tash [22] proposed a DT algorithm for the classification of faults in the 
TLs. Godse et al. [23] proposed a mathematical morphology-based 
approach for detecting and classifying transmission line faults. Utiliz-
ing a morphological median filter, unique and efficient features were 
identified. Finally, these features were used for classification by using 
DT. Musa et al. [24] suggested a regression model that used a simple 
threshold value of zero to detect faults in three-phase current signals. 

System failure happened when the model showed a value larger than 0, 
and normal operation was achieved when the model showed a value of 
0. 

The existing works have used ANN, CNN, DWT, LSTM-SVM, etc., for 
the FD and FC purposes. All of them were complex in terms of archi-
tecture, time, and computational effort. Especially in the case of ANN 
and CNN algorithms having many parameters, it takes a huge amount of 
time to train this type of model. Again, some of these methods show poor 
accuracy, particularly in the case of FC. Furthermore, some studies have 
not performed FC in detail. Considering this gap in the literature, it is 
worth developing an alternative model with faster processing time, less 
complexity and better accuracy in order to facilitate uninterrupted 
power supply by detecting and classifying the faults in the TL lines. 

This study proposes a self-activating fault detection and classifica-
tion system using the extreme learning machine (ELM) algorithm. Fault 
data was simulated using MATLAB Simulink. Most of the existing 
methods used simulation as like this study. No real-time applications 
dataset is publicly available. The key contributions of this study are: 

The novel ELM has been used to make a fast and accurate system for 
automatic fault detection and classification on transmission lines 
with a small number of parameters and without any computationally 
complex data transformation technique, which has not been 
addressed by the previous studies. 
The adaptability of the proposed method has been tested on two 
different fault datasets obtained from two TL configurations 
designed. 
The performance of the proposed method has been compared to that 
of an artificial neural network (ANN) and other state-of-the-art 
(SOTA) methods. 

The rest of this article is structured in the following manner. Section 
II depicts the proposed framework while Section III presents the classi-
fication outcomes of the proposed method. Section IV is dedicated to 
showing the superiority of the proposed ELM model over the state-of- 
the-art models. Finally, Section V presents key conclusions from this 
study. 

2. Proposed framework of fault detection and classification 

In this study, a novel fault detection and fault classification frame-
work has been proposed as graphically illustrated in Fig. 1. Two 
different typical power TLs were simulated using MATLAB Simulink and 
voltage-current data representing various types of faults (10 types) were 
generated. Faulty data were collected at the time of the fault. On the 
other hand, not faulty data were collected at random in normal condi-
tion. Subsequently, the data were split into training and testing sets. 
Following that, min-max data normalization was carried out. Finally, 
two different novel ELM models were trained for the fault detection 
(binary) and classification (multiclass). The proposed method was 
compared with the SOTA models in terms of model classification per-
formance, dataset size, and model complexity. Each stage has been 
discussed elaborately in the later subsections. 

2.1. Model simulation and data generation 

Figs. 2 and 3 depict the graphical views of the simulation models of 
two TLs designed and specifications of various components within the 
TLs. These two models are analogous to a long-distance transmission 
line, in which energy is generated in one region and transmitted to a 
distant area. In a real-life scenario, the loads are the combinations of R, 
L, and C, but the number of loads is greater than that have been 
considered here. Total loads can be represented by an equivalent single 
load. To perform the study, two of these typical models were considered. 
The TL-1 configuration consisted of a single generation unit and a single 
RLC load, whereas the TL-2 configuration consisted of two generation 
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units and three RLC loads. The length of the transmission line is 100 km. 
All forms of faults were triggered based on a set program using a fault 
generating block, and the per-unit fault voltage and current were saved. 
All the parameters are in actual values, as it is easy to understand in 
actual values. The voltage and power base values for each simulation 
model were provided. Any abnormal situation in TL due to which reg-
ular flow of voltage and current are disrupted can be termed as the TL 
fault. 

Table 1 depicts the classification of TL faults. All the short-circuit 
faults can be broadly classified into symmetrical and unsymmetrical 
faults. A three-phase short-circuit fault is called a symmetrical fault as 
the fault current is identical for all the phases. In the case of unsym-
metrical, only one or two phases are involved. Fig. 4 depicts the voltage 

and current waveforms during the ABG fault. The voltages of phases A 
and B go to zero when the fault occurs, as shown in the Fig. 4(a) by a 
dotted red rectangle. The current, on the other hand, increases in 
comparison to the usual state with some abruption marked by dotted red 
rectangle in Fig. 4(b). 

For the FC purposes, a total of 11 classes (10 faulty and 1 not faulty) 
were considered. 1001 data samples for each category were generated 
and each sample contained 6 features (3 phase per-unit values of voltage 
and current). Hence, a total of 11,011 instances were considered and the 
dataset was fully balanced. For training and testing purposes, the 
collected samples were divided into a ratio of 90:20. 

For the FD purpose, two classes: faulty and no-fault were considered. 
There was 4000 faulty samples (400 samples from each type of fault) 

Fig. 1. Proposed framework for fault detection and fault classification.  

Fig. 2. MATLAB Simulink simulation model for 1st transmission line (TL1).  
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and 1001 samples from not faulty were considered. Each sample consists 
of 6 features making a total of 5001 samples for the FD. Only 20% has 
been used for training the proposed FD model. 

2.2. Normalization 

Normalization converts the values of different features/attributes 
into the same range without losing the information and relation between 
the elements. Normalization converts the values of different features or 
attributes into the same range without losing the information and re-
lations between the elements. It is always not necessary to convert the 
range. If normalization is not performed, then the loss function oscillates 
too much [25]. In this study, min-max normalization was used, and the 
mathematical expression can be represented by Eq. (1) where X repre-
sents original values of all the samples. 

Normalized Data =
X − MIN(X)

MAX(X) − MIN(X)
(1)  

2.3. ELM 

ELM is a recent invention proposed by Huang [26] to reduce the 
model learning dilemmas. Architecturally, it consists of a single hidden 
layer where the hidden layer weight metric is generated at random. The 
output weight metric is developed by implementing the matrix pseu-
doinverse process. Model parameters were set up in a single step make 

its learning process faster in contrast to the classical approach [27]. ELM 
is very useful for its simple structure, no parameter adaptation, shorter 
processing time and lower computational complexity. It is structured to 
minimize the least square error. Because of these reasons, ELM has 
gained popularity over the ANN. Fig. 5 illustrates a visual representation 
of the ELM architecture. The hidden layer of the proposed ELM model 
contained 700 nodes. For FD, one node was accommodated in the output 
layer while for the FC, there were 11 nodes. Each node includes a 
function for activating it. The nodes were activated using the ReLU 
function. The operational sequence of ELM is given in Algorithm 1 [28]: 

Here, {X(n,m), T(n,t)}be the training samples, n be the number of 
samples, m be the number of features in each sample, t be the number of 
targets, G represents the ReLu activation function and †represents the 
pseudoinverse. 

2.4. Assessment criteria 

Several well-known statistical concepts were employed to assess the 
models such as accuracy, precision, recall, and F1-score. The mathe-
matical expression of these assessment criteria such as accuracy is given 
by Eq. (2). 

Acc =
(TP + TN)

(TP + TN + FP + FN)
× 100% (2) 

Where TP, TN, FP, and FN indicate actually faulty, actually not 
faulty, not faulty but predicted as faulty, and faulty but predicted as not 
faulty, respectively. 

The ratio of TP to all positive forms is the precision (P) as defined by 
Eq. (3) [29]. It is the proportion of correctly anticipated faulty data 
relative to all faulty data. 

P =
TP

(TP + FP)
(3) 

The recall (R) is the ratio of the number of exact predictions made by 
the model to the total number of actual instances [29]. 

R =
TP

(TP + FN)
(4) 

The harmonic mean of precision and recall should be used to 
calculate the F1-score [30]. 

Fig. 3. MATLAB Simulink simulation model for 2nd transmission line (TL2).  

TABLE 1 
Different types of faults in transmission line.  

Level - 4 Level - 3 Level - 2 Level - 1 

AG Single Line to Ground Fault Unsymmetrical Fault Short CKT Fault 
BG 
CG 
ABG Double Line to Ground Fault 
ACG 
BCG 
AB Line to Line Fault 
BC 
AC 
ABC 3 Phase Short CKT Fault Symmetrical Fault 
ABCG 3 Phase to Ground Fault  
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F1 − score =
2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(5) 

Other parameters such as training and testing times, number of 
layers and nodes, and number of epochs were determined for compar-
ative analysis between the proposed ELM and traditional ANN 
algorithm. 

3. Results and analysis 

3.1. Fault classification 

The proposed model was analyzed based on the TL fault data, which 
were generated from two different simulated TLs. Figs. 6 and 7 represent 
corresponding confusion matrixes (CMs) for the TL-1 and TL-2. Scores of 
different performance criteria using CM is presented in Table 2 for both 
the TL cases. 

The results clearly indicated that the developed models performed 
well for all kinds of TL faults considered here as accuracies of 99.18% 
and 99.09% were attained for the TL-1 and TL-2 respectively. The pro-
posed ELM model shows an impressive result for both cases. Hence, it 
can be said that the proposed model performance is independent of the 
transmission line configuration. 

Figs. 8 and 9 represent the receiver operating characteristics (ROC) 
curves for the TL-1 and TL-2. An area under the curve (AUC) of 100% 
was obtained for all types of faults in both the cases except for ABG in 
TL1. The proposed ELM model was tested on other fault data provided 
by Jamil et al. [31] which is publicly available at Kaggle [32] and 100% 
accuracy was achieved as shown by the confusion matrix in Fig. 10. 

3.2. Fault detection 

Fault detection was performed with the TL-1 and TL-2 as shown by 
CMs in Figs. 11 and 12 respectively. Based on these two CMs, it is 
possible to conclude that the predicted model can detect faults accu-
rately because there are no false positives. 

Table 3 presents performance scores of the proposed ELM method for 
the fault detection for both the simulated power TLs. With the moderate 
size of training data (20%), the models obtained 99.53% and 99.60% 
accuracy in the two situations. It demonstrates that the proposed 
method can learn from a minimal quantity of data and is a powerful 
classifier. 

Figs. 13 and 14 present the corresponding ROC curves for the TL-1 
and TL-2. Again, AUC scores of almost 100% were attained for both 
the cases. By observing the outcome of the proposed model for both the 
TL configurations in terms of FD and FC, it can be concluded that 

Fig. 4. (a) Voltage and (b) current wave shape during the fault (ABG).  
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performance of the novel ELM can be adaptable to different TL 
configurations. 

3.3. Time and computational complexity analysis 

Processing time and computational complexity of the developed 
models were compared with traditional ANN, which is most used for 
solving different problems. Table 4 presents the contrastive analysis 

between the ELM and ANN models based on different complexity 
analysis parameters for the FC. It was observed that to achieve the same 
performance, the ANN needed larger training and prediction times 
compared to the ELM as the ANN employed an error back-propagation 
process to optimize the model parameters. 

In contrast, in the ELM model, the parameters were set through a 
single step. Again, the ANN needed additional hidden layers with a small 
number of total nodes implying more individual weight matrices to 

Fig. 5. Structure of ELM classifier employed.  

Fig. 6. TL-1: Confusion matrix for fault classification.  
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multiply, which led to more computational effort to predict the output. 
However, the ELM needed more nodes in total but fewer hidden layers, 
which also speeded up the prediction process by the ELM. The novel 
ELM is 7.6 times faster than ANN to make a prediction. Therefore, it 
could be concluded that the proposed ELM models showed superior 
performance compared to the ANN models. 

3.4. Comparison with state-of-the-art models 

To demonstrate the superiority of the proposed ELM method, exist-
ing state-of-the-art methods for FD and FC were also compared as shown 
in Table 5. For the FD purpose, Zhang et al. [18] used LSTM with SVM, 
and Amiruddin [33] used ANN. Zhang and his co-workers used real-life 
data that was collected from a substation under southern power grid of 
China. LSTM was used to excerpt important features from data that was 
used to train SVM. They used 5120 data samples for this study. The 
LSTM-SVM achieved 97.7% accuracy. Amiruddin achieved 78% accu-
racy using only 272 samples in the conducted study using ANN. Neural 
networks such as ANN, CNN, LSTM etc. have complex architecture and 
required high computation power [34]. In comparison to the proposed 
ELM, both models have lesser accuracies and complicated architecture. 

Furthermore, ANN was mostly used for the FC [35–37]. Chen et al. 
[17] used SW-ELM with 11 classes of faults and still the accuracy was 
lower than the ELM. In [36], they reduced the number of classes by 
considering the fault as two phases short circuit fault, two-phase to 
ground fault, and a single line to ground fault. Their system consisted of 
3 RLC loads and a source. Their dataset was too small consisted of only 
1000 data points. Considering these, the classification accuracy is 97.9% 
that is lower by 2.5% from the proposed ELM model. Similarly, another 
study [37] considered a 14-bus system to generate a smaller dataset that 
consisted of 1000 data points. They also reduced the total number of 
faults with 4 classes. However, the classification accuracy is only 70% 
which is very low. Again, Chen [17] used ELM for classification that was 
trained on excerpted feature using SW. SW-ELM can classify fault 
98.67% accurately. 

Guo et al. [8] showed higher accuracy than the proposed method (11 
types) considering lesser number of fault (10 types) types. They used 
CNN for classification which has a complex architecture and large 
number of parameters compared to the proposed ELM architecture. 
Again, Dasgupta et al. [21] and Mukherjee et al. [15] found higher ac-
curacies with a very low number of samples. A smaller dataset has a high 
probability that it cannot hold all types of distribution [40]. Dasgupta 

Fig. 7. TL-2: Confusion matrix for fault classification.  

Table 2 
Proposed model outcomes on different evaluation standard for FC.  

Fault Type Precision Recall F1-score Count Accuracy 
TL 1 

AG 96.94 100 98.45 95 – 
BG 100 100 100 114 – 
CG 99.06 100 99.53 105 – 
AB 98.81 96.51 97.65 86 – 
BC 100 99.09 99.54 110 – 
AC 99.04 100 99.52 103 – 
ABG 100 99.07 99.53 107 – 
ACG 99.03 99.03 99.03 103 – 
BCG 98.99 100 99.49 98 – 
ABC 100 96.81 98.38 94 – 
No Fault 98.86 100 99.43 87 – 
Average 99.16 99.14 99.14 1102 99.18 
TL 2 
AG 94.06 100 96.94 95 – 
BG 99.12 99.12 99.12 114 – 
CG 100 100 100 105 – 
AB 100 97.67 98.82 86 – 
BC 100 98.18 99.08 110 – 
AC 100 100 100 103 – 
ABG 100 96.26 98.1 107 – 
ACG 100 100 100 103 – 
BCG 98.99 100 99.49 98 – 
ABC 97.87 97.87 97.87 94 – 
No Fault 98.86 100 99.43 87 – 
Average 98.99 99.01 98.99 1102 99.09  
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et al. used only 800 samples to train their proposed KNN model where it 
does not have any pattern learning mechanism. KNN stores the whole 
training samples and prediction on new samples is conducted by 
calculating the distance between training samples which is time 
consuming [41]. It is very sensitive to outliers [42]. As well, Mukherjee 
et al. used only 250 samples to train their proposed PNN model that 
poses a complex architecture and large number of parameters. Lastly, 
Fahim et al. [12] achieved around 0.5% higher accuracy than the pro-
posed method. Their dataset is large enough to get a stable result. 
However, their proposed model has a large number of parameters. 

The actual numerical values of training-testing time and number of 
model parameters are not available in most of the literatures. Normally, 
deep learning architectures have a large number of parameters [43] and 
more the number of layers more the number of parameters. Table 5 
shows the number of layers of the SOTA models. 

Again, some methods proposed in the literature [11,13,14,17,19] 
have additional computational burden for data transformation for 

example wavelet transform. In contrast, the proposed novel ELM did not 
apply any data transformation still achieved very high accuracy. 

Anyway, most methods showed lower accuracy and uses a smaller 
amount of data to conduct their studies. Again, most of the studies used 
CNN, CN, PNN and ANN, which contained larger number of parameters 
[34] and needed relatively much higher training time. Therefore, the 
results presented in Tables 4 and 5 clearly demonstrated that the pro-
posed ELM not only detected and classified fault accurately but also 
needed fewer parameters and shorter computational time. The proposed 
method achieved a competitive accuracy with lesser number of 
parameters. 

Though, some above mentioned complex models showed optimistic 
results but none of them were concerned about processing time. How-
ever, in this study, time and computational complexity were contem-
plated by using simpler models. The performance of the proposed 
method on real-life data is out of the scope of this study. 

Fig. 8. TL-1: Receiver operating characteristics curves for fault classification.  

Fig. 9. TL-2: Receiver operating characteristics curve for fault classification.  
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Fig. 10. Confusion matrix for fault classification on fault data from a previ-
ous study. 

Fig. 11. TL-1: confusion matrix for fault classification.  

Fig. 12. TL-2: confusion matrix for fault classification.  

Table 3 
Proposed model outcomes on different evaluation standard for FD.  

Presence of fault Precision Recall F1-score Count Accuracy 

TL-1 
No Fault 97.7 100 98.84 806 – 
Fault 100 99.41 99.7 3195 – 
Average 98.85 99.7 99.27 4001 99.53 
TL-2 
No Fault 97.11 100 98.53 806 – 
Fault 100 99.25 99.62 3195 – 
Average 98.55 99.62 99.08 4001 99.60  

Fig. 13. TL-1: Receiver operating characteristics curve for fault detection.  

Fig. 14. TL-2: Receiver operating characteristics curve for fault detection.  

Table 4 
Comparison of ELM with ANN in terms of different model parameters for Fault 
Classification.  

Parameters ANN ELM 

Epoch 70 1 
Training time (sec) 20.73 3.39 
Prediction time (sec) 0.38 0.05 
No. of total nodes 291 700 
No. of intermediate layers 4 1 
No. of weight multiplications 5 2  
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4. Conclusion 

In this study, to ensure the safety and reliability of the power system, 
an automatic fault detection and classification system using the novel 
ELM has been proposed for two different transmission line (TL) con-
figurations with 10 types of faults. The proposed method achieved an 
optimistic result for the fault detection (FD) and fault classification (FC) 
cases due to its excellent generalization capability. FD models achieved 
promising accuracies (99.53% for TL 1 and 99.60% for TL 2) with a 
smaller volume of training data (20%) for both the cases. On the other 
hand, accuracies of 99.18% and 99.09% were achieved for the TL1 and 
TL2 respectively in the case of FC. Moreover, the models took shorter 
processing time and showed less computational complexity compared to 
the regular ANN model. The proposed novel ELM model showed the 
superior performance mainly due to the absence of gradual hyper- 
parameter tuning and having fewer hidden layers, hence less weight 
multiplication. It also does not include any complicated data trans-
formation methods. It is 7.6 times faster than an ANN with similar 
performance. Combining the novel ELM with a circuit breaker can detect 
and isolate the faulty section. In future, the determination of fault 
location can also be studied. The performance of this novel method can 
be analyzed further within a real-word scenario. 

Declaration of interests 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data Availability 

Data will be made available on request. 

References 

[1] J.C.A. Freire, A.R.G. Castro, M.S. Homci, B.S. Meiguins, J.M. De Morais, 
Transmission line fault classification using hidden Markov models, IEEE Access 7 
(2019) 113499–113510. 

[2] J. Morais, Y. Pires, C. Cardoso, A. Klautau, A framework for evaluating automatic 
classification of underlying causes of disturbances and its application to short- 
circuit faults, IEEE Trans. power Deliv. 25 (4) (2010) 2083–2094. 

[3] M.I. Zaki, R.A. El Sehiemy, G.M. Amer, F.M.A. El Enin, Sensitive/stable 
complementary fault identification scheme for overhead transmission lines, IET 
Gener. Transm. \& Distrib. 13 (15) (2019) 3252–3263. 

[4] S.A. Aleem, N. Shahid, I.H. Naqvi, Methodologies in power systems fault detection 
and diagnosis, Energy Syst 6 (1) (2015) 85–108. 

[5] K. Chen, J. Hu, Y. Zhang, Z. Yu, J. He, Fault location in power distribution systems 
via deep graph convolutional networks, IEEE J. Sel. Areas Commun. 38 (1) (2019) 
119–131. 

[6] A. Saber, A. Emam, H. Elghazaly, A backup protection technique for three-terminal 
multisection compound transmission lines, IEEE Trans. Smart Grid 9 (6) (2017) 
5653–5663. 

[7] H. Tong, R.C. Qiu, D. Zhang, H. Yang, Q. Ding, X. Shi, Detection and classification 
of transmission line transient faults based on graph convolutional neural network, 
CSEE J. Power Energy Syst. 7 (3) (2021) 456–471. 

[8] M.-.F. Guo, N.-.C. Yang, W.-.F. Chen, Deep-learning-based fault classification using 
Hilbert–Huang transform and convolutional neural network in power distribution 
systems, IEEE Sens. J. 19 (16) (2019) 6905–6913. 

[9] H. Lee, K. Kim, J.-.H. Park, G. Bere, J.J. Ochoa, T. Kim, Convolutional neural 
network-based false battery data detection and classification for battery energy 
storage systems, IEEE Trans. Energy Convers. (2021). 

[10] M.M. Tawfik, M.M. Morcos, ANN-based techniques for estimating fault location on 
transmission lines using Prony method, IEEE Trans. Power Deliv. 16 (2) (2001) 
219–224. 

[11] A. Abdullah, Ultrafast transmission line fault detection using a DWT-based ANN, 
IEEE Trans. Ind. Appl. 54 (2) (2017) 1182–1193. 

[12] S.R. Fahim, S.K. Sarker, S.M. Muyeen, S.K. Das, I. Kamwa, A deep learning based 
intelligent approach in detection and classification of transmission line faults, Int. 
J. Electr. Power \& Energy Syst. 133 (2021), 107102. 

[13] B. Vyas, B. Das, R.P. Maheshwari, An improved scheme for identifying fault zone in 
a series compensated transmission line using undecimated wavelet transform and 
Chebyshev Neural Network, Int. J. Electr. Power \& Energy Syst. 63 (2014) 
760–768. 

[14] M. Saini, A.A. bin Mohd Zin, M.W. Bin Mustafa, A.R. Sultan, Transmission line 
using discrete wavelet transform and back-propagation neural network based on 
Clarke’s transformation, Applied Mechanics and Materials 818 (2016) 156–165. 

[15] A. Mukherjee, K. Chatterjee, P.K. Kundu, A. Das, Probabilistic Neural Network- 
Aided Fast Classification of Transmission Line Faults Using Differencing of Current 
Signal, J. Inst. Eng. Ser. B (2021) 1–14. 

[16] Y. Zhang, et al., A cable fault recognition method based on a deep belief network, 
Comput. \& Electr. Eng. 71 (2018) 452–464. 

[17] Y.Q. Chen, O. Fink, G. Sansavini, Combined fault location and classification for 
power transmission lines fault diagnosis with integrated feature extraction, IEEE 
Trans. Ind. Electron. 65 (1) (2017) 561–569. 

[18] S. Zhang, Y. Wang, M. Liu, Z. Bao, Data-based line trip fault prediction in power 
systems using LSTM networks and SVM, Ieee Access 6 (2017) 7675–7686. 

[19] P. Ray, D.P. Mishra, Support vector machine based fault classification and location 
of a long transmission line, Eng. Sci. Technol. an Int. J. 19 (3) (2016) 1368–1380. 

table 5 
Comparison of ELM with other State-of-the-art models.  

Reference Algorithm Data (Training & Testing) No. of Class Considered No. of Layers Accuracy (%) 

Fault Detection (Binary) 
Zhang et al. (2018) [18] LSTM Network 

with SVM 
4100 & 1010 2 5 97.70 

Amiruddin et al. (2018) [33] ANN 190 & 41 2 2 78.00 
Proposed TL1 ELM 1000 & 4001 2 2 99.53 
Proposed TL2 ELM 1000 & 4001 2 2 99.60 
Fault Classification (Multiclass) 
Fahim et al. (2019) [35] ANN 208 & 44 3 3 84.40 
Padhy (2018) [36] ANN 800 & 150 4 3 97.90 
Guo et al. (2019) [8] HTT-CNN 1672 & 1752 10 6 99.92 
Abdullah (2017) [11] WT-ANN 54,336 & 8066 10 40 98 
Fahim et al. (2021) [12] WT-CN 26,680 & 11,435 11 9 99.72 
Dasgupta (2015) [21] Cross-correlation 

KNN 
800 & 1820 11 – 99.67 

Mukherjee (2021) [15] PNN 250 & 450 11 3 99.33 
Chen et al. (2017) [17] SW-ELM – 11 2 98.67 
Leh et al. (2020) [37] ANN – 11 3 70.00 
Rajesh (2022) [38] TSVD-HUARPNN – 11 – 98.31 
Moradzadeh (2022) [39] CNN-LSTM – 11 9 98.60 
Proposed TL1 ELM 9909 & 1102 11 2 99.18 
Proposed TL2 ELM 9909 & 1102 11 2 99.09  

Algorithm 1 
Sequence of operations in ELM  

1: Randomly generates the input weight W(m,N)and bias B(1,N) matrix. 
2: Determine the output H(n,N) of the hidden layer. 

H(n,N) = G(X(n,m)⋅W(m,N) + B(1,N))

3: Determine the output weight matrix β(N,t)

β(N,t) = H†

(N,n)⋅T(n,t)

4: Make prediction using β(N,t)

P(n,t) = H(n,N)β(N,t)
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