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Graph-enabled Intelligent Vehicular
Network Data Processing

Zhigao Zheng, Member, IEEE, Ali Kashif Bashir, Senior Member, IEEE

Abstract—Intelligent vehicular network (IVN) is the under-
lying support for the connected vehicles and smart city, but
there are several challenges for IVN data processing due to the
dynamic structure of the vehicular network. Graph processing,
as one of the essential machine learning and big data processing
paradigm, which provide a set of big data processing scheme, is
well-designed to processing the connected data. In this paper,
we discussed the research challenges of IVN data processing
and motivated us to address these challenges by using graph
processing technologies. We explored the characteristics of the
widely used graph algorithms and graph processing frameworks
on GPU. Furthermore, we proposed several graph-based opti-
mization technologies for IVN data processing. The experimental
results show the graph processing technologies on GPU can
archive excellent performance on IVN data.

Index Terms—Graph processing, vehicular networks, Internet
of intelligent vehicles.

I. INTRODUCTION

W IRELESS network is the basis of many applications
that can support mobile broadband access. In recent

years, the wireless network attracted more and more attention
from both industry and academics [1], [2]. Vehicular net-
work is a smart-vehicles network with complex intra-vehicle
systems [3], [4], [5]. Various vehicular infrastructures (such
as cameras, traffic lights) and kinds of sensors, which used
to collect vehicle and driving status, are included in the
vehicular network. The general architecture of the vehicular
network shown in Fig. 1, there are three layers (vehicles,
connections, and servers/clouds) that included in this archi-
tecture. The vehicles communicate with each other through
the V2V (vehicle to vehicle) network, at the same time, the
vehicles can communicate with remote mobile phones and
some other devices through V2I (vehicle to infrastructure)
network. Promoted by the new onboard computing and sensing
technologies, the vehicular networks have become one of the
most important aspect of the intelligent transportation systems
(ITS) and smart cities [6], [7], [8]. This new trend proposed
some new challenges for current vehicular communication sys-
tems with higher security, reliability, and effectiveness require-
ments. Along with recent advances in some new technologies
such as computational intelligence, artificial intelligence (AI),
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Fig. 1: An example structure of vehicular networks. V2D is
the communication of vehicle-to-device, while the V2V is the
communication of vehicle-to-vehicle.

blockchain, and 5G will help the ITS move forward into a
smarter level with autonomous driving in near further.

In recent years, there are many academic and industry
organizations, and even some government departments also
proposed a set of communication standards for vehicular
Ad Hoc networks (VANETs), including the Dedicated Short-
Range Communication (DSRC) [9], and ITS-G5 [10], [11] in
the United States and Europe respectively, both of them are
proposed based on IEEE 802.11p [12]. However, some recent
researches [13], [14] show the communication data processing
technologies suffered from several issues, such as lack of
quality of service (QoS) guarantees, channel access delay,
different communication standard transfer, and short-lived
vehicle-to-infrastructure (V2I) connection. In order to solve all
these problems, the 3rd Generation Partnership Project (3GPP)
started several investigations to find the vehicle-to-everything
(V2X) supporting services for the long term evolution (LTE)
network and the future 5G cellular system [15]. With the devel-
opment of device banded communications, some researchers
try to employ the device-to-device (D2D) communications to
support the vehicle-to-vehicle (V2V) transmission in cellular
systems [6], [16], [17]. In addition, recent research have
extended the graph algorithms and some graph enabled com-
munication data processing framework for vehicular networks
resource allocation [16], [17], [18], [19]. However, there are
still some challenges in designing graph enabled vehicular
network communication data processing, such as how to
provide QoS guarantees for the heterogeneous network, and
how to ensure the computation results in the dynamic vehicular
environment.

Meanwhile, with the development of sensing technologies
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and 5G, the further vehicles will be equipped with more
and more smart sensors, such as the radar, engine monitor
and control unit, light control unit and some other device
such as remote emergency alarm device as well as some
networks based applications such as social networking appli-
cations. Most of these sensors need to be work in real-time,
together with the high-performance computing and storage
unit onboard, and these sensing technologies will promote
the intelligent driving progress into autonomous driving. All
these sensors and onboard devices keep collecting, generating,
storing, and communicating with each other, which generates
large scale connected data. There are complex connections
between all these communicating and controlling data, how to
explore the relations between these data to improve the control
and communication performance for all these devices is a great
challenge.

The graph is a fundamental mathematical structure used
to model pairwise relations between objects, and it is widely
used in machine learning [20], [21], and deep learning [22]
technologies to express the connections between different
objects. The context in a graph is called vertices (also called
nodes), while the connections are called edges. Graph theory
has been widely used in vehicle communications [23], [24],
a graph-based metrics is proposed to gauge the redundancy
of dissemination protocols in [25], some open issues of the
metrics such as attackers colluding and eviction are also
included in this work. The authors of [26] proposed a VANET
communication model based on evolving graph theory to
determines the regular routes preemptively. The authors of
[27] formulated the problem of cooperative communications
scheduling in vehicular networks by using graph theory, and
the authors proposed a bipartite-graph-based (BG) scheduling
scheme to allocate the vehicle-to-infrastructure (V2I) and
V2V links for both single-hop and dual-hop communications.
The experimental result shows that the proposed method can
archive an excellent overall performance than state-of-the-art
works. Graph theory and algorithms have provided essential
theory support for vehicular networks in resource allocation
and communication modeling [28], and graph applications
also help the network more informed and data-driven deci-
sions. However, how to use graph theory and algorithms to
support the distinctive characteristics of intelligent vehicular
networks and provide high performance and real-time decision
making policy remains challenging and represents a promising
research direction.

In this paper, we discuss some major challenges in sup-
porting intelligent vehicular networks with high performance,
such as real-time decision making and network topologies
updating in dynamic changing environments, path planning,
and QoS in high dimensional communication links. To address
these challenges, we introduce some high-performance graph
processing frameworks into intelligent vehicular network data
processing. Furthermore, we proposed a fundamental shift
of the graph processing approach for intelligent vehicular
network data processing framework, Hooker. We also designed
a set of experiments to verify that the idea of applying the
graph processing approach into intelligent vehicular network
communication data processing is extremely appealing for

several reasons.
The rest of the paper is organized as follows. We introduce

the characteristics and research challenges of intelligent ve-
hicular network data processing and the motive of using the
graph processing method to process the large scale intelligent
vehicular network data in section II. We introduce the major
graph processing frameworks and algorithms in section III and
IV. Then, we introduce how we can use graph algorithms
to solve the challenges of intelligent vehicular network data
processing, and also the design methodologies and principles
of Hooker in section V. The experimental evaluation of the
existed graph processing frameworks introduced in section VI.
At last, we conclude the paper in section VII.

II. CHALLENGES OF IVN COMMUNICATION DATA
PROCESSING

High dimensional intelligent vehicular network data exhibit
distinctive characteristics, which have created significant chal-
lenges to intelligent vehicular network design. In this section,
we discuss these challenges and try to figure out the potential
solutions by using graph processing technologies.

A. Highly Dynamic Topology

Unlike typical mobile network graphs, the vertices represent
vehicles are moving at quite high speed, which leads the
topology of vehicular network changes frequently. This char-
acteristic will affects system design and computing in multiple
aspects of vehicular networks. On the one hand, the network
connection performance is much worse than a common mobile
network, and the link failures and message loss rate will
also be increased, under this scenario. How to elongate the
life of communication connections and how to manage the
connection links between the moving vehicles is an excellent
challenge for intelligent vehicular network. On the other hand,
the network density also changes with moving vehicles. The
network density may be very high when traffic jam occurred,
while network density will be relatively low in suburban traffic.
This changing density may lead to a high communication
delay. How to reduce the delay for a changing density network
is another challenge. At last, the distance between the vehicles
is also challenging with the vehicle moves. How to update the
computation results, such as the shortest path between two
vehicle is also a challenge for existed vehicular networks.

B. High Reliability and Scalability Requirements

With the development of vehicle technologies and big
data processing technologies, there are more and more smart
transportation and aided driving applications have been used
in our daily life. While all transportation and driving-related
applications are safety-sensitive, hence, how to design a highly
reliable intelligent vehicular communication networks is nec-
essary. However, due to the complex network topology with
poor stability and large network scale, how to design a highly
reliable vehicular network is a great challenge.

As mentioned earlier, there are more and more vehicles
and some other devices added into the intelligent vehicular
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network, which make the network proliferates. How to keep
the high scalability to keep the high quality of services (QoS)
of the network is another challenge.

C. The Potential of Graph Processing

Graph processing has been widely used in kinds of appli-
cations to deal with the complex relations, such as molecule
structures model in chemistry, cognitive processes in computa-
tional neuroscience, atoms structure analysis in physics, code
structures analysis in computer science, and so on. To facilitate
the development of large scale graph processing, there are
kinds of generic graph programming, and both academic and
industry searchers have implemented computing frameworks.
Both single machine graph processing frameworks, such as
GraphChi [29], X-Stream [30], and GridGraph [31], and
distributed graph processing systems, such as Pregel [32] and
PowerGraph [33] are included.

Recently, the technical advance of kinds of the new hard-
ware and accelerator, such as the General-Purpose Graphics
Processing Units (GPGPUs) [34] and FPGA, has attracted
many researchers from both academic and industry to investi-
gate how to use these kinds of new hardware and accelerators
to accelerate the computational and memory-intensive appli-
cations, including graph processing [35], [36]. Benefit for the
massive parallelism and high memory bandwidth, the GPGPU
has been widely used for graph processing frameworks. With
the efforts from both academics and industry, a set of general
graph processing frameworks have been developed, such as
Totem [37], Medusa [38], CuSha [39], and GunRock [40].
In particular, graph processing, one of the domain-specific
big data processing systems, can interact with a dynamic
environment and develop satisfactory policies to meet diverse
data format and QoS requirements to of vehicular network in
a dynamic and varying wireless environment. For example,
a vehicle adds or leaves the network will make the network
structure changes.

III. GRAPH ALGORITHMS FOR IVN APPLICATIONS

There are kinds of graph processing algorithms that can be
used to accelerate IVN applications. For example, Breadth-
First Search (BFS) is widely used in kinds of graph searching
applications, Betweenness Centrality (BC) is used to find
important paths and vertices in IVN, some other algorithms
such as Connected Component (CC) is used to find the
component of vehicles which with frequent communications,
Single Source Shortest Path (SSSP) is used find the suitable
paths in root/road planning, and PageRank (PR) is used to
find the important vehicle in the components of intelligent
vehicular network applications. This section try to discuss
some existed efforts to accelerate specific graph algorithms
on GPU. We will introduce some typical algorithms in the
following sections.

A. Path Planning

Traversal algorithms can be leveraged to find the paths in
dynamical vehicular networks, including the path planning and

vehicle trajectory prediction. The path planning can be further
used towards navigation planning and data pre-processing for
system performance improvement. For example, the single
source shortest path (SSSP) algorithm is widely used for
path planning, and betweenness centrality (BC) is used to
solve the traffic assignment problem [41]. Rami et al. [41],
shows the applicability of betweenness centrality and certain
augmented types of it for obtaining traffic flows through links
of a transportation network. In Rami’s work, the authors
achieved a strong positive correlation with the traffic flows in
transportation networks by using the betweenness centrality
measurement and then proposed a betweenness-driven traffic
assignment model to optimize the position of the transport
network. The proposed method can archive an excellent per-
formance due to betweenness centrality simultaneously con-
siders all shortest paths between an origin and a destination.
Ademar et al. [42], proposed a distributed approach to compute
egocentric betweenness scores over VANETs by only use the
local knowledge of the network topology, which can release
the computation capacity of vehicles.

B. Vehicle Scheduling

Vehicle scheduling is one of the most typical applications
of intelligent vehicles and smart cities, which is widely used
in intersection management and intelligent drive control. The
most classic application of intersection management is to
decide the passing order of the vehicles passing through
the intersection without traditional traffic signals. The naı̈ve
implementation of vehicle scheduling is the greedy method,
which called as First-Come-First-Serve (FCFS) approach. In
this method, the manager schedules the vehicles according to
the arrival time. The earlier come ones passing through the
intersection eariler. The FCFS is easy to implement, however,
this method ignores some essential information, such as the
interactions between vehicles and conflict zones, and thus
leads to extra delay in many cases. On the other hand, the
FCFS method do not take the priority into consideration, which
can delay some important vehicles and also will lead to some
serious problem. Based on improved visibility graphs, Wei
et al. [43] proposed a local path planning algorithm for an
intelligent vehicle on a structured road. This paper introduced
the graph processing model for vehicle scheduling, which can
improve the scheduling efficiency.

In intersection management, our objective is to minimize
the total time needed for all vehicles to go through the
intersection, equivalent to the leaving time of the last vehicle.
To remove cycles while considering the edge costs, finding
a minimum spanning tree (MST) of the graph can be a
potential solution, and one approach is Kruskal’s algorithm
[44]. Kruskal’s algorithm repeatedly chooses a minimum-cost
edge, which does not form any cycle with those already-chosen
edges. Kruskal also proposed the backward version of the
original one, and it repeatedly removes a maximum-cost edge
whose removal does not disconnect the graph. Inspired by this
method, we do intend to remove the edge, which results in the
most significant delay to the objective. This can remove cycles
and benefit the objective minimization at the same time. Based
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on the graph model, Lin develops a centralized cycle removal
algorithm for the graph-based model to schedule vehicles to
go through the intersection safely (without collisions) and
efficiently without deadlocks [45]. The algorithm is sufficiently
efficient to consider more conflict zones and more vehicles in
real-time.

IV. GRAPH PROCESSING FRAMEWORKS ON GPU

Many graph processing frameworks are proposed in recent
years, including some single machine framework [29] and
distributed frameworks [33], and also some frameworks on
new hardware devices, such as GPUs [40] and FPGA [46],
[47]. In this paper, we consider the character of the IVN
data, and try to conclude some optimization strategies for
graph processing framework for IVN data processing. In this
section, we discuss the programming models and system
implementation and optimization technologies.

A. Graph Programming Models

The GAS (Gather-Apply-Scatter) and BSP (Bulk Syn-
chronous Parallel) programming models are mostly used,
BSP is firstly used in Pregel [32] and GAS is proposed in
PowerGraph [33].

BSP programming model is widely used in many graph pro-
cessing frameworks on GPU, including TOTEM, Medusa and
GunRock. In BSP programming model, the program executed
as a so-called super-steps. The threads run asynchronously in
parallel within a super-step, while all the threads need to be
synchronized at the end of the super-step. Hence, the threads
only can communicate with each other at the end of the super-
steps, which is called a barrier. This execution fashion is easy
to implement, but it is easy to lead the straggler problem since
the computation task on the vertices are varies.

There are also many graph processing frameworks on GPU
are adopt the GAS model, such as MapGraph [48] and CuSha
[39]. In the GAS programming model, the program on each
vertex is divided into three phases, which are named Gather,
Scatter, and Apply. In Gather phase, the vertices collect
information from their neighbors, and the updates from the
neighbors will be added in the Apply phase, then the Scatter
phase broadcast the updates to the neighbors to promotes the
program into the next iteration. In this fashion, the GAS can
be implemented in an asynchronous fashion, which can avoid
the synchronization overhead and the straggler problem.

B. Memory Access Pattern

The random memory access manner of graphs will limit
the performance of the GPU, how to unleash the computation
ability of GPU is a great challenge. In this section, we discuss
some existed technologies on memory access optimization.

In GraphReduce [49], the vertices are sorted according to
the source vertices ID to make sure all the edge from the
same vertex can be visited at the same time. A Unified Virtual
Addressing (UVA) technology is also used to allocate the
memory space for GraphReduce, combined with the DMA
memory loading/storing technology, GraphReduce can make

the memory access in a sequential manner, and the commu-
nication overhead can be overlapped with GPU computations
through pre-fetching.

In GTS [50], the graph data have been distinguished ac-
cording to the attribute of the data, the attribute data was
copied into GPU on broad memory with a long lifetime, while
the topology data are copied to the GPU device from the
host memory by using CUDA streaming. In this processing
method, the GPU device can quickly visit the whole graph,
while the extraordinary computation data can be loaded when
the computation moves on. GTS also introduced the SSDs to
accelerate the data transfer operation.

C. Workload Mapping

The workload imbalance problem is caused by the irreg-
ular vertex degree. How to mapping the uneven workload
onto GPU is another challenge. The mostly used method is
evenly assign the thread to the edges. In this method, every
thread just processes an edge, the computation task of every
thread is the same. However, there are much more threads
are needed than assign threads to vertices, which will slow
down the overall performance. In order to solve this problem,
Dynamic scheduling strategy is proposed in MapGraph [48].
In MapGraph the threads are assigned according to the vertex’s
degree, a warp is assigned to the vertices with lower degree
while the CTA is assigned the vertices with higher degree. In
this thread assignment model, it is easy to distinguish different
workloads, and then it can dynamically schedule the workload.

Gunrock [40] implemented a similar thread assignment
fashion with MapGraph [48], but Gunrock classified the tasks
into fine- and coarse-grained workload, then assign the thread
warp/block to the different workloads. A virtual warp include
multiple warps is also implemented in Gunrock, which is
assigned to the vertex with tremendous degree.

D. Miscellaneous

There are some other research challenges in graph-
enabled IVN data processing, for example, how to provide a
programmer-friendly interface and how to improve the degree
of parallelism.

Medusa [38] and MapGraph [48] both provides a set of
programmer-friendly APIs, which is easy for the programmers
to implement the user-defined functions. In addition, Medusa
also provides a set of configuration parameters to enhance the
flexibility of the framework. Unlike the previous implementa-
tion, GunRock provides a data-centric abstraction to enhance
the flexibility of the library.

V. GRAPH-ENABLED IVN FRAMEWORK

Graph processing represents a useful tool for a variety of
applications. In this paper, we proposed a graph-enabled IVN
data processing framework, Hooker. In Hooker, we designed
a new programming model to fit multi-architectures, a new
communication paradigm to maintain the data consistency,
integrality and security.
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A. The JCS programming model

Vertex-centric programming model is easy to express most
of the graph algorithms, and it can provide high scalability
by partition the graphs. However, it is easy to lead random
memory access and load imbalance problem, due to the
skewed degree distribution of real-word graphs. Edge-centric
programming model can provide a continuous memory access
fashion, but it will introduce lots of redundant computation
since there are many more edges than the vertices in real-
world graphs. The Gather-Apply-Scatter (GAS) is a fine-
grained vertex-centric programming model, which proposed
in PowerGraph [33]. Previous research shows that the num-
ber of active vertices in each iteration is far less than the
total number of vertices in a graph [33]. Hence, this paper
proposes a queue-based vertex-centric Join-Compute-Scatter
(JCS) programming model, which is shown in figure 2. In JCS
programming model, the operation on the vertex is divided
into join, compute and scatter three steps. The join operation
adds the active vertices into the worklist, and the compute
operation updates the vertex’s value according to the user-
defined function, while the scatter operation scatter the vertex’s
value to its neighbours, which similar like the scatter operation
in GAS model. In JCS model, each iteration cares about the
vertices which need to be updated. This execution fashion
can provide a unified and concise implementation for different
algorithms, and it can provide high scalability for the vertex-
centric method.
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Fig. 2: The JCS programming model and how it matches with
multiple hardware.

In order to make the JCS model matches with different kinds
of hardware architecture, this paper provides a mixed granu-
larity task mapping mechanism and a heuristic parallel write
optimization mechanism. We introduce the two optimization
mechanisms as follow:

• Mixed-granularity task mapping mechanism. Here,
we take GPU as an example to introduce the mixed-
granularity task mapping mechanism. We assign the
vertices to thread, warp, CTA, and kernel according to
the number of the neighbour of the active vertex, and
the virtual-warp is used to solve the load imbalance
problem. While, on KNL, the proposed mechanism not
only supports regular round-level parallelism for different
task size, including the for-all parallelism, reduction
parallelism, and scan parallelism, it also supports the
irregular parallelism, which can achieves excellent load
balancing through reasonable task stealing scheduling.

• Heuristic parallel writes optimization mechanism.
There are many duplicate vertices in the worklist since
there are more than one vertices connected with the same
vertex. Atomic operations and locks are introduced to en-
sure data consistency, but both atomic operations and lock
operation will lead lost of conflicts with will slow down
the overall performance. However, recent researches show
that some updating operations are idempotent (i.e. the
updating order does not affect data consistency). Hence,
there is no need to design a specific algorithm by using
atomic operation or lock to remove the duplicate vertices
from the worklist, design a lightweight runtime heuristic
policy is enough to remove the redundant computation,
which will be more efficient.

B. Feature-aware data partitioning and placement strategy

In order to meet the architecture’s feature to unleash the
device performance, this paper propose a three-dimensional
graph partition scheme. The proposed graph partition scheme
will load the graph blocks into the device on broad memory
to make sure the locality of data access and hence to reduce
the I/O overhead by considering the communication overhead.
Figure 3 show the essential operation of the proposed graph
partition scheme.
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Fig. 3: Data partitioning and placement strategies for data-
aware and structure-aware.

The existed graph processing system applied the one-
dimensional or two-dimensional partition strategy, which is the
vertex-centric and edge-centric partition method, respectively.
The vertex-centric partition strategy will lead to a load imbal-
ance problem, since the vertex degree distribution of most real-
world graphs is power-law. While the edge-centric partition
strategy will lead to a large amount of communication between
the master node and the replicas. Recent research proposed
a 3D partition strategy, which partition the vertex attribution
as the third-dimensional partition object, this partition can
archive an excellent system performance in machine learning
applications, but do not suitable for full broad applications
[31]. The traversal tree-based partition method can maintain
good locality, but the partition operation executed after traverse
the whole graph. The overhead of this partitioning method
is enormous. In order to solve the problems of the existed
partition methods, this paper proposes a hybrid partition
method. The proposed method first partition the vertices
with similar degrees together by using a two-dimensional
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partition method and then partition the sub-graphs again by
using a one-dimensional partition method. The hybrid partition
strategy will take the third-dimensional partition as the first
round partition for some specific graph algorithms, and then
partition the results again by using a two-dimensional partition
method. This method can archive load balance and very low
communication computation ratio for different algorithms and
architectures.

The data placement is closely related to the representation of
the graph, and it has a deep effect on system performance. The
upper-level framework requires the graph representation with
high memory bandwidth utilization and locality of memory
access. While, the lower-level storage requires high space
utilization, avoid the space-wasting for sparsity graph. The
storage level also requires the graph can be loaded into the
memory during the I/O operation in graph processing. In order
to meet both the upper-level and lower-level’s requirements,
this paper provides a hybrid CSR/CSC graph representation,
and the edge-list representation is also provided according to
the characteristics of the graph. The mixed CSR/CSC graph
representation is benefit for the Scatter/Gather operation. For
example, some implementation of the BFS algorithm will
change the traversal direction from bottom-up to top-down
(or top-down to bottom-up). This hybrid representation will
improve memory access efficiency by changing CSR to CSC
(or change CSC to CSR). Community is another essential
characteristic of the real world graphs, i.e. the vertices in a
community are connected but few vertices connect with the
vertices outside the community. In this kind of graph, the
community can be processed by some SIMD devices, such
as GPU, by using the edge-list representation will archive an
excellent performance. Hence, edge-list representation can be
an optional method for users.

C. Comunnications

In order to processing large scale IVN graphs, we proposed
a layer centric communication model for Hooker, which is
shown in figure 4. In this communication model, the threads
in each layer passing messages to each other asynchronous,
while the messages need to be synchronized between layers.
This communication model can accelerate the task in each
layer and keep the data consistency, integrality and security
between layers.
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Fig. 4: Layer centric communication model.

VI. EXPERIMENTS

In this paper, we conducted a set of experiments to try
to find some insights for graph enabled IVN data processing
framework. On the one hand, we compare the performance of
graph processing frameworks with different types of graphs,
which widely used in an intelligent vehicular network. On
the other hand, we compare the performance of different
graph processing frameworks, which implemented on different
devices. Hence, we can conclude that when we need to use
some accelerator device to accelerate the algorithm on GPU
and what kind of framework we can use to process the different
types of intelligent vehicular network data.

A. Experimental Datasets and Algorithms
In this section, we introduce some typical datasets and

algorithms which chosen to demonstrate the performance of
the graph-enabled IVN data processing frameworks.

All the datasets of the experiments conducted in this paper
are follow the classic graph formalism [51]. We use V and
E to present the vertices and edges of the graph, respectively.
G = (V,E) present the graph. The edge presented as e, where
e = (u, v) and e =< u, v > are the undirected and directed
edges. In this paper, both directed and undirected graphs used
in our experiments.

In order to include both power-law and large diameter
graphs, we select six graphs from different real-world appli-
cations, such as e-business, social network and some other
source networks. All these graphs are with different structures
and a varying number of vertices and edges. The graphs are
shown as table I. All these six graphs can be downloaded from
the Stanford Network Analysis Project (SNAP) [52]. As the
power-law graph follow a distribution, shown as formula 1
[53], [54], we list the exponent and the fitness in table I to
compare the power-law attribution. In this paper, the graphs
stored in a plain text file with edgelist format, which is easy
for us to locate the edges.

P(x) ∝ x−α (1)

In order to compare the performance of different algorithms
on all these frameworks, we implemented four most frequently
used graph algorithms, include two traversal algorithms (BFS
and SSSP) and two iterative algorithms (PageRank and Con-
nected Component).

All the experiments are conducted on an NVIDIA GeForce
GTX 1060 GPU, which is a Maxwell architecture device with
1280 CUDA cores and 6GB onboard memory. The programs
compiled by using CUDA 8.0 with “-arch=sm 35” flag on
Ubuntu 16.04. We also compared the graph frameworks on
GPU with some frameworks which run on CPU, such as
GraphChi [29], X-Stream [30], and GridGraph [31]. All the
CPU enabled graph frameworks are run on a machine with
8GB memory and 4 Intel Core(TM) i5-5200 CPUs at 2.2GHz.
All the source codes are provided by the authors.

B. Graph-processing frameworks
Both graph processing frameworks on GPU and CPU, which

are widely used in research and industrial communities, are
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TABLE I: Datasets used in the experiments

Datasets Vertices Edges Avg. Degree Max Degree Diameter Exponent(α) xmin Fitness (p)
Amazon 735,323 5,158,388 7.01 1,076
dblp-2011 986,208 6,707,236 6.80 979 23 3.9736 119 0.4
RoadNet-CA 1,971,282 5,533,214 2.81 12 8,440 15.5587 4 0
Wiki-Talk 2,394,386 5,021,410 4.19 100,032 11 2.4610 1 0.787
soc-LiveJournal 4,847,571 86,220,856 28.25 22,887 20 2.6510 59 0.930
twitter-2010 41,652,229 1,468,365,167 70.51 3,081,112 23 1.54 12 0.96

compared. The famewroks on GPU are TOTEM [37], CuSha
[39], Medusa [38], Gunrock [40], and MapGraph [48].

TOTEM is the first GPU and CPU hybrid system [37],
which partition the graphs into two parts, one partition is
processed on GPU and the other one is processed on CPU.
The vertex-centric processing pattern is used in TOTEM, and
there are three different partition strategies for TOTEM, named
HIGH-degree, LOW-degree and RANDOM-degree, according
to the vertices’ degree. The HIGH-degree partition strategy
assigns the high degree vertices to the CPU and assigns the
low degree vertices to the GPU. LOW-degree partition strategy
is opposite with the HIGH-degree strategy, and the RANDOM-
degree strategy the vertices to CPU and GPU device in a
random manner. Medusa and CuSha adopt the edge-centric
processing model, G-Shards and Concatenated Windows (CW)
technology like GraphChi are implemented in CuSha, while
Medusa provides a set of simplified programming interface.
MapGraph implemented the GAS strategy, which proposed
in PowerGraph, on GPU. Gunrock is the most recent high-
performance library on GPUs. All the parameters in this paper
are the same with the authors’ original work list in their
publication, which can achieve the best system performance.

C. Experiment Results

1) Perspective of dataset: We first try to conclude that types
of datasets and algorithms which can executed on GPU. In this
experiment, the BFS is implemented as a textbook version,
while PR and SSSP are implemented according to the best-
reported performance in [37], and CC is implemented accord-
ing to Wu’s [55] version. Figure 5 shows the experimental
performance of different algorithms executed different datasets
for both GPU and CPU.

Figure 5 shows that the algorithms achieve better perfor-
mance on GPU than on CPU except for PageRank. As we
discussed before, GPU has higher computing power than CPU
when the memory access is regular. However, a graph is of
the irregular data structure, and the GPU memory accessed
irregularly in graph algorithms. Figure 5 also indicts that GPU
is hard to process the large scale graph, particularly when the
graph size reaches the memory size. The experiment shows
the performance of PageRank on GPU is even worse than
CPU, this is because PageRank needs to send the updates
of the vertices to their neighbours in every iteration, there
are many communication operations. As the GPU connected
with the host through PCI-E bus, while the bandwidth of
PCI-e is limited. Hence, the compunction cost is the main
bottleneck of PageRank on GPU, in particular for the large
scale graphs which with the graph size larger than the GPU
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Fig. 5: System performance for different graphs on CPU and
GPU

on broad memory. The experiment also shows that the power-
law datasets, such as Amazon and Twitter can achieve a
good speed up when the dataset can be loaded into the GPU
on broad memory, while the large diameter graphs such as
RoadNet can not achieve such an excellent performance.

Comparing Figure 5(a), Figure 5(c) and Figure 5(f), we can
conclude that the algorithms performance on Amazon and
Twitter outperforms on RoadNet. This result indicates that
GPU is more suitable to process power-law graphs than CPU.

2) Perspective of algorithms: In order to investigate the
performance of different algorithms, we run the selected algo-
rithms on different GPU graph processing systems. For each
combination of algorithm and graph processing framework, we
run the algorithm 5 times and obtain the average performance.
The experimental results are shown in Tables II–V.

We can conclude from the experimental results that Gunrock
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TABLE II: Execution Time of BFS (ms)
Datasets Amazon DBLP LiveJournal RoadNet-CA WikiTalk Twitter
TOTEM 23.46 6.48 58.38 439.96 79.96 25.68
CuSha 100.087 31.949 68.833 2632.5 6.983 5.074
Medusa 4.5169 3.024 13.29 85.884 2.009 3.253

MapGraph 4.48 4.83 4.0868 35.142 7.702 1.683
Gunrock 6.0179 3.813 30.699 37.575 0.2222 0.1662

TABLE III: Execution Time of PageRank (ms)
Datasets Amazon DBLP LiveJournal RoadNet-CA WikiTalk Twitter
TOTEM 55.3 44.26 446.16 179.64 264.27 117.34
CuSha 5.507 3.61 10.383 10.113 9.795 23.191
Medusa 14.265 29.798 47.89 15.77 394.299 69.616

MapGraph 17.198 28.357 27.827 15.987 83.366 23.95
Gunrock 22.6998 16.3391 101.9559 35.6269 74.024 74.2691

outperforms all other GPU-based graph processing systems
with BFS. This is because Gunrock makes use of the frontier
to store its graph data, creating a ‘queue’ for the data structure.
This works well with BFS-like algorithms. TOTEM follows
Gunrock as the second most competitive system.

Table II shows a comparison of the performance of all
six GPU based graph processing systems on the BFS al-
gorithm. MapGraph has a clear performance advantage on
Amazon, however, Medusa outperforms other systems on
DBLP. RoadNet-CA is the dataset with the biggest diameter,
which makes the processing more difficult for BFS. However,
MapGraph and Gunrock achieve good performance with this
dataset. This is because they use the queue-like data structure.

The damping factor and precision of PageRank in our
experiments set as 0.85 and 0.005, respectively. Table III
shows that CuSha performs better than any other system with
PageRank, which mainly benefits from the strategy of G-
shards partition.

We also looked at three CPU-based graph processing frame-
works, GraphChi, X-Stream, and GridGraph. GraphChi chops
large graphs into small parts. It designs a Parallel Sliding
Windows (PSW) method in order to gain a better efficiency for
random access to vertices. We can see that CPU-based graph
processing systems achieve higher performance than the GPU-
based systems when processing the PageRank algorithm. This
is because PageRank uses a considerable number of random
accesses, which will slow down the GPU performance.

From Table II–V we can conclude that not all the graph
algorithms are suitable for the GPU graph processing system.
BFS-like algorithms, which access the memory regularly by
using some data layout techniques, are suitable to be run by
the GPU-based graph processing system, so are the power-law
graphs.

TABLE IV: Execution Time of CC (ms)
Datasets Amazon DBLP LiveJournal RoadNet-CA WikiTalk Twitter
TOTEM 135.117 120.636 93.729 2880.238 185.123 1690.31
CuSha 135.719 126.619 91.41 1509.08 81.637 962.49

MapGraph 104.08 118.6 70.09 121.86 50.71 230.34
Gunrock 33.87 35.77 24.01 963.01 42.95 544.3

TABLE V: Execution Time of SSSP (ms)
Datasets Amazon DBLP LiveJournal RoadNet-CA WikiTalk Twitter
TOTEM 30.39 3.79 33.91 492.51 140.07 45.83
CuSha 107.285 34.6 80.208 2948.24 6.918 5.054

MapGraph 38.26 25.547 14.56 606.64 26.023 605.91
Gunrock 224.9389 104.5270 251.8849 1253.0050 1.6890 0.3371
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Fig. 6: The performance of different algorithms on CPU graph
processing system.

VII. CONCLUSION AND FUTURE OPPORTUNITIES

The IVN is the basis of smart cities, how to processing the
dynamic IVN data is a significant challenge. Nowadays, most
of the big data processing systems are under a batch processing
model, which is hard to process the dynamic data. The graph
processing frameworks, with a set of data processing paradise
for the highly connected data, may provide a chance for
IVN data processing. This paper first discussed the research
challenges of IVN data processing and then proposed a new
paradise for IVN data processing.

In the future, we plan to focus on some other aspects of
IVN data processing, such as the IVN processing framework
on some other new devices like Directed Self Assembly (DSA)
and Field Programmable Gate Array (FPGA), the real-time
dynamic data processing for IVN or some other new devices.
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