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Conditional Anonymous Remote Healthcare
Data Sharing Over Blockchain

Jingwei Liu, Member, IEEE, Weiyang Jiang, Rong Sun, Member, IEEE, Ali Kashif Bashir, Senior
Member, IEEE, Mohammad Dahman Alshehri, Member, IEEE, Qiaozhi Hua, Keping Yu, Member, IEEE

Abstract— As an important carrier of healthcare data,
Electronic Medical Records (EMRs) generated from various
sensors, i.e., wearable, implantable, are extremely valuable
research materials for artificial intelligence and machine
learning. The efficient circulation of EMRs can improve
remote medical services and promote the development
of the related healthcare industry. However, in traditional
centralized data sharing architectures, the balance between
privacy and traceability still cannot be well handled. To
address the issue that malicious users cannot be locked
in the fully anonymous sharing schemes, we propose a
trackable anonymous remote healthcare data storing and
sharing scheme over decentralized consortium blockchain.
Through an “on-chain & off-chain” model, it relieves the
massive data storage pressure of medical blockchain. By
introducing an improved proxy re-encryption mechanis-
m, the proposed scheme realizes the fine-gained access
control of the outsourced data, and can also prevent the
collusion between semi-trusted cloud servers and data
requestors who try to reveal EMRs without authorization.
Compared with the existing schemes, our solution can
provide a lower computational overhead in repeated EMRs
sharing, resulting in a more efficient overall performance.

Index Terms— Remote medical data sharing, privacy p-
reservation, blockchain, proxy re-encryption

I. INTRODUCTION

W ITH the rapid development of the Internet [1], [2] and
big data technologies [3], society has entered an era

of information and data sharing. Data has turned to the most
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valuable asset in this era. With the help of innovative tech-
nologies [4], [5], the healthcare industry is also shifting from
traditional medicine to digital driven medicine. Healthcare data
from different patients is very essential research material for
improving public health. As a kind of important carrier of
healthcare data, Electronic Medical Records (EMRs) can be
widely used in data analysis and medical research. Compared
with traditional physical medical records, EMRs have the
advantages of reducing overhead, improving efficiency and
mobility, facilitating storage and promoting the development of
medical research [6], [7]. In 2009, the president of the United
States signed “The American Recovery and Reinvestment Act”
which included an investment of up to 19 billion dollars for
the digitization of medical records [8].

During the transition from traditional physical medical
records to EMRs, EMRs have raised many data security
and privacy issues [9] due to the vulnerability to hackers,
viruses and other threats. In recent years, there have been
numerous incidents of healthcare data being lost and stolen.
EMRs, in general, contain lots of sensitive information in
patients’ healthcare data. Therefore, how to ensure the data
security and privacy preservation in sharing EMRs has become
a crucial issue [10]. To avoid privacy leakage, traditional
medical institutions usually build their own medical system
servers to save patients’ EMRs in [11], [12]. However, these
servers often have many defects such as centralization, poor
interactivity and high overhead.

In 2008, Satoshi Nakamoto proposed an electronic cash
system based on peer-to-peer network [13]. Since then, as a
revolutionary technology, blockchain has become a research
hotspot in industrial and academic fields. In blockchain, blocks
are connected together in chronological order to form a
chained data structure through cryptographic algorithms, in
which data can not be tampered with. By virtue of distributed
networks and consensus mechanisms, blockchain ensures that
the data on the chain can be verified by all nodes. Therefore,
blockchain is fault-tolerant and immune to single point attacks,
and especially suitable for digital cryptocurrency, finance,
healthcare, credit investigation, e-government and other fields
in depth. Blockchain provides a foundation of trust in untrusted
environments and enable participants to collaborate more
securely, reliably and efficiently. But the massive growth of
data gradually causes the storage bottleneck of blockchain.
According to [14], healthcare data will reach 25000 PB soon.
To solve the storage issue, it is a feasible technical route
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of combining blockchain with cloud services. In [15], cloud
computing virtualizes computing power and storage resources
into services for different users in an on-demand delivery
model. The nearly unlimited computing power and storage
space provided by cloud services can easily overcome the
disadvantages of traditional medical data storing systems such
as high deployment overhead, limited computing power and
inadequate storage resources.

Therefore, to meet the security and privacy preserving re-
quirements in healthcare data sharing scenarios, we propose a
conditional anonymous remote healthcare data sharing scheme
over blockchain. The main contributions of this work can be
summarized as follows:

1) We propose an anonymous and traceable authentication
protocol that can not only protect users’ identity privacy
using pseudo identities but also reveal the identities of
malicious nodes in certain conditions. Moreover, the
protocol designs a batch verification method to improve
the efficiency of verification.

2) To mitigate the tense shortage of healthcare data sharing,
we propose a remote healthcare data sharing scheme
based on an on-chain/off-chain model that greatly re-
lieves on-chain storage stress by migrating massive data
to cloud servers.

3) In the theoretical analysis on security, the proposed
scheme meets all given security features, especially
decentralization, identity tracing and anti-collusion se-
curity. In terms of performance simulation, by moving
complex operations to the encryption stage that only
runs once, the proposed scheme greatly reduces the
computational overhead of the EMRs sharing stage in-
cluding re-encryption key generation, re-encryption and
decryption. As the number of sharing increases, the total
computational overhead of our scheme is much lower
than other schemes.

The rest of this paper is organized as follows. Section II
introduces the related works. In section III, we formalize
the system model, security requirements, and then introduce
the relevant preliminaries used in our scheme. Section IV
describes the proposed scheme in detail. Section V analyzes
the security, correctness and functional features. Section VI
carries on the performance analysis through simulation and
comparison. Section VII summarizes this paper.

II. RELATED WORKS

In order to address the security and privacy issues in
healthcare data storing and sharing, researchers have already
done a great deal of excellent works. Zhang et al. [16] put
forward a controllable EMRs access scheme that supported
diverse queries. Cao et al. [17] proposed a blockchain-based
electronic health system, which could resist impersonation
attacks and ensure that patients’ EMRs were not tampered
with or forged. Subsequently, Liu et al. [18] proposed a
healthcare data sharing scheme named BPDS which adopted
the ciphertext-policy attribute-based encryption (CP-ABE) to
achieve fine-grained controllable access of EMRs. The scheme
used content extraction signature to avoid privacy leakage. In

addition, Liu et al. [19] put forward a fine-grained controllable
files access scheme based on blockchain and cloud services.
Furthermore, there are many other excellent healthcare data
sharing schemes such as [20]–[25]. In order to prevent a non-
fully trusted cloud server from forging access logs and seizing
data privacy, Noh et al. [26] proposed a patient-centered
EMRs management system, in which users’ access activities
were stored in logs and anonymous identifiers were locked
on blockchain to protect patients’ identity privacy. Although
this scheme utilized the proxy re-encryption scheme in [27],
it can not resist the collusion between cloud servers and
requestors to recover the private keys of data owners. In 2021,
Feng et al. [28] proposed a secure and efficient data sharing
scheme based on blockchain. The scheme deployed attribute-
based encryption (ABE) for data access control through smart
contracts. In [29], a blockchain-based data sharing scheme was
put forward for tracing maliciously modified data, in which
the original data and transaction data were respectively stored
on two different blockchains. In 2019, Eltayieb et al. [30]
designed a controllable access scheme for data outsourcing
computing. The scheme was based on a certificateless proxy
re-encryption method with access authentication. In 2022,
Sun et al. [31] proposed an EMRs search scheme based on
ElGamal blind signature, which could safely invoke a patient’s
previous EMRs while protecting his/her privacy and EMRs
database. In [32], Thwin et al. proposed a controllable access
scheme of EMRs that was still based on proxy re-encryption
scheme, in which the semi-trusted cloud server could obtain
the identities of all users during the registration stage. It was an
insecure centralized identity management mechanism. In [33],
Liu et al. put forward a healthcare data sharing scheme that
could resist collusion attacks with a trusted third party. Tan
et al. [34] put forward a secure and privacy-preserving EMRs
sharing scheme based on blockchain, which took advantage
of CP-ABE and blockchain to achieve traceability and direct
revocation of COVID-19 EMRs.

III. METHODOLOGY

A. System Model

In healthcare data sharing scenarios, patients take part in
the healthcare data sharing system to share their EMRs with
authorized data requestors. However, EMRs are highly sensi-
tive data with patients’ privacy, so patients may not be willing
to disclose their personal information in the process of data
sharing. In order to protect the identity privacy of participants,
we propose a conditional anonymous remote healthcare data
sharing scheme. As shown in Fig. 1, medical consortium
blockchain enables healthcare data to be circulated between
patients and data requestors. The system model consists of two
main components: Medical Consortium Blockchain (MCB)
and Cloud Server (CS).

1) Medical Consortium Blockchain (MCB): The consortium
blockchain network is composed of the following three types
of nodes.

• User Node (UN): UNs are composed of data owners
and data requestors. Data owners are the users who hold
EMRs and are willing to share them with others in the
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Fig. 1: System model
system, such as patients. Data requestors are the users
who need to apply to data owners for accessing to EMRs.
Data requestors are usually medical insurance companies
or medical researchers. UN might be a data owner or a
data requestor according to different businesses. Every
UN can obtain and synchronize data on blockchain.

• Consensus Node (CN): CNs are the nodes that participate
in the consensus process. They are in charge of generating
and verifying data and blocks. In particular, CNs are
responsible for registering and conditionally tracking the
identities of UNs. They are usually authoritative insti-
tutions such as major hospitals, medical departments of
universities and research institutions. In the consensus
mechanism, CNs are divided into two roles: Leader and
Follower.

• Management Node (MN): MN is usually held by the
government department in charge of healthcare or the
committee of the medical alliance organization. It plays a
supervisory role and manages UNs’ identity information.

2) Cloud Server (CS): As a semi-trusted third party, CS is
primarily in charge of storing EMRs.

In this model, MN first generates the public system param-
eters. MN, CNs and CS independently select their own private
keys and calculate the corresponding public keys. When a UN
is joining the system, it needs to select a random number to
cover its real identity, which forms identity protection infor-
mation. Then, the UN shares the random number with all CNs
through the Shamir secret sharing scheme. Each CN needs to
validate the received share. If the verification passes, it sends
a confirmation message to MN. Once collecting all confirma-
tion messages, MN calculates and returns the corresponding

pseudo identity to the UN. Meanwhile, MN binds the identity
protection information of the UN to the pseudonym as the
tracking information and records it on the blockchain. Assume
that Alice has joined the system and completed the registration
process, she encrypts EMRA generated from diagnosis and
sends it to CS who needs to verify EMRA and return the
corresponding download address. Alice takes the abstract of
EMRA, the download address and her pseudo identity as
metadata, which is verified and uploaded to the blockchain by
CNs. When Bob wants to access EMRA, he first retrieves the
relevant information of EMRA on the blockchain and sends
a request to Alice. If Alice allows Bob to access EMRA, she
generates a re-encryption key using Bob’s request information
and sends this key to CS. Then, CS converts the ciphertext
of EMRA via the received re-encryption key. Now, Bob can
download and decrypt the ciphertext using his own private key
to obtain EMRA. Finally, if UN is found to have malicious
behavior, CNs can contribute their secret shares to recover the
secret value of it by Lagrange interpolation polynomial, so as
to further recover the real identity of the malicious UN. The
identity tracking process is deployed as a smart contract that
will execute automatically once certain conditions are met. The
main symbols used in our scheme are indicated in TABLE I.

B. Security Requirements

The main security threats in EMRs sharing are as follows:
• The disclosure of the identity privacy information: An

adversary in the system corrupts several nodes to reveal
the real identities of patients.

• Semi-trusted entity: CS, as a semi-trusted entity, is honest
but curious. It works according to the protocol, but is
inquisitive about the stored healthcare data.

• Collusion attacks: CS conspires with data requestors to
obtain certain unauthorized EMRs.

In order to protect the identity privacy of patients while
efficiently circulating healthcare data between patients and
legal requestors, the EMRs sharing scheme needs to meet the
following requirements:

• Efficient sharing: The scheme should provide high effi-
ciency in healthcare data sharing.

• Solving the storage issue of blockchain: For massive
medical data, the scheme should be able to break through
the storage capacity bottleneck of blockchain.

• Identity privacy preservation: The scheme should be able
to protect the identity privacy of users.

• Conditional identity tracking: In special cases, the scheme
should be able to provide a trigger mechanism to condi-
tionally track the real identity of any malicious user.

• Resisting collusion attacks: The scheme should be able
to resist collusion between CS and data requestors.

C. Preliminaries

1) Shamir Secret Sharing Scheme: Shamir secret sharing
scheme is also known as threshold secret sharing scheme,
where N is the number of the participants who master secret
shares and t is the threshold for secret recovery. In the scheme,
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TABLE I:
Symbols and Descriptions

Symbols Descriptions Symbols Descriptions
λ Security parameter msk The private key of MN

q A big prime number PKM The public key of MN

G1 A multiplicative cyclic group of order q url Download address
G2 A multiplicative cyclic group of order q pkC The public key of CS

H1,H2,H3, H4,H5 Hash functions skc The private key of CS

g, h The generators of G1 CS Cloud server
CNi Consensus node t Threshold
xi The random number of CNi rA→B Re-encryption key
ski The private key of CNi PIDA The pseudo identity of Alice

pki The public key of CNi EMRA The electronic medical record of Alice
MN Management node sharei The secret share of CNi

a secret s is divided into N shares, each share is encrypted and
sent to each participant. Only when no less than t participants
contribute their secret shares, the secret s can be recovered
by Lagrange interpolation polynomial. The specific process of
the scheme is as follows:

• Setup: P = {P1, · · · , Pi, · · · , PN} is the set of par-
ticipants, and q is a large prime number. The data
owner D selects a secret s and t − 1 random elements
a1, a2, · · · , at−1 from finite field Fq , where at−1 ̸= 0.

• Share distribution: The data owner D uses the above
parameters to construct a t−1-degree polynomial f(x) =
at−1x

t−1 + at−2x
t−2 + · · · + s. Then, s/he calculates

yi = f(xi) and individually sends it to the corresponding
participant in secure channel, where xi is the serial
number of Pi.

• Secret reconstruction: When t or more participants pro-
vide their shares, the original polynomial can be recon-
structed by Lagrange interpolation polynomial and the
secret value can be derived by s = f(0).

f(x) =
∑t

i=1
yi

t∏
j=1,j ̸=i

x− xj

xi − xj
(1)

2) Proxy Re-encryption: Proxy re-encryption based on pub-
lic key cryptography allows a third-party agent to convert
the ciphertexts encrypted by data owners into the ciphertexts
that can be decrypted by data requestors. The agent can only
convert the encrypted data in ciphertext state without obtaining
plaintext information. Proxy re-encryption can provide accu-
rate access control of EMRs in data outsourcing. The formal
definition of proxy re-encryption is as follows:

• KeyGen
(
1k
)

→ (PKA, skA, PKB , skB): Key gen-
eration algorithm is performed by a Key Generation
Center (KGC). KGC generates the public and private keys
for data owners and data requestors using the security
parameter k as input.

• Encryption (M,PKA) → CTA: Encryption algorithm
is performed by data owners. It takes the plaintext and
public key of a data owner as input and outputs a

ciphertext CTA. CTA is stored by a third-party agent
such as CS.

• ReKeyGen (skA, PKB) → rkA→B : Re-encryption key
generation algorithm is performed by data owners. It
takes the private key of the data owner and the public
key of a specific data requestor as input to generate a
re-encryption key rkA→B for the data requestor. Then,
the re-encryption key is sent to the third-party agent.

• ReEncryption (CTA, rkA→B) → CTB : Re-encryption
algorithm is performed by the third-party agent. It uses
the ciphertext CTA and the re-encryption key rkA→B as
input to generate a converted ciphertext CTB .

• Decryption (CTB, skB) → M : Decryption algorithm is
performed by the data requestor who can decrypt the
converted ciphertext CTB with his/her own private key.

IV. THE PROPOSED SCHEME

A. System Initialization

Given a security parameter λ and a large prime q, G1 and
G2 are two q-order multiplicative cyclic groups. g and h are
two generators of G1. e : G1×G1 → G2 is a bilinear pairing.
H1 : G1 → {0, 1}4λ, H2 : {0, 1}∗ → Z∗

q , H3 : G1 → G1,
H4 : G2 × G1 → G2, H5 : G2 × G1 → Z∗

q are five
collision-resistant hash functions. MN selects the private
key msk ∈ Z∗

q at random and computes the corresponding
public key PKM = gmsk. The set of consensus nodes
is {CN1, CN2, ..., CNN}, and the threshold is t. CNm

is selected as the Leader, and the remaining CNs are
Followers, where m = (Num mod N) + 1, Num is the
height of the current block. Whenever a Leader is elected
in CNs, it needs to choose a random number gm ∈ G1

and broadcast it publicly. That is to say, gm is a public
parameter generated periodically. CNi obtains the private
key ski by randomly selecting xi ∈ Z∗

q and calculates
the public key pki = gski . CS randomly selects xc ∈ Z∗

q

as its private key skc and calculates the corresponding
public key pkC = gskc . The public system parameters are
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{λ, q,G1, G2, g, h, e,H1,H2, H3,H4,H5, PKM , ⟨pki⟩i=1∼N ,
pkc}.

B. User Registration
Suppose Alice is registering as a legitimate UN.
• Registration information generation: Firstly, Alice ran-

domly selects xA ∈ Z∗
q as her private key skA and

calculates the corresponding public key pkA = gskA .
Meanwhile, She needs to organize her real identity in-
formation {Name, ID, E-mail, Phone} and constructs
InfoA = I1||I2||I3||I4. Here, I1, I2, I3, I4 are the bi-
nary representations of four identity information fields
with the length of λ bits. In other words, each identity
information field is limited to λ/16 characters. If the
length is insufficient, the high position should be padded
0. Then, Alice randomly selects s ∈ Z∗

q and computes
S = gs. Next, she calculates protection information πA =
H1(S)⊕ InfoA of the real identity. To share the secret
s, Alice chooses t− 1 random numbers a1, a2, · · ·, at−1

and sets a0 = s. Subsequently, she constructs a t-degree

polynomial f(x) =
t−1∑
i=0

aix
i and calculates polynomial

shares {f(1), f(2), · · ·, f(N)} for CNs. Finally, she
encrypts the corresponding share of each CN.

Yi = pk
f(i)
i (1 ≤ i ≤ n) (2)

To provide relevant validation information, Alice calcu-
lates the commitments ⟨Cj⟩j=0∼t−1 of all polynomial
parameters, the commitments ⟨Xi⟩i=1∼N of all shares,
and the authentication information ⟨Ri⟩i=1∼N .

Cj = haj (0 ≤ j < t)

Xi = hf(i)(1 ≤ i ≤ n)

Ri = e(Xi, pki)(1 ≤ i ≤ N)

(3)

Alice broadcasts {πA, ⟨Cj⟩j=0∼t−1, ⟨Xi⟩i=1∼N ,
⟨Ri⟩i=1∼N , ⟨Yi⟩i=1∼N} to the entire MCB network.

• Verification: Using public information, each CN can not
only verify the correctness of its own received share
but also check whether all shares are consistent, so as
to ensure that the data owner is honest in the process
of share distribution. In order to improve the efficiency
of verification, we construct a public batch verification
method based on bilinear pairing. The detailed steps are
as follows:
Firstly, in order to check if the share in the commitment
Xi is generated according to the polynomial constructed
above, CNi calculates X∗

i to determine whether it is
equal to the public commitment Xi.

X∗
i =

t−1∏
k=0

(Ck)
ik (4)

Meanwhile, each CN uses public ⟨Ri⟩i=1∼N and
⟨Yi⟩i=1∼N to conduct batch verification of all shares.

N∏
i=1

Ri = e(h,
N∏
i=1

Yi) (5)

If the above formula holds, CNi recognizes that all shares
among CNs are correct. After verifying all shares, CNi

sends a confirmation message with αi = H2(Yi||ski) to
MN.

• Pseudo identity generation: After receiving all confirma-
tion messages from CNs, MN computes α = α1 + α2 +
...+ αN . Then, it selects a random number β ∈ Z∗

q and
calculates the pseudo identity PIDA of Alice, hash value
δ and signature σ by the following formulas:

PIDA = gα(β+H2(πA))

δ = H3(PIDA)

σ = α(β +H2(πA)) + δmsk

(6)

Finally, MN sends {PIDA, σ, δ} to Alice.
Upon receiving the message from MN, Alice calculates
δ∗ = H3(PIDA) and verifies whether δ∗ = δ and gσ =

(PKM )
δ∗ ·PIDA hold. If they hold, Alice keeps PIDA

as her own pseudo identity.
• Tracking information recording: MN initiates an up-

chain request of tracking information {πA, P IDA} on the
blockchain. CNi additionally stores the corresponding
ciphertext Yi distributed by Alice. If Alice has malicious
behaviors, CNs can retrieve her corresponding identity
protection information πA on the blockchain according to
PIDA. Once the number of CNs that consider Alice as
a malicious user exceeds the threshold t, the real identity
of Alice can be revealed.

C. Encryption of Electronic Medical Records

After receiving EMRA of diagnosis, Alice selects a random
number rA ∈ Z∗

q and obtains the public random number gm
from the current Leader. Then, she encrypts EMRA by the
following formulas:

R1 = e(g, (gm)rA) = e(g, gm)rA

R2 = H4(R1, pkA)

C = R2 · EMRA

(7)

Alice keeps R1 and R2 securely and calculates the signature
sA = e(gδA , (gm)

xA) with hash value δA = H5(C,PIDA).
Finally, Alice sends the message {C, δA, sA} to CS.

D. Storage of Electronic Medical Records

Upon receiving {C, δA, sA} from Alice, CS calculates
δA

∗ = H5(C,PIDA) firstly and verifies if δA
∗ = δA. Then,

CS checks the signature by the following formula to determine
whether the message comes from Alice.

e(pkA, (gm)
δA

∗
) = sA (8)

If the verification passes, CS stores {C, δA, sA} and gener-
ates a download address url of EMRA for Alice.
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E. Record of Metadata on Blockchain

To alleviate the storage pressure of blockchain, metada-
ta only includes the download address url, the summary
InfoAbstract of EMRA and the pseudo identity PIDA of
Alice. Alice initiates an up-chain request for recording her
metadata on the blockchain.The detailed process is as follows:

• Alice generates the metadata M =
{url, InfoAbstract, P IDA} and broadcasts the up-
chain request Tx Request = {M,hA, SigA(hA)} to the
whole MCB network, where hA is the hash value of M ,
SigA(hA) is Alice’s signature on hA.

• On receiving Tx Request, CNs verify the integrity of
M and SigA(hA) independently. If it is valid, each
CN will send a confirmation Tx Ack with the result of
verification to Leader.

• Leader checks all received Tx Ack. If the number of
Tx Ack with “true” is not less than the threshold t,
Leader puts the metadata M into the transaction pool
as an entry.

• When the current consensus interval ends, Leader col-
lects all entries in the transaction pool and packages
them. Then, Leader constructs a block request mes-
sage Block Request = {blockNum, gm, hL, SigL(hL)},
where Num is the the height of blocks, gm is the random
number published by the current Leader, hL is the hash
value of M , SigL(hL) is the signature of the current
Leader. Finally, Leader broadcasts Block Request to
the whole MCB network.

• Upon receiving Block Request, each Follower inde-
pendently verifies the data format, Merkle root of transac-
tions, the integrity of block data, the validity of signature
and checks if gm is the same as that published by the
current Leader. If all verifications pass, each Follower
sends a confirmation Block Ack with the result of veri-
fication to Leader.

• Leader checks all received Block Ack. If the amount
of Block Ack with “true” exceeds t, Leader notifies all
nodes that it uploads the block with height Num to the
blockchain.

• After the block is uploaded successfully, a new Leader
is determined by the formula m = (Num mod N) + 1.

F. Application, Authorization and Access

Suppose that Bob wants to access EMRA, he needs Alice’s
authorization.

• Application: Bob retrieves the relevant information
of EMRA on the blockchain. Then, he calcu-
lates (gm)

xB and sends an application message
{PIDB , (gm)

xB , hB, SigB(hB)} to Alice, where gm is
the random number recorded on the block associated with
EMRA, xB is Bob’s private key, hB is the hash of
PIDB and (gm)

xB , SigB(hB) is Bob’s signature on hB .
• Authorization: On receiving the application message of

Bob, if Alice allows him to access EMRA, she calculates
the re-encryption key rkA→B by the following formula:

rkA→B = ((gm)
xB )

rA/xA (9)

Alice encrypts the re-encryption key with CS’s public key
pkC and transmits it to CS.

• Re-encryption: CS first recovers the re-encryption key
rkA→B with its private key. Then, CS computes RA→B

and combines it with the ciphertext C of EMRA.

RA→B = e (pkA, rkA→B) = e(g, gm)
rAxB (10)

• Decryption: Bob downloads the combination of
{C,RA→B} and hash value δA via the corresponding
url. Then, he calculates δA

∗ = H5(C,PIDA) and
compares it with δA to verify the integrity of EMRA.
If the verification succeeds, Bob can finally decrypt C
to access EMRA by the following formulas:

R∗
1 = (RA→B)

1/xB = e(g, gm)rA

R∗
2 = H4(R

∗
1, pkA)

EMRA = C/R∗
2

(11)

G. Tracking of Malicious Nodes

Smart contract is an essential component of blockchain
which is an event-driven program deployed on blockchain.
Once meeting the trigger conditions, it will automatically
execute the predefined process in the contract.

In our scheme, smart contract is used to automatically track
malicious nodes. When a node in the system has malicious
behaviors, CNs that identify the malicious behaviors will form
a set which is called the authorized subset. When the number
of CNs in the authorized subset exceeds the threshold t, the
tracking process will be initiated. CNi in the authorized subset
firstly uses its own private key ski to recover sharei from the
ciphertext Yi.

sharei = Y
1/ski

i = gf(i) (12)

In order to ensure that the provided sharei is in-
deed from the corresponding Yi, CNi also needs to put
forward relevant proof information. Firstly, CNi choos-
es a random number ri ∈ Z∗

q and calculates B1
(i) =

(sharei)
ri , B2

(i) = (g)
ri . Then, CNi calculates challenge

cB
(i) = H2(sharei||g||Yi||pki||B1

(i)||B2
(i)) and bB

(i) =
ri + cB

(i)ski.
Each CN in the authorized subset submits its own

{cB(i), bB
(i), sharei, πA} to the smart contract. Algorithm 1

gives the detailed steps.
When more than t members in the authorized subset input

their shares into the smart contract, the tracking process will
be automatically triggered. Finally, Alice’s real identity InfoA
can be revealed by the following formula:

InfoA = πA ⊕H1(S) (13)

V. SECURITY ANALYSIS

A. Identity Privacy Preservation and Traceability

Lemma 1: Under the DL assumption and CDH assumption, it
is hard to obtain sharei through the public commitment Xi

and the ciphertext Yi disclosed in the registration process.
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Algorithm 1 Tracking of Malicious Nodes

Input: πA, [share1, share2, . . . , sharet],
[cB

(1), cB
(2), . . . , cB

(t)], [bB(1), bB
(2), . . . , bB

(t)]
Output: πA ⊕H1(S)

1: for i=1 to t do
2: Compute:

cB
(i)∗ = H2(sharei||g||Yi||pki||(sharei)bB

(i)

(Yi)
−cB

(i)

||gbB
(i)

(Yi)
−cB

(i)

)

3: if cB(i)∗ ̸= cB
(i) then

4: fail
5: end if
6: end for
7: long S = 1
8: for i=1 to t do
9: long Li = 1

10: for j ∈ [1, t] do
11: if j ̸= i then
12: Li = Li · j

j−i
13: end if
14: end for
15: S = S · pow(Si, Li)
16: end for

Proof: In the registration stage, to be a legal user, Alice needs
to broadcast ⟨Xi⟩i=1∼N and ⟨Yi⟩i=1∼N to the whole MCB
network. That is, Xi and Yi are also available to any adversary.
Now, we assume that a adversary tries to make use of these
public information {g, h,Xi, Yi, pki} to reveal sharei.

To simplify the proof, let g = hα, Xi = hf(i) = hβ and
pki = gski = hαski = hγ , so that we can obtain the ciphertext
Yi = pk

f(i)
i = hβγ . The adversary tries to recover sharei =

gf(i) = hαf(i) = hαβ . Therefore, the problem is transformed
to calculate hαβ , given hβ , hγ and hβγ for any α, β, γ ∈
Z∗
q . With all public information in hand, the adversary can

calculate hαβ in two ways:
• Using hα and hβ : Suppose the adversary can calculate

hαβ directly from hα and hβ . According to the CDH
assumption, given h, hα and hβ for any α, β ∈ Z∗

q ,
there exists no probabilistic polynomial time adversary
to calculate hαβ by a non-negligible advantage. This way
contradicts the CDH assumption.

• Using hα, hγ and hβγ : Suppose the adversary can also
use hγ and hβγ to get β, and then use (hα)

β to obtain
hαβ . According to the DL assumption, given hγ and hβγ

for any γ ∈ Z∗
q , there exists no probabilistic polynomial

time adversary to calculate β by a non-negligible advan-
tage. If the adversary cannot obtain β, s/he cannot further
get hαβ .

For above, it is proved that, relying on the DL assumption
and CDH assumption, the adversary cannot obtain sharei
through the commitment Xi and the ciphertext Yi.
Lemma 2: Under the DL assumption and CDH assumption,
any adversary cannot extract a user’s secret even if it corrupts
t− 1 or fewer CNs.

Proof: Due to the threshold t, our scheme can resist the
collusion of at most t−1 CNs. In other words, it can resist an
adversary who is able to corrupt only t−1 participants or less.
For generality, we set the serial number of the corrupted CNs
as i = 1 ∼ t− 1. In this case, the information obtained by the
adversary is: the commitments ⟨Xi⟩i=1∼N and the ciphertexts
⟨Yi⟩i=1∼N of shares, the public keys ⟨pki⟩i=1∼N of CNs,
the commitments ⟨Ci⟩i=0∼t−1 of polynomial parameters, the
private keys ⟨ski⟩i=1∼t−1 and shares ⟨sharei⟩i=1∼t−1 of the
corrupted CNs. The ultimate goal of the adversary is to obtain
s or S = gs.

Let g = hα and C0 = ha0 = hs = hβ , then the goal of
the adversary is to calculate β or hαβ . It can try the following
three ways:

• Using C0 = hβ : Calculating β directly from hβ is equiv-
alent to solving the DL hard problem, which contradicts
the DL assumption.

• Using g = hα and C0 = hβ : Calculating hαβ directly
from hα and hβ is equivalent to solving the CDH hard
problem, which contradicts the CDH assumption.

• Using ⟨sharei⟩i=1∼t−1: When t or more shares are
collected, the adversary can obtain hαβ by the following
formulas:



t∏
i=1

(sharei)
Li =

t∏
i=1

(
gf(i)

)Li

= g

t∑
i=1

f(i)Li

= gf(0) = gs = hαβ

Li =
t∏

j=1,j ̸=i

j

j − i

(14)

According to the Lagrange interpolation theorem, S cannot
be reconstructed from the shares of t− 1 corrupted CNs.

In order to achieve the purpose of restoring S, the adversary
and the corrupted CNs can also use the information that they
have mastered to crack any of shares ⟨sharek⟩k=t∼N to meet
the threshold t. From Lemma 1, it shows that, under the
DL assumption and CDH assumption, the adversary cannot
obtain the share of an uncorrupted CN through the public
information. In summary, under the DL assumption and CDH
assumption, even if the adversary corrupts t− 1 or less CNs,
s/he cannot restore S.
Lemma 3: Any adversary cannot reveal the real identity of a
legal user through the public identity protection information.
Proof: When Alice registers into the system, she uses the
constructed secret S to cover up her real identity InfoA by
the following formula:

πA = H1(S)⊕ InfoA (15)

According to Lemma 1 and Lemma 2, the constructed secret
S cannot be recovered by any adversary. Meanwhile, as long
as the security parameter λ is strong enough, cracking the real
identity information InfoA from the protection information
πA is equivalent to violently guessing a string with the strength
of 4λ bits. Therefore, the real identities of users cannot be
obtained from the protection information.
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Theorem 1: Under the DL assumption and CDH assumption,
the anonymous and conditionally traceable identity privacy
preserving mechanism in the distributed scenario is secure.
Proof: In the anonymous and conditionally traceable identity
privacy protection mechanism, there are three ways for an
adversary to extract the real identities of users:

• The adversary acquires sharei through the public com-
mitment Xi and the ciphertext Yi during the regis-
tration process, and then further obtains the shares
⟨sharei⟩i=1∼t that meet the threshold t. Next, it recovers
the secret S and calculates the real identity InfoA
through the public protection information πA.

• The adversary has the ability to corrupt at most t − 1
CNs. Then, s/he uses the private keys and shares of the
corrupted CNs with other public information to recover
the secret S and the real identity InfoA.

• The adversary directly uses the public identity protection
information πA to crack the hidden real identity InfoA.

t∏
i=1

(sharei)
Li = S (16)

InfoA = πA ⊕H1(S) (17)

According to Lemma 1, under the DL assumption and CDH
assumption, the adversary cannot obtain share sharei through
the commitment Xi and the ciphertext Yi, so that it cannot
collect t shares to recover the secret S and calculate the real
identity InfoA.

According to Lemma 2, under the DL assumption and CDH
assumption, even if the adversary corrupts t−1 CNs, S cannot
be forcibly reconstructed with the guarantee of Lagrange
interpolation theorem.

According to Lemma 3, in the case of reasonable security
strength, the adversary is impossible to reveal the real identity
InfoA from the public protection information πA.

In summary, the anonymous and conditionally traceable
identity privacy preserving mechanism is proved to be secure.
Only when t or more CNs recognize a user’s malicious
behavior at the same time, the user’s identity can be revealed.

B. Data Confidentiality
In order to reduce the storage pressure of blockchain, the

main body of EMRs is stored on a semi-trusted CS. To
guarantee the confidentiality of EMRs, the proposed scheme
introduces an improved proxy re-encryption algorithm as the
core component of EMRs sharing system, in which EMRs
are encrypted with data owners’ public keys and stored into
CS. If a data owner authorizes a data requestor access to
his/her EMRs, s/he needs to generate a re-encryption key
for the requestor and send it to CS. Then, CS uses the
re-encryption key to convert the ciphertexts of EMRs, so
the data requestor can decrypt through its own private key.
During the whole process, CS only deals with the cipher-
texts of EMRs and the re-encryption key. It cannot obtain
any useful information through the original ciphertexts and
the re-encrypted ciphertexts. Therefore, the proposed scheme
achieves the confidentiality of the outsourced data.

C. Anti-collusion Security

The proposed scheme can effectively resist collusion attacks
between a semi-trusted CS and any data requestor who has
access to certain EMRs. In the scheme, CS is responsible for
storing the ciphertexts of EMRs and converting the relevant ci-
phertexts for data requestors. As a semi-trusted entity, although
CS will perform its duties step by step, it may spoon on the
stored data, conspiring with data requestors via re-encryption
keys to grab the unauthorized EMRs.

In the proposed scheme, the consensus mechanism ensures
that Leader is selected in CNs according to the formula
m = (Num mod N) + 1. Then, Leader exposes a random
number gm for users to encrypt EMRs. Without loss of
generality, we assume that the first Leader1 selects a random
number gm1 and records it in the block with height Num1.
Meanwhile, the metadata of EMRs encrypted with gm1 is also
recorded in this block. If a data requestor wants to retrieve
an EMR associated with the block, s/he needs to use gm1

to construct the application information. When the current
consensus interval ends, the second Leader2 will be selected
in turn. It publishes a new random number gm2 which is
recorded in the block with height Num2. The metadata of
EMRs encrypted with gm2 will also be recorded in this block.
Here, Alice may have multiple EMRs generated in different
periods, so the metadata of these EMRs are recorded in the
blocks with different heights. Suppose that Bob wants to
access Alice’s EMR1, in which the metadata of EMR1 exists
in the block with height Num1, he needs to use gm1 and his
private key xB to calculate (gm1)

xB . Then, Bob initiates an
access request with (gm1)

xB to Alice. If Alice allows Bob to
access EMR1, she uses (gm1)

xB and her own private key
to generate the re-encryption key rkA→B = ((gm1)

xB )
rA/xA

and sends it to CS. On receiving the re-encryption key, CS
converts the ciphertext of EMR1. Finally, Bob downloads the
ciphertext through url and decrypt it by his own private key.

Unfortunately, many existing schemes do not achieve anti-
collusion security. If the data owner authorizes a data requestor
to access any of EMRs, the data requestor might conspire with
CS to illegally obtain other unauthorized EMRs. In the pro-
posed scheme, the EMRs of Alice are recorded in the blocks
with different heights, so they are encrypted with different
random numbers. Suppose that the metadata of EMR2 is
recorded in the block with height Num2, and the random
number used to protect EMR2 is gm2. In the encryption stage,
EMR2 is encrypted according to the following formulas:

R
(2)
1 = e(g, (gm2)

rA)

R
(2)
2 = H4(R

(2)
1 , pkA)

C(2) = R
(2)
2 · EMR2

(18)

Without the authorization of EMR2, Bob can only ob-
tain the information (gm1)

rA/xA by collusion. If Bob at-
tempts to access the unauthorized EMR2, he can calculate
e(pkA, (gm1)

rA/xA) = e(g, gm1)
rA . Because it is different

from R
(2)
1 = e(g, gm2)

rA , Bob cannot further calculate R
(2)
2

from e(g, gm1)
rA . So, the information (gm1)

rA/xA that Bob
acquires by colluding with CS is not valid for other EMRs.
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Therefore, the proposed scheme can resist collusion attacks
between a semi-trusted CS and data requestors.

D. Correctness Analysis
Lemma 4: Any verifier can confirm shares are generated
from the polynomial f(x) by checking the formula X∗

i =
t−1∏
k=0

(Ck)
ik

= Xi.

Proof: In the registration process, each UN needs to pub-
lish the commitments ⟨Cj⟩j=0∼t−1 of polynomial parameters
a0, a1, a2, ..., at−1 and the commitments ⟨Xi⟩i=1∼N of all
shares. Any verifier can calculate and compare X∗

i with the
commitment Xi to verify whether the f(i) hidden in Xi is
calculated via the polynomial f(x).

X∗
i =

t−1∏
k=0

(Ck)
ik =

t−1∏
k=0

(h)aki
k

= h

t−1∑
k=0

aki
k

= hf(i) = Xi

(19)
Lemma 5: Any verifier can verify the authenticity of all shares
in batches through the authentication information ⟨Ri⟩i=1∼N

and the ciphertexts ⟨Yi⟩i=1∼N of all shares.
Proof: Verifiers check if f(i) in the commitment Xi = hf(i)

is consistent with f(i) in the ciphertext Yi = pk
f(i)
i to ensure

that CNs do provide correct shares when reconstructing the
secret.

Since CNs must independently verify the authenticity of
all shares, to avoid redundant calculations of CNs, we enable
the data owner to pre-calculate the authentication information
⟨Ri⟩i=1∼N and broadcast them.

Each CN firstly calculates
N∏
i=1

Ri.

N∏
i=1

Ri =

N∏
i=1

e(Xi, pki) =

N∏
i=1

e(hf(i), gski)

=

N∏
i=1

e(h, g)
f(i)ski = e(h, g)

N∑
i=1

f(i)ski

(20)

Then, they use the public ciphertexts ⟨Yi⟩i=1∼N of all

shares to calculate e(h,
N∏
i=1

Yi), respectively.

e(h,
N∏
i=1

Yi) = e(h, Y1 · Y2 · · ·YN )

= e(h, Y1)e(h, Y2) · · · e(h, YN )

= e(h, gf(1)sk1)e(h, gf(2)sk2) · · · e(h, gf(N)skN )

= e(h, g)
f(1)sk1+f(2)sk2+···+f(N)skN

= e(h, g)

N∑
i=1

f(i)ski

(21)

From the derivation of the above two formulas,
N∏
i=1

Ri is

ultimately equal to e(h,
N∏
i=1

Yi). Therefore, verifiers can use

the authentication information ⟨Ri⟩i=1∼N and the ciphertexts

⟨Yi⟩i=1∼N to check the authenticity of all shares in batches
through the following formula:

N∏
i=1

Ri = e(h,

N∏
i=1

Yi) (22)

Lemma 6: If t or more correct shares are collected, the
constructed secret can be restored correctly.
Proof: The secret can be reconstructed by the following
formula:

t∏
i=1

(sharei)
Li =

t∏
i=1

(
gf(i)

)Li

= g

t∑
i=1

(f(i)
t∏

j=1,j ̸=i

j
j−i )

= gf(0) = gs = S

(23)

E. Functional Feature
In this part, the proposed scheme is compared with the

other five blockchain-based data sharing schemes in terms of
security features. These schemes are similar in architecture and
all take proxy re-encryption technology as the core component
of EMRs sharing. But each scheme has its own unique features
to meet different security requirements. We compare the
functional features of these schemes in terms of the following
indicators.

• Decentralization: It refers that the scheme does not re-
quire a centralized trusted entity.

• Confidentiality: It refers that healthcare data should not be
disclosed to unauthorized users, even a third semi-trusted
party, in the process of storing or sharing.

• Integrity: It refers that the scheme can ensure the integrity
of the stored and shared data.

• Identity privacy: It refers that the scheme can ensure
the identity privacy of patients in the process of sharing
EMRs.

• Identity tracking: It refers that the scheme provides a
secure and reliable mechanism to track the identities of
malicious users if necessary.

• Non-interactive: It refers that the scheme does not re-
quire complex interaction between data owners and data
requestors in the process of application and authorization.

• Smart contract: It refers that the scheme can deploy smart
contracts securely and flexibly.

• Anti-collusion security: It refers that the scheme can resist
collusion attacks launched by semi-trusted third parties
and data requestors who conspire to illegally recover
unauthorized ciphertexts.

TABLE II shows that our scheme meets all functional fea-
tures. In particular, our scheme can resist collusion attacks and
realize the conditional identity tracking mechanism. Although
the scheme in [33] also realizes anti-collusion security, it is too
idealistic to suppose that the third-party is completely credible.
Under the assumption of semi-trusted entities, our scheme
achieves anti-collusion security while the other schemes fail
to meet this feature. Moreover, our scheme provides an
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TABLE II: Comparison of functional features

Scheme Decentralization Confidentiality Integrity Identity privacy Identity tracking Non-interactive Smart contract Anti-collusion security

[26]
√ √ √ √

×
√

× ×
[29]

√ √ √
× ×

√
× ×

[30]
√ √ √

× ×
√

× ×
[32] ×

√ √
× ×

√
× ×

[33] ×
√ √ √

× × ×
√

Ours
√ √ √ √ √ √ √ √

Fig. 2: Comparison of computational overhead in encryption
stage

anonymous and conditionally traceable mechanism for privacy
preservation that is a crucial security feature in healthcare data
sharing scenarios.

VI. PERFORMANCE ANALYSIS

In this section, the proposed scheme is compared with the
selected schemes in terms of computational overhead. For
better interaction and circulation of EMRs, the healthcare data
management system should have excellent performance. Espe-
cially in the case of massive data, an efficient and secure EMRs
sharing scheme may greatly promote the quality of medical
services. Therefore, the detailed performance simulation and
quantitative analysis are given in this section.

Our scheme and the selected schemes all involve proxy re-
encryption as the core component. The formal model of proxy
re-encryption is mainly divided into five stages: initialization,
encryption, re-encryption key generation, re-encryption and
decryption. Therefore, we simulate and measure the computa-
tional overhead of all schemes in the stages of encryption,
re-encryption key generation, re-encryption and decryption.
According to the actual application scenarios, we simulate
each scheme via the tool of Java Pairing Based Cryptography
(JPBC) library. The simulation environment is a PC with In-
tel(R) Core(TM) I5-8250U CPU rated at 1.80GHz and 8.00GB
memory running 64-bit Windows operating system. We test
the average time consumption in the stages of encryption, re-
encryption key generation, re-encryption and decryption.

According to Fig. 2, in the encryption stage, the perfor-
mance of our scheme is at the medium level. In the re-
encryption key generation stage, Fig. 3 shows that the per-
formance of our scheme is only the second to the scheme in

Fig. 3: Comparison of computational overhead in the re-
encryption key generation stage

Fig. 4: Comparison of computational overhead in the re-
encryption stage

Fig. 5: Comparison of computational overhead in decryption
stage
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Fig. 6: Comparison of total overhead

[33]. But in Fig. 4 and Fig. 5, the computational overhead
of our scheme is the lowest in the stages of re-encryption
and decryption. From above comparison, the performance
of our scheme is excellent in the stages of re-encryption
key generation, re-encryption and decryption. Although the
performance of our scheme in the encryption stage is at the
medium level, all EMRs only need to be encrypted and stored
once.

By measuring the computing time consumption of each
stage, the overall performance of each scheme is analyzed
and evaluated. In the MCB system, users from different
places join the system, so the number of users may be
quite large. Meanwhile, EMRs are often shared many times
with different requestors. Since the initialization only runs
once when the system starts up, compared with the multiple
sharing of EMRs by a large number of users, the overhead
of initialization stage can be ignored. We assume that all
schemes have the same number of users and EMRs, the
overall performance of each system will change with the times
of sharing EMRs. We represent the overhead of encryption,
re-encryption key generation, re-encryption and decryption
as costEncryption , costReKeyGen , costRe−Encryption and
costDecryption, respectively. In the healthcare data sharing
system, EMRs only need to be encrypted once, but each
sharing of EMRs must involve re-encryption key generation,
re-encryption and decryption. Therefore, we calculate the total
overhead of sharing EMRs n times by the following formula:

cost = costEncryption + n ∗ (costReKeyGen+

costRe−Encryption + costDecryption)
(24)

As shown in Fig. 6, with the increase of sharing times, the
total overhead of our scheme is lower than the other schemes.
Therefore, our scheme has higher efficiency in EMRs sharing
scenarios.

VII. CONCLUSION

The healthcare industry is transforming from traditional
medicine to digital driven medicine. However, there is still
a great challenge to effectively share healthcare data remotely
while protecting personal privacy during the medical data

sharing. Therefore, we proposed a secure and efficient remote
EMRs sharing scheme over blockchain. The scheme could
not only greatly improve the efficiency of remote EMRs
sharing but also realize conditional identity privacy preser-
vation and tracking. With the help of the on-chain/off-chain
model of blockchain and cloud services, the scheme greatly
alleviated the storage pressure of massive medical data. Most
importantly, our scheme achieved anti-collusion security that
could prevent the semi-trusted cloud server from colluding
with data requestors to access unauthorized EMRs. Through
simulation and theoretical analysis, our scheme proved to be
more efficient than the selected schemes due to the lower
computational overhead in EMRs sharing.
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