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E-CIS: Edge-based Classifier Identification

Scheme in Green & Sustainable IoT Smart City

Abstract

E1–Smart city has brought the unprecedented development and application of Internet of things 

(IoT) devices. Meanwhile, since both of the quantity and the type of IoT devices are growing rapidly, 

how to quickly identify the type of IoT devices is of paramount importance, especially in the fields 

of IoT Device Security, IoT Forensics, Cyber Defense, and Cyber Threats Intelligence Sharing, to 

make the IoT smart city green and sustainable. Traditional identification mode based on device or 

gateway often suffers from their limited computing and storage resources. Our work is motivated by the 

observation of the emergence of edge computing, in which computing and storage servers are placed in 

close proximity to IoT/mobile devices. In this paper, we propose an Edge-based Classifier Identification 

Scheme (E-CIS) for IoT Devices, where the neighboring edge servers provide powerful computing and 

storage capabilities. E-CIS changes the traditional centralized architecture and realizes low time delay 

and efficient identification of  IoT devices based on  edge computing. Experiments show that the average 

identification accuracy i s as h igh as 99.2%. Besides, t he optimization and security of t he classification 

model can be maintained by the edge servers at the same time.

Keywords: IoT, Edge computing, Classifier I dentification, Ma ssive Io T Device Management, 

IoT Device Security & Cyber Defense

I. INTRODUCTION

E1–With the rapid development of IoT technology, the number of IoT devices continues 

to increase in our daily life [1]–[3]. It is estimated that there will be more than 24 billion 

IoT devices in the world in the next 25 years. Such a huge scale of devices not only brings 

convenience to our life but also give rise to problems of network security and device management. 

On the one hand, the original equipment manufacturers are the traditional home appliance 

manufacturers. Due to the lack of information security awareness, the equipment they produced 

often had security vulnerabilities [4], [5]. Attackers can use the vulnerabilities of these types of 

equipment to launch attacks on the equipment and the network, and then control the equipment or 

paralyze the network. On the other hand, due to the rapid growth of IoT devices in the network,
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administrators may unable to know all device assets of the network and have no idea what 

devices are connected to the network, which causes the problem of device asset management. 

Therefore, device identification is of great importance in IoT security, device management, and 

cyber defense during building a green and sustainable IoT smart city.

IoT device identification i s t o i dentify n ew d evice t ypes t hat a ccess t he n etwork b y ex-

tracting hardware or network communication features of different types of devices. In terms 

of management, device identification e nables t he g ateway t o q uickly i dentify t he t ype o f the 

accessing device, so as to allocate reasonable resources, and provide users with a more intelligent 

experience according to the device type. In terms of security [6], [7], because the vulnerability 

of the same type is consistent, we can further identify whether there is a vulnerability in the 

device after identifying the device type, so as to actively alert or isolate the device with the 

vulnerability. Such as in [8], the author distinguished the vulnerable devices and adopted the 

network isolation strategy to prevent the vulnerable devices from being used to attack the network 

after identifying the device type, and combined the system with the vulnerability database to 

protect network security in real-time.

Q1-1—At present, most of the research on IoT device identification is focus on identification 

methods, only a few are studying the whole device identification framework [9]–[11]. In [12], 

the author proposed a sentinel system about IoT, which extracted the access device’s fingerprint 

by the security gateway. And then the security gateway sent the fingerprint to the IoT service 

center for device identification. The AUDL device identification system designed in [13] is 

similar, where a large number of gateways provide the device’s fingerprint to the cloud server 

in parallel, and then the cloud server identifies the device based on the fingerprint database. 

These identification systems are all the centralized architectures. The device identification 

model is based on a centralized cloud server, which provides the underlying gateway device 

identification function. However, once the cloud is attacked, the whole system will be 

paralyzed. Moreover, it usually cannot ensure real-time feedback and identification efficiency 

as well as accuracy.

In [14], a distributed device fingerprint technology is proposed. The device identification 

system implemented by this technology consists of two entities - control logic and gateway. 

The gateway sends the extracted device feature vector to the control logic, which learns the 

device fingerprint and constructs the classifier, and then deploys the classifier in all gateways 

for device identification. On the surface, this is a distributed identification architecture, and each 

user gateway has a device identification function. However, since all the classifiers used for 

device
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identification in the gateway come from a control logic in the upper layer, it is still a centralized 

identification architecture in essence.

Q2-2—Generally, apart from the decentralized demand of an ideal secure IoT device identi-

fication system, it also should meet the following requirements in performance [15]–[17].

Q2-2—1) Low time delay: Ensuring short time delay of a device from access to successful 

clustering identification.

Q2-2—2) Effectiveness: The architecture of the system must be distributed, which makes the 

identification service quality not be influenced by the gateway user numbers.

Q2-2—3) Scalability of device identification type: The system can constantly update the 

identification model, and the more new device types in the access network, the more device 

types the system can identify.

Edge computing [18], [19] can effectively utilize various resources close to the device, in-

cluding network, computing, storage resources, etc., to provide users with real-time, dynamic 

and intelligent services to improve the real-time cooperation capability of all network devices. 

In terms of time delay, it can process and analyze data in real-time or even faster to make data 

processing since the edge server is closer to the data source rather than the external data center or 

the cloud, which greatly reduces interactive waiting time [20]. In terms of cost, edge computing 

does not require the assistance of remote cloud, and the cost of data processing solution in local 

equipment is much lower than that in the cloud and the data center [21]. In terms of security, 

due to the massive increase of data from IoT devices, the data traffic i s g rowing r apidly, while 

edge computing can split the data, so as to avoid network bandwidth congestion and relieve the 

pressure of the center [22]. Besides, edge computing can enable continuous learning to adapt 

models to individual needs for real-time and efficient intelligent services.

In this paper, a secure and efficient classifier identification scheme for IoT devices based 

on edge computing is proposed. The identification model is constantly updated by utilizing 

adjacent edge resources of the gateway so that the device identification system can identify 

more and more types of devices with continuous learning ability. In addition, the collaboration 

mechanism is established among the gateways to ensure the continuous learning ability of the 

whole system. To sum up, the main contributions of this paper are as follows:

• E-CIS changes the traditional centralized architecture and realizes low time delay and 

efficient identification of IoT devices based on edge computing.

• The types of IoT devices E-CIS can identify keeps growing.
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• All gateways of E-CIS have the continuous learning ability synchronously.

• Experiments show that the average identification accuracy is as high as 
99.2%.

The rest of this paper is organized as follows. Section II shows the related works briefly.

Section III describes the proposed E-CIS including the description of E-CIS architecture, the

workflow, and core algorithms. Section IV shows the experiment results.

II. RELATED WORK

In 2017, Sivanathan et al. [23] collected network traffic features according to activity patterns,

signals, protocols, etc., and used it to identify and classify Internet of things devices and

detect abnormal behaviors, so as to solve the problem of network equipment management. This

method can distinguish the IoT device with a 95% accuracy rate. In 2018, Santos et al. [24]

proposed a feasible method for device identification. They characterize a device by extracting

the statistical characteristics of network flow and packet payload, then train the identification

model with a random forest algorithm. The accuracy rate of the device reaches 99%. In 2018,

Bezawada et al. [25] proposed using device behavior fingerprints for device identification.

The extracted behavioral fingerprints include static behavioral fingerprints (protocol usage) and

dynamic behavioral fingerprints (session interaction). These fingerprints are used to train machine

learning models, which are used to identify similar device types. The experimental results show

that the average accuracy rate of this method is 99%. Shahid et al. [26] proposed a machine

learning-based device identification method for the Internet of things, which can identify the

type of devices connected to the network by analyzing the data packet flow sent and received.

When the random forest classifier is used, the overall recognition accuracy rate of the method is

as high as 99.9%. Sivanathan et al. [27] developed a classification framework based on multi-

stage machine learning to realize the identification of IoT devices. The framework can uniquely

identify IoT devices with an accuracy rate of more than 99%. In 2019, Hamad et al. [28]

proposed to extract features from a set of data packet sequences sorted by timestamp as device

fingerprints, and then established a model based on supervised machine learning method to

realize the identification of IoT devices. In addition, they combined the white list strategy to

restrict the network of unknown or suspicious devices. The results show that their proposed

method can effectively identify the devices on the white list with a 90.3% accuracy rate.

Although the above identification methods have a good recognition effect, they do not take

into account the subsequent identification of new equipment types and lack of model updating
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mechanism, so they can only identify the fixed device types in the model training set. This is

fatal for the ever-expanding IoT environment.

In 2018, Thangavelu et al. [29] proposed DEFT, a distributed device fingerprint technology.

Deft works in hierarchical network architecture and consists of two entities - control logic and

gateway. The gateway extracts the device fingerprint and identifies the device. If the identification

fails, the fingerprint is sent to the control logic. The control logic then updates the identification

model and deploys it to all gateways. Experiments show that the recognition accuracy rate of

DEFT is 97%.

In 2019, Marchal, Samuel et al. [13] proposed an AUDI system to quickly and effectively

identify the type of equipment by analyzing the network communication of the equipment. The

system extracts the fingerprint of the device by the gateway and provides the identification

service by the cloud service center. If the identification fails, the cloud service center clusters

the fingerprint and retrains the recognition model. With the continuous access of new types, the

system can also identify more and more types. The results show that the accuracy of AUDI is

98.2%.

Both DEFT and AUDI have realized the continuous updating of the identification model, and

the recognition accuracy is very high. However, they are all based on the centralized architecture,

and both need a central organization (control logic and cloud service center). The model updating

is carried out on the central organization, so there are problems of high delay and high cost.

Although the model update can be deployed to the local gateway, it also has the problem of

limited local resources.

III. EDGE-BASED CLASSIFIER IDENTIFICATION SCHEME FOR IOT DEVICES

In this article, we put forward a secure and efficient classifier identification scheme based on

edge computing for IoT devices, E-CIS, which has the continuous learning ability and identifies

more and more types of devices. It adopts a decentralized architecture where all gateways make

independent identification tasks and once there is a new device unidentified the gateway invokes

the adjacent edge resources for feature extraction, classifying, and then updates the identification

model according to the edge server with the rest gateways cooperatively and synchronously.
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Fig. 1: Architecture of E-CIS

A. OVERVIEW OF E-CIS

The overall architecture of E-CIS is shown in Fig.1. Considering the scenario with a large

number of IoT devices, multiple gateways are required to connect and manage the devices.

However, there is no centralized entity like the cloud in the whole system. But all devices in

IoT can connect to their neighboring edge servers for auxiliary calculation. All gateways in the

system cooperate to process and manage all IoT devices and no centralized management servers

are required. For the identification of IoT devices, the process is as follows:

Initialization: Assuming devices d1, · · · , dn are the initial devices when building the IoT envi-

ronment, gateway G1, · · · , Gk and edge servers E1, · · · , El are initialized a training identification

model denoted as M ;

Device Classifier Identification: A device ds joins by gateway Gs. Gs collects ds’s features,

and performs device identification by calling the model M . In order to prevent the local gateway

identification error, Gs distributes the feature vector to the rest gateways, and then they conduct

secondary verification. If the identification results of the local gateway and most gateways are
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consistent, then ds is considered to be an unknown device, the feature vector will be sent to its

edge server. The edge server updates the training set according to the newly added feature vector

and updates the identification model of Gs. Gs then informs the rest gateways to collaboratively

update the model synchronously. If the identification results are inconsistent, it indicates that

there is a problem with the local gateway, and Gs will notify other gateways of the error, then

they will cut off the connection with Gs; Herein, the edge servers help the gateways to updated

synchronously to jointly maintain the identification model. Once a certain gateway model is

attacked, there are two kinds of situations: one is that the device should be identified by the

existed model that cannot be identified, the other is that the device should not be identified is

identified by wrong classifying. The two kinds of security problems and the stable operation of

the IoT system can be avoided by real-time updating the identification model synchronously.

B. E-CIS

Fig. 2: Q2-3—The Workflow of E-CIS
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Fig.2 shows the workflow of the scheme, the detailed processes are as follows. There are

four main modules: Feature Extraction Module, Device Identification Module, Training Set

Updating Module and Model Retraining Module. The first two modules are in the local

gateway, the latter two modules work on the edge server.

a) Feature Extraction Module: Once a new device is to connect to the gateway, the module

monitors the network traffic session and extracts the feature vector representing the device type;

b) Device Identification Module: the module mainly identifies the extracted feature vector

through the identification model, and judges the device type (there are two types of "type" and

"unknown" in the recognition result);

c) Training Set Updating Module: the module classifies the new feature vector with the

original training set stored in the edge server to get the new model training set;

d) Model Retraining Module: the updated training set is used for model retraining to generate

a new device identification model.

In order to provide good modularity and robustness of the scheme, the four modules Feature

Extraction Module, Device Identification Module, Training Set Updating Module, Model

Retraining Module can be developed as microservices and deployed to the gateway.

C. Core Algorithms

In this part, we will introduce the core algorithms in E-CIS in detail.

1) Feature Extraction

Specific f eatures o f n etwork fl ow ar e ex tracted fr om tr affic dat a, whi ch are  cal led features, 

and a group of such features is called the feature vector. The performance of the recognition 

model depends most on the feature vectors used for training. Therefore, it usually extracts as 

many features as possible from the network traffic to form the feature vectors to build the model. 

However, some features have limitations and are not suitable for large-scale IoT environments. 

For example, in 7, the features include domain name and port number. But some non-commercial 

entities may deploy devices that have never sent DNS requests, and the port number may be 

unique to the application. In addition, some features may cause security problems. For example, 

processing users’ destination IP address can reveal their browsing behavior.

Q1-4—There are two kinds of traffic sessions for devices. One is based on the dynamic 

method. In this method, the interval between two consecutive sessions cannot be less than a
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fixed time (for example, 1 minute). If it is less than the fixed time, the two sessions are regarded 

as one session. The other is to determine the session based on the static method which we used 

in this paper. Since a session between devices usually finishes in a very short period of time (a 

few seconds) and that the session package timestamp interval is minimal, so we treat different 

packages with intervals of less than 1 second as belonging to different sessions. Considering 

both the practicability and privacy of features, in this paper we select 15 device features that 

constitute the feature vector with the dimension of 15 ("stats" represents the average value and 

standard deviation of related features). The first 2 characteristics are the statistical characteristics 

(mean and standard deviation of packet size), and the remaining 13 features are the total number 

of protocol packets in a session. All of the features are shown in Tab.I.

TABLE I: Device Features

Feature Label Feature Type Feature

Label 0-2 Session statics
- packet count in session

- packet length(stats)

Label 3-15

UDP - ARP packet count

TCP - TCP packet count

ARP - ARP packet count

BOOTP - BOOTP packet count

SSDP - SSDP packet count

NTP - BTP packet count

QUIC - QUIC packet count

mDNS - mDNS packet count

HTTP - HTTP packet count

TLS - TLS packet count

DNS - DNS packet count

STUN - STUN packet count

2) Feature Classfying

In this section, we will propose two algorithms: classifying algorithm and model updating

algorithm in detail. To improve readability, the main notations and their semantics used in this

paper are given in Tab.II.

Herein, we use Euclidean Distance to measure the distance of the feature vectors. The Eu-

clidean Distance between two feature vectors is calculated according to the following formula:
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TABLE II: Notations

Notation Description

f the feature vector of device

F Aggregate of feature vector

m Dimension of the feature vector

M Model for device identification

T List of feature aggregates

R Dataset for model training

dist(u, v) =

√√√√ m∑
i=1

(ui − vi)2 (1)

where dist(u,v) is the distance between the feature vectors u and v, m is the dimension of the

vectors.

3) Device Identification Algorithm

This part mainly introduces the clustering algorithm in the cluster recognition module. In

the selection of model establishment, considering that the gateway keeps the latest training set

locally during model training, and the original type of feature set may change each time after

the training set is updated. Therefore, it is not feasible to train a single class classifier for each

type of device to recognize all devices. Because traditional K-means algorithm is unsupervised,

it needs to know how many classes in advance. However, the goal of the proposed E-CIS is to

continuously identify new types, so it is impossible to determine the number of clusters. Herein,

in this paper, we use the random spanning tree algorithm to generate a multi-class classifier

according to the local training set each time. In addition, we apply seeded K-means algorithm

based on semi supervision.

In E-CIS, the clustering process is as follows. Before clustering, there are some known types

of feature sets such as the original training set R, which are used as seed feature sets to guide

the subsequent clustering. When clustering a new feature, we only need to find the feature set

nearest to the target feature in the seed feature set, and then judge whether the new feature comes
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from the same type. If it is, the target feature set will be added to the feature set; otherwise, the

target feature set will be added to the training set as a new type to become the seed feature set

in the following clustering.

Algorithm 1 V alidation(f, Address)

Input: f: feature vector; Address: Gateway IP address

Output: c:device type; p:prob of identification

1: [c, p]← identification(f,M)

2: if p < threshold then

3: type = ”unknown”

4: else

5: type = c

6: end if

7: sendToGateway(type, Address)

Algorithm 1 is the validation algorithm for feature vector f. In order to verify the identification

result of feature vector f, the gateway with IP address "Address" sends f to other gateways and

collects the identification results of other gateways to judge whether there is any problem with its

identification model. After receiving the feature vector f from "Address", other gateways identify

it by using the local identification model, and return the results to "Address".

Algorithm 2 is the identification algorithm of a gateway. When a new device is connected,

the local gateway monitors its traffic session S, and extracts the feature vector f of the device

from it, and uses the local identification model M to identify it. In order to prevent the error of

identification results, f is broadcast to other gateways for secondary verification. After collecting

the identification results from all gateways, if the identification results of most gateways are

consistent with the local gateways and the result is "unknown", the model updating instruction

will be sent to other gateways to make all gateways update the model synchronously; If the

result is a known type, the type "c" will be returned; If the identification results of the local

gateway and most gateways are inconsistent, it indicates that the local gateway is under attack,

and the gateway fault will be announced to other gateways.
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Algorithm 2 device_identification(S)

Input: S:Traffic session , Address: The IP address of this Gateway

Output: c:device type; p:prob of identification

1: f = ExtractFeature(S)

2: [c, p]← identification(f,M)

3: if p < threshold then

4: type = ”unknown”

5: else

6: type = c

7: end if

8: result = sendToAllGateway(f, Address)

9: if type = result then

10: if type = ”unknown” then

11: updateModelSynchronously(f)

12: else

13: return c

14: end if

15: else

16: sendToAllGateway(fault, Address)

17: end if

Algorithm 3 is to calculate the average distance between feature vectors in set P, which will

be used as the basis for judging whether to generate a new class.

4) Model Updating Algorithm

Then in Algorithm 4, the edge server gets the latest feature set list T. But at this time, the

number of feature vectors contained in some feature sets in T may be very small. If the T is

directly used as the training set, the samples of the training set will be extremely uneven, and

the identification rate of the model generated from this will be very low. In addition, there is no
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Algorithm 3 mean_distance(P )

Input: P:Aggregate of cluster centroid

Output: ret:Mean of distance

1: l = len(P )

2: if l < 2 then

3: ret = 0

4: else

5: ret = 0

6: for each i ∈ [0..l − 1] do

7: ret = ret+ dist(P [i], P [i+ 1])

8: end for

9: ret = ret/(l − 1)

10: end if

11: return ret

need to retrain the model if T has no new feature set. Therefore, we added a parameter num to

the algorithm, which is used to limit the number of samples of each type in the training set. Only

when the number of samples of the new type reaches num, can it be added into the training set

R. The if statement in line no. 8 is to judge whether it is necessary to update the model. If the

updated training set R is larger than the original training set, it means that a new device type is

generated, and there are enough samples of this type for model training. Otherwise, the model

will not be retrained and continue to wait for the new type of samples.

IV. EVALUATION

In this section, we design experiments to evaluate the performance of the proposed E-CIS.

Firstly, we introduce the experimental parameters including the types we used and then analyze

the cost of each phase. Finally, we show the identification performance of E-CIS.
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Algorithm 4 model_training(T)

Input: T:List of merged feature aggregates

Output: M:identification model

1: l = len(R)

2: R = []

3: for i ∈ [0..len(T)] do

4: if len(T[i]) > num then

5: R.add(T[i])

6: end if

7: end for

8: if len(R) > l then

9: M = train(R)

10: sendToGateway(M)

11: end if

A. Experimental Setup

The data set used in our experiment is from the one used in [30], which is collected for

IEEE TMC 2018. The dataset contains traffic packets among 30 devices during September 23

to October 12, 2016. We use the CSV file of the first 5 days, and select the top 10 devices

corresponding to the largest number of samples to ensure that the dataset is large enough, which

is shown in Tab.III.

B. Computational Complexity

The computing process of E-CIS is all in the user gateway, whose main tasks are four: feature 

extraction, device identification, clustering, and model training. Because the time consumed by 

several well-known classifiers to classify a sample is linear with the number of features, and the 

number of features used in this paper is small and fixed, so the cost of device identification can 

be regarded as constant. Next, we mainly analyze the cost of the remaining three processes.
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TABLE III: Information of IoT Devices

label Device numbel of instance

0 Amazon Echo 2500

1 Belkin Wemo switch 2500

2 HP Printer 2500

3 Netatmo weather station 2500

4 PIX-STAR Photo-frame 2500

5 Samsung SmartCam 2500

6 Smart Things 2500

7 TP-Link Day Night Cloud camera 2500

8 TP-Link Smart plug 2500

9 CamTriby Speaker 2500

• Feature Extraction: Q1-5, Q3-3—— The goal of this process is to extract a feature vector 

from a session of the device. In essence, it traverses multiple packets contained in the session 

and finds the relevant features of each packet, such as the usage of various protocols, the 

length of the packet, and so on. Therefore, the cost of this process is m × O(n), where m 

represents the number of features that need to be extracted, and n is the total number of 

packets contained in the session.

• Clustering: Q3-3— Analysis from Algorithm 4 shows that the most complex part of the 

algorithm is the for loop in line no. 8, so the cost of the clustering process is mainly 

determined by this for loop.The purpose of this for loop is to traverse F (The set of target 

feature vectors waiting for clustering) to find the possible cluster center (the farthest point). 

Line no. 9 inside the for loop traverses the entire P (It is composed of cluster centers of 

seed feature sets) to find the seed feature set closest to the target feature. So this process 

consumes O(|P |) × O(|F |).

• Model Training: Q3-3— The algorithm used to establish the identification model is Random 

Forests. Random Forests classifiers contain multiple decision trees, and the classification 

results are generated by voting of all decision trees. So the time complexity is related 

to the number of decision trees, the final time complexity of this procedure is between 

O(mB |f | log2 |f |) to O(mB |f |2 log |f |) (Depends on data or how balanced the tree is) [31], 

Where m is the dimension of the feature vector, B is the number of decision trees initially 

set by the algorithm, and |f | is the number of samples used for model training.
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C. Performance

1) Classification Algorithm

E-CIS uses the classification algorithm of machine learning to realize device identification,

but there are many kinds of classification algorithms available. Next, four common classifi-

cation algorithms including KNN (K-nearest Neighbors), RF(Random Forest), LightGBM, and

MLP(Multilayer Perceptron) were tested and the performance of classification models established

by each algorithm was evaluated by using the method of "5 fold cross-verification". The specific

experimental setting is as follows: We took all the samples (10 devices, 25000 samples in total) as

the dataset. The "5 fold cross-validation" is to divide the data set into 5 parts in equal proportion,

and takes one of them as the test set and the remaining 4 as the training set. Each classification

algorithm carries out 5 rounds of experiments. Each round of experiment uses the divided training

set for model training, and then uses the test set for classification test to obtain the classification

accuracy rate of this round experiment. At the end of 5 rounds of experiments, the mean value

of the accuracy rate of 5 times was calculated, which was the classification accuracy rate of

the algorithm. The final experimental results are shown in Fig.3 and Tab. IV. It can be seen

from the figure and table that the tree-based classifiers, random forest, and the LightGBM have

better performance in both the overall dataset and the single category. Considering the high

generalization ability of random forest, we adopt it as the identification algorithm in this paper.

TABLE IV: Accuracy of Four Classification Algorithms

Arithmetic KNN Random Forest LightGBM MLP

Accuracy 0.988 0.992 0.992 0.981

2) Metrics For Evaluation

The last experiment evaluated the classification algorithm, and we found that the RF algorithm

had a higher accuracy rate. Next, we will evaluate the identification model established by

using RF algorithm, and the evaluation metrics are Precision, Recall and F1Score which are

commonly used to evaluate the classifier. Tab.V is the description of all parameters to be used

in the calculation formula of the three evaluation metrics.

i) Precision indicates the proportion of the samples with real prediction success among all

the samples predicted as type A.

Precision =
TP

TP + FP
(2)
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Fig. 3: Accuracy for 10 Device Types of Four Classification Algorithms

TABLE V: Table of Notations

Notation Description

TP The number of samples correctly identified as class A

FP The number of samples incorrectly identified as class A

TN The number of samples correctly identified as non-Class A

FN The number of samples incorrectly identified as non-Class A

ii) Recall indicates the proportion of the samples with prediction success among all the samples

of actual type A.

Recall =
TP

TP + FN
(3)

iii) F1score is the harmonic average of Precision and Recall, which is a comprehensive con-

sideration of these two metrics.

F1score = 2× Precision×Recall

Precision+Recall
(4)

3) Experimental Results

In order to objectively obtain the Precision, Recall and F1Score evaluation metrics of each

device, we randomly divide the data set into a training set and test set according to the ratio

of 7:3, and the final result is shown in Tab.VI. From the table, we can see that the F1Score
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of 10 kinds of devices is very high, among which 3 kinds of devices reach 1.0, and the lowest

F1Score is 0.985, which indicates that the identification model established by the RF algorithm

is of high quality.

TABLE VI: Precision, Recall and F1Score for 10 Types of IoT Devices

Device Precision Recall F1Score

Amazon Echo 1.000 0.991 0.995

Belkin Wemo switch 1.000 0.999 0.999

HP Printer 1.000 0.978 0.989

Netatmo weather station 1.000 1.000 1.000

PIX-STAR Photo-frame 1.000 0.997 0.999

Samsung SmartCam 1.000 1.000 1.000

Smart Things 1.000 1.000 1.000

TP-Link Day Night Cloud camera 1.000 0.995 0.997

TP-Link Smart plug 1.0-0 0.970 0.985

CamTriby Speaker 1.000 0.995 0.997

In order to further evaluate the identification performance of the identification model on each

device, we give a histogram in Tab.VII and the confusion matrix in Fig.4 of the accuracy of

devices. From the figure, we can see that the lowest accuracy among the devices is also as

high as 0.97. Therefore, it can be concluded that the identification model in this paper has good

identification performance on these 10 devices.

Fig. 4: Accuracy for 10 Device Types
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TABLE VII: Accuracy for 10 Device Types

Device Accuracy

Amazon Echo 0.994

Belkin WeMoSwitch 0.999

HP Printer 0.970

Netatmo Weather Station 1.00

Samsung SmartCam 1.00

PIX-STAR Photo-frame 0.999

Smart Things 1.00

TP-Link Day Night Cloud Camera 0.995

TP-Link Smart Plug 0.970

Triby Speaker 0.995

V. CONCLUSION

In order to resolve the problem of how to identify IoT devices with massive devices efficiently

to build a green and sustainable IoT smart city, this paper proposes E-CIS based on edge

computing. It simplifies the work of the device and gateway, introduces the adjacent edge

computing resources to undertake the heavy computing tasks, and further improves the efficiency

of the system. Experiments show that the E-CIS is effective and can continuously identify

new device types. In the future, we will work on blockchain-based IoT device identification

research to observe the advantages and disadvantages of the two technologies, edge computing

and blockchain, in the fields of IoT device security, Internet of Things Forensics, cyber defense

and Cyber Threats Intelligence Sharing.
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