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Abstract—The Industrial Internet of Things (IIoT), a typical Internet of Things (IoT) application, integrates the global industrial system
with other advanced computing, analysis, and sensing technologies through Internet connectivity. Due to the limited storage and
computing capacity of edge and IIoT devices, data sensed and collected by these devices are usually stored in the cloud. Encryption is
commonly used to ensure privacy and confidentiality of IIoT data. However, the key used for data encryption and decryption is usually
directly stored and managed by users or third-party organizations, which has security and privacy implications. To address this potential
security and privacy risk, we propose a Shamir threshold cryptography scheme for IIoT data protection using blockchain: STCChain.
Specifically, in our solution the edge gateway uses a symmetric key to encrypt the data uploaded by the IoT device and stores it in the
cloud. The symmetric key is protected by a private key generated by the edge gateway. To prevent the loss of the private key and privacy
leakage, we use a Shamir secret sharing algorithm to divide the private key, encrypt it, and publish it on the blockchain. We implement
a prototype of STCChain using Xuperchain, and the results show that STCChain can effectively prevent attackers from stealing data as
well as ensuring the security of the encryption key.

Index Terms—Industrial Internet of Things, data protection, blockchain, Shamir secret sharing.
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1 INTRODUCTION

THe Industrial Internet of Things is a system composed
of networked smart objects, network physical assets,

related general information technology, and, in some set-
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tings, cloud or edge computing platforms that support
various processes and services in an industrial environment.
Examples of such processes and services include real-time,
intelligent and autonomous access to data and their col-
lection, analysis, communication and exchange to optimize
the overall output value. There are, however, security and
privacy considerations in the deployment of such systems
that necessitate the design of robust security and privacy-
preserving solutions in IIoT settings.

A typical, simplified IIoT system architecture generally
comprises three key functional systems, namely, network,
platform and security systems. The latter (i.e., security
system) is designed to support the security requirements
in applications, data, networks, controls and devices, for
example, by identifying, detecting and mitigating various
security threats [1], [2].

One challenge of designing security and privacy-
preserving solutions for IIoT systems is that the devices
underpinning such systems are generally limited in terms
of storage and computing capabilities and are power-
constrained [3], [4]. Hence, data sensed, collected and dis-
seminated by these IIoT devices are generally stored and
processed in the cloud. To minimize the risk of data leak-
age (e.g., due to a malicious cloud employee), protective
measures such as data encryption are used [5], [6]. Such ap-
proaches generally require the data encryption/decryption
key to be stored and/or managed directly by users or by
a centralized third-party institution. There are limitations
to both approaches; for example, the limitations associated
with the local storage of keys include single point of fail-
ure/attack and loss of data/service access if the local storage
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medium is corrupted (unless there is a backup copy of the
key on another storage medium). If the keys are stored and
managed by a trusted third-party center (e.g., certificate
management organization (CA)), then we must trust the
trusted third-party center to do the right thing and not leak
the key.

Seeking to mitigate these limitations and based on [7],
we propose a Shamir’s Threshold Cryptography approach
that utilizes blockChain for IIoT key data (hereafter referred
to as STCChain). [7] is only a synopsis, while this paper
proposes a detailed solution for the two limitations of en-
cryption/decryption key protection mentioned above. Also,
this paper validates the proposed method from multiple
dimensions. The key features are as follows:

• Decentralized IIoT key data threshold encryp-
tion scheme. First, the edge gateway encrypts the
data uploaded by the IoT device with a temporary
symmetric key generated by the edge gateway and
stored in the cloud; meanwhile, the symmetric key
is encrypted by the public key generated by the
edge gateway. Second, we use the Shamir threshold
scheme [8] to split the private key, and the private
key fragments are encrypted to store on blockchain
[9], [10]. The user can decrypt the data only after
successfully reconstructing the decryption key. Fi-
nally, the STCChain design includes a detailed data
security storage process and data security reading
process.

• Key decentralized storage. To prevent the loss and
disclosure of privacy for the private key used for
decryption, we use the Shamir threshold scheme to
split the private key, and its fragments are encrypted
with the participant’s public key and published on
blockchain, effectively guaranteeing key privacy.

• Security. STCChain can effectively guarantee the
confidentiality, integrity, availability, and account-
ability of data and can effectively protect the security
of the encryption key.

Sections 2 and 3, respectively, discuss the related work
and introduce the relevant background material. Then,
Section 4 presents our proposed STCChain scheme. The
security and performance evaluations of STCChain are pre-
sented in Sections 5 and 6, respectively. Finally, Section 7
provides the conclusion.

2 RELATED WORK

In this section, we briefly review several related studies
on IIoT data encryption and existing blockchain-based ap-
proaches.

Existing approaches include those based on public-key
authentication and encryption. For example, [11] proposed
a secure channel-free and certificateless searchable multi-
keyword public-key encryption scheme (SCF-MCLPEKS)
for IIoT deployment and proved the security of the scheme
in a random prediction model. [12] proposed a multi-
acceptor certificateless encryption with keyword search
(CLKS) scheme without pairing and proved that its effi-
ciency is higher than that of the current CLKS scheme and

is suitable for cloud-assisted IIoT scenarios. Other exam-
ples include those of [13], [14]. Other approaches utilize
attribute-based encryption, for example, to facilitate access
control that publishes and revokes attributes [15]. Another
example is a support online/offline data-sharing framework
[16].

Finally, [17] proposed an efficient key management
scheme named HKFS-KM to address the issue of high key
storage overhead and difficult key management. [18], aim-
ing to address the issue of key escrow in data authentication
and the difficulty of implementing the mapping to point
hash function and random prediction model, proposed a
certificateless signature scheme, but the key storage was
centralized.

There have been attempts to integrate both blockchain
and IIoT in various contexts. First, for transactions, [19]
proposed a decentralized IIoT platform based on blockchain
technology named BPIIoT that uses blockchain as a trusted
intermediary for transactions between users. [20] proposed
a blockchain-based secure energy trading system to address
the untrustworthy and opaque nature of the energy market
and designed a credit-based payment scheme to reduce
the transaction restrictions caused by the delay of trans-
action confirmation in the energy blockchain. For service
provision, [21] proposed a nonrepudiation service provision
scheme based on blockchain to solve issues related to an
untrusted service provider, a user who refuses to provide
the service, or one who uses the service for their own benefit.
[22] proposed a blockchain-based IIoT supply chain man-
agement system that used the characteristics of blockchain
to solve the problem of fair commodity exchange between
merchants and suppliers. [23] proposed a lightweight IIoT
traffic classification service to classify real-time traffic in the
IIoT.

In addition, the use of blockchain to solve IIoT security
problems has become a current research hotspot, but most
of these studies are aimed at specific security aspects [24].
For system security, [25] proposed a credit-based IIoT de-
vice proof-of-work mechanism that used a directed acyclic
graph–structured blockchain and proposed a data rights
management method to ensure sensitive data confidential-
ity. For security authentication, [26] proposed a blockchain-
based system named BSeIn that combined fine-grained ac-
cess control to achieve secure mutual authentication, and
combined blockchain and attribute-based signatures for
anonymous authentication. For secure data sharing, [27]
proposed a high-efficiency data based on Ethereum to ad-
dress issues related to how the intelligent mobile terminal
(MT) in the IIoT can achieve high-quality data collection
and how to ensure the security of data sharing between
MTs. The scheme created a reliable and secure environment
using blockchain and deep reinforcement learning. For data
storage, [28] proposed a blockchain-based image encryption
scheme that encrypted and stored image pixel values in
blockchain to ensure the privacy and security of image data,
but the scheme relies on a CA to publish certificates.

In conclusion, although academic circles have reported
many research results related to the above aspects, many
deficiencies remain in using blockchain to protect IIoT key
data, especially the lack of research results with threshold
encryption protection.
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3 PROBLEMS AND RELATED KNOWLEDGE

3.1 Edge computing

Cloud computing is part of the core infrastructure of IIoT.
The IIoT integrates industrial and commercial networks to
promote industrial intelligence by uploading data to the
cloud for analysis and processing. On the one hand, the
security and privacy requirements for edge device data in
the IIoT are relatively high; on the other hand, in the era of
the Internet of Everything, the number of edge devices in the
IIoT has skyrocketed, and the volume of data has exploded.
Since the cloud adopts a centralized data processing model,
users must upload all data to the cloud before they can
use the services it provides. However, this method has
several problems, such as unsatisfactory real-time perfor-
mance, insufficient bandwidth, high energy consumption,
and difficulty in ensuring data security and privacy. Edge
computing has emerged to address these issues [29], [30].

Unlike cloud computing, which processes data in the
cloud, edge computing is a new computing model that
can perform calculations at the edge of a network; it has
emerged as a supplement to cloud computing. The combi-
nation of edge computing and cloud computing provides a
better service experience for the IIoT and mobile computing.
Edge computing operation includes two aspects, as shown
in Figure 1: it can process downlink data from cloud ser-
vices and it can process uplink data from data sources and
consumers.

In summary, edge computing provides three obvious
advantages:

• Edge computing processes temporary data at the
edge of the network instead of uploading all data
to the cloud, so it can reduce network bandwidth
pressure.

• Compared to cloud computing, which processes data
in the cloud, edge computing processes data very
close to the data source, so it offers low latency and
can, to a certain extent, improve service response
capabilities.

• /With edge computing, storage and computing ser-
vices can be provided for private data to protect data
privacy.

3.2 IIoT Network Model

The IIoT is essentially constituted by the interconnection
of commercial and industrial networks and results from
the integration of global industrial systems with advanced
computing, analysis, and sensing technologies and Internet
connections.

As shown in Figure 2, the IIoT model is composed of
three main parts—a field network, a control network, and
an enterprise network:

• The enterprise network is composed of various sys-
tems, such as the manufacturing enterprise manage-
ment execution system, supply chain management
system, customer relationship management (CRM)
system, enterprise resource planning and industrial
applications.

Cloud

Edge computing node

Data sources and consumers

Data upload
request/response

Data upload
request/response

Cloud

Edge computing
node

Data sources
and consumers

Data upload
request/response Data upload

request/response

Fig. 1. Edge computing bidirectional computing flow model.

External
network

Firewall

Firewall

···

Field network

Control network

Enterprise network

Enterprise internal 
data center

Control server

SCADA

DCS/FCS

HMI

PLC

Edge 
devide1

Edge 
devide n

SCM CRM

ERP MES APPEdge
gatewayFirewall

Fig. 2. IIoT network model.

• The control network is composed of supervisory con-
trol and data acquisition, the program logic control
system, the fieldbus control system, etc.

• The field network includes the human-machine in-
terface, programmable logic controller, and edge de-
vices.

In the IIoT, data are usually collected by edge devices in
the field network, monitored and controlled by the control
network, and then stored in the enterprise data center for
unified processing. Finally, the data are passed through the
edge device or edge gateway to access the external network
for operations [31].

3.3 Current IIoT data storage model
Considering the limited storage and computing power of
IIoT devices, most enterprises or individuals choose to store
IIoT data in the cloud. Once IIoT data are stored in the cloud,
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Fig. 3. Current IIoT data storage model.

enterprises or individuals lose absolute management rights
over their data. Because the cloud adopts a centralized
management mechanism, untrusted clouds or other attack-
ers may use the data illegally, causing privacy disclosure.
Data encryption is one of the main ways to ensure the
confidentiality of data stored by an IIoT device in the cloud.
Data owners, such as edge devices (edgeD), usually encrypt
data before storage in the cloud, and the decryption key
is stored and managed by a user or a trusted third-party
organization (such as a CA). When a data user (DU ) wants
to access the data, the DU must request the decryption key
from the user or CA.

We can thus abstract the current IIoT data storage model
as shown in Figure 3, which contains three main entities:
edgeD, Cloud, and DU . Regarding the storage of the key,
some edgeD will choose to hold the key themselves, as
shown in step 2A, while the resource-constrained edgeD
will choose to have a trusted third-party organization (such
as a CA) escrow the key, as shown in step 2B, and will then
obtain the key from the CA when needed.

3.4 Existing Problems
The current IIoT data storage model still has the following
two problems:

• Problem 1. edgeD storage has limited comput-
ing power, and it is difficult to encrypt data au-
tonomously. Generally, the encryption method is
composed of a symmetric and an asymmetric key.
However, even if symmetric key encryption can
provide a lightweight solution for edgeD, due to
the low capacity and low performance of edgeD,
autonomous encryption is very difficult.

• Problem 2. Centralized key storage is vulnerable
to attacks. On the one hand, malicious CA admin-
istrators could illegally use edgeD encryption and
decryption data keys, thereby stealing edgeD data
and causing privacy leakage. On the other hand, an
attacker could attack the CA key database and steal
edgeD data, thereby destroying data confidentiality
and privacy. In addition, edgeD stores the key locally,

which is prone to single point of failure and privacy
leakage.

3.5 Shamir’s Secret Sharing

In some cryptography problems, it is necessary to share
secrets s between n users. The Shamir secret sharing (SSS)
scheme proposed by Shamir [8] is based on the Lagrange
interpolation formula, which requires at least k (n ≥ k)
secret holders to participate to reconstruct s, while k − 1
participants cannot reconstruct s. This is called the (k, n)
threshold secret sharing scheme, where k is the threshold.
The process is described as follows:

Step 1. Initialization: Let GF (q) be a finite field gener-
ated by a large prime q, where q ≥ n+ 1. Secret distributor
D randomly selects n different x = {xr 6= 0|r = 1, 2, ..., n},
where xr is used to represent each secret segment holder
U = {Ur|r = 1, 2, ..., n}, and then discloses xr and Ur .

Step 2. Secret distribution: D wants to distribute s,
where s ∈ Zq|q is a large prime number. First, D arbi-
trarily selects k − 1 elements within GF (p) to construct
ai(i = 1, 2, ..., k − 1) and then constructs the k − 1 order
polynomial:

f (x) =
k−1∑
i=1

a0 + aix
i(mod q) (1)

that is,

f (x) = a0 + a1x+ · · ·+ ak−2x
k−2 + ak−1x

k−1 (2)

where q > s, q is a large prime number, and s = f(0) = a0.
Finally, D generates n secret fragments

sr = f (xr) =
k−1∑
i=1

a0 + aix
i
r(mod q) (3)

where r = 1, 2..., n and Ur ∈ U . It then sends sr to Ur.
Step 3. Secret reconstruction: any k shadow secret hold-

ers can reconstruct s through the Lagrange interpolation
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formula according to the (xi, f (xi))xi 6=0|i=1,2,...,k, that is,

s = f (0) = a0

= (−1)k−1
k∑

i=1

f (xi) ·
k∏

j=1,j 6=i

−xj

xi − xj
(mod q)

(4)

4 STCCHAIN

To solve the problems in Section 3.4, we propose STCChain,
a new threshold encryption protection scheme for critical
IIoT data based on blockchain. This section details the
initialization, secure data storage and secure data reading.
The STCChain model is shown in Figure 4, including the
following five entities:

• EdgeG: Edge gateway, which is responsible for pro-
cessing the data uploaded by edgeD.

• BC : Blockchain, which is open, transparent, tamper-
proof, and irreversible. It is the same as the dis-
tributed database, and we use it as a key storage
database for STCChain.

• Cloud: Cloud storage, which provides identity au-
thentication for DU and non-real-time data storage
for EdgeG. Cloud verifies the identity of the DU
and returns eDataID to the user.

• DU : Data users, if DU obtains encrypted data from
Cloud and collects a sufficient number of key frag-
ments from BC , the data can be decrypted.

• FH : If the holder of the key fragment of eDataID
verifies the identity of the DU , he or she will send
his or her owner key fragment to DU .

The overall process is as follows:
Step 1. edgeD uploads the data to EdgeG. After EdgeG

receives the data, EdgeG generates eDataID, uses ksm (the
symmetric key generated by EdgeG) to encrypt the data,
encrypts ksm by SKpub (public key in the asymmetric key
SK generated by EdgeG) and uploads the encrypted data
to Cloud. Finally, EdgeG uses the SSS algorithm to split the
decryption key SKpri (private key of SK) to obtain n key
fragments.

Step 2. A smart contract is used to publish key distri-
bution transactions; that is, each key fragment is encrypted
with each FH ’s public key and then published to BC for
storage.

Step 3. Cloud uploads eDataID and the encrypted data
to Cloud.

If DU wants to access resources, first, DU sends an
access request to the Cloud, Cloud verifies DU , and then
eDataID is returned to DU . Next, DU initiates a private
key transaction to BC , triggering BC to send a transaction
reminder to FHi(i = 1, 2, ..., n). Each FHi verifies and then
uses a smart contract to publish the key fragment trans-
action to BC , where each key fragment uses DU ’s public
key for encryption to ensure privacy. Finally, DU collects a
sufficient number of key fragments to satisfy k ≤ k′ ≤ n
and uses the SSS scheme to synthesize the key and decrypt
the data.

Next, we introduce the symbols that will be used later
in this paper, as shown in Table 1, and then introduce some
important fields and collections, as shown in Table 2.

TABLE 1
Symbol table.

Symbol Description

E(key,M )
D(key,N )

E() encrypts M with the key, and D() decrypts N with the key,
where the key can be a symmetric key or an
asymmetric key; that is, the key can be SK or ks.

SKUser
User’s asymmetric key,
SKUser = {SKpubUser, SKpriUser}.

SKC
Cloud’s asymmetric key,
SKC = {SKpubC , SKpriC}.

SKEdgeD
EdgeD’s asymmetric key,
SKEdgeD = {SKpubEdgeD, SKpriEdgeD}.

SKDU
DU ’s asymmetric key,
SKDU = {SKpubDU , SKpriDU}.

SKW
An asymmetric key pair for generating the wallet address,
SKW = {SKWpub, SKWpri}.

ks Symmetric key.
Addr Blockchain wallet address, that is, user identity.

TABLE 2
Field and data structure table.

Field/Set Description

metaDInfo

Metadata information collection, metaDInfo={
edgeDDomain, edgeDID, metaData}, where
edgeDDomain is the domain of the edge device,
edgeDID is the unique identifier of the edge
device, metaData are the data.

metaDInfo S Encrypted metaDInfo collection.
eDataID Data unique identifier.

bcaddInfo

Blockchain data information set, bcaddInfo={
actionInfo, dataInfo}, where actionInfo

means behavior information, and actionInfo={
storageKeyAct,requestKeyAct,responseKeyAct},
dataInfo is specific data information.

tran

Blockchain transaction collection,
tran={tranID,Addrfrom,Addrto,value,addData}.
Where tranID: transaction number,
Addrfrom: transaction sender,
Addrto: transaction receiver,
value: transaction value,
addData: transaction additional information.

4.1 Initialization

First, EdgeG, DU and FH must register with BC to be-
come blockchain users. Since the registration process for
EdgeG, DU and FH is the same, we collectively refer
to it as blockchain user registration. Before designing the
registration process, we introduce KGen(), AGen(), and
SynData(). These three functions are all realized based on
BC . For ease of understanding, the formal definition is as
follows.

Definition 1. KGen() is a function to generate SKW .
The function input is null, and its outputs is SKW .
For example, DU calls KGen() to generate SKWDU =<
SKWpubDU , SKWpriDU >, and FH calls KGen to gener-
ate SKWFH =< SKWpubFH , SKWpriFH >. EdgeG and
Cloud are similar.

Definition 2. AGen(SKWpub) is a function to create
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Fig. 4. STCChain architecture.

User BC

URequest||ti||tj

E(ks1,AddrUser||SKWUser)||E(SKpubUser,ks1)

D(SKpriUser,ks1) && D(ks1,AddrUser||SKWUser) get 

AddrUser||SKWUser
 

Fig. 5. EdgeG, DU and FH registration process.

a wallet address. The function input is SKWpub, and the
output is Addr. For example, DU calls AGen(SKWpubDU )
to generate AddrDU , and FH calls AGen(SKWpubFH ) to
generate AddrFH . EdgeG and Cloud are similar.

Definition 3. SynData(ti, tj) is a function to synchronize
data from time ti to tj . The function inputs are ti and tj , and
its output is blockdataij .

Next, we design the blockchain user registration process
shown in Figure 5.

À User→BC : URequest||ti||tj . User sends registration
request URequest||t||tj to BC .

Á BC → User: E(ks1, AddrUser||SKWUser)||
E(SKpubUser , ks1)||blockdataij . BC calls KGen() to gener-
ate SKWUser(SKWpubUser, SKWpriUser) and then calls
AGen(SKWpubUser) to generate AddrUser . BC uses ks1 to
encrypt AddrUser||SKWUser , and SKpubUser encrypts ks1
and then sends E(ks1, AddrUser||SKWUser)||E(SKpubUser ,
ks1)||blockdataij to User. User calls D(SKpriUser ,
ks1) and D(ks1, AddrUser||SKWUser) to obtain
AddrUser||SKWUser . Usually, Cloud will automatically
call SynData(ti, tj) to synchronize blockdataij to the local

database.

4.2 Secure Data Storage by Threshold Encryption

Secure data storage includes decentralized key distribu-
tion and encrypted data storage. Before designing the se-
cure data storage process, we first introduce three func-
tions, namely, dataUpload(), SGen(), and ASGen(), and a
blockchain transaction interface ISend(). For ease of under-
standing, the formal definition is as follows.

Definition 4. dataUpload(data) is a function to upload
resources from EdgeG to Cloud. The function input is data,
and if the upload is successful, its output is true; otherwise,
its output is false.

Definition 5. SGen() is a function to generate the sym-
metric key ksm, which is used to encrypt metaDInfo. The
function input is null, and its output is ksm.

Definition 6. ASGen() is a function to generate the
asymmetric key SK, which is used to encrypt ksm. The
function input is null, and its output is ksm S.

Definition 7. ISend(SKWpri from, Addrfrom, Addrto,
index, content, timestamp) is a blockchain transaction
interface used to publish blockchain transactions; that is,
Addrfrom sends a transaction with an asset of index and
a transaction value of content to Addrto. Addrfrom is the
sender of the transaction, SKWpri from is the private key
of the sender’s wallet address (used to sign the transac-
tion), Addrto is the receiver of the transaction, index is
the asset unit, content is the asset content, and timestamp
is the timestamp. The interface inputs are SKWpri from,
Addrfrom, Addrto, index, content and timestamp, and the
output is tranID (transaction number).

We now design the secure data storage process shown in
Figure 6, which includes 4 steps.
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EdgeGEdgeG BCBC CloudCloud

dataUpload(metaDInfo_S||ksm_S||eDataID)

eDataID||SK||ksm||SK_fragment_SSS(SKpri, n, k, xi)

Txreg_fragkey(SKWpriEdgeG, AddrEdgeG, 

AddrFHi, SKWpubFHi, eDataID)

tranID

Fig. 6. Secure data storage process.

À EdgeG: eDataID||SK||SK fragment SSS(SKpri,
n, k, xi). After EdgeG receives the data from the IoT de-
vice, EdgeG first generates eDataID for eDataInfo, calls
system function ASGen() to generate SK(SKpub,SKpri),
and calls SGen to generate ksm. Then, EdgeG calls
SK fragment SSS to split SKpri into n parts, and each
fragment is recorded as si(i = 1, 2, ..., n). Next, EdgeG
distributes si(i = 1, 2, ..., n) to the corresponding FHi

(i = 1, 2, ..., n), who are the fragment holders. Any k(k ≤ n)
fragments held by the FH can be used to reconstruct SKpri,
where SK fragment SSS is a key division algorithm
based on the SSS scheme, as shown in Algorithm 1.

In Algorithm 1:

• Line 1 indicates that for SKpri ∈ Zp (p is a large
prime number, p > 2128), k − 1 random numbers
are randomly selected on the finite group GF (p)
and assigned values to a1, a2, ..., ak−1; among them,
n represents the total number of divisions, and k
represents the threshold.

• Line 2 lets a0=SKpri and then substitutes in
a0, a1, a2, ..., ak−1 to construct a k − 1 order poly-
nomial (Formula 2), that is, f (x) = a0 + a1x+ · · ·+
ak−2x

k−2 + ak−1x
k−1.

• Line 3 initializes an array s of length n+1 to store the
divided key fragments.

• Lines 4-8 substitute x1, x2, ..., xn into f(x) to ob-
tain s1, s2, ..., sn, where s1 = (x1, f(x1)), s2 =
(x2, f(x2)), ..., sn = (xn, f(xn)), and then stores si
into s:

s = {s1, s2, ..., sn}

• Line 9 returns s.

Á EdgeG → BC : Txreg fragkey(SKWpriEdgeG,
AddrEdgeG, AddrFHi, SKWpubFHi, eDataID). In this
step, EdgeG distributes si to the corresponding FHi

(i = 1, 2, ..., n). First, EdgeG calls Txreg fragkey to
publish the distribution transactions of si on BC , where
Txreg fragkey is a smart contract. If there are n FH , that
is, FHi = {FH1, FH2, ..., FHn}, Txreg fragkey is called
n times to publish the distribution transactions of the key.
Txreg fragkey is shown in Algorithm 2.

In smart contract Txreg fragkey :

• Line 1 uses the public key of target FH to encrypt
the private key fragment si.

Algorithm 1: SK fragment SSS

Input: SKpri, n, k
Output: s

1 Randomly select k− 1 numbers in GF (p) and assign
them to (ai)i=1..k−1;

2 f(x)← a0 + a1x+ · · ·+ ak−2 · xk−2 + ak−1 · xk−1

where a0 = SKpri;
3 Initialize array s with a length of n+ 1 to store the

split value of SKpri;
4 for i=1 to n do
5 Randomly select a number and assign it to xi;
6 si = a0 + a1 · xi + · · ·+ ak−2 · xk−2

i + ak−1 · xk−1
i ;

7 s[i]=si;
8 end
9 return s;

Algorithm 2: Smart Contract Txreg fragkey

Input: SKWpriEdgeG, AddrEdgeG, AddrFHi, si,
SKWpubFHi, eDataID

Output: tranID
1 si S = E(SKWpubFH1, si);
2 bcaddInfo= storageKeyAct+si S;
3 get current timestamp;
4 tranID=ISend(SKWpriEdgeG, AddrEdgeG,

AddrFHi, eDataID, bcaddInfo, timestamp);
5 return tranID;

• Line 2 initializes the added value of the blockchain
transaction.

• Line 3 obtain the current timestamp.
• Line 4 calls the blockchain publishing inter-

face ISend(SKWpriEdgeG, AddrEdgeG, AddrFHi ,
eDataID, bcaddInfo, timestamp) to send the trans-
action to BC . SKWpriEdgeG represents the private
key of the EdgeG wallet address (used for the signa-
ture).

• Line 5 returns tranIDi to the corresponding FHi

(i = 1, 2, ..., n).

Â BC → EdgeG: tranID. If the publish transaction is
successful, BC will send tranID (transaction number) to
EdgeG.

Ã EdgeG→ Cloud: dataUpload(metaDInfo S||ksm S
||eDataID). EdgeG uses ksm to encrypt metaDInfo to
obtain metaDInfo S. Meanwhile, SKpub is used to en-
crypt ksm to obtain ksm S. Finally, EdgeG calls function
dataUpload() to upload metaDInfo S||ksm S||eDataID
to Cloud.

4.3 Secure Data Access
The secure data reading process includes three main com-
ponents: reading encrypted data, collecting decentralized
stored decryption key fragments and reconstructing the
decryption key to decrypt data. Next, we design a secure
data reading process, as shown in Figure 7, which includes
7 steps.

À DU → Cloud: E(ks2, eDataID)||E(SKpubC ,ks2). DU
sends a read request to Cloud.
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CloudCloud BCBC FHiFHiDUDU

E(ks2, DURequest)||E(SKpubC,ks2)

E(ks2, metaDInfo_S||ksm_S)

||E(SKpubDU,ks2)

Txreq_s(SKWpriDU, AddrDU, AddrFHi, eDataID)

tranID

txnoticeFlag

Txrsp_s(SKWpriFHi, AddrFHi, 

AddrDU, eDataID, SKWpubDU, si)reqnoticeFlag

 D(SKpri, ksm_S) ||D(ksm, metaDInfo_S) get 

metaDInfo

Fig. 7. Secure data access process.

Algorithm 3: Smart Contract Txreq s

Input: SKWpriDU , AddrDU , AddrFHi, eDataID
Output: tranID

1 get current timestamp;
2 bcaddInfo= requestKeyAct+null;
3 tranID=ISend(SKWpriDU , AddrDU , AddrFHi,

eDataID, bcaddInfo, timestamp);
4 return tranID;

Á Cloud → DU : E(ks2,metaDInfo S||ksm S)||E(
SKpubDU , ks2). Cloud decrypts to obtain eDataID
and then queries the eDataID data, that is,
metaDInfo S||ksm S, and returns the data to DU .

Â DU → BC : Txreq s(SKWpriDU , AddrDU , AddrFHi,
eDataID). DU calls Txreq s to send a key fragment request
transaction to n key holders FHi(i = 1, 2, ..., n), where
Txreq s is a smart contract, as shown in Algorithm 3.

In smart contract Txreq s:

• Line 1 obtains the current timestamp.
• Line 2 initializes the additional information stored

on blockchain, where requestKeyAct represents the
behavior of the requested key fragment.

• Line 3 calls the blockchain publishing interface
ISend(SKWpriDU , AddrDU , AddrFHi , eDataID,
bcaddInfo, timestamp) to send the transaction to
BC . SKWpriDU represents the private key of the
DU wallet address (used for the signature).

• Line 4 returns tranID to DU .

Ã BC → FH : txnoticeF lag. BC sends a transaction
reminder txnoticeF lag to FHi.

Ä FH → BC : Txrsp s(SKWpriFHi, AddrFHi, AddrDU ,
eDataID, SKWpubDU , si). If FHi verifies that AddrDU

is a user legally requesting private key segments, it calls
Txrsp s to publish a reply request transaction, as shown in
Algorithm 4.

In smart contract Txrsp s:

• Line 1 uses SKWpubDU to encrypt si.
• Line 2 initializes the additional information stored on

blockchain, where responseKeyAct represents the
behavior of the response key fragment.

• Line 3 obtains the current timestamp.
• Line 4 calls the blockchain publishing interface

ISend(SKWpriFHi, AddrFHi, AddrDU , eDataID,

Algorithm 4: Smart Contract Txrsp s

Input: SKWpriFHi, AddrFHi, AddrDU , eDataID,
SKWpubDU , si

Output: tranID
1 si S’=E(SKWpubDU , si);
2 bcaddInfo=responseKeyAct + si S’;
3 get current timestamp;
4 tranID=ISend(SKWpriFHi, AddrFHi, AddrDU ,

eDataID, bcaddInfo, timestamp);
5 return tranID;

bcaddInfo, timestamp) to send the transaction to
BC .

• Line 5 returns tranID to DU .

Å BC → DU : reqnoticeFlag. BC sends the transaction
reminder reqnoticeFlag to DU .

Æ DU : D(SKpri, ksm S)||D(ksm, metaDInfo S). DU
collects at least t transactions and decrypts them to obtain
at least t key fragments. n ≥ t ≥ k, where (k, n) is the
SSS threshold scheme and k is the threshold value. Any k
participants who want to obtain SKpri can use

a0 + a1(s1) + ...+ ak−1(s1)
k−1 = f(s1)

a0 + a1(s2) + ...+ ak−1(s2)
k−1 = f(s2)

...

a0 + a1(sk) + ...+ ak−1(sk)
k−1 = f(sk)

and then substitute the Lagrange interpolation formula (4)
to calculate:

SKpri = f(0)

= (−1)k−1 ·
k∑

i=1

·
k∏

j=1,j 6=i

−xj

xi − xj
(mod q)

Finally, DU calls D(SKpri, ksm S)||D(ksm, metaDInfo S)
to decrypt and obtain metaDInfo.

5 SECURITY AND CHARACTERISTIC ANALYSIS

5.1 Characteristic Analysis
1) High efficiency. IIoT edge devices usually have

low storage capacity and low computing power.
Moreover, considering data confidentiality, before
outsourcing data to Cloud, EdgeG must encrypt
data locally before upload it to Cloud, so its per-
formance is very inefficient. In STCChain, edgeD
only needs to upload data to EdgeG, and then high-
storage capacity and high-computing power EdgeG
will process the data.

2) Key decentralized storage. The traditional IIoT data
protection solution includes data storage and data
reading processes. Usually, EdgeG encrypts and
uploads metaDInfo to Cloud; then, the decryp-
tion key is kept by the user personally or by a
trusted third-party institution. Consequently, key
storage and management are centralized. In STC-
Chain, there is no trusted center. EdgeG encrypts
metaDInfo by ksm to obtain metaDInfo S and
uses SKpub to encrypt ksm to obtain ksm S; then,
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EdgeG uses the SSS algorithm to split the decrypted
key SKpri into n fragments si(i = 1, 2, ..., n). Fi-
nally, EdgeG uses smart contracts to encrypt si with
the corresponding FHi’s public key and stores it in
n FH accounts on blockchain.

5.2 Security Analysis

STCChain has confidentiality, integrity, availability and au-
ditability:

1) For confidentiality and integrity.

is dataenc = E(ksm,metaDInfo)||E(SKpub, ksm)

is datadec = D(SKpri, ksm)||D(ksm,metaDInfo)

SKpri = (−1)k−1 ·
k∑

i=1

·
k∏

j=1,j 6=i

−xj

xi − xj
(mod q)

is commenc = E(ks,message)||E(SKpub, ks)

is commdec = D(SKpri, ks)||D(ks,message)

is senc = E(si, SKWpubFHi)

is sdec = D(si, SKWpriFHi)

First, assume SKpri is divided into n parts in total,
and the threshold is t, assuming that the attacker
holds k′ number of correct si.

∵ k′ < t

∴ (−1)k−1 ·
k′∑
i=1

·
k′∏

j=1,j 6=i

−xj

xi − xj
(mod q) 9 SKpri

is datadec = false

Thus, only the user who reconstructs SKpri can
access data to ensure data confidentiality and in-
tegrity.
Second, assume an attacker cannot obtain SKpriFH :

∵ is senc = true

is SKpriFH = false

∴ is sdec = false

Therefore, if SKpriFH is not stolen, STCChain can
ensure key confidentiality and integrity.

∵ is commenc = true

is commpri = false

∴ is commdec = false

Thus, STCChain can ensure the confidentiality and
integrity of communication.

2) For auditability. STCChain splits SKpri using the
Shamir threshold and obtains n fragments, that is, si
(i=1,2,...n). On the one hand, in the key distribution
stage, EdgeG uses a smart contract to distribute si
to the corresponding FH on blockchain. On the
other hand, in the key recovery phase, DU uses a
smart contract to publish si requests on blockchain,
and after the FH verification is passed, FH pub-
lishes a reply transaction on blockchain. The entire
process of key distribution and key recovery is
recorded on blockchain, so it can be audited and
verified when security incidents or disputes occur.

3) For availability. The core of STCChain is that
EdgeG encrypts the data uploaded by the edge
device with ksm temporarily generated by EdgeG,
encrypts ksm with the SKpub temporarily gener-
ated by EdgeG, splits SKpri to obtain si using the
Shamir threshold, and finally encrypts si (i=1,2,...,n)
and stores it on blockchain. Since blockchain is
jointly maintained by the nodes of the entire net-
work, STCChain can work quickly and cannot reject
the key request of legitimate users. For example,
first, a DU with legal authority requests the key
fragment of SKpri, that is, si. Then, the DU uses
a smart contract to initiate a request to the FH
holding si, and FH verifies the DU. If verification is
passed, FH will publish the corresponding si reply
transaction to blockchain; finally, if the number of
correct si collected by the DU is not less than the
threshold, SKpri can be successfully reconstructed.

Additionally, STCChain can effectively resist common
attacks such as collusion attacks and impersonation attacks.

1) A collusion attack refers to two or more malicious
parties deceiving others to illegally steal data. STC-
Chain guarantees the decentralized storage of keys
based on threshold encryption and blockchain and
divides the decryption key into n parts using the
SSS scheme. If the threshold is t, assuming there are
m colluding personnel, when m = t:

∵ f(s) =


a0 + a1(s1) + ...+ at−1(s1)

t−1 = f(s1)

a0 + a1(s2) + ...+ at−1(s2)
t−1 = f(s2)

...

a0 + a1(st) + ...+ at−1(st)
t−1 = f(st)

∵ m = t, SKpri = f(0)

∴ SKpri = (−1)t−1 ·
t∑

i=1

·
t∏

j=1,j 6=i

−xj

xi − xj
(mod q)

is datadec = true

Therefore, STCChain can resist collusion attacks.
Only when the attacker collects at least t correct
fragments can SKpri be reconstructed to decrypt the
data.

2) Impersonation attack refers to an attacker pretend-
ing to be a legitimate user to obtain data illegally.
In STCChain, data encryption is stored in Cloud.
Assuming that an attacker pretends to be a legal
DU , (is cloudverify represents Cloud verifying the
identity of the visitor):

∵ is cloudverify = true

∴ data = metaDInfo S||ksm S

∵ D(SKpri, ksm S) = false

∴ D(ksm,metaDInfo S) = false

Thus, it is difficult for an attacker to obtain resources
through impersonation attacks.
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6 EXPERIMENT AND PERFORMANCE EVALUATION

6.1 Experiment Environment
We implement the STCChain prototype based on Xuper-
Chain. XuperChain is Baidu’s self-developed blockchain un-
derlying technology that implements state-of-the-art tech-
nologies such as in-chain parallel technology, a pluggable
consensus mechanism, and integrated smart contracts, and
is characterized by compatibility, strong scalability, and high
performance. XuperChain is suitable for the application
scenarios of consortium blockchain between enterprises and
institutions and public blockchain.

Our experimental environment is Alibaba Cloud Ubuntu
18.04, configured with 2-core, 16 GB and 100 GB storage.
We adopt the XuperChain-crypto library module to realize
asymmetric data encryption and secret sharing. Finally, we
use the XuperChain-xbench platform to conduct perfor-
mance tests.

In addition, we use the SSS algorithm to divide SKpri

into n shares. Assuming that t is the threshold, DU must
obtain at least t correct key fragments to reconstruct SKpri.
We test STCChain, as shown in Table 3.

It can be seen from Table 3 that if the DU passes the
identity verification and holds at least t correct key frag-
ments, the key can be successfully reconstructed, and the
data can be successfully decrypted; if the DU passes the
identity verification but the number of correct key fragments
held is less than t, the key cannot be reconstructed, and the
decryption fails. If the DU or SA fails to pass the identity
verification, the key fragment cannot be obtained, and even
if she or he obtains the encrypted data, the decryption will
fail due to lack of a decryption key.

6.2 Performance Evaluation
In this section, we will analyze the performance of STC-
Chain in terms of processing time and throughput.

First, we consider the time overhead of key splitting
and reconstruction. STCChain decentralizes decryption key
SKpri and uses the SSS algorithm to split SKpri into n
shares (t is the threshold). Assuming that DU has collected
at least t correct key fragments, the SKpri can be recon-
structed. We test the time overhead for the segmentation and
reconstruction of SKpri, as shown in Figure 8 and Figure 9.

Figures 8 and 9 show that when n = 7 and threshold t =
3, the split time ≈ 100 ms and the reconstruction time ≈ 1
ms; when n = 10andt = 6, the split time ≈ 150 ms and
the reconstruction time ≈ 2 ms; when n = 20andt = 12,
the split time ≈ 330 ms and the reconstruction time ≈ 22
ms. Thus, the SKpri segmentation and reconstruction time
is related to the number of segments n and the size of the
threshold t. When the number of divisions n is large, despite
the increase in the division and reconstruction time, the total
time overhead is not excessive.

The key fragment encryption and decryption time over-
head is considered next. STCChain must distribute the
decryption key fragments to n accounts on blockchain and
uses the public key of key holder FH for encryption. When
FH receives the distribution transaction, he or she uses their
private key to decrypt the key fragments. We test the time
overhead for the encryption and decryption of a single key
fragment, as shown in Figure 10 and Figure 11.
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Fig. 8. Time overhead of key split.
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Fig. 9. Key reconstruction time.
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Fig. 10. Encryption time cost of key fragment.
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Fig. 11. Decryption time overhead of key fragment.

As shown in Figure 10 and Figure 11, we tested the
encryption and decryption time overhead for key segment
sizes of 32, 128, and 256 bytes. When the key segment size is
32 bytes, the encryption time ≈ 255 us and the decryption
time ≈ 144 us; when the key segment size is 128 bytes, the
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TABLE 3
Reconstruct the key to decrypt the data result.

User Identity Authentication
si held by FHi(i = 1, 2, ..., n, t <= n)

Reconstruction Key Decryption Data
s1 s2 · · · st−1 st

DU
√ √ √ √ √ √ √ √

DU

√ √ √ √ √
× × ×

√ √ √ √
× × × ×

√
The number of correct si < t × ×

DU × - - - - - × ×
SA × - - - - - × ×
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Fig. 12. Throughput overhead.

encryption time ≈ 270 us and the decryption time ≈ 167
us; when the key segment size is 256 bytes, the encryption
time ≈ 275 us and the decryption time ≈ 173 us. Clearly,
the encryption and decryption performance is high, but
even when the key segment size is 256 bytes, the total time
overhead for encryption and decryption is less than 500 us.

Finally, we calculate the read throughput and read la-
tency overhead. Read throughput is a measure of how many
read operations are completed within a specified period of
time, usually expressed in reads per second, that is, transac-
tions per second (TPS). Read latency is the time between
submitting a read request and receiving a reply. We use
xbench to test the XuperChain single-node performance. We
assess the throughput and latency of 200-1000 transactions,
where workNum is the number of threads. As shown in
Figure 12, when the number of threads is 10, the read
throughput of STCChain is approximately 1015 TPS and the
delay is approximately 9 ms; when the number of threads
is 20, the read throughput of STCChain is 1013 TPS and the
delay is approximately 18 ms. Therefore, the STCChain read
throughput performance is also high.

7 CONCLUSION

The IIoT includes industrial control systems and indus-
trial networks, as well as commercial network infrastruc-
ture such as big data storage analysis, cloud computing,
business systems, and customer networks. Currently, the
IIoT is widely used in manufacturing, logistics, transporta-
tion, health care, energy, and utilities. However, the IIoT
faces several challenges, among which security and privacy
preservation of IIoT data are the most crucial concerns.

Moreover, blockchain is a shared database, and the data or
information stored in it are characterized as ”unforgeable”,
”remain trace”, ”traceable”, ”open and transparent” and
”collectively maintained”, so it can transform industries by
enabling anonymous and trustful transactions in a decen-
tralized and trustless environment. We propose a threshold
encryption protection scheme for critical IIoT data based
on blockchain: STCChain solves the security and privacy
issues caused when the key used for data encryption and
decryption is directly stored and managed by users or third-
party organizations. The experimental results show that
STCChain can not only effectively prevent attackers from
stealing data illegally but also protect the privacy of keys.

Potential future directions include the implementation of
the proposed scheme in a real-world IIoT setting using the
alliance chain fabric, and identify other security and privacy
properties that can be addressed.
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