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Securing Radio Resources Allocation with Deep
Reinforcement Learning for IoE Services in
Next-generation Wireless Networks

Yuhuai Peng, Xiaojing Xue, Ali Kashif Bashir, Xiaogang Zhu, Yasser D. Al-Otaibi, Usman Tariq, Keping Yu

Abstract—The next generation wireless network (NGWN) is
undergoing an unprecedented revolution, in which trillions of
machines, people, and objects are interconnected to realize the
Internet of Everything (IoE). with the emergence of IoE services
such as virtual reality, augmented reality, and industrial 5G,
the scarcity of radio resources becomes more serious. Moreover,
there are hidden dangers of untrusted terminals accessing the
system and illegally manipulating interconnected devices. To
tackle these challenges, this paper proposes a securing radio
resources allocation scheme with Deep Reinforcement Learning
for IoE services in NGWN. First, the solution uses a BP neural
network based on multi-feature optimized Firefly Algorithm
(FA) for spectrum prediction, thereby improving the prediction
accuracy and avoiding interference between unauthorized and
authorized users with efficient radio utilization. Then, a spectrum
sensing method based on deep reinforcement learning is proposed
to identify the untrusted users in system while fusing the sensing
results, to enhance the security of the cooperative process and the
detection accuracy of spectrum holes. Extensive simulation results
show that the proposal is superior to the traditional solutions in
terms of prediction accuracy, spectrum utilization and energy
consumption, and is suitable for deployment in future wireless
systems.

Index Terms—Deep reinforcement learning, firefly algorithm,
Internet of Everything, next-generation wireless networks, radio
resources allocation.

I. INTRODUCTION

ITH the rapid development of the 5G [1], [2] and
W Internet of Things (IoT) [3]-[5], the era of the Internet
of Everything(IoE) is coming. The next generation wireless
network (NGWN) [6]-[8] is undergoing an unprecedented rev-
olution, in which trillions of machines, people, and objects are
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interconnected. Besides, with the emergence of IoE services
such as virtual reality, augmented reality, and industrial 5G,
etc., the scarcity of radio resources becomes more serious.
Cognitive radio technology [9], [10] allows unauthorized users
to access the idle licensed spectrum, which can effectively
predict, sense and utilize spectrum holes, realize the reasonable
radio resources allocation, and greatly improve the spectrum
utilization. The advanced radio resources allocation method
can provide a promising platform for future wireless systems
in high reliability, high data rates and low energy consumption.
Massive IoE connection has become one of the main charac-
teristics in next generation wireless systems [11], [12]. Among
them, enhanced Machine Type Communications (eMTC) will
support richer IoE applications and take up a lot of radio re-
sources. In order to achieve greater openness, interconnection
and integration, the access layer of future wireless systems
is facing serious security threats [13]. A large number of
devices in NGWN come from different manufacturers with
different standards and working principles. Among them,
potential malicious users may access the system and try to
disrupt the normal operation. Malicious occupation of radio
resources, refusal to participate in cooperation, and sending
wrong results will affect the accuracy of spectrum sensing, and
even cause node failure in severe cases. Therefore, improving
the utilization efficiency of radio resources in untrustworthy
environments is an urgent problem to address in NGWN.
Energy detection, cyclostationary feature detection and
matching filtering have been widely used in wireless systems.
However, in the actual environment, complex scenes seri-
ously affect the performance of classical sensing algorithms
[14]-[16]. Machine learning based methods [17]-[19] realizes
intelligent spectrum sensing by modeling and reasoning the
channel state information and user historical behavior char-
acteristics. These methods have good performance, but cause
higher energy consumption. Spectrum prediction can filter and
screen the spectrum in advance, reducing the processing delay
and energy consumption in sensing process. Among them,
neural network based methods [20] have attracted wide atten-
tion because of its accuracy. To solve the efficient utilization
of wireless radio in untrustworthy environment, a securing
radio resources allocation scheme with Deep Reinforcement
Learning for IoE services is proposed. The main contributions
are summarized as follows:
1) A cognitive network system architecture for untrust-
worthy environments is developed, and the interference
among primary users, secondary users, and potentially
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untrustworthy users are analyzed. Meanwhile, a sensing
frame structure, which consists of a prediction-sensing-
interaction sub-channel and an uninterrupted transmis-
sion sub-channel, is designed to improve spectrum uti-
lization and increase network throughput.

2) A spectrum prediction method based on multi-feature-
optimized firefly algorithm (FA) and BP neural network
is proposed. We optimize the FA using chaotic mutation,
dynamic step size and bulletin board mechanism to
avoid the algorithm converging to a local optimum. The
optimized FA is used to train a BP neural network-
based prediction model, which significantly improves the
spectrum prediction accuracy.

3) A spectrum sensing scheme with deep reinforcement
learning is proposed. Based on the established dou-
ble deep Q network (DDQN) model, the convergence
speed of reinforcement learning accelerates by using
experience recovery mechanism. Moreover, this scheme
uses the reputation model to identify the untrustworthy
users in system, and selects the trustworthy ones for
distributed cooperative sensing and information consen-
sus fusion, which alleviates the interference in harsh
environment and improve sensing accuracy.

4) Extensive simulation results demonstrate that our
scheme can identify malicious users and generate
consensus within 20 interactions. It can reduce 72%
of spectrum-sensing energy consumption and increase
spectrum utilization by 20% compared with traditional
schemes.

The rest of this paper is organized as follows. Section
II introduces the related work, and section III gives the
system model. In section IV, the spectrum prediction and
spectrum sensing methods are described in detail. Section V
gives the experimental results and analysis. Finally, section VI
summarizes this paper.

II. RELATED WORKS

In recent years, researchers are committed to enhancing
the performance of spectrum sensing in many aspects, in-
cluding accelerating speed, improving accuracy, and reducing
energy consumption. Diizenli er al. [21] used a dynamic
programming method to accelerate the calculation of the least
square method, and developed a dynamic spectrum sensing
strategy. Mu et al. [22] gave two spectrum sensing mod-
els with constraints, and respectively calculated the optimal
sensing operation under the constraints. Muhammad et al.
[23] proposed an intelligent adaptive spectrum sensing method
that minimized the impact of minimal denial of service in-
terference. Abhijit ef al. [24] used a dual-threshold decision-
making method to sense the licensed spectrum, and combined
local difficult decisions in the fusion center to obtain a global
decision, which improved network flexibility. Anastassia et al.
[25] proposed a multi-band multi-user cooperative spectrum
sensing scheme based on distributed learning. The secondary
users use the consensus fusion method to make a judgment
on the spectrum occupancy. Amirhosein et al. [26] proposed
a method based on distributed diffusion, which improves the

reliability of spectrum sensing through cooperation between
users. Tong et al. [27] proposed a blind cooperative spectrum
sensing method based on soft fusion. Each secondary user
uses the prior knowledge of the channel and the primary
signal to transmit the soft information to the fusion center for
decision. Lee et al. [28] studied a deep cooperative sensing
framework based on Convolutional Neural Network (CNN),
using multiple secondary users to cooperate with each other
to jointly detect a primary user, which greatly improved the
accuracy of spectrum sensing. Sun et al. [29] proposed a
multi-channel spectrum access scheme based on reinforcement
learning. Users can use multiple channels for transmission,
which improves the spectrum access capability of the cognitive
Internet of Things. RRajaguru et al. [30] combined clustering
with expectation maximization algorithm and reinforcement
learning technology, and proposed a feature-based clustering
classifier-based cooperative spectrum sensing technology to
minimize energy consumption. Xu et al. [31] proposed a
framework based on Bayesian machine learning for large-scale
heterogeneous networks, which uses multiple secondary users
to collect spectrum sensing data and coordinately derive the
global spectrum state.

Prediction algorithms can be used to assist and improve
the accuracy of spectrum sensing. SUs can learn the behavior
characteristics of PUs from historical data, and predict the
occupancy before sensing. As a result, SUs no longer sense
the spectrum with a higher probability of occupancy, reducing
the energy consumption. Sung et al. [32] considered the actual
on/off traffic model and proposed an optimal strategy for de-
termining the transmission power of the auxiliary user, which
maximizes the spectrum utilization of the auxiliary user. Ding
et al. [33] developed an online spectrum prediction framework
based on historical observation data. By effectively integrating
time series prediction technology, the prediction problem was
defined as a joint optimization problem, and the alternate
direction optimization method was used to effectively solve the
problem. Eltom et al. [34] proposed a cooperative spectrum
prediction algorithm based on soft fusion. Compared with the
spectrum prediction based on local and hard fusion, the predic-
tion accuracy of this method is significantly improved. Tumu-
luru et al. [35] designed a spectrum prediction model based
on neural network, which can accurately identify spectrum
holes in cognitive networks. Ding et al. [36] first preprocessed
historical spectrum occupancy data, and then designed a deep
learning-based fusion network to predict spectrum occupancy.
This network effectively combines multiple prediction results
to improve prediction accuracy. Xu et al. [37] considered
a scenario with multiple independent channels and multiple
heterogeneous primary users, and proposed a deep reinforce-
ment learning model based on dynamic spectrum access.
However, the above method does not propose a corresponding
security solution for the untrustworthy environment, cannot
identify potential untrustworthy users, and cannot guarantee
the security of massive access scenarios.
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Fig. 1: System architecture.

III. SYSTEM MODEL
A. The System Model

In NGWN, the number of devices will grow exponentially.
Devices vary greatly in manufacturer and function, making
it difficult to manage them consistently and reliably. Mali-
cious devices may access the network and damage the data
information in the network. We consider a NGWN system
in an untrustworthy environment as shown in Figure 1. This
is a distributed cooperative sensing network consisting of
the primary user (PU), the secondary user (SU) and base
station (BS). PU represents authorized user, and SU denotes
cognitive users including potentially untrustworthy users. PUs
can employ licensed spectrum to communicate with BS. In
the NGWN, PU and SU cannot communicate with each other.
So, SU must always keep a sense of the spectrum status while
using the licensed spectrum to transmit data. Spectrum sensing
refers to the use of energy detection, matched filter detection,
and cyclostationary feature detection to determine whether the
state of a channel is idle or occupied, and to provide available
spectrum resources for dynamic spectrum access.

Firstly, SUs predict and sense spectrum to judge whether
the target spectrum is free, and then take actions according to
the result of the judgment. The SU can use the free authorized
channel for D2D communication or access to the base station.
When it is detected that the PU is using the spectrum, the
SU will exit in time and stop the communication. Assuming
the communication range of the BS can cover all SUs, and
the network topology will not change. The SUs in a fixed
area form a set. Each SU in the set can independently predict,
sense, and share the results with neighbor SUs. The cognitive
network can be mapped to an undirected graph. Among them,
V = {1,2,...,k} represents the number of SUs, () denotes
the connection relationship between different SUs. V and Q
are the input of the sensing algorithm.

B. The structure of sensing frame

In the traditional sensing frame, the interaction process
occupies the spectrum and interrupts the data transmission.
And continuous data transmission cannot be realized, which

Channel 1
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Fig. 2: The structure of sensing frame.

reduces network throughput. Therefore, a dual sub-band sens-
ing frame is designed to ensure that spectrum sensing and data
transmission are implemented at the same time. The structure
of sensing frame is shown in Figure 2. All cognitive users
must follow the sensing frame.

Each sensing frame is a time slot, which is divided into two
sub-bands in the frequency domain. The B1 sub-band is used
for spectrum prediction, sensing and interaction, and the B2
sub-band is used for data transmission. This can ensure the
continuity of data transmission and improve network through-
put. IEEE standard stipulates that SUs must exit occupied
authorized spectrum within two seconds when PUs access.
Therefore, the length of each time slot 7' is set to 2s. In
addition, before the end of each sensing frame, a sub slot
is used to predict the spectrum occupation of the next slot to
assist the spectrum sensing. The occupation states are saved
to the database and will be used for spectrum prediction.

IV. SECURING RADIO RESOURCES ALLOCATION WITH
DEEP REINFORCEMENT LEARNING

This section proposes a securing radio resources allocation
with deep reinforcement learning for IoE services in next-
generation wireless networks, which is divided into two parts:
spectrum prediction and spectrum sensing. Firstly, SU predicts
the occupancy state of the authorized spectrum, then senses the
authorized spectrum that is predicted to be idle. Finally, the
decision of spectrum occupancy state is obtained based on the
sensing results. The spectrum is only considered accessible
when both spectrum prediction and sensing results are idle. If
it is inconsistent, users are not allowed to access. This process
improves the accuracy of spectrum sensing and reduce energy
consumption.

A. Spectrum Prediction Algorithm Based on BPNN

This section introduces the spectrum prediction algorithm
based on back-propagation neural network (BPNN). Because
the initial weights and thresholds in a BPNN are random, it
may result in a slow convergence in the training process or
fall into a local optimum solution. Therefore, this paper adopts
the improved Firefly Algorithm (FA) to optimize the weights
and thresholds.
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Fig. 3: Neural network topology.

1) BPNN model: The BPNN contains input layer, hidden
layer and output layer, and its topology is shown in Figure
3. Where w'! and 6! are the weights and thresholds in the
hidden layer, w? and 62 represent corresponding parameters
of the output layer. ny and ngz denote the number of neurons
in the hidden and output layers. After several experiments, the
best performance is acquired when the number of neurons is
n1 = 10,12 = 21, n3 = 1 respectively.

The channel state of i is defined as time sequence X' =
(xbl, 252 . 2¥F)k = 1,2,..T, where T is the time slot
sequence number. If the occupation of channel 7 in time slot
t is predicted, it is necessary to input the historical channel
states 2' 710 to %'~ to BPNN, and the network will output
the predicted result z**. Since the range of spectrum prediction
values should be between [0,1], the decision formula is set as
follows:

1 Z,>1,
Zy = { Z; otherwise, (D
0 Z,<0,

where Zj, is the final judgment result, and Z;, is the actual
output of the prediction model.

2) BPNN parameter optimization based on improved FA:
In this section, we adopt chaotic variation, dynamic step and
bulletin board mechanism for multi-feature optimization of
FA, which is used to obtain relevant parameters of the BPNN.
The FA takes the output error of the BPNN as the objective
function to seek the optimal position of fireflies in multi-
dimensional space, which is the optimal initial weights and
thresholds of the BPNN.

1
Objective Function : Minimizei(Yk — 7y)? 2)

where Y}, is the real value and Zj, is the BPNN output value.

In the FA, the total number of the weights and thresholds
in the BPNN is w = nq *no +no +nox 1+ 1, and each firefly
is expressed as

X(t) = (wila 7w72117127 92) (3)

Therefore, when generating the firefly population in the
w-dimensional search space, the position of each firefly is
demarcated by:

1 1 1 2
y Wn1n2, 917 (a3} 0n23 Wiy -

1 2 2 0T
o3 Oin2s Wity -os Win1n25 07)

“4)

XT(t) = (willlv "'7wi1n1n270i117 .

In the initial stage, the fluorescein value ly,the decision
radius rp, and the maximum iteration number ¢,,,, are de-
termined. During the iteration, the change of the fluorescein
value for each firefly at certain position X;(¢) is given by,

Li(t) = (1= p)l(t + 1) +7f(Xi(1)) (5)

where [;(t) and [;(t — 1) are the fluorescein values of i
at moments t and ¢ — 1 respectively, rho is the speed of
play magnitude which taking values generally between (0, 1),
~ is the fluorescein update rate, which refers to the speed
of fluorescein value change with each movement, f(X;(t))
indicates the fitness function, which is the output error value of
the BPNN obtained by solving for the current firefly position.

And within its own decision radius, each firefly will be
attracted by others with higher fluorescein value and approach
them. After determining the neighbor set N;(¢), in order
to decide the target moving object, firefly ¢ calculates the
attraction probability between itself and others by Eq. (6).
Then firefly ¢ selects j; with the maximum probability value
and move toward it. The new location of firefly ¢ is described
as Eq. (7).

Lk
> ken; ) () = Li(t)
X,(8) = Xi(1)
1X;5(8) = Xi (@)l
where j is the moving target neighbor of firefly i,

|X;(t) — X;(t)| is the Euclidean distance between ¢ and j,
and step is the moving step, which can be expressed as,

Py (t) (6)

Xilt+1) = Xi() + step( )

w
step = — +1 (3
e

where ¢ is the number of iterations and 7 is the minimum step
to prevent being 0. We set step as the dynamic moving step,
which ensures that the firefly have a larger step in the first
iteration.

To guarantee that the movement will not exceed the search
boundary, the update position that fall outside the boundary is
corrected according to Eq. (9).

Xi(t+1) = min{2® maz{zP", zip ()}, k=1,2, ..., w

(€))

where ;k(t) is the k' element in the position of the firefly

i at the t*" iteration, 2% and 27" denote the upper and
lower limits of the position.

When the firefly completes the position update, its new

decision radius is as follows:

ri(t + 1) = min{rs, max{0,r;(t) + B(n, — |N;(¢)|)}} (10)

where [ is the decision radius update rate, r, is the decision
radius threshold, n; is the threshold for the number of fireflies,
and |N;(¢)| is the number of fireflies in the neighborhood.
Considering that firefly is easy to gather at the boundary,
we adds chaotic mutation method to optimize the firefly which
move to the boundary. According to Eq. (12), the firefly at
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the boundary is mutated, and the mutation firefly with high
fitness value are selected to replace the original ones, which
effectively increases the diversity of the population. At the
same time, the bulletin board mechanism is used to record
the information of the optimal firefly and its value during the
iteration. When the maximum number of iterations is met, the
information of firefly recorded on the bulletin board is the
optimal solution to the objective function.

Xin(®) =X;@®)«[1+kxZ(n)],n=1,2,... M  (11)
Where X, (t) is the new firefly that mutates at the t"
iteration, and each mutation will yield M new firefly, and &
is the regulating factor, denoted as follows:

k=1—(w—1)/step (12)

In addition, Z(n) is generated by using the chaotic variation
principle. Remarkably, Z(1) is the original value at n = 1,
which is a random dimensional vector between (—1,1), as
shown in Eq. (13). After continuous iterations, M chaotic
sequences are obtained, as shown in Eq. (14).

Z(1) =1-2x*rand(1, D) (13)
Zn+1)=4xZ(n)*>-3%Z(n),n=1,2,..,.M —1 (14)

The pseudo code of the BPNN parameter optimization based
improved FA is shown in Algorithm 1. The time complexity is
related to the population number N and the maximum number
of iterations t,,q,. The time complexity of CMFA-BP is O( N«

tmaw ) .

B. Spectrum sensing algorithm based on deep reinforcement
learning

Considering the impact of complex environment, noise and
shadow effects on SU spectrum sensing in NGWN systems,
this paper proposes a multi-user cooperative distributed sens-
ing algorithm for spectrum sensing. In order to avoid the mis-
information generated by malicious users affecting the sensing
results, we designed a Spectrum Sensing Algorithm based
on Deep Reinforcement Learning (SSDRL). This algorithm
removes untrustworthy SU in the network so that the influence
of malicious users is reduced. In practice, only the spectrum
predicted to be idle needs to be sensed, reducing the energy
consumption of spectrum sensing.

1) Double deep Q network based on CNN: In this section,
we combine deep learning and reinforcement learning to
form a double deep Q network (DDQN). The input of the
network is a two-dimensional state matrix, and output is the
corresponding Q value. We construct a convolutional neural
network which is made up of convolutional and fusion parts.
The convolutional part includes three basic sub-blocks that
are composed of convolutional layer, ReLU layer and max-
pooling layer. It is responsible for extracting spatial features
of the input data, and the fusion part is used to classify the
input data by collecting the results of its feature. In addition,
a ReLU layer is added between the FC layers to introduce
non-linearity. The network structure is shown in Figure 4.

Algorithm 1 CMFA-BP

1: Initialize population N and location X;(0)
2: Calculation fitness f;(X;(0))

3 frest < Max f;(X;(0));

4: for t + 1 to t,,4, do

5 for i < 1 to N do

6: filXi(t = 1)) « fi(Xi(1))

3:
9

Search a neighbor set N, (t)
: if NV;(t) exists then
10: Xi(t — 1) — Xz(t)

11: end if

12: Ti(t — 1) < Tz(t)

13: if X;(t) ¢ (2" or 27%%) then
14: Xi(t) < X, (t)

15: [i(Xi(1) + fi(X;(D)

16: end if

17: if fz(Xz(t)) < fbest then

18: foest < fi(Xi(t))

19: end if

20: if t = t,,4 then

21 Get Xpest(t)

22: Train the BP neural network break
23: end if

24: end for

25: end for

e
T

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 4: Model of convolution neural network.

A
[Q(s,a,ﬂ) TmaaXQ(sm:amvg)

Gradient of
loss function

argmaxQ(s,a, )

Experience
Recovery
Pool

Fig. 5: The DDQN schematic.

We adopt an experience recovery pool and a DDQN to
ensure that the model selects the most appropriate action. The
DDQN is shown in Figure 5.
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2) Description of the SSDRL algorithm: In this section,
we propose a cooperative spectrum sensing algorithm based
on reinforcement learning to improve accuracy. This algorithm
integrates reinforcement learning, reputation value model and
consensus fusion model to evaluate the trustworthiness of
SU. Firstly, we regard each SU as an agent and constantly
search for neighbor SU with high trustworthiness to perform
cooperative spectrum sensing. In order to achieve this process,
each SU only cooperate with SU that are highly trustworthy,
and the untrustworthy SU in the network is removed. At the
same time, the set of neighbor SU is used as the model state
and the neighbor user with a high reputation value is selected
as the action. Significantly, the reputation value will increase
when the sense result of SU is true. Then, the consensus
fusion algorithm is used to continuously fuse information with
neighbor SU until convergence is reached. Finally, we compare
the result with the judgment threshold to get the corresponding
result. The process of this algorithm is as follows.

Step 1: Initialize parameters.

We first initialize the energy and reputation values for the
it" SU to acquire different initial values.

5)
(16)

z;(0) =z

where x;(0) is the initial energy value and r;(0) is the
initial reputation value. Next, the set of neighbor users V; is
initialized, ensuring that the SU only select cooperative users
from V_;.

Step 2: Judgement of SU credibility

This process adopts a deep reinforcement learning model to
identify trustworthy SU, which is shown as follows.

(1) The initial values of the @ matrix Q(s:, a;) are set
to 0 and a state and action lookup table are generated.
Simultaneously, the learning rate and discount factor are set
to o and [ respectively.

(2) SU gets the current state by querying the () matrix,
and uses simulated annealing algorithm to improve the greedy
action selection strategy in DDQN. This algorithm regards the
selection as a process of annealing and cooling to alleviate the
problem that DDQN tends to fall into local optimum solutions.
It contains three parameters: objective function, initial solution
and solution space. During the process, the temperature 7' is
first initialized and the increment of the objective function A =
f(s")—f(s) is calculated by s’. When AT < 0, the solution is
considered as the latest solution. Otherwise, whether to accept
s’ as the latest solution is determined by p. We define the
probability of selecting action a by the following.

exp(Qt(st+1,a:) /T'(t))
Y a,en €p(Qe(se+1,a1)/T(t))

In equation (17), I'(¢) is the initial temperature parameter.
While the value of @ is in the initial state, the probability
that SU selects neighbor users is zero, so it will randomly
select cooperative users. As the agent goes through a period
of learning, the ) value will be updated. By the time, the
higher the ) value, the higher probability that the user will
be selected.

P(at|s) =

a7

(3) A deep reinforcement learning model is established to
select action a and derived its instantaneous reputation value
rt4+1(St4+1). Based on the reputation value, we receive the
corresponding action a and update the () matrix. To construct
the experience recovery pool, e; = (s, a7, S¢41) will be
stored until the number of samples is greater than the smallest
number. If samples exceed the maximum capacity of the pool,
it will replace the old samples with the new ones to ensure
efficiency.

The above process will repeat until convergence. After-
wards, we just input the state matrix into the deep reinforce-
ment learning model to get the action with the maximum @
value.

Step 3: Reputation Value Update

The reputation value of each SU will be updated during the
deep reinforcement learning, at which the set of trustworthy
neighbors is available by the size of the reputation value. For
the i*" SU, the sense value D; ;(t) of the authorization signal
for neighbor user J is:

D; j(t) = z;(1)

where j € V,; is the neighbor user of the j'* SU and x;(t) is
the energy value at time ¢. Therefore, the verdict of neighbor
user spectrum sensing A, ;(t) is given by:

(18)

A= {l Duzo
d N -1 Di7j(t) <o

The cooperative sensing result B(t) for the i" SU with
trustworthy neighbors is as follows:

(19)

1 , A () >0
B(t) = Z]GVa ij(t) > (20)
1 Djev, Ai(H) <0
To sum up, the reputation value of the i*" SU is:
ri(t) =ri(t—1) £ > |B(t) + Zi(k)] (21)
J€Vai
Vdi = {jl’l‘j(t) > 100,j S VYCI} (22)

in which r;(¢) is the reputation value of the SU at ¢ iterations
while r;(t—1) is the value at ¢ — 1 iterations. Z;(t) is the local
spectrum sensing judgement result, and Vy; is the set of SU
with reputation values greater than 100. When the cooperative
spectrum sensing and the sensing of the SU are identical, the
reputation value will increase by two each time, otherwise the
reputation value will decrease.

Step 4: Information Fusion

With the deep reinforcement learning, we get the set Vy; of
trustworthy neighbor users. Afterwards, we interact with the
information based on equation (23) to acquire the consistent
verdict result.

xi(t + 1) = a:i(t) +4 Z (xj(t) — xi(t))

J€Vai

(23)

where x;(t + 1) is the energy value of the SU at ¢t + 1
iterations.
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Step 5: Convergence

When the SU information fusion result is identical or
the number of iterations exceeds the maximum number of
iterations, the iteration will stop. Otherwise, it is necessary
to constantly repeat steps two to four again so as to get the
final convergence value z*.

2" = == (24)

Step 6: Channel state judgement

By comparing the SU information interaction results with
judgement threshold, the final channel state judgement result
D is found.

H <
p={"0 ¥ =9 (25)
H 1 x* 2 g
The pseudo code of the spectrum sensing algorithm based
on SSDRL is shown in Algorithm 2. Since the number of

channels is much smaller than the maximum number of
iterations, and the time complexity of SSDRL is O (¢qz)-

Algorithm 2 SSDRL

1: for i < 1 to N do

2 Select the action a(;) < S()

3: Get T(t) and S(t+1) —agw)

4: Store e; = (S(t), Q) T(t)s S(t+1)) and S(t+1) Ay
5: Calculate Q value

6: end for

7: for t < 1 to ¢, do

8: if t =t,,,, then

9: Select V,; < 74

10: if X; = X* then

11: Make decision D

12: else

13: Reselect the action a; <+ S;
14: end if

15: else

16: Reselect the action a; < S;

17: end if

18: end for

V. SIMULATION EXPERIMENT AND PERFORMANCE
ANALYSIS

A. Simulation environment and parameter settings

To verify the performance of this algorithm, firstly, we
constructed the network architecture and set relevant param-
eters of three prediction algorithms. Secondly, the CMFA-BP
prediction model was designed, and we compared it with FA-
BP and GA-BP algorithms. Finally, the performance indexes
of the algorithm were analyzed and the performance of the
scheme in this paper was compared. The relevant parameter
settings are shown in Table 1.

TABLE I: Parameter settings

Items Parameters
Transmit power of authorized users 75dB
Distance between authorized users and cognitive users | Skm
Network coverage diameter 2km
Communication range of cognitive users 300m
Noise power -85dB
Probability of false alarm 0.05
Sampling frequency 1MHz
Number of iterations 50
Learning rate 0.2
Discount factor 0.8
Cooperative sensing fusion parameters 0.1
Sensed spectrum 50MHz
Spectrum sensing time 0.05ms
Initial reputation value of cognitive users 100

B. Evaluation indexes

1) Spectrum efficiency: The spectrum efficiency is defined
as the ratio of the number of time slots that sensed as idle to all
idle time slots. The higher the index, the better the spectrum
sensing performance of this algorithm.

N (Correctly sensed idle time slots)
N(All idle time slots)

SE = (26)
2) Probability of error prediction: The probability of error
prediction, which generally ranges from O to 0.5, means the
possibility that the algorithm prediction result is inconsistent
with the channel usage state. The equation is given as (26).

N i i
Zi:l(ZkJrl = 1|Yk+1 = 0)+
i N i @7
(Zk+1 = O|Yk+1 = 1)
N

3) Probability of false alarm: The probability of false alarm
prediction, which is defined as the possibility that an idle
channel is predicted to be occupied, is generally between 0
and 0.5. The higher it is, the more the authorized spectrum
is underutilized, and so the worse the spectrum prediction
performance is. The probability of false alarm prediction
P(1|0) can be expressed as:

P(all) =
ity

N i i
Zi:l(ZkJrl = I‘Yk+1 = 0)
Zijil(ylci+l = 0)

4) Energy consumption: With the help of spectrum predic-
tion technology, cognitive users no longer sense the spectrum
with a high probability of being occupied, saving the energy
consumption of spectrum sensing. The energy consumption of
the traditional algorithms in spectrum sensing over the entire
spectrum is described as:

(28)

P(1)0) =

ECUS =NxFE (29)
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And the energy consumption of spectrum sensing after
prediction is:

ECU,, = (N - Nbusy) x* B (30)

where E is the energy consumption of each channel sensed by
SU; N is the total number of channels; Ny, is the number
of channels whose spectrum predicted to be occupied, and the
energy consumption reduction rate of the prediction algorithm
Ereduce(%) can be calculated by equations (30).

Ecu, — Ecu,

Ereduce(%) = (31)

Ecuy,

C. Performance analysis of spectrum prediction algorithm

The occupation of spectrum is regular, which can be ap-
proximated by a model. Considering that it is very difficult
to collect data on the spectrum occupation of each user, we
adopt the M/G/1 queuing to model the spectrum usage and
use the data as training samples. In this model, M denotes the
time interval between each spectrum occupation and the next
by an authorized user, which obeys the Poisson distribution
with parameter two. And G represents the time interval of
each authorized user to occupy the spectrum, it follows the
geometric distribution with the mean of .

The mutation probability, crossover probability and gen-
eration gap of genetic algorithm are 0.05, 0.7 and 0.9,
respectively. The parameters were used to construct three
spectrum prediction models. The error between the real and
predicted values of the CMFA-BPO and FA-BPO algorithms
were compared. Since the spectrum prediction performance
was affected by the intensity of the traffic, two situations
where the traffic intensity A = 0.5 and A = 0.8 respectively
were simulated. In addition, we compared the performance of
each algorithm under the same traffic intensity. As shown in
Figure 6 and Figure 7, the CMFA-BP algorithm had higher
prediction accuracy than those of the FA-BP algorithm, while
it had a higher accuracy in the testing set. Additionally, with
the increase of the traffic, the test error of CMFA-BP algorithm
had been reduced from 0.33 to 0.14, which is a reduction of
57.6%.

The prediction results were binarized, and the error proba-
bilities and false alarm probabilities were evaluated by count-
ing the errors at various traffic strengths. In Figure 8 and
Figure 9, the prediction probability curves at different traffic
are shown. )\ is the user data transmission interval, which
will affect the number of hops in the authorized channel. The
spectrum prediction performance at A = 10 and A = 20 was
validated.

As the traffic increased, it appears that the CMFA-BP
algorithm had a lower prediction error probability and false
alarm probability than others. This is because when the traffic
increased, users tended to transmit data on the same channel.
As )\ continued to increase, the time interval between users
would be longer, and the accuracy of spectrum prediction
increased accordingly.

As shown in Table 2, compared to direct spectrum sensing,
the energy consumption of the SU varies with A when the

FA-BP FA-BP
1 1
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g 172)
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Fig. 6: Comparison of spectrum prediction(A = 0.5).
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Fig. 7: Comparison of spectrum prediction(A = 0.8).
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Fig. 8: Comparison of prediction error probability.
traffic was 0.8. The total number of time slots was set to

50, and the information on different channels was collected.
Likewise, the CMFA-BP algorithm correctly occupied more
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Fig. 9: Comparison of predicted false alarm probability.

time slots, and the energy improvement rate reached more than
50%. With the increase of A, the energy consumption reduced
as well. Therefore, it is proved that under the same conditions,
the energy efficiency of CMFA-BP algorithm is significantly
higher than others.

TABLE II: Energy consumption reduction rate

Prediction |Parameter |Number of correctly |Energy consumption
algorithm occupied time slots reduction rate (%)
GA-BP A=10 20 40

A =20 22 44
FA-BP A=10 23 46

A =20 25 50
CMFA-BP |[A =10 26 72

A=20 27 54

As shown in Figure 10 and Figure 11, the spectrum utiliza-
tion of three spectrum prediction algorithms was compared,
with A is 10 or 20 respectively. Here, spectrum sensing
algorithms were energy detection methods. The proposed
algorithm is generally higher than the other. As the traffic and
A increased, the spectrum utilization rate gradually increased
as well. And it leveled off after the traffic reaches 0.7. This is
because as the traffic increased, the number of channel hops
decreased. The predictability of the channel increased, and
the prediction performance became better. When A\ = 10,
compared with the GA-BP and the FA-BP algorithm, the
spectrum utilization rate of the CMFA-BP algorithm increased
by 20.1% and 9.3%, respectively. As for A = 20, the spectrum
utilization rate of the CMFA-BP algorithm increased by 12.7%
and 6.7%, respectively.

D. Performance analysis of spectrum sensing algorithm

Assuming that the location of all users in the network
was constant, the network environment was stable, and there
were no large fluctuations of sensing confidence. In this
section, three experiments were designed to evaluate the
performance of the SSDRL algorithm. Figure 12 illustrates
the energy sensed by each SU with iterations. Starting from

0.4

—<4— CMFA-BP|

Spectrum utilization

o
w

L 1

1 . . .
0.5 0.55 0.6 0.65 0.7, 0.75 0.8 0.85
Traffic intensity

Fig. 10: Comparison of spectrum utilization ratio(A = 10).

038
4
0.7 f
S 0.6
2 0.
N
:é —— GA-BP
305 ——FA-BP | 1
g —<—CMFA-BP
204 |
[=5
w
<
0,31 b
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Fig. 11: Comparison of spectrum utilization ratio(A = 20).
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Fig. 12: Sensing energy values under different iteration times.

the 10th iterations, the sensing energy reached convergence.
It is demonstrated that the SSDRL algorithm enabled users to
complete data fusion rapidly.

untrustworthy users can be identified through multiple it-
erations. Figure 13(b) shows the change of sensing energy
when there are two untrustworthy users in the system. With the
iteration, the difference between the sensing energy values of
trustworthy users and untrustworthy users gradually becomes
larger. After untrustworthy users are identified, they will no
longer participate in cooperation, and the sensing results will
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Fig. 13: Energy values under different iteration times.

tend to be consistent. The network with two untrustworthy
users needs 15 iterations to converge, while the network with
one untrustworthy user only needs 10 iterations. Therefore,
the fewer untrusted users, the faster the consensus fusion. Ex-
periments show that the spectrum sensing algorithm proposed
in this paper can effectively identify untrustworthy users and
improve network performance.

Spectrum sensing algorithm based on deep reinforcement
learning was used to identify untrusted SUs. The reward
in reinforcement learning was used to adjust the reputation
of SUs. As shown in Figure 14(a) and Figure 14(b), the
growth rate of reputation value of different SUs was different.
This is because when the neighbors were trusted users, SU
achieved better performance and the convergence speed. In
the subsequent cooperation process, SUs also tended to choose
users with high reputation value. If SUs sent an error message,
it would be gradually recognized and the reputation value
would be reduced. Subsequently, it would no longer participate
in cooperative spectrum sensing, and the reputation value
would not change.

In order to evaluate the performance of the SSDRL algo-
rithm, it was compared with other cooperative spectrum sens-
ing algorithms, including DCS, SVM and DRL. In Figure 15,
compared with the other three machine learning algorithms,
the SSRDL algorithm had better performance under different
false alarm probability. When the false alarm probability was
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Fig. 14: Reputation value under different iteration times.
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Fig. 15: Detection Probability of Different Spectrum Sensing
Algorithms.

large, the performance of three algorithms was close to each
other.

It is noted from Figure 16 and Figure 17 that, as the transmit
power and the number of samples increase, the sensing error
of each algorithm tends to decrease and then stabilize. The
sensing error of the SSDRL algorithm is much lower, because
cooperative spectrum sensing eliminates the interference of
noise and influence of untrustworthy users.
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VI. CONCLUSION

To improve the efficiency and security of wireless radio
resources allocation in NGWN, this paper proposes a secure
radio resources allocation scheme based on deep reinforcement
learning. The optimized firefly algorithm is used to initialize
the weights and thresholds of the BP neural network, which
effectively improves the convergence speed during training. In
the process of spectrum sensing, SU uses the optimized BP
neural network to predict the occupancy. The energy detection
method is also used to sense the occupancy state of the target
spectrum that is predicted to be idle. Then, each SU interacts
with neighboring SUs, and uses deep reinforcement learning
algorithms and multi-user cooperation mechanisms to fuse the
results, and finally form a consensus across the network. The
reputation mechanism is used to remove malicious users for
securing cooperative sensing. Simulation results show com-
pared with the traditional solution, the proposal can effectively
improve the accuracy of spectrum sensing, significantly reduce
the energy consumption in untrustworthy environment.
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