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Abstract

Intelligent algorithms‐driven industrial decision sys-tems have been a general demand 
for modeling complex sewage treatment processes (STP). Existing researches modeled 
complex STP with the use of var-ious neural network models, yet neglecting the fact that latent 
and occasional relations exist inside complex STP. To deal with the challenge, this paper 
proposes graph embedding‐based intelligent industrial decision for complex STP (GE‐STP). 
The graph embedding (GE) scheme is employed to enhance feature extraction and neural 
computing structure is utilized to simulate uncertain biochemical transformation inside STP. 
The introduction of GE can not only improves the fineness of feature spaces, but also improves 
the representative ability of models towards complex industrial processes. On this basis, the GE‐
STP is evaluated on a real‐world data set collected from a realistic sewage treatment 
plant equipped with a set of Internet of Things devices. And some typical neural network models 
that have been utilized for modeling complex STP, are selected as baseline methods. Three groups 
of experiments show that efficiency of the GE‐STP exceeds baselines about 6%–12%, and that the 
GE‐STP is not susceptible to parameter changing.
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INTRODUCTION

In contemporary society, water resource has become a kind of important energy related to 
sustainable development.1 In this context, it is of great importance to realize optimal man-
agement of water resource. One of the core tasks lies in the monitoring and prediction towards 
the operation quality of sewage treatment process (STP). STP is a typical industrial process 
driven by biochemical reaction, accompanied by invisible material exchange and energy 
transfer. Therefore, it is usually filled with uncertainty and complexity, which makes the 
modeling of it quite challenging. To predict the results of STP more accurately, it is expected to 
establish an effective process model that expresses STP.2 The most intuitive strategy is to 
establish a process model based on biochemical reaction knowledge. But due to a large number 
of redundant process parameters, such type of biochemical mechanism‐driven methods often 
faced the problem of low computational efficiency in practice.3 Alternatively, novel insights can 
be provided by cross‐domain technologies,4 such as the Internet of Things (IoT) that possesses 
the strong ability of data collection and management.5 On this basis, the data analysis algo-
rithm is embedded into the interface, forming data‐driven modeling schemes for general in-
dustrial processes.6 It abstracts STP from the perspective of statistics, rather than the utilization 
of biochemical mechanisms. With a large number of data used for model training, data‐driven 
models can be formulated to approximately express STP. Therefore, intelligent computing 
seems to be a promising modeling scheme for complex STP.

During the past few years, intelligent computing‐based modeling strategies for STP had 
been widely noticed by relevant researchers, yielding a huge number of typical technical 
approaches.7‐21 To sum up, almost all of them originated from neural networks, and were 
exactly different modified versions of neural networks. For instance, Hassen and Asmare22 

developed a neural network with both forward and backward propagation directions to 
predict outlet results of STP. Ruan et al.23 introduced fuzzy logic to enhance inference 
ability by putting forward a fuzzy neural network model. Huang et al.9 exploited wavelet 
operation to accelerate calculation speed via the proposal of a fuzzy wavelet neural net-
work. Nevertheless, existing methods still suffer from some drawbacks or limitations when 
it comes to solution thoughts. In real‐world scenarios of sewage treatment plants, treatment 
pools are usually not an integrated one. To improve processing efficiency, instead, nearly all 
the plants separate their pools into a number of branches parallel subpools. Taking a typical 
plant located in Chongqing as an example, as is shown in Figure 1, the treatment pool of it



• It is recognized that potential relevance exists among subpools inside treatment plants,
which is well worth investigating.

• The GE is introduced to capture latent relations inside complex STP, and a GNN model is
developed as the intelligent computing method, forming the GE‐STP.

• Simulative experiments are carried out on real‐world scenes which derive from data of a
treatment plant. It is proved that the performance of the GE‐STP is about 6%–12% better than
general neural network models.

The remainder of this paper is organized as follows. Section 2 introduces the problem
scenarios and gives basic definitions. In Section 3, the detailed mathematical process of the

FIGURE  1  Sketch map for infrastructures of a typical wastewater treatment plant. DO, dissolved oxygen 

is divided into three series of pools: A, B, and C. And two specific treatment subpools can be 
further extracted from each series. Conventionally, treatment processes inside six subpools 
are viewed as those in an integrated treatment pool, neglecting internal correlations among 
processes of different subpools. Due to the constant backflow, treatment process of a 
subpool will certainly affect the following treatment effect of other subpools.

Hence, it is expected to tackle such a challenge by taking potential relevance among sub-
pools into account. Fortunately, the newly emerged graph embedding (GE)10,24 theory provides 
an appropriate solution for such demand. It fuses relations among entities into framework of 
high‐order parallel computation, so that more resilient feature spaces can be obtained. The 
encoded feature can be further transferred into neural computing structure, yielding the graph 
neural network (GNN)25 model. Therefore, this paper proposes graph embedding‐based in-
telligent industrial decision for complex STP (GE‐STP). First of all, GE is implemented to model 
latent linkages inside complex STP. On such basis, a GNN model is developed to realize the 
modeling of complex STP. Compared with existing technologies, the proposed GE‐STP em-
bedded idea of graph learning into the modeling of complex STP and is naturally a better 
solution for such purpose. To the best of our knowledge, this study creatively considers latent 
relations among subpools when employing intelligent computing to model complex STP. Main 
contributions of this paper are summarized as follows:



GE‐STP is described in detail. Experimental settings, results, and analysis are displayed in 
Section 4. And we conclude this paper in Section 5.

PROBLEM  STATEMENT

As for the real‐world sewage treatment plant that is investigated in this paper, the process 
structure is shown in Figure 1. It possesses totally six subpools whose index number is denoted
as i. A complete set of IoT devices have been equipped with the plant, so that indicators of 
several major chemicals can be monitored in real time. The monitoring contents include three 
parts: inlet conditions, outlet results, and intermediate parameters. First of all, definitions of 
them are given as follows:

Definition 1 (Inlet conditions). The initial pollutant indicators in the inlet point are
defined as inlet conditions. Obviously, they need to be required during STP.

Definition 2 (Outlet results). The pollutant indicators at the end of STP are defined as
outlet results. Obviously, relative values between outlet results and inlet conditions
reflect the treatment effect.

Definition 3 (Intermediate parameters). The indicators of dissolved oxygen (DO) added
into six subpools to reduce indicators of inlet pollutants are defined as intermediate
parameters.

Given inlet conditions, investigation goal of this study is to predict outlet results in advance
according to the amount of added intermediate parameters. Core pollutants inside inlet con-
ditions and outlet conditions are ammonia nitrogen (NH3‐N) and chemical oxygen demand
(COD). And materials involved in the intermediate parameters are DO. As for the proposed
GE‐STP, it manages to formulate a mapping from intermediate parameters to outlet results
given inlet conditions. The main architecture of the GE‐STP is shown in Figure 2. It contains
three major procedures: GE, neural mapping, and training. Detailed process of the GE‐STP is
described as follows.

FIGURE  2  Main architecture of the proposed GE‐STP. DO, dissolved oxygen; GE, graph embedding; 
LSTM, long short‐term memory; STP, sewage treatment process 



At the tth timestamp, inlet conditions with respect to six subpools are denoted as xi 
t( ), 

in which i is the index number of subpools ranging from 1 to 6. For xi 
t( ), it has two types 

of relations: serial relations Ri 
t( ) (serial) and parallel relations Ri 

t( ) (parallel). The  former  exists 
between xi 

t( )  and other values inside ith subpool, and the latter exists between xi 
t( )  and 

other values of the tth timestamp. The two relation vectors can be concatenated into a 
vector
Ri
( )(t P). In addition, six DO monitoring values at the tth timestamp constituting a vector Ψ(t). 

Then, Ri 
t( ) (serial) and Ψ(t) can be utilized together to generate a final representation for DO 

monitoring values:  (t). Enumerating t from 1 to T , all the DO monitoring values xi 
t( )  are 

viewed as a sequence with temporal characteristics. The long short‐term memory (LSTM) is 
selected to model such a sequentially evolving process. Data of the first T timestamps are 
used to train the prediction model. Having established the prediction model, outlet results at 
the following timestamps can be calculated according to inlet conditions and intermediate 
parameters. After that, an empirical error is introduced to construct an objective function, 
and Root Mean Square Prop (RMSProp) is selected as an optimization method to search 
optimal solutions.

METHODOLOGY

This section gives the detailed mathematical descriptions of the algorithm workflow, con-
taining three parts. Section 3.1 introduces the macroscopic process of the algorithm, 
Section 3.2 sets up a graph network to represent correlations inside multiple treatment 
subpools, and Section 3.3 designs a neural network architecture to finish the modeling of 
complex STP.

Graph embedding

As shown in Figure 1, the backflow occurs at the end node near the outlet, deriving two aspects 
of occasional relations. First, intermediate processes of each timestamp are related to those of 
the following timestamps inside the same treatment subpool. Second, intermediate processes of 
each timestamp are related to those of the same timestamp across treatment subpools. As these 
links are latent and imperceptible, the links need to be estimated via sampling.

Serial relation

At the tth timestamp, let xi 
t( )  denote the DO value of the ith subpool. It is further assumed here 

that its influence is able to last during the following five timestamps. Accordingly, a sampling
link can be generated inside such subpool from the tth timestamp to the (t + 1)th timestamp. 
Naturally, it is composed of totally six nodes. And the monitored DO values at these timestamps 
constitute a directed sampling link. All the monitoring values are nodes of the link and ranked 
in chronological order. Above all, the construction of each link undergoes five times of hops 
which refer to the transformations from one node into another one. Generalized to a directed 
link starting from the tth timestamp, it has five times of transformations from the node of the 
tth timestamp to the (t + 1)th, (t + 2)th, (t + 3)th, (t + 4)th, and (t + 5)th timestamps. As for
each beginning node, it is required to implement multiple rounds of sampling to generate



multiple links. The index number of sampling rounds is denoted as τ which ranges from 1 to η.
Taking the τth link as an example, each time of transformation is drawn from the following
multinomial distribution:
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where ϕi
t( +1) denotes the set of possible nodes in the tth timestamp, and ∣⋅∣ counts the total

number of it. After such sampling, the τth link which starts from xi
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As all the nodes inside a link are sequential, their time‐series relevance can be encoded. Let
n denote the index number of all the nodes inside sampling links, and n ranges from 1 to 6. As
for the τth link of xi

t( ), hidden state of the transformation between two adjacent nodes is
represented as
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where M n n( +1)→ is the transition matrix between the nth node and the n( + 1)th node, and
ψ n n( +1)→ is the fading coefficient for the transformation between the nth node and the n( + 1)th
node. The ψ n n( +1)→ is computed as
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where ξ is a parameter. It can be observed from the above formula that influence effect
descends with the timestamps move forward. In other words, the nodes closer to the beginning
node will receive greater influence. After six times of sampling operations, the relational
representation for the τth link of xi

t( ) is encoded as
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where Δ ( )1 ⋅ is the rectified linear unit (ReLU) activation function,WR1 is the weight parameter,
and bR1 is the bias parameter. The n ranges from 1 to 5, which corresponds to the five times of
transformation inside each sampling link. After all the μ rounds of sampling operations, a total
representative vector for serial relation of xi

t( ) can be deduced as

R γ R(serial) = (serial),i
t

τ

μ

τ τ i
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where γτ is the weight for Rτ i
t
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Parallel relation

The latent relations not only contain sequential types, but also have parallel ones. At the tth 
timestamp, DO monitoring values of each in each subpool have correlations with those inside
other subpools. Let j denote the index number of all the subpools except i. Enumerating i and j
from 1 to 6, xi 

t( )  and x j
(t) denote all pairs of DO values which belong to two different subpools. 

As no sequential relations exist between a pair of xi 
t( )  and x j

(t), the relation degree between them 
is likely to possess remarkable randomness. As for xi 

t( ), it is likely to have correlations with five 
other monitoring values of such timestamp which belongs to other five subpools. Above all, it is
expected to model such random relations between all pairs of xi 

t( )  and x j
(t).

Gaussian distribution is selected to describe such randomness, and two different distribu-
tions are set up in accordance with two different situations. As shown in Figure 1, all the six
subpools are divided into three different series: A, B, and C. Naturally, each series has two
subpools. Let δ i j( , )t( ) denote random relation degree between xi

t( ) and xj
t( ). As for a pair of xi

t( )

and xj
t( ) which belong to the same series, the relations between them are drawn from the

Gaussian distribution with mean value μ1 and variance σ1
2, which can be represented as

δ i j μ σ( , ) ~ ( , )t( )
1 1 1

2 . As for a pair of xi
t( ) and xj

t( ) which belong to two different series, the
relations between them are drawn from the Gaussian distribution with mean value μ2 and
variance σ2

2, which can be represented as δ i j μ σ( , ) ~ ( , )t( )
2 2 2

2 . Considering the relations
inside series and across series, the μ1 ranges from 0.5 to 1, and the μ2 ranges from 0 to 0.5.

As for xi
t( ), a set of sampling operations are utilized to measure relation degree between it

and all the other xj
t( ). Let c denote the index number of all the C sampling operation rounds.

During the cth round of sampling operation, representative vector for relation degree between
xi

t( ) and xj
t( ) is measured as
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t t
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Making the i constant, the aforementioned R (parallel)c i
t
,
( ) has five elements corresponding to

relation degree values between the xi
t( ) and other five values of xj

t( ). After all the C rounds of
sampling operations, the total representative vector for parallel relations of xi

t( ) is represented as
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t
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Neural computing

The complex STP can be regarded as a set of graph networks, in which nodes refer to monitored 
DO values, and edges refer to serial linkages and parallel linkages among monitoring values. 
Representation for nodes derives from their initial monitoring values, and representation for 
edges derives from latent linkages inside complex STP. This subsection first integrates basic



graph‐level feature representations, and then put them into a neural network structure for 
computation.

Feature integration

At the tth timestamp, the proposed GE‐STP is to formulate a mapping from monitoring values 
to the outlet results given inlet conditions. The total representative matrix for input values at
such timestamp is denoted as  (t). The  (t) takes the following form:

= , ,t
x i
t

R i
t

i

( )
,
( )

,
( )

=1,2, …, 6
  ⎡⎣ ⎤⎦ (11)

where i is the index number of subpools and ranges from 1 to 6. It is a type of matrix with six
lines which correspond to monitoring values of six subpools. The t( ) contains two main parts:

x i
t
,
( ) and R i

t
,

( ) . The former part refers to encoded factor for monitoring values at such time-
stamp, and the latter part refers to encoded factor for their relation features. It is noted that R i

t
,

( )
is derived from serial relations and parallel relations of xi

t( ).
The mentioned two relations R (serial)i

t( ) and R (parallel)i
t( ) can be first integrated into a

temporal representative vector R (temp)i
t( ) as

R R w R w(temp) = (parallel) + (serial) ,i
t

i
t

i
t( ) ( )

1
( )

2⋅ ⋅ (12)

where w1 and w2 are the two sliding matrices that match different dimensions of two vectors.
To obtain a comprehensive representation for relations of xi

t( ), an iterative propagation process
is required. It is a multiround iterative process and represented as

R W R b= Δ + ,i
t p

R i
t p

R
( )( +1)

1 2
( )( )

2
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where WR2 is the weight parameter, bR2 is the bias parameter, and p is the index number of
iterative rounds that range from 1 to P. At the initial status where p = 0, Ri

t p( )( ) is equal to
R (temp)i

t( ) . And after all the P rounds of iterations, the obtained Ri
t p( )( ) is denoted as Ri

t P( )( ).
As for all the six monitoring values at the tth timestamp, they can be concatenated into a

six‐dimensional vector Ψ t( ). So far, initial representation for nodes and edges in graph network
at the tth timestamp has been obtained. Among, representation for nodes is the vector of six
monitoring values Ψ t( ), and representation for edges is the relation matrix Ri

t P( )( ). It is pointed
that both nodes and edges never exist independently, and that they are highly correlated with
other. Thus, a cross‐iteration operation is added to the feature integration process. Specifically,
the mentioned Ψ t( ) and Ri

t P( )( ) are, respectively, updated once to finally generate two parts of
t( ) : x i

t
,
( ) and R i

t
,

( ) . The obtainment of x i
t
,
( ) is determined by both itself and R i

t
,

( ) . And similar to

R i
t
,

( ) , its obtainment is determined by both itself and x i
t
,
( ) . Such two cross‐iteration processes

can be represented as
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where w3, w4, w5, and w6 are the four vectors or matrices that are used to match dimensions
between x i

t
,
( ) and R i

t
,

( ) , and λ1 and λ2 are two trade‐off parameters to set weight for Ri
t P( )( ). The

Ri
t P( )( ) is with the form of matrix, while the Ψ t( ) is with the form of vector. Thus, w3, w4, w5, and



w6 are responsible for transforming low‐dimensional Ψ(t) into high‐dimensional latent ma-
trices, so that dimension of Ψ(t) matches that of Ri

( )(t P).

Dependency modeling

Having deduced Xx i
t
,
( ) and XR i

t
,
( ) via the above procedures, the total representative matrix for input

values at the tth timestamp, t( ) , is obtained. At the same time, STP is a certainly complex, as
well as a sequentially evolving process. Enumerating t from 1 to T , temporal dependency exists
among all of the values of t( ) . To model such dependency, recurrent neural network (RNN)
models can be utilized for this purpose. The LSTM model is a classical variant of RNN, and was
specially developed for modeling long‐term dependency characteristics inside complex in-
dustrial systems. Due to the excellent ability to model long‐term complex processes, the LSTM
has been put into realistic practice in many industrial or commercial applications. Structure of
the LSTM model is composed of three gates: input gate (InG), forgetting gate (FoG), and output
gate (OuG). At the tth timestamp, the InG controls the degree that the input variable I t( ) is
saved into major cell state S t( ). The FoG controls the degree that the major cell state at the
t( − 1)th timestamp is retained to the major cell state at the current timestamp. The OuG
controls the degree that major cell state S t( ) is saved into final output O t( ).

As for the FoG, control factor of it at the tth timestamp can be expressed as the following
formula:

F t W O t I t b( ) = Δ { [ ( − 1) ( )] + },F F2 ⋅ ⊕ (16)

whereWF and bF are the weight parameter and bias parameter for the connection between InG
and FoG, Δ ( )2 ⋅ is the sigmoid activation function, and the input variable at the tth timestamp
is as

I t( ) = .t( ) (17)

Due to the fact that range for output of the sigmoid function is (0, 1), the F t( ) is a real
number that ranges from 0 to 1. The F t( ) is equal to 0 when historical information is com-
pletely forgotten, and is equal to 1 when none of the historical information is forgotten.

As for the InG, control vector of it at the tth timestamp is deduced as

E t W O t I t b( ) = Δ { [ ( − 1) ( )] + },E E2 1 1⋅ ⊕ (18)

whereWE1 and bE1 are the weight parameter and bias parameter of the connection between InG
and OuG. Representation for cell state at the tth timestamp can be deduced as the following
formula:

S t F t S t E t S t( ) = ( ) ( − 1) + ( )
~
( ),⋅ ⋅ (19)

where S t˜( ) is a temporal vector defined as follows:

S t W O t I t b
~
( ) = Δ { [ ( − 1) ( )] + },E E3 2 2⋅ ⊕ (20)

whereWE2 and bE2 are the bias parameter and bias parameter of the connection between cell
state and OuG, and Δ ( )3 ⋅ is the tanh activation function.

As for the OuG, control vector of it at the tth timestamp is deduced as



D t W O t I t b( ) = Δ { [ ( − 1) ( )] + },D D2 ⋅ ⊕ (21)

whereWD and bD are the bias parameter and bias parameter for output vector of OuG. Output
of the OuG is the output of the LSTM model, and can be calculated as

O t D t S t( ) = ( ) Δ [ ( )].3⋅ (22)

Training

Having undergone all the T rounds of evolvement processes, a model can be trained for 
predicting treatment results of the following timestamps. Monitoring data at the first T time-
stamps are utilized to train prediction models for treatment processes following timestamps. 
Input of the prediction model is monitored DO values in six subpools, and output of the 
prediction model is the treatment effect. It is noted that the treatment effect is not absolute 
outlet results. Instead, it is supposed to be quantification for relative reduction compared with 
inlet conditions. At each timestamp, the output of the prediction model is actually the quotient 
of outlet results divided by inlet conditions. Taking the (t + 1) timestamp as an example, 
treatment effect at such timestamp can be represented as O t( ). To map the O t( )  into higher‐
level forms, two multilayer perception (MLP) networks are introduced for this purpose, leading 
to the following two formulas:

Y T MLP O T( + 1) = Δ { [ ( + 1)]},1 1 1 (23)

Y T MLP O T( + 1) = Δ { [ ( + 1)]},2 4 2 (24)

where MLP ( )1 ⋅ and MLP ( )2 ⋅ are the two MLP operators for feature transformation, and Δ ( )4 ⋅ is
the leaky ReLU activation function. The two obtained Y T( + 1)1 and Y T( + 1)2 are two ma-
trices, representing two variants of O T( + 1) in terms of two perspectives.

After that, the Y T( + 1)1 and Y T( + 1)2 can be concatenated into a total matrix by com-
bining the product of them two, which can be expressed as

A T Y T Y T( + 1) = ( + 1) [ ( + 1)] .T1 2⋅ (25)

And the Z T( + 1) can be further mapped into predicted result through a linear neural
mapping procedure, which can be expressed as

Z T W A T bˆ ( + 1) = Δ [ ( + 1) + ],Z Z1 ⋅ (26)

where WZ is the weight parameter, bZ is the bias parameter, and Z Tˆ ( + 1) is the estimated
result at the T( + 1)th timestamp. Empirical error‐based training objective function can be
formulated as the following L2‐norm formula:

{ }λ Z T Z T λmin ( + 1ˆ ) − ( + 1) + Θ ,
i t

T

F
F

=1

6

=1

3

2

4
2⎡

⎣⎢
⎤
⎦⎥∑∑ ⋅ ⋅ ∥ ∥ (27)

where λ3 and λ4 are the two trade‐off parameters. And the RMSProp approach can be selected
as the optimizer to find the optimal solution for the above formula. After learning, the complete



prediction model is successfully formulated. Given inlet conditions at any following‐up time-
stamps, outlet results can be calculated according to the input of DO values inside six subpools.

EXPERIMENTS  AND  ANALYSIS

Data preparation

Having formulated technical methods named GE‐STP in the previous parts, experiments on a 
real‐world data set are required to evaluate the proposed GE‐STP. The real‐world data set was 
collected from a realistic sewage treatment plant that is located in Nan'an District, Chongqing, 
China.11 This treatment plant has been equipped with IoT devices to monitor business values 
during industrial processes, so that digital management mode can be realized. The devices have 
been running steadily since 2018, and monitoring data were collected from July 1, 2018 to June 
30, 2019. Inside each natural day, the IoT devices automatically implemented about 200–300 
times of data monitoring. Each time of monitoring produces one piece of monitoring data, and 
monitoring frequency varies with different days. To deal with such frequency inconsistence, the 
first 200 pieces of data inside each day are uniformly selected as the monitoring data of each 
day. Generalized to the period of 1 year, more than seventy thousand pieces of data can be used 
to construct the experimental data set. It is further assumed that sequential characteristics exist 
among all of the data, so that they can be modeled as a sequentially evolving process.

As the data set came from a sewage treatment plant in Chongqing, data structure com-
pletely corresponds to process structure of the plant. For each piece of data, it contains 10 
monitoring values. The first two values are inlet conditions with respect to two pollutants, and 
the last two values are outlet results with respect to two pollutants. Obviously, the middle six 
values are monitored intermediate parameters with respect to six subpools. In addition, it is 
expected to visualize the data distribution of all of the 10 volumes of data. Figure 3

FIGURE 3 Definition and statistical characteristics of the experimental data set. COD, chemical oxygen
demand; DO, dissolved oxygen; SD, standard deviation



demonstrates both definitions and statistical characteristics for all the symbols, in which three
types of symbols are included. First, α t

1
( ) and α t

2
( ), respectively, denote inlet conditions in terms

t
2
( ), respectively, denote outletof two major pollutants at the tth timestamp. Second, β1

(t) and β
results in terms of two major pollutants at the tth timestamp. Third, xi 

t( ) (1,  2, …, 6)  denotes six
monitored DO values inside six subpools. There are also some abbreviated terms involved in
Figure 3. Enumerating t from 1 to T , “Min” denotes the minimum value, “Max” denotes the 
maximum value, “Mean” denotes the mean value, and “SD” denotes the standard deviation 
value. It can be seen from Figure 3 that minimum values, maximum values, and mean values of
each type of variables remain relatively steady. Taking xi 

t( ) (1,  2, …, 6)  as an example, their 
minimum values range from 1 to 1.2, their mean values range from 2 to 6, and their 
maximum values range from 9 to 10. And for all of the variables, their standard deviation 
values remain relatively low compared with mean values. In all, the experimental data set is 
evenly distributed, so that data analysis algorithms are able to be implemented reasonably.

Experimental settings

To assess the main performance of the proposed GE‐STP, some basic metrics are required for 
this purpose. As the research object in this study is actually a regression problem, two relevant 
metrics are selected for this purpose: mean average error (MAE) and root mean square error 
(RMSE). The two metrics are defined as the following two formulas:

MAE
U

y y=
1

− ˆ ,
u

U

u u

=1

∑∣ ∣ (28)

RMSE
U

y y=
1

( − ˆ ) ,
u

U

u u

=1

2∑ (29)

where ŷu is the predicted value, yu is the real value, and u is the index number of samples that
range from 1 toU . According to definitions, MAE and RMSE measure the difference between
predicted values and real values.

To achieve the comparison effect, some typical methods that had been utilized to model STP
are selected as baselines, which are briefly described as follows:

CNN—It refers to the convolutional neural network model which is a kind of feed‐forward
neural network with deep structure and convolution computation.11

LSTM—It refers to the LSTM model which is a kind of time‐aware neural network to deal
with long‐term dependency.25

GRU—It refers to the gated recurrent unit model which modifies the gated structure of
LSTM and is a variant of the LSTM model.12

FNN—It refers to the fuzzy neural network model which integrates fuzzy logic into neural
networks to endow it with the ability of inference.13

More detailed descriptions of these four comparison methods can be found in corre-
sponding literatures. The proposed GE‐STP and other baselines were implemented via the
programming language Python and with the aid of a famous deep learning tool Tensor-
Flow.* The hardware environment lies in a deep learning workstation with 28‐core CPU and a
GPU (RTX‐2080Ti). The number of sampling rounds η is set to 10, the fading parameter ξ in
Equation (4) is set to 10, μ1 and σ1

2 are set to 0.3 and 0.04, μ2 and σ2
2 are set to 0.8 and 0.03, the



3

number of sampling rounds C is set to 10. λ1, λ2, λ3, and λ4 are all set to 0.5. Proportion of 
training data is set to 60% initially, and will change multiple times during experiments.
Learning rate of the GE‐STP is set to 0.001 initially, and will change multiple times during 
experiments.

Results and analysis

Retaining proportion of training data as the level of 60%, performance of GE‐STP and 
baseline methods is evaluated  in terms of COD and NH  ‐N with the use of two metrics: 
MAE and RMSE. Collaborative results of MAE and RMSE for outlet COD with different 
proportions of learning rate are illustrated in Figure 4. It is composed of four subfigures  
corresponding to MAE and RMSE results under four learning rate values: 0.001, 0.003, 
0.005, and 0.01. Inside each subfigure, the X‐axis refers to a range of MAE values and the 
Y‐axis refers to a range of RMSE values. Each scatter inside a subfigure refers to a pair of 
“MAE‐RMSE” values acquired by one method. As MAE and RMSE measure the distance 
between real values and predicted values, the scatters closer to the origin reflects a better 
prediction effect. Figure 5 demonstrates MAE and RMSE results for outlet NH3‐N under

FIGURE  4  MAE and RMSE results concerning outlet COD with respect to different learning rates: (A) 
0.001, (B) 0.003, (C) 0.005, and (D) 0.01. COD, chemical oxygen demand; MAE, mean average error; RMSE, root 
mean square error 



(A) (B)

FIGURE  5  (A) MAE and (B) RMSE results concerning outlet NH3‐N with respect to different learning 
rates. CNN, convolutional neural network; FNN, fuzzy neural network; GE, graph embedding; GRU, gated 
recurrent unit; LSTM, long short‐term memory; MAE, mean average error; RMSE, root mean square error; 
STP, sewage treatment process 

four learning rate values: 0.001, 0.003, 0.005, and 0.01. It is composed of two subfigures 
corresponding to MAE results and RMSE results, respectively. Inside each subfigure, the 
X‐axis refers to learning rate values that range from 0.001 to 0.01, the Y‐axis refers to values 
of metrics corresponding to experimental methods. As MAE and RMSE measure the dis-
tance between real values and predicted values, lower curves reflect the better performance 
of the corresponding methods compared with others. It can be observed from these figures 
that the proposed GE‐STP is able to obtain the best prediction performance under all of the 
situations. Taking MAE results of outlet COD as an example, the GE‐STP is about 5% better 
than LSTM, 6% better than GRU, 9% better than FNN, and 11% better than CNN. In 
subfigures of Figure 4, the scatters corresponding to GE‐STP are always closer to the origin 
than others. In subfigures of Figure 5, the curves corresponding to GE‐STP are always 
located below other curves.

Retaining learning rate value as the level of 0.001, performance of GE‐STP and baseline 
methods is evaluated under two proportions of training data: 60% and 70%. In this group of 
experiments, MAE and RMSE results with respect to outlet COD and outlet NH3‐N are illu-
strated in Figures 6 and 7. Both of them have two subfigures corresponding to results under two 
different training sizes: 60% and 70%. Each subfigure has two clusters of bars which correspond 
to MAE results and RMSE results, respectively. Inside each subfigure, the X‐axis lists name of 
two clusters, and the Y‐axis denotes metric values. It can be seen from these figures that the 
proposed GE‐STP always performs better than others under different scenario settings. During 
the above two groups of experiments, excellent performance of GE‐STP is well acknowledged 
through three types of visualized figures: scatter diagram, curve diagram, and bar diagram. The 
obtainment of the above results can be attributed as two aspects of reasons. First, the GE 
scheme is introduced when encoding initial features into higher‐level forms, which are dis-
tinguished from others. The introduction of GE is able to help the GE‐STP extract more fine‐
grained features, contributing a lot to performance promotion. Second, the fusion of GE and 
neural networks is able to further improve the ability of prediction and calculation. The above



(A) (B)

FIGURE  6  MAE and RMSE results concerning outlet COD with respect to two training sizes: The 
proportion of training data is (A) 60% and (B) 70%. COD, chemical oxygen demand; CNN, convolutional 
neural network; FNN, fuzzy neural network; GE, graph embedding; GRU, gated recurrent unit; LSTM, long 
short‐term memory; MAE, mean average error; RMSE, root mean square error; STP, sewage treatment process 

(A) (B)

FIGURE  7  MAE and RMSE results concerning outlet NH3‐N with respect to two training sizes: The 
proportion of training data is (A) 60% and (B) 70%. CNN, convolutional neural network; FNN, fuzzy neural 
network; GE, graph embedding; GRU, gated recurrent unit; LSTM, long short‐term memory; MAE, mean 
average error; RMSE, root mean square error; STP, sewage treatment process 

two aspects of reasons are likely to make the GE‐STP more effective than general neural 
network models.

Having assessed the efficiency of the proposed GE‐STP, it is also expected to conduct 
another group of experiments to evaluate robustness of it. This group of experiments contains 
multiple times of small experiments. Inside each small experiment, a pair of parameters will



FIGURE  8  Parameter sensitivity results concerning outlet COD with respect to two metrics: (A) MAE 
and (B) RMSE. COD, chemical oxygen demand; MAE, mean average error; RMSE, root mean square error 

FIGURE  9  Parameter sensitivity results concerning outlet NH3‐N with respect to two metrics: (A) MAE and
(B) RMSE. MAE, mean average error; RMSE, root mean square error 

change multiple times. Under such setting, performance fluctuation of GE‐STP is investigated. 
If performance of it never fluctuates with the change of parameters, the GE‐STP possesses good 
stability. The two parameters selected in this group of experiments are learning rate and
proportion of training data. Note that the performance of the GE‐STP is investigated singly, 
without comparing with any baselines. And evaluation metrics in this group of experiments are
also MAE and RMSE that have been utilized before. Parameter sensitivity results of GE‐STP 
with respect to outlet COD and outlet NH3‐N are illustrated in Figures 8 and 9. Both of them 
have two subfigures corresponding to two metrics: MAE and RMSE. Inside each subfigure, the
X‐axis refers to learning rate values ranging from 0.001 to 0.01, and the Y‐axis refers to training 
size values ranging from 50% to 80%. The blocks inside each subfigure refer to metric values



under a pair of parameter settings. It can be observed from these figures that the performance 
of the GE‐STP never strongly fluctuates with the change of parameter settings. This phe-
nomenon indicates that the proposed GE‐STP possesses proper robustness, because it is 
not susceptible to parameter changes. A possible explanation for this lies in the fact that the 
GE‐STP manages to improve the depth of feature spaces by introducing the GE scheme, which 
improves the stability of GE‐STP to a large extent.

To sum up, the above three groups of experiments are able to evaluate the excellent per-
formance of the GE‐STP. It not only possesses good efficiency, but also possesses proper 
robustness.

CONCLUSION

Due to the significant role to sustainable development, the investigation towards STP has 
gained worldwide attention. And in the era of industry 4.0, newly emerged artificial 
intelligence technology has provided more innovative insights into this domain. In this 
context, intelligent algorithms‐driven industrial decision systems have been a general 
demand for modeling complex STP. Existing researches modeled complex STP with the 
use of various neural network models, yet neglecting the fact that latent and occasional 
relations exist inside complex STP. To bridge such gap, this paper proposes a novel ap-
proach named GE‐STP. The GE scheme is employed to enhance feature extraction and 
neural computing structure is utilized to simulate uncertain biochemical transformation 
inside STP. The introduction of GE can not only improves the fineness of feature spaces, 
but also improves the representative ability of models towards complex industrial pro-
cesses. At last, a set of experiments are conducted on a real‐world data set to evaluate the 
performance of the GE‐STP. Four typical neural network models are selected as baseline 
methods. Three groups of experiments prove that the GE‐STP properly possesses both 
efficiency and robustness.14–21
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