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Abstract: Conductive textiles have found notable applications as electrodes and sensors capable of
detecting biosignals like the electrocardiogram (ECG), electrogastrogram (EGG), electroencephalo-
gram (EEG), and electromyogram (EMG), etc; other applications include electromagnetic shielding,
supercapacitors, and soft robotics. There are several classes of materials that impart conductivity,
including polymers, metals, and non-metals. The most significant materials are Polypyrrole (PPy),
Polyaniline (PANI), Poly(3,4-ethylenedioxythiophene) (PEDOT), carbon, and metallic nanoparticles.
The processes of making conductive textiles include various deposition methods, polymerization,
coating, and printing. The parameters, such as conductivity and electromagnetic shielding, are
prerequisites that set the benchmark for the performance of conductive textile materials. This review
paper focuses on the raw materials that are used for conductive textiles, various approaches that
impart conductivity, the fabrication of conductive materials, testing methods of electrical parameters,
and key technical applications, challenges, and future potential.

Keywords: e-textiles; smart textiles; conductive polymers; conductive textile testing

1. Introduction

Textiles with functional properties such as antimicrobial efficacy, water repellency,
and fire retardancy have been known for decades. Similarly, when conductive proper-
ties are imparted to textiles, their applications go beyond many known traditional uses.
Conductive textiles can be used to devise electrodes and sensors to capture signals, shield
against electromagnetic waves, and harvest energy [1]. The earliest known use of wear-
able conductive textiles dates back to 1883 when conductive headbands were worn by
the “La Farandole” ballet dancers [2]. Since then, their application areas have gradually
expanded to different domains thanks to the advances in material science and engineering
and information technology [3]. Conductive textiles have been recognized profoundly
during the last two decades due to some outstanding characteristics, such as their flexibil-
ity, lightweight structure, wide range of conductivity, adaptability with the human body,
adequate mechanical and chemical durability, and expanded life cycle [4,5].

An increasing number of research studies reported in the scientific literature illustrate
the significant interest in conductive textiles [6]. Several books have been published
reviewing conductive materials and the recent applications of conductive textiles [7,8].
Still, a combined review on conductive materials and fabrication processes of conductive
textiles remains as a literature gap. The aim of this review is to provide a comprehensive
understanding of the key conductive materials and pathways for developing and testing
conductive textiles. Some important technical applications of conductive textiles, such as
electromagnetic shielding, supercapacitors, soft robotics, and e-textiles are overviewed.
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2. Materials Used to Impart Conductivity on Textiles

Textiles can be given conductive features by using three types of materials: (a) conduc-
tive polymers, (b) conductive metals, and (c) conductive non-metals. These are explored in
detail in the following subsections.

2.1. Conductive Polymers

Electroconductive polymers are organic polymers that retain conductivity over a
wide range of magnitudes based on the doping mechanism and bond-conjugated system
in their polymeric structures. These polymers combine the beneficial characteristics of
typical polymers and metals [9]. The most used conductive polymers are Polypyrrole (PPy),
Polyaniline (PANI), and Poly(3,4-ethylenedioxythiophene) (PEDOT), and their chemical
structures are given in Figure 1 with descriptions afterward.

 

Figure 1. Chemical structure of most conductive polymers: (a) Polypyrrole (PPy), (b) Polyaniline
(PANI), (c) Poly(3,4-ethylenedioxythiophene) (PEDOT) [10–12].

2.1.1. Polypyrrole (PPy)

PPy is one of the most extensively studied conducting polymers for many com-
mercial applications due to their excellent thermal stability, good electrical conductiv-
ity, relative ease of synthesis, and environmental stability [10,13]. Three different meth-
ods of polymerization of pyrrole are usually followed to obtain PP; These methods are:
(i) chemical polymerization in solution, (ii) chemical vapor deposition (CVD), and (iii)
electrochemical polymerization [14].

Electroconductive PPy can be prepared in various solutions such as water, diethyl
ether, and acetonitrile (ACN). PPy powder prepared in H2O exhibits the largest capaci-
tance value, approximately 355 Fg−1 [15]. The preparation of conducting membranes by
chemical polymerization of PPy in the pores of the macroporous membrane in a similar
way was also reported. The conductivities of the order of 10−3 Scm−1 and 10−2 Scm−1

were obtained, indicating that thinner composites with a more homogenous distribution
of PPy throughout the sample performed better compared to the thicker composites [16].
Chemical polymerization of PPy on the surface of a porous graphite fiber matrix was
done to prepare composite electrodes for supercapacitors. A specific capacitance of about
400 Fg−1 and a coulombic efficiency of 96–99% were obtained in the presence of ferric
nitrate (Fe(NO3)3.H2O), along with indicating that the dipping method is suitable for
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the modification of carbon-based porous graphite fibers to improve the performance of
electrodes used in supercapacitors [17].

Single-walled carbon nanotube (SWCNT)-PPy nanocomposite electrodes were fabri-
cated to improve the specific capacitance of the supercapacitor. A high specific capacitance
was reported compared to the pure PPy and the SWCNTs. The SWCNT-PPy nanocom-
posite electrodes show a maximum specific capacitance of 265 Fg−1 [18]. Similarly, to
improve the conductivity of the PPy compared to its pure form, an SWCNT-PPy was pre-
pared by in situ chemical polymerization [19]. PPy-coated multi-walled carbon nanotubes
(MWCNTs) prepared by the in situ chemical polymerization of pyrrole showed improved
conductivity compared to pure PPy. The room temperature electrical conductivity of the
MWCNT-PPy nanotubes synthesized by the chemical method using FeCl3 was measured to
be 1.50–2.40 Scm−1, which is higher than that of PPy and neat MWCNT. The conductivity
decreases with the increase of the feeding mass ratio of PPy to MWCNTs [20].

2.1.2. Polyaniline (PANI)

PANI has become an influential resource for conductive textiles because of its facile
manufacturing techniques, biocompatibility [21], porous nature [22], thermal stability up
to 420 ◦C [23], catalytic behavior [24], distinct adaptation methods for acquiring diversi-
fied behavior, various colorful forms and their interconversion [25], and its transparent
medium [26]. Although the application of PANI was initially for use as writing ink, it was
first acknowledged by Marcel Jozefowicz with his research group (researchers of the School
of Industrial Physics and Chemistry of the City of Paris) as an electroconductive material
during the late 1960s [7]. The polymer molecules of PANI are incorporated with poly-
conjugated chains derived from reversible phenyl rings and nitrogen-based groups. The
profound delocalization, polarization, and one-dimensional characteristics of π-electron
clouds of poly-conjugated networks have led to the outstanding structural, optical, and
electroconductive dispositions of PANI.

Numerous versatile polymerization techniques, such as oxidative polymerization,
direct and inverse emulsion polymerization, interfacial polymerization, solution polymer-
ization, seeding polymerization, metathesis polymerization, and self-assembling polymer-
ization, have been adapted to synthesize PANI [27]. Customarily, three forms of PANI,
exhibited in Figure 2, can prevail, thereby relying on their extent of oxidation and degree of
protonation. These are:

(a). Leucoemeraldine (C6H4NH)n—100% reduction level
(b). Emeraldine ([C6H4NH]2[C6H4N]2)n—50% oxidation, 50% reduction
(c). Pernigraniline (C6H4N)n—100% oxidation level

Only the Emeraldine form of PANI can be applied directly to the textiles to impart
conductivity among these three categories; however, the pristine emeraldine retains a lower
conductivity level and limited processability [25].
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Figure 2. Chemical structure of different forms of PANI, adapted from [28] following Creative
Common Licence.

Though the potential growth of PANI-based conductive textiles has escalated drasti-
cally in recent years, the inherent toxic nature and lower conductivity of PANI than metallic
particles, even compared to other intrinsic conductive polymers (PEDOT, PPy) are still the
major handicaps for commercializing PANI-based conductive materials. Notable research
projects related to ascertaining the environmentally friendly and cost-effective synthesis
process of PANI-based conductive textiles have been reported [29,30].

2.1.3. Poly(3,4-ethylenedioxythiophene) (PEDOT)

PEDOT demonstrates an intrinsic electroconductive polymer that incorporates two
linked groups of benzene rings where two carbon atoms of each are substituted by oxygen
atoms and a sulfur-based pentagonal thiophene ring. PEDOT can be easily synthesized
from a 3,4-ethylenedioxythiophene (EDOT) monomer through oxidative [31] and electro-
chemical [32] vapor phase polymerization (VPP) techniques [33], but it cannot be executed
commercially due to its lower dispersion in water. As a result, a template polymer poly
(styrene sulfonate) (PSS) is utilized during the synthesis of PEDOT, which yields a water-
dispersible and transparent film-like polymer that can be conveniently processable [34].

Uniform dispersion in water, convenient methods to adapt electrical properties, high
flexibility, excellent transparency (up to 95%), stability against humid air and high tempera-
ture are some of the features that allow PEDOT:PSS to add a new dimension over the other
intrinsic polymers in terms of diversified practical applications of conductive textiles, such
as solar cells [35], electricity storage devices [36], electrochromic devices [37], electrochemi-
cal transistors [38], OLED [39], patch antenna [40], supercapacitors [41], actuators [42], and
strain sensors [43]. Several variants of PEDOT:PSS dispersions are available according to
their molecular weight under the trade name of Clevios and Orgacon given by Heraeus
Epurio and Agfa Gevaert, respectively; however, the corrosiveness and unfavorable im-
pacts of PSS cause impediments to the expedition of conductive textiles approach towards
the green industry. Studies on the eco-friendly application of conductive PEDOT films on
textiles have been reported. Lock et al. experimented with a customized vacuum chamber
for the eco-friendly deposition of PEDOT films on the substrates, thereby resulting in con-
ductive substrates that exhibit a noteworthy conductivity of 105 Scm−1, including an 84%
transmittance of visible light [44]. Brooke et al. applied the VPP technique to synthesize
eco-friendly PEDOT: Tosylate films coated with conductive electrodes [45]. Later, Vacuum
vapor phase polymerization (VVPP) was acquainted with feasible scale-up production of
PEDOT-coated conductive textiles with significant conductivity (1485 Scm−1) [46].
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Though being one of the most promising conductive polymers, the employment of
PEDOT in conductive textiles is limited to research projects and narrow fields of practical
application due to its relatively lower conductivity for the proper optimization of PEDOT
in wearable electronics; unstable conductivity for any change of temperature, humidity,
bending and washing cycles [47]; and maintaining the precise process control parameters
during the in situ polymerization of EDOT monomer [7].

Notable works are ongoing to deal with these challenges of PEDOT [48,49]. Until
now, the commercial aspects of PEDOT have been fully established in the applications of
capacitors, printed wiring boards, packaging films, photographic films, electronic films,
and electroluminescent lamps [7].

2.2. Conductive Metals

Metals, such as copper, silver, and steel, are the most electroconductive materials, and
are extensively used in smart textile applications such as copper yarns and silver-coated
fibers [1,50]. Silver (Ag), gold (Au), copper (Cu), titanium dioxide (TiO2), zinc oxide (ZnO),
nanolayered clay, and other organic and inorganic nanoparticles and their nanocomposites
are applied to textile materials to pass on different multifunctional properties [51]. The
conductivity of metallic-nanoparticle-coated threads is low because their small size leads
to many interparticle junctions [52].

A few metals and metal-derived oxides used in textile finishing are discussed here.

2.2.1. Silver Nanoparticles (AgNPs)

AgNPs are known to be antibacterial, and their therapeutic properties have been
proven against a broad range of microorganisms that can cause diseases. Ag can be
synthesized through various methods ranging from simple chemical reduction processes
to photochemical, biochemical, sonochemical, and Tollens’ reagent methods [51]. The
deposition of nanowire films around threads can be achieved through dip-coating [52].
Chemically metallized Ag threads are used to produce textiles with antistatic properties or
to shield against electromagnetic waves. Ag-coated fibers are used to improve the behavior
of smart textiles [50].

2.2.2. Gold Nanoparticles (AuNPs)

AuNPs are widely known for their optical and biological properties. They could be
used for highly sensitive diagnostic assays, thermal ablation, radiotherapy enhancement,
and drug and gene delivery. They are mainly prepared via the chemical reduction method
using gold salts such as hydrogen tetrachloroaurate (HAuCl4) as a precursor and citrate as
a reducing agent [51]. Au nanoparticles chemically synthesized by citrate reduction can be
immobilized onto chitosan-treated soybean knitted fabric via the exhaustion method [53].
A gold coating with solution deposition on knitted fabric is highly conductive, stretchable,
wearable, and washable [54].

2.2.3. Copper Nanoparticles (CuNPs)

CuNPs have heat transfer properties such as high thermal conductivity, low prepara-
tion cost, antibacterial efficiencies, catalytic activity, and electrical and optical properties.
They are produced by the chemical reduction method [51]. The surface of the textile
fabric can be covered with a layer of densely packed Cu particles after ELD [55]. Cu-
coated textiles can show a bactericidal effect [56]. The antibacterial property is impor-
tant because electromagnetic interference (EMI) shielding fabrics are excellent media for
microorganism growth [57].

2.2.4. Metal Oxide Nanoparticles (MONPs)

MONPs are renowned for their environmental remediation and electronic applications.
The particles can generate charge carriers through energy absorption. TiO2 and ZnO are
widely used in textile finishing [51]. Nano-iron oxide, nano-copper oxide, nano-cobalt
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oxide, and nano-manganese oxide in cotton fabrics can be created for high antibacterial
efficiency. In addition, UV protection and flame retardation can be developed by in situ
preparation of nanometal oxides [58].

2.3. Conductive Non-Metals

Carbon-based materials (CNTs, graphene, carbon fibers, carbon aerogels) play a fun-
damental role in this type of conductive textiles. These materials are characterized by
high electroconductivity (104 Scm−1), superior strength, environmental stability, and a
cost-effective manufacturing process that exposes these as promising materials for wear-
able electronics [59]. Many research studies have demonstrated the remarkable features
of these non-metallic conductive textiles [60,61]. In recent years, nanocomposites have
been intensified for their mechanical, electrical, and thermal performances, where carbon,
such as carbon nanofiber, CNTs, graphene, and graphite, are used as a filler [62]. CNTs
and graphene have been given special attention due to their unique features, such as
their high mechanical stiffness, tensile strength, and exceptional thermal and electrical
conductivity [63,64]. Researchers are continuing to discover new dimensions of carbon
nanomaterials. After that, a more versatile material, graphene, was discovered and focused
on flexibility, higher electron conductivity, and increasing the scope of applications [65].

2.3.1. Carbon Nanotube (CNTs)

CNTs are unique nanostructures theoretically considered one-dimensional (1D) quan-
tum wires. The basic building block of the CNTs is very long cylindrical single-walled
carbon nanotubes (SWCNTs) that are one atom in wall thickness and ten atoms in circum-
ference. CNTs are the seamless cylindrical shape of graphene sheets. Iijima (a Japanese
physicist and inventor) first observed the multi-walled carbon nanotubes (MWCNTs),
which were remarkable for their unique structure and electrical properties [66]. After two
years, Iijima and his team discovered SWCNTs, which were supposed to be an important
material for their theoretical experiment [67]. It was predicted in 1992 that a historical
breakthrough would happen in 1996 after successfully synthesizing bundles of aligned
single-wall carbon nanotubes with very small diameters [68].

CNTs have many exceptional physical properties. CNTs are 100 times more potent
than the highest grades of carbon steel, and their higher tensile modulus can almost be
stretched five times the original length [69,70]; moreover, CNTs show extraordinary elec-
tronic properties such as 102–106 Scm−1 for SWCNTs and 103–105 Scm−1 for MWCNTs [71],
which perform better than copper when transporting electrons long distances without
interruption [72,73]. Consequently, it is considered the ideal nanotube because of its me-
chanical and electrical characteristics. Given this, many potential applications have been
proposed, such as H2 storage media [74,75], batteries [76], solar cells [77], transistors [78,79],
diodes [80,81], and sensors [82,83].

CNTs have a high aspect ratio that makes them suitable for reinforced materials. CNTs
can make pure CNT fiber or reinforce polymeric, ceramic, and metallic fibers. CNT fibers
have been processed from aqueous dispersions and dispersions in strong acids, drawn
from CNT forests, or pulled from a CNT CVD reactor in the form of an aerogel fiber.

CNTs have shown a great range of variety in applications in the last couple of decades
of research. However, with the potential of CNTs, it has gained limited success in the
marketplace, especially due to issues in processing and scaleup. There are also intrinsic
challenges at the nanoscale (such as assembly, the role of interfaces, and contacts), which
also affect the applications’ progress. Instead of these challenges, a few applications of
nanotubes are available commercially.

2.3.2. Graphene

Graphene is a two-dimensional (2D) monolayer [84] ultra-thin carbon film [85] with
a hexagonal structure [86] that has become the center of attraction for researchers due to
its exceptional electrical conductivity, as well as its thermal, mechanical, optical, and elec-
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trochemical properties [87]; moreover, some extra mentionable intrinsic properties added
extra advantages when embedded into microstructures, which is crucial for promoting
its potentiality in practical uses [88–90]. As a consequence, the development of graphene-
based 3D aerogels (GBAs), 2D membranes (GBMs), and 1D fibers (GBFs) have progressed.
Three-dimensional GBAs have achieved the current world record as the lightest material,
having a density of 0.16 mg cm−3 [91]. Two-dimensional GBMs can be produced by CVD or
infiltration processes for energy storage and conversion. However, one-dimensional GBFs
are more applicable than GBFs and GBMs for their electrical and mechanical properties.
GBFs are flexible and fabricable; therefore, they can be used in any form and in multifac-
tional applications. Graphene can be produced in monolayer and multi-layer forms based
on the application. The rapid acceptance of graphene as a substance of interest lies in its
actual availability in the preparation technique and perhaps mostly because monolayer
and multi-layer graphene and graphene oxide (GO) have several versatile properties.

Graphene can be chemically modified to obtain inexpensive materials such as graphene
oxide (GO) [92], reduced graphene oxide (rGO) [93], and their derivatives (fGO, frGO and
mG) on a large scale. This chemical modification is done to get fibers, films, porous
frameworks, or modified or hybridized forms to diversify their function. Graphene-
based materials such as GO and rGO have great prospects for use as a material for eco-
friendly wearable e-textiles [41,94–97]. The negative charge in GO helps to generate and
facilitate their association with the fibers/fabrics’ functional groups [98]. Thus, it helps
with the better fixation of textile fabrics and of acquiring flexible, washable, and durable
wearable e-textiles [99].

As graphene was an extraordinary material for future technologies, great emphasis
was given to bulk production [84]. Various bulk production methods have been approached,
including the ‘Hummers’ method for large-scale graphene synthesis [100]. A chemical [101]
or thermal [102] reduction process is performed to procure reduced GO. There are also other
methods to produce GO by ion implantation, CVD [103], mechanical exfoliation, chemical
exfoliation, electrochemical exfoliation, liquid phase exfoliation, and epitaxial growth on
silicon carbide (SiC) [104,105], but many of these are not popular. Graphene can be formed
with other materials containing special characteristics to get a unique composite material.
Nanocomposites such as polymer, active carbon, metal, metal oxide, and carbon fiber
are employed with graphene to get exceptional properties. Polymer nanocomposites are
generally fabricated using GO and rGO as fillers. Graphene-based nanocomposites can be
used as potential applications for energy storage and conversion [106–108], electromagnetic
interference shielding [109,110], and sensors [111]. Activated carbon with graphene is
advantageous for its wide range of availability and relatively good performance due to
its large surface area. Graphene/activated carbon can be used as an electrode (cathode)
in Li-ion batteries [112], high-performance supercapacitors [113,114], and sensors. Metals
such as Pt, Al, Pd, Co, Si, Mg, Cu, Au, Fe, and Ce have been embodied into graphene as
a composite for supercapacitor sensors. Graphene/metal oxide composites are used as
capacitive materials for supercapacitors due to their higher density of energy [115].

The potential application of graphene can be for manufacturing high-capacity batter-
ies [116,117], actuators [118–120], supercapacitors [121,122], more efficient solar cells [123,124],
corrosion prevention [125], circuit boards [126], and medicinal technologies such as the point-
of-care detection of diseases [127], in field-effect transistors [85], transparent electrodes [88,128],
energy storage materials [129], composites [130], chemical and biosensing [131,132], and many
other areas; so many scientists are focusing on the revolutionary nature of graphene and how
it could be commercially utilized into everyday life.

3. Fabrication Processes of Conductive Textiles

Fine metal wires can be combined with textile structures during textile processes like
spinning, knitting, and weaving, but it may come at the sacrifice of flexibility and the
tactile properties of traditional textiles [133]; however, the common alternatives to them
are: modifying textile surface by depositing a conductive layer with the help of additional
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finishing processes such as a deposition [134]; coatings such as dip coating, spray coating,
rod coating, or roller coating on the textile substrate (fiber, yarns, fabrics) [135]; and printing
textiles with conductive materials [136]. The choice of the process depends on the process
parameters and properties such as flexibility, stability, and degree of conductivity of the
final products [59]. The common approaches are described in the following subsections.

3.1. Deposition Method

The deposition is an effective way of applying a thin coating on textile substrates.
Metals or non-metals and intrinsically conductive polymers (ICPs) can be deposited on a
suitable substrate by following three steps: (a) scatter or vapor deposition, (b) employing
sol precursor, and (c) sintering the substrate to start a sol-to-gel transformation [137].

3.1.1. Vapor Deposition

Highly pure and high-performing solid materials, such as metal, nanotubes, and
ICP, are deposited as thin films of one or several layers [138]. The deposition of thin
perovskites is a thin film based on organo-inorganic materials, such as CH3NH3PbX3
(X = I−, Br−, Cl−), which has fascinating optical and electronic properties [139]. A film of
solid and liquid through vapor deposition without solvent has been investigated. In vapor
deposition, vapor can be condensed by two processes: (a) physical condensation or (b) chem-
ical reaction; furthermore, depending on these two processes, vapor deposition is classified
by: (i) physical vapor deposition (PVD) and (ii) chemical vapor deposition (CVD) [140].

1. Physical Vapor Deposition (PVD)

PVD was developed to address the capacity to create a layer with continuous elec-
trical conductivity and the ability to create an element with a specific geometry and di-
mensions, which is not possible in conventional layering technology such as printing,
dipping, etc. [141]. PVD is a process of applying a fine coating of conductive materials on
the textile substrate by the vaporization process. PVD comprises four steps: (a) production
of vapor phase by evaporation of target materials, (b) transportation of the vapor to the
substrate, (c) reaction between the metal atoms and the appropriate reactive gas, and (d)
condensing vapor on the surface of the substrate [51,142,143]. PVD can be deposited in al-
most all materials, such as pure metal, metal, and organic material mixtures such as glasses,
alloys, compounds, and layer systems [144]. Silva et al. studied the PVD of aluminium on
bare Kapton and when it was coated with PVC/PU [145]. The PVC-coated substrate was
the best among the samples for making flexible electronics. Depending on the deposition
technique, PVD can be classified by evaporation techniques (vacuum thermal evapora-
tion, electron beam evaporation, laser beam evaporation, pulsed electron deposition, arc
evaporation, molecular beam epitaxy, ion plating evaporation) [146] and the sputtering
technique [147–149]. A silver coating was deposited on cotton fabric using PVD (vacuum
thermal evaporation) with a Flexicoat 850 coating apparatus to impart conductivity [150].
The same process was used to deposit a nano-coating of Al and Zn on cotton fabric, with
Zn coating having a greater EMI shielding performance than Al-coated cotton fabric [151].

Sputtering is a non-thermal physical vapor deposition technique where molecules
move from the surface of the material through the knocking of high energy particles.
Molecules that emerge from the target material by the shell firing of high energy particles
on the material are condensed on the surface of the substrate to deposit a thin film of the
target material [152]. Park et al. investigated DC magnetron sputtering of an Ni-Fe/Cu
multi-layer (500 nm Ni-Fe/500 nm Cu) thin film to impart conductivity and led to an EMI
shielding effect in the range of 0.7 GHz–6 GHz, which is a better EMI shielding effect than
a pure Ni-Fe and Cu layer [153]. Sputtering deposition of Cu metal is used to make ECG
electrodes for biomonitoring smart wear [154]. Wang et al. reported the very first PVD
of amorphous carbon-coated 3D NiCo2O4 on carbon cloth to make a binder-free flexible
electrode with high dimensional and cyclic stability (535.47 mAhm−1 at 500 mA g−1 for
100 cycles) capacity and electrochemical performances [155]. A better electrochemical
performance was found for NiCo2O4/NiO/C composites on carbon cloth obtained by
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magnetron sputtering PVD of NiCo2O4 nanowires/NiO nanoflakes with cyclic stability
(1051 mAh g−1 for 100 cycles at 100 mA g−1) [156].

2. Chemical Vapor Deposition (CVD)

CVD refers to the segregation or chemical reactions of gaseous reactants near a heated
substrate surface in an activated situation (heat, light, plasma), which will finally form a
stable solid product [157]. Its history goes back to 1893 when De Lodyguine (an electri-
cal engineer and inventor) deposited tungsten onto carbon lamp filaments through the
reduction of tungsten hexachloride (WCl6) by hydrogen (H2). This initiated the pedestal of
the industrial utilization of CVD [158]. Typically, the CVD method is applied to deposit
conductive polymers on the textile substrate (fiber, yarn, fabric) [159]. The fundamental
concept of CVD is a chemical reaction that forms a layer on the substrate from the vapor of
the reagents, leaving the by-products in a volatile form.

Researchers experiment with different kinds of materials by using the CVD method to
make textile materials conductive. FeCl3-coated cotton yarns were exposed to pyrrole vapor,
thereby producing a coated layer of PPy on cotton yarns [160]. The CVD method is adopted for
PPy deposition in various fabrics such as viscose, cupro, lyocell, nylon, PET, etc. [161–163].

The CVD process is a recognized technique for making highly conductive polymeric
layers on different substrates [164]. To get high conductivity and a uniform polymeric
layer on a flexible and rigid substrate, a novel method called Oxidative Chemical Vapor
Deposition (OCVD) was implemented [165]. OCVD is a solvent-free technique that results
in more homogenous, thin, and highly conductive polymer layers on different substrates.
The steps for OCVD of PEDOT include: (i) First, fiber penetration with oxidant (FeCl3)
solution and sub-drying; (ii) then, oxidant-enriched fibers were exposed to EDOT monomer
vapor; and last, (iii) PEDOT-coated fiber doping. It is reported that the CVD technique
could successfully coat PET fabrics with PEDOT, but PEDOT-coated PET fabrics showed
reduced conductivity due to poor fiber contact [166]. PEDOT-coated PET yarn fibers with
good electrical and mechanical characteristics were developed, which could be converted
into woven structures with good electrical properties. Furthermore, viscose yarn was
tested in both the CVD and OCVD processes. Although the OCVD process found a high
conductivity level of 14.2 Scm−1, fewer mechanical properties were obtained at 15 wt%
oxidant concentration on viscose yarn [167].

3.1.2. Layer-by-Layer Deposition (LbLD)

LbLD is a new and simple method of developing a thin film on the substrate at nor-
mal temperature and pressure. Alternate deposition occurs using a poly-ion layer on
solid substrates by dipping into an oppositely charged solution and washing between
each depositing layer. The alternation of the surface charge results in polyelectrolytic
layers on the solid. Charged particles are bound by the electrostatic and Van der Waals
bond [168–171]. The LbLD process has already been applied to impart conductivity to
textile materials in many applications [172,173]. Electromagnetic interference shielding
of cotton fabric by layer-by-layer (LbL) assembly of positive and negative charge MWC-
NTs and nickel ferrite (NiFe2O4) nanoparticles with a PDMS covering to keep the layer
stable was reported [169]. A cationic surfactant is employed to create positively charged
MWCNT, and EDTA is used to functionalize NiFe2O4, which is controlled by the ionization
of both catalysts [169]. The vacuum-assisted spray-LbLD process can deposit MWCNT
without any binder, thereby producing a high degree of binding sites and resulting in better
sensing capabilities [174]. Poly(ethylenimine)/CNTs and ammonium polyphosphate layer
nanocomposite coating were placed LbL on cotton fabrics to generate superior hydrophobic
conductive cotton fabric, and PDMS coating imparted an identical energy density through-
out the surface [175]. LbL deposited Chitosan–graphene cation and PSS anion layers one
after the other on cotton fabric, resulting in an electrical conductivity of 1.67 × 103 Sm−1

for 10 layers [176]. V2O5-nanostructured supercapacitors show low energy density and
electrical conductivity. Deposition of graphene layers between V2O5-coated MWCNT films
prevents congregation and improves the energy density (96 Whkg−1). The graphene layer
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acts as a barrier and improves the durability and capacitance of the device [177]. An LbLD
process featuring a pad-dry-cure method for developing an electrically conductive Ag
nanoparticles–carboxymethyl cellulose composite was reported [178].

3.1.3. Electrochemical Deposition

The electrochemical deposition, or the electrodeposition process, is used to deposit
(composite/single) thick, stiff coats of conductive materials onto textiles, especially metal
particles, with the help of an electric field [179]. In this process, metal ions turn into solid
metal and deposit on the cathode surface [180]. Electrochemical deposition has become so
popular due to its versatile application for the deposition of different kinds of materials such
as metal, metal alloys, composites, nanocoatings [181], ceramic and organo-ceramic materi-
als [182], semiconductors (chalcogenide and oxides) [183], nanocrystalline and nanophase
metallic materials [184], graphene-reinforced metal matrices [185], intrinsic conductive
polymers (PANI, PPy, PEDOT, PEDOT: PSS) [186], carbon-based materials and their com-
posites (CNTs, graphene, carbon/metal) [187], MnO2–carbon-based materials [188], metal
oxides [189], and so on.

Nickel was electrochemically deposited on linen and nylon fabric to produce wearable
radar-visible fabrics. Electrodeposition assembly consisted of an electrolyte (nickel sulphate
hexahydrate, nickel chloride, Boric acid) cathode and anode. The fabric was connected
to the cathode by a platinum strip, and another platinum strip was used as an anode.
Electrochemical deposition was done at 4 V for 15 min [190]. The Box–Behnken technique
of electroless plating of nickel is reported [191]; they noticed that the deposition amount de-
pended on the time and current applied, and Ni was electrodeposited on the Cu nanowires
network to produce a transparent conductive film [192]. A process of targeted electrochem-
ical deposition to produce microelectromechanical devices by employing a non-conductive
mask between the anode and cathode and regulating the electrolyte with a pump was
proposed [193]. Electroless plating on stretchable fabric aids in electrochemical deposition
by providing conductivity to the fabric. Later, the electrochemical deposition of metal
on every fiber with conductive material makes the fabric stable and provides optimum
conductivity [194]. A simple one-step electrochemical deposition method to produce a
metal-organic framework and PPy composite capacitor electrode with the help of dopamine
with better conductivity than a virgin metal-organic framework was presented [195]. MnO2-
deposited capacitors have low electrical conductivity and have been investigated in many
ways to increase this. MnO2 is electrochemically deposited on CNTs to produce pseudo-
capacitors [196]. The electrochemical deposition of MnO2 and PPy composite on carbon
cloth produced a flexible electrode for supercapacitors with a capacitance of 325 Fg−1 and
MnO2-coated CNTs deposited on flexible graphene nanosheets produced electrodes for
supercapacitors with a capacitance of 442.9 F/g [197]. MnO2 deposited on activated carbon
paper improves its capacitance (485.4 F/g) [198]. Kim et al. prepared a flexible photo
sensor that deposits ZnO on Ni-Cu-Ni-coated PET fabric and copper deposited on silane
molecules, which were polymerized with 2-(methacryloyloxy) ethyl trimethylammonium
chloride (METAC)-coated recycled PET nanofibers [199]. Rosa-Ortiz et al. proposed a
method of electrochemical deposition with the help of Hydrogen Evolution that improves
the speed of copper coating and is directly fused to the wearable fabric, which eliminates
the soldering machine [200].

3.1.4. Electroless Deposition

Electroless is an elegant and multipurpose process of conductive metal deposition on
any surface. Apart from other deposition processes, electroless is an autocatalytic chemical
reaction and is done without electrical energy. It can deposit both thickly and thinly
coated films quickly and effectively. It can deposit metals such as silver [201], aluminum,
copper [202], nickel, and iron, which are uniformly and smoothly deposited on the surface
of the textile substrate [51,203]. The main principle uses a reducing agent in a solution for
the chemical reduction of metal ions and deposits them on the substrate’s surface, which
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imparts electrical conductivity to the textile substrate. The chemical reaction involved in
this process is as follows [204]:

S = Sn+ + ne−

Mn+ + ne− = M

Electroless-deposition-produced conductive textiles, such as conductive woven cellu-
lose fabric [205], PET fabric [206], and others, have a wide range of applications. Silver is
deposited with the use of ultrasonics to create a shielding-effective PET fabric [207] treat-
ment with silver nitrate and sodium hydroxide at 130 ◦C for 1 h, which increases the surface
activity and eliminates the need for a catalyst that produces ethylene as a reducing agent,
while ammonia treatment stabilizes the conductive layer [208]. Stretchable conductors are
prepared by depositing silver through electroless plating on polyurethane filaments [209].
PVC is added to thermoplastic urethane during electroless plating, making the silver layer
more adhesive and higher in conductivity.

The electroless deposition of Cu imparts a variety of features to the textile substrates.
Cu is seeded with Ag and coated on cellulosic fabric to make it conductive for the man-
ufacture of a light-emitting diode [205]. Lin et al. made ultra-stretchable conductors that
deposit Cu on polydopamine-coated cotton fabric with a Pd2+ catalyst [210]. Guo et al.
employed AgNO3 instead of PdCl2 to deposit Cu on PET textiles, resulting in a more
uniform metal distribution and denser layer [211], and hydrazine monohydrate (80 wt%)
treatment at 60 ◦C improved the interaction between PET and the Cu layer [212]. The
addition of 3-mercaptopropyltriethoxysilane to PET textiles during a deposition improves
the washing performance [213]. Paquin et al. described a three-step copper deposition on
cotton using Pd or Ag as a catalyst [214]. Cotton fabric can also be activated by Ag and Cu
nanoparticle deposition before the electroless plating of Cu [215]. Cu has been electroless
deposited on cotton fabric using (NH4)2PdCl4 as a catalyst to create a highly conductive
fabric [216]. Laser treatment on cotton fabric improves abrasion resistance [217].

3.2. In Situ Polymerization

In recent years, in situ polymerization has become a popular technology for creating
conductive nanocomposite because of its varied and advantageous approach to polymer-
ization that directly uses 90 mixtures of monomer and nanoparticles with various additives.
Grothe et al. highlighted the differences between in situ polymerization and other surface
modification approaches, such as nanoparticle fusing, and the benefits of in situ polymer-
ization over other methods [218]. Due to the intense interaction between two side-by-side
polymer chains, most conductive polymers are thermally unstable and not soluble in differ-
ent solvents. However, in situ polymerization can polymerize in various ways depending
on the conductive polymer for different applications, such as in situ chemical polymeriza-
tion, in situ electrochemical polymerization, in situ vapor phase polymerization, and in
situ polymerization in a supercritical fluid [219].

Liu et al. mentioned that in situ polymerization can reduce the impedance of the
electrolyte interface and bring interfacial compatibility and stability to solid-state lithium
batteries, thereby simplifying the process of polymerization [220]. Highly electrically
conductive and thermally stable graphene/polyaniline (GN/PANI) nanocomposite was
synthesized by in situ polymerization [221].

In situ polymerization, according to Park et al., aids in the efficient dispersion of
carbon SWNTs in polymer composites in the presence of sonication, which was previously
challenging due to the non-reactive surface of SWNTs [17]. The resulting nanocomposite
is electrically conductive and optically transparent, with improved mechanical character-
istics and thermal stability at low concentrations (0.1% of vol). Hong et al. used ferric
p-toluenesulfonic acid (FepTS) and FeCl3 as oxidants to investigate in situ polymerization
of PEDOT on nylon 6, PET, and poly (trimethylene terephthalate) (PTT) fabrics and com-
pared different properties of PEDOT/nylon-6, which has the best conductivity of all the
nanocomposites; however, PTT/PEDOT is the most stable [222].
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3.3. Coating

A textile conductive coating is a material layer that adheres to a textile structure (fiber,
yarn, or fabrics). These coatings are used to make the textile material conductive or to add
functionality to the textiles. Coating methods are industrial technologies used to adapt the
properties of textiles to those required for technical and specialty applications. The variety
of methods allows for good adaption to end-use requirements [223].

3.3.1. Dip Coating

Dip coating is a simple and cost-effective process commonly used in various industrial
fields for depositing coating material onto any substrate, along with metallic and ceramic
polymer film and textile materials. The process could be interpreted as depositing aqueous
liquid phase coating solutions on the surface of any substrate [224–226]. Conductive
materials are typically dissolved in solutions that are immediately deposited on the surface
of the substrate, after which, to obtain the dry film, the sedimentary conductive wet coating
has to be evaporated. The technique associates submerging the textile material in the
solution of the conductive coating materials, ensuring that the textile material is completely
penetrated and then withdrawn from the solution materials. Notably, this supposedly easy
process of constructing film through dip coating comprises complex chemical and physical
multi-variable norms. The thickness and morphology of depositing thin conductive films
were determined by various criteria such as dipping time, withdrawal speed, dipping cycles,
substrate (textile material) surface, density, viscosity, surface tension, and evaporation of
the conductive coating solution [227–229]. Various modified dip coating techniques, such as
solution dip coating, sol-gel dip coating, multi-layer dip coating, and vacuum-assisted dip
coating, are significant to manufacture deposited films on the surface of textile materials.

Solution dip coating is the most straightforward technique of forming a film on textile
materials’ surfaces and is typically used in increasing production. Since it is the most
commonly used method in textile manufacturing, dip coating is often referred to as starch
finishing or sizing. Solution dip is a user-friendly process to operate and can increase the
efficiency of production. However, on the opposite, the solution of dipping the uniformity
of the coating is weak and the bonding state is relatively poor [229]. Cotton fabric containing
high electrical conductivity has been confirmed to have been established by a two-step
dipping and coating. The cotton fabric was immersed in an acetone solution and rinsed
properly with deionized water after drying in an oven. Then, GO was coated onto the
fabric surface by dipping the modified cotton fabric into GO dispersed solution for two
cycles. After that, a padding process was conducted to remove the excess material using a
pair of rollers and high vacuum pressure [230]. The dipping process is shown in Figure 3.

Ω −

Ω −

Figure 3. The preparation process of silver/graphene-coated cotton fabric, adapted from [230].
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Sol-gel technology is a relatively novel method for endowing unique properties upon
textiles and is affiliated with decreased ecological impacts [231]. Various functional char-
acteristics such as antibacterial function [232], UV radiation protection [233], dye fast-
ness [234], anti-wrinkle finishing [235], super-hydrophobicity [236], and biomolecule im-
mobilization have been introduced by this method. MWCNTs for conductive purposes and
methyltrimethoxy silane for hydrophobicity purposes were coated by the sol-gel process on
cotton fabric [237]. The process involves Sol preparation, which is a mixture of methanol,
distilled water, and MWCNTs of definite concentration and quantity. Following this, the
Sol was mixed well by a magnetic mixer. Then, the cotton fabric was added to the Sol. After
checking several parameters, the ultimate result was 40 kΩ cm−2 [237].

To improve the uniformity characteristics or thickness of the single dip coating film,
the researchers investigated the multi-layer dip coating. A multi-layer dip coating was
studied at a thickness of 90–100 nm and electrical resistance of <400 Ω mm−1 to increase
the conductivity of the PEDOT:PSS-coated fibers, and the density and surface tension of
the conductive coating solution were varied by altering the mixture ratio, by adding a
fluorosurfactant, or by changing the withdrawing speed to achieve a significant, thick
PEDOT:PSS layer [238]. Pu et al. organized a two-step dip coating method to establish
Ag nanowire networks on the surface of PET materials [239]. The PET substrates were
dipped into conductive Ag nanowire solutions and then dried; afterward, the substrate was
coordinated vertically to operate the second-step dip coating. The Ag nanowire-coated PET
substrates with an order-enhanced analog crisscross structure were prepared. Repeating
the multi-layered dip coating method could increase the thickness, improve uniformity,
and manufacture the coatings with desired features. Multi-layered dip coating of various
coating solutions mainly achieves functional superposition by several deposited films.
The fabrication is facile, and it is easy to achieve the multifunctional synergies of each
deposited layer. Furthermore, this multi-layer dip coating process benefits broadening
the applications of fibrous materials, such as supercapacitors, lithium-ion batteries, and
electrode plates.

The vacuum-assisted dip coating method has been introduced to maintain the desired
coverage of nanoparticles on the substrate surface with minimal defects, including metallic
and ceramic fibers. Liu et al. demonstrated a vacuum-assisted LbL assembly technique
to construct electrically conductive substances on textiles to develop multifunctional and
flexible textiles with superb EMI shielding performances, super-hydrophobicity, and a
highly sensitive humidity response [240]. Cotton fabric was coated with a GO nanosheet
via the vacuum filtration deposition method [29]. The woven cotton fabric was treated
with sodium hydroxide solution. Vacuum filtration deposition was used to disperse the
GO nanosheet aqueous solution into the cotton fabric surface to fabricate GO–cotton fabric.
Refluxed graphene and polyvinylidene fluoride (PVDF) were mixed and dissolved in
absolute ethanol. This mixture was then forcibly deposited into the cotton fabric via a
vacuum filtration deposition process, as shown in Figure 4 [29,241].

The spray coating technique uses a spraying device (found on compressed air, such as
with an airbrush or spray gun) to deposit conductive materials on the textile surface by the
breeze. Any substrate can be coated by this simple, economic, fast, and scalable process,
whether it be round or flat, or flexible or rigid [242]. Recently, it has been published that
the spray coating approach that applies PEDOT:PSS conductive materials containing 5 wt%
dimethyl sulfoxide (DMSO) made highly conductive and multifunctional PET fabrics. PET
fabrics were coated with conductive PEDOT:PSS solutions that contain 5 wt% DMSO via
spraying conductive material onto the surface of pre-treated PET fabrics [243].
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Figure 4. Schematic of (a) graphene oxide (GO)-coated cotton fabric fabricated by vacuum filtration
deposition process, (b) PANI-GO-cotton fabric preparation procedure [29] (reprinted with permission
from Elsevier).

3.3.2. Rod Coating

The rod coating process is easy and inexpensive to penetrate the conductive material
on the textile substrate in a continuous and controlled manner (see Figure 5). This technique
can affect the uniformity and condition of penetrated thin conductive thin coat by key
parameters such as the rod’s size, solvents, and conductive solution’s viscosity. The concen-
tration of the coating is influenced by the groove size in the wire-wound rod and depends
on the rod’s diameter. The solution flows through the grooves in the wire-wound rod,
resulting in a thin film deposition at room temperature [242]. Zhang et al. reported a sim-
ple dry-Mayer-rod-coating method that fabricates the conductive sheath/core-structured
graphite/silk fibers and indicates their application as wearable strain sensors [244]. A clip
is used to align the bundle of silk fiber at one end of the flat plate. Then, graphite was put
on the fixed end of the silk fiber and graphite flakes, which were then moved by a Mayer
rod pressed onto the fibers [242].

Figure 5. Fabrication of sheath/core-structured graphite/silk strain sensor through a dry-Mayer-rod-
coating process, adapted from [244].

3.3.3. Roller Coating

The Spandex multifilament yarn was coated with thermoplastic polyurethane/carbon
nanotube (TPU/CNT) conductive polymer composite (CPC) using the roller coating tech-
nique. The conductive mixture was placed into a bath; three rolls pushed the yarn. It was
coated when it rolled over the second roll, which was explicitly immersed in the coating
bath to pick up the conductive material; next, a glass tube entered with hot air moving
through the glass, thereby acting as a drying oven, as shown in Figure 6 [245].

Each coating process has different supremacies that lead to different results. The
advantages and disadvantages of various coating processes are shown in Table 1.
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Figure 6. Roller coating process.

Table 1. Advantages and disadvantages of different kinds of conductive coating processes.

Processes Material Coating Parameters Advantages Disadvantages Ref.

Directly solution
dip coating

Silver/graphene
oxide/cotton fabric

Dipping cycle: 2 user-friendly process weak uniformity

[230]Material to liquor ratio: 1:40

high efficiency rate poor bonding state

impressive conductive
nature with the least surface
resistance of 2.71 ohm/sq.

Gas Pressure: 0.8 Pa

Sol-gel dip coating

Organo-silicon/
graphene/

PET fabrics/
polypropylene fabrics

Padding rate: 1 m/min

coated at nearly room
temperature

more complex
dynamic method

[246]Squeezing roll pressure: 15 kg/cm harsh chemical reaction
on fibrous material

Drying temperature: 105 ◦C

Drying time: 20 min

Multi-layered
dip coating AgNWs/cotton fabrics

Dipping Cycles:1–4 good uniformity relative low efficiency
[247]

multi-layer structure coating

Dipping time: 1 min high electrical conductivity
(2416.46 Sm−1)

Temperature: 50 ◦C eco friendly

Vacuum-assited
dip coating

AgNW/MXene/
silk fabric

Dipping Cycles: 10–50
wide range of substrates

complicated dip
coating devices [240]facilitate coating

solution deposition

Spray coating PEDOT:PSS/
PET fabrics

Drying temperature: 130 excellent control over the
conductive thickness isolated droplets

[243]

suitable for the deposition of
all types of

conductive materials
Non-uniform surface

Liquid flow rate: 2.5 mL/min large scale production

Air pressure: 3 bars

Rod coating Graphite/silk fiber Coating cycles: 10 times
relatively low-cost and

highly efficient fabrication of
GSF fibers

ineffective with high
viscosity liquid. [244]

Roller coating

Thermoplastic
Polyurethane
(TPU)/CNT/

Spandex Multifilament

Inlet temperature: 200 ± 5 ◦C simple and
cost-effective process ineffective with low

viscose liquids

[245]

Dropping temperature: 150 ± 5 ◦C continuous process [248]

Roller speed: 0.45 m/min higher speed
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3.4. Printing

The printing process is a versatile manufacturing method that enhances and facilitates
the field of flexible sensors by providing cost-effective processing routes [249]. Screen
and stencil are the two broadly used printing methods for coating conductive materials to
different substrates, including textiles [250]. Table 2 presents a comparison of the different
printing processes used for fabricating conductive textiles.

Table 2. Advantages and disadvantages of different kinds of conductive printing processes.

Process Materials Printing Parameters Advantages Disadvantages Ref.

Screen printing CNT/cotton fabrics
• Mesh Density: 300
• Drying temperature:

60 ◦C

• cheap
• good efficient process of

forming thick
• Good electrical

conductivity with a surface
resistance of 50.75 Ω/sq

• required high
viscosity and low
volatile liquid

[251]

Inkjet printing

Reactive silver
ink/cotton

fabric/PET fabric/
wool fabric

• Bitmap:100 dpi
• Resolution: 100 steps per

inch in the x and y axes
• Volume of released

drops: ca. 30 nil.
• Sintering temperature:

90 ◦C

• no masking required
• low processing temperature
• based on the drop

in demand
• high resolution printing
• required low viscosity
• achieved surface resistance

range 0.155–0.235 Ω/sq

• limited
printing speed [252]

3D printing
Ninja flex filament/

PEDOT:PSS/
Polyester fabric

• Extrusion temperature:
230◦ C

• Build Plate Temperature:
30 ◦C

• Printing Speed:
800 mm/min

• no need for molds, dyes,
lithographic masks

• high efficiency rate

• limited
printing material

• low
printing resolution

• poor functionalities

[253,254]

3.4.1. Screen Printing

The first evolution of screen printing dates back to the beginning of the twentieth
century. At the time of printing, there was no actual loss of coating solution. The method
is shown in Figure 7 and includes a screen of woven material (i.e., synthetic fiber or steel
mesh) that has been attached to a tensioned frame. The pattern is generated by filling the
screen with an emulsion that is impermeable to the coating solution in regions where no
printing can occur. The region of the printed pattern remains open (without emulsion).
The screen is then packed with a coating solution and brought close to the substrate. The
squeegee is forced to the screen, bringing it into touch with the textile substrate and then
linearly drawn across the screen, pushing the conductive coating solution through the open
regions onto the textile substrate and thus reproducing the pattern [255].

Screen printing is cheap and is highly efficient in providing thick conductive film [256].
Conductive silver-based inks can be applied to various woven and non-woven textile
substances using screen printing to track various vital signs [257]. Sadi et al. have developed
a multifunctional weft-knitted cotton fabric through screen printing of CNT ink for wearable
electronic devices, smart displays, and cold weather conditioners [251]. There are some
difficulties and disadvantages of screen-printed conductive textiles, such as low abrasion
resistance and drying out of the ink on the screen, which destroys the design of the
screen [249]. The screen printing method is not ideal for single output compared to the
direct write printing method [258].
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Figure 7. Illustration of the screen printing process (above) and examples of a laboratory screen
printer (bottom left) and an industrial screen printer (bottom right) [255] (reprinted with permission
from Elsevier).

3.4.2. Inkjet Printing

Digital or direct printing technology is a way of producing low cost and high quantity
conductive materials [259]. Inkjet printing is a way of writing patterns directly to substrates.
Inkjet printing is a simple term characterized by dye drops as ink is poured into specific
positions to form a printed design on a textile substrate with a specified resolution [260].
In essence, the procedure involves the ejection of a fixed quantity of ink in a liquid-filled
chamber in response to applying an external voltage. This abrupt reduction produces a
shock wave in the liquid, which induces a drop in the liquid to eject from the nozzle [261].
The expelled drop comes under gravity and air resistance gained in motion, and the surface
tension helps slow it along the surface [262]. Then, the drop will dry by solvent evaporation.

Kim et al. developed a knit structure printed with silver inks by inkjet printing, which
had a resistance of 0.09 Ω/sq [263]. Low production costs, no masking, non-contact viability,
lower material consumption, low temperature, and quick inkjet printing processing have
gained interest in cost-effective manufacturing processes [264]. The design can be easily
changed as no mask is used [261]. The major advantage of the inkjet printing process is that
the conductive material can be deposited only in the required area on the substrate [265].

3.4.3. 3D Printing

Three-dimensional printing has gained major importance worldwide for its appli-
cation in textiles and fashion [266]. Three-dimensional printing techniques have a pro-
found impact on conductive textiles development with multifunctional purposes [267].
Nanocomposites with CNTs or graphene bases possess 3D conductive polymers [268].
The solvent-cast 3D printing method has been characterized by the application of scaffold
microstructures (conductive nanocomposite) for its various properties, such as thickness,
diameter, and interfilament spacing [269]. Three-dimensional printing of metallic sub-
stances enables it to be used for forging stainless steel electrodes with the help of a suitable
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laser melting machine and can also perform as a pH sensor [270]. Solvent-evaporation-
assisted direct-wire (DW) 3D printing techniques have generated biocompatible polymers
comprised of polylactic acid (PLA) and polyethylene adipate (PEA) with barium titanate
nanoparticles [268]. The Desktop 3D printing method has also enabled the use of CNTs or
graphene as construction materials with electrical and thermal conductivity properties [271].
Boron nitride/polyvinyl alcohol has generated a higher thermal conductivity (1.56 and
2.22) than PVA fabrics and cotton fabrics when fabricated by 3D printing techniques, re-
spectively [272]. The textile substrate can accommodate conductors and antennas with
the 3D direct-wire (DW) dispensing method, which can provide more accurate data [273].
As no dye is required in this direct-wire (DW) method, the geometric shapes can be
conveniently altered [268].

4. Testing for Conductive Textiles

The electrical properties of conductive textile materials require proper characteriza-
tion based on their applications. They are often characterized through determining the
resistance, conductivity, surface resistance or sheet resistance, and EMS (electromagnetic
shielding) of the textile substrates. These tests are usually performed following standards
or by slightly modifying the standards [134].

4.1. Conductivity Testing

The conductivity of textile substrates is mostly measured under a DC power source.
Nevertheless, it was inspected that PPy-coated poly-aramid fabrics showed increased
conductivity under an AC power source due to an electron hopping charge transport
mechanism rather than electron conduction [274–276]. Given this, it is evident that the
electrical characteristics may be different for AC-based applications.

The conductivity of polymer coatings is generally determined using the four-probe
technique according to the ASTM D-4496 standard. According to the method, four electrical
contact terminals are placed in a line at an equal distance on a polymer film. The polymer
film is set up on an insulating surface. In this process, a constant current is employed
between two outer terminals from a current source, and the voltage is measured between
two inner terminals. Conductivity in this method can be calculated from constant current
(I, ampere) applied to the outer terminals and voltage drop across the inner points (V, volt).
With sample thickness (t), we can measure conductivity following Equation (1). [134].

Conductivity, σ =
ln2
πt

I

V
(1)

The resistance of a fiber or yarn of a specific length can be measured using the four-
probe method, two-probe method, multimeters, or by applying the principle of division
measurement with a known resistance and unknown resistance (sample). The resistivity
value is generally expressed as the resistance per unit length—often in Ωcm−1 or Ωm−1.

According to the two-probe method, two contact points are used. The resistance is
calculated by the measured voltage and measured current. The current applied is con-
stant, but a voltage drop over the ammeter limits the measurement’s accuracy. In 2010,
it was observed that the four-probe technique is suitable for inspecting intrinsic elec-
tronic transport properties (behavior of electron transport such as hopping or conduction
based on material type), such as metallic nanowires, given that these nanowires may have
contact resistance, which cannot be avoided in the two-probe method [277]. Moreover,
the four-probe technique is more accurate when the resistance value is small as contact
resistance is eradicated.

Surface resistivity, often expressed as square resistance, is the resistance between two
points of a fabric or coated surface. It is written as Ω per square (Ω/sq), and the value
is not dependent on the distance between contact points [134]. The AATCC (American
Association of Textile Chemists and Colorists) test method 76 is generally exercised to
measure the surface resistivity of conductive fabric or surface. The BS 6254:1984 and ASTM
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D257-07 test methods can also determine sheet resistance. According to the AATCC test
76, two rectangular-shaped copper plates are placed on a fabric specimen. The resistance
(R, resistance) between two copper electrodes is measured, or the current (I, ampere) is
determined by applying DC voltage (V, volts). The width (W) of the sample and the
distance between electrodes (D) are also measured. The surface resistivity can be calculated
using Equation (2) [134].

Rs(Ω/m) =
W

D
·R =

W

D
·
V

I
(2)

The instruments used for these electrical measurements are usually multimeters,
voltmeters, and picometers.

4.2. Electromagnetic Shielding (EMS) Testing

The EMS effectiveness test is a measurement that determines how a textile substrate
performs against electromagnetic interference by weakening it. There is no standardized
method to test the EMS of conductive textiles to this day. The following properties or
parameters of the textile shielding materials used to manufacture textile assemblies or
products for EMI shields are very important to determine [278]:

- Reflection coefficient, which depicts the amount of reflected EM wave under an
impedance discontinuity in the transmission medium;

- Absorption coefficient, which signifies a parameter on how much energy from an
EMR (electromagnetic radiation) wave a material can absorb;

- Transmission coefficient, which indicates the quantity of EMR penetration through a shield.

Determining the effectiveness of EMI shielding or, more distinctly, determining the
attenuation of an EM shield can be very complex as the methods of determining shielding
vary with the particularity of application. To figure out the performance of the planer
shielding structure, a wide range of standards have been adopted [279]. Generally used
techniques for testing shielding strength for plane materials incorporate open-field, coaxial
transmission lines, and shielded room tests [280,281].

4.2.1. Open-Field Test Method

The Open-Field Test method, also known as the free-space method, is more suitable
for flexible, thin textile substrates. This method is used on a finished product or a finished
electronic assembly. The test set-up involves mounting a device at 30 m from a receiving
antenna and recording radiated wave emissions. The test requires a spacious open field
(approximately 900 m2 area) and no metal or conductive object should be present between
the sample and antenna [282].

The measurement procedure of this method contains [282]:

1. Calibration measurement of the transmitted signal without material (P0);
2. Measurements of the transmitted signal as a function of incident angle with material (P1);
3. The ratio of P1/P0 is the power transmittance required to determine complex permittivity.

4.2.2. Shielded Box Method

This method is widely implemented for comparative studies of different shield materi-
als [278]. The test involves a metal box with a port to set samples. A transmitting antenna is
placed outside a box, and the receiving antenna is set inside the box. The transmitter sends the
signal, and the receiver receives the signal through an open port or a sample fitted over the
port. The standard for shielded box methods frequently mentioned is MIL-STD-285-1956—for
the frequency range between 100 kHz to 10 GHz [283]. The measurement ranges in this
method are given below [284]:

• Low range—9 kHz to 20 MHz—applicable for magnetic components (H);
• Resonant range—20 MHz to 300 MHz—applicable for electrical components (E);
• High range—300 MHz-18 GHz (100 GHz)—in case of plane wave power (P).
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The main limitation of this method is the difficulty of achieving proper electrical
contact between the shielded box and the specimen [278].

4.2.3. Shielded Room Method

The shielded room method is the most delicate, and it was developed to overcome the
limitations of the shielded box method. The working principle of this method is the same
as the shielded box method, but each component is isolated from the others in separate
shielded rooms. An anechoic chamber is used to isolate two antennas; moreover, the
specimen size is marginally enlarged by up to 2.5 sqm.

4.2.4. Coaxial Transmission Line Method (Transverse Electromagnetic Cell Method)

This method is the most popular and widely used as it is more suitable for measuring
small-sized and thin conductive textile samples and extended frequency ranges [285]. One
of the main advantages of this method is that the results produced in different labs are
comparable. The ASTM D4935 test method is the most preferred method for measuring
EMSE of textile materials (planar materials) because of a frequency range of 30 MHz to
1.5 GHz operating in a far-field EM wave as well as a plain wave [278]. The measurements
can be executed at a particular frequency range using a modulated signal generator, crystal
detector, and tweaked amplifier [281]. The set-up usually consists of coaxial adaptors,
signal attenuators, and network analyzers [286]. The net shielding effectiveness originated
from absorption and reflection is determined for far-field values. Near-field values may
also be measured for electric (E) and magnetic (H) sources from far-field values determined
prior [282]. This method has a positive side in that it does not require the thickness
measurement of the sample.

A dual TEM (transverse electromagnetic wave) cell method is also used, which allows for
measuring the electric and magnetic polarizabilities of test specimens simultaneously [278].

5. Application of Conductive Textiles

Electrically conductive textiles are used in various fields, such as the medical, sports,
soft robotics, security, and military industries, and as wearable displays [287]. Textile-based
electrical components include electrodes, sensors, wearable antennas, wearable displays,
actuators, and heating devices [288].

5.1. As Electronic Textiles (E-Textiles) for Bio-Sensing and Health Care

People have been investigating the medical applications of electricity in clothing, such
as corsets and belts, as early as the 1850s [289]. The first wearable computer was imagined
in 1955 by Edward Thorp to predict roulette, terminating in a cooperative endeavor at
M.I.T. with Claude Shannon in 1960–1961 [290]. E-textiles, in which electronic functions
are integrated more closely within the textile, evolved from wearable computing in the
early 1990s. A “Wearable Motherboard” (smart shirt) was developed to monitor the vital
signs of humans in an unobtrusive manner, which opened up a new border in healthcare
and telemedicine [291]. Scientists conducted additional research on wearable textiles to
measure blood pressure, blood oxygen saturation, EEG, EOG, periodic leg movement, core
body temperature, and skin temperature in the 2000s [292–296]. A spirometry, a simple test
used to help diagnose and monitor certain lung conditions by measuring how much air
people can breathe out in one forced breath by pinching noses with a clip and holding a
mouthpiece in their mouth, is an uncomfortable condition for the users. An e-textile-based
wearable spirometer, Spiro Vest, was demonstrated to gain more comfort than estimated
lung behavior from torso–girth movements [297]. E-textiles-based stretch sensors were
installed as elbow supports to maintain an ideal setting, and a knitted shirt was used to
simulate a daily use setting to prevent caregiver injury in health and medical science [298].
Based on built-in graphene-clad conductive textiles, elastic bands, and lithium batteries for
power, a fully wearable smart medical garment comfortably worn around the wrists or neck
was reported for ECG monitoring [299]. Sleeping disorders are a major health danger issue
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in high-paced modern society. A smart bedsheet using a triboelectric nanogenerator (TENG)
with pressure sensitivity, large scalability, and washability for real-time and self-powered
sleep behavior monitoring was reported [300]. Waterproof fiber-based strain sensors with
a high gauge factor and outstanding stability are necessary for smart textiles, wearable
devices, and biomedical electronics. To monitor various human motions (e.g., phonation,
pulse, finger bending, and walking), this kind of strain sensor was invented and designed
through a combination of PU yarn, multi-layer graphene nanosheets (GNSs)/thin gold
film (Au)/GNSs, and a PDMS wrapping layer [301]. Recently, a textile magneto-elastic
generator (MEG) was invented that could work as a self-powered sensor for continuous
respiratory monitoring with heavy perspiration without any encapsulation [302].

Smart fabric sensors (SFS) are produced by modifying a fabric extrinsically or intrinsically
for the sensor properties of SFSs. This can be done in various ways, such as the e-textiles
fabrication method, via connectors or electrodes or textile circuitry and elements, encapsulation
techniques, and coating. SFS sensors can be categorized as pressure and force sensors, fabric
strain sensors, optical fabric sensors, fabric sensors for detecting chemicals and gases, and some
parameters such as temperature- and humidity-sensitive fabrics [303]. Sensor development,
fabric-based ECG signals, skin–electrode interface improvement, sensing shirts, and belts for
sleep measurement were investigated. Different parameters, including movement, posture,
and temperature, were reviewed and compared to the innovations in the textile field [304].
Figure 8 shows the construction of an ECG detecting smart garment as an example. The ECG
sensor patches (5) were placed inside the undershirt (“1. 2.” outside and inside faces for men
or the bra strap “3. 4.” for women). (6) Cross-sectional view of the textile electrode (hitoe®).
The cloth of polyester nanofiber (8) was coated by electroconductive polymer PEDOT-PSS
(7, blue circles), and its surface was directly placed on the skin (9). The back side of the
electroconductive textile was fixed on the waterproof layer (12) and the cloth of the underwear
(12). ECG signals were conducted through the textile electrodes (5. 10. 11) to electroconductive
yarn (15) and a snap hook button (14); then, these ECG electrodes and the lead wire were
connected to the ECG transmitter (13).

 

Figure 8. Components of an ECG detecting smart garment. Reprinted from [305].



Signals 2023, 4 22

The electrodes in e-textiles were used specifically to determine biomedical features
such as oxygen, moisture, contaminants, or salinity. Different fabrication techniques can be
used [306]. The application of smart textiles in the physiological field, such as blood glucose
level, blood pressure, respiration rate, body temperature, physical activity monitoring,
and rehabilitation, was discussed [307]. Electronic, pneumatic, and electropneumatic
transducers were studied to measure the interface pressure. The avoidance of sickness
can be attained with this type of soft sensor. The use of wrist wearable instruments
and a central monitoring system were mentioned to enhance the speed of assessing a
patient’s condition. The use of ambulatory devices was investigated for mobility and
improved healthcare [308].

Humans stretch their bodies to their limits during sports activities or leisure-type
amateur training. To get a better result and stretch the personal limit results in muscular
and thermophysiological stresses, the garment does not add any further stress; it should, if
possible, help the athletes sit, get a better result, and prevent sports injuries [309]. A device
named “The Intelligent Knee Sleeve” (IKS) (see Figure 9) was used in football and other
sports training to avoid disabling injuries during movements involving rapid deceleration,
quick changes of direction, and sudden landings. The IKS consists of a simple, elastic
sleeve incorporating disposable PPy-coated nylon-lycra fabric, integrated with appropriate
electronic circuitry (3 V) sensor placed over the kneecap, and provides feedback as audio
to alert the desired flexion limit [310]. During exercise, a major problem is water loss,
including hypersensitivity, headache, dizziness, convulsions, vomiting, increased body
temperature and heart rate, increased perceived power, decreased mental function, and
delayed gastric emptying [311].

 

Figure 9. The intelligent knee sleeve [310] (reprinted with permission from Elsevier).
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A device was invented to detect increased pH levels using polyamide/lycra blended
fabric and a pH sensor for sweat collection and real-time pH monitoring up to 0.2 pH units
in 2008 [312]. To prevent knee injury and determine the user’s bending angle and tensile
deformation, the PU/PEDOT:PSS-based knitted textile sensor integrated with a wireless
transmitter that was used as a knee sleeve was demonstrated [313]. A pre-treatment process
of the surface of organic nanoparticle-based inkjet printable textile was reported, which
enabled all inkjet-printed graphene-based wearable e-textiles to be breathable, comfortable,
and environmentally friendly, and measured the CG signal [262]. Using multiscale disor-
dered porous polyurethane (MPPU) via microfluid spinning, self-sensing and self-cooling
properties were invented. It could reduce the temperature by around 2.5 degrees Celsius
between skin and apparel compared to cotton [314].

5.2. Soft Robotics

Soft robotics is a branch of robotics that involves constructing robot bodies and actua-
tors using extremely soft or expansible materials [315]. Future soft actuation technologies
could utilize conductive textiles as electrode materials of sensing transducers that can be
resistive or piezoresistive with a wide variety of sensing functionality, including shape
reconstruction, bending angle, direction, contraction length, or circumference [316]. Con-
ductive yarns demonstrate electric actuation by changing the distance of twisted fibers
by electromagnetic or electrostatic force [317]. A PVC gel-based actuator comprised of
a PVC inner core and insulated PVC shell was designed. A pair of identical fibers that
were loosely twisted together got closer together and resulted in the elongation of yarn
when voltage was applied to the two fibers’ inner cores. A textile-type and a yarn-type
actuator were constructed, and a maximum contraction strain of 53% and an expansion
ratio of 1.4% were achieved, respectively [318]. A planer DE (Dielectric Elastomer) actuator,
bending DE actuator, and EA (electro-adhesive) actuator have been developed and tested.
Under 9 kV and 6 kV, relative expansion rates of 16.4% and 5% were achieved for the
planer and bending DE actuators, respectively. Additionally, under 5 kV, the shear adhesive
of 0.14 kPa was obtained for the EA actuator. Furthermore, a crawling robot driven by
the above actuators has been developed, traveling 18 mm distance in 3 min [319]. An
octopus-inspired continuum robot arm was constructed based on a conductive textile mate-
rial called Electrolycra (Mindsets Ltd., Saffron Walden, UK) [320]. A bending sensor was
developed for a robotic glove in which a dielectric silicone was employed as the sensing
material, which was placed between conductive knitted electrodes manufactured from
silver-coated yarn.

Additionally, the sensor mat was set parallel to the Wales structure, which was
sounded with extra silicone [321]. Atalay et al. designed a new shape-sensing system based
on electroconductive yarn material integrated into a soft manipulator with pneumatic
actuation, which is suitable for implementation in miniature surgical instruments [321].
Mehmet et al. built an artificial muscle with actuating and sensing functions [322]. The
bimorph tendril-like fiber was created by thermally pulling cyclic olefin co-polymer elas-
tomer and polyethylene. As a resistance strain sensor, a coating of conductive nanowire
mesh was applied to the fiber. The fiber contracted as it was heated, and the electrode’s
resistance monitored the contraction and elongation based on piezoresistive feedback.

Furthermore, a humanoid limb was fitted with sensor-fitted fiber actuators. When
heated with a hot gun, the fiber actuators contracted, causing the artificial limb to bend,
and the resistance change of the electrodes was used to determine the bending angle of the
limb [317]. A highly stretchable and durable conductive knitted fabric was developed and
applied to the covering of a paper–fabric composite-based actuator, which has the potential
as the electronic skin of soft robots. The electrical resistance of the fabric was sustained
under a maximum average membrane strain of 300% in 3D deformation. The fabric was
capable of withstanding more than 1,200,000 cycles of loading under 20% tensile strain and
10,000 abrasion cycles [323].
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5.3. Other E-textiles Applications

The demand for electronic yarn or e-yarn is increasing day by day. A prototype to
produce e-yarn—as can be seen in Figure 10—using the encapsulation process was reported
to be incorporated into the fabric via knitting and weaving machinery that can meet the
demand for electronic textile material [324].

 

⁻

Ω

Figure 10. (a) A schematic diagram showing the e-yarn (electronic yarn) structure, with an LED
(light-emitting diode) protected by a micro pod and surrounded by a knitted sheath. (b) A completed
e-yarn containing an LED (illuminated) shown at 30× magnification (reprinted from [324]).

Due to their softness, breathability, and biocompatibility, wearable e-textiles have
attracted increasing appeal, making them long-lasting and wearable in the long run. A
multifunctional integration system with thermal insulation, Joule heating, and partic-
ulate matter (PM) filter features was reported using conductive nanowires [325]. Sev-
eral companies, including Google, which is developing capacitive touching textiles in its
Google Jacquard project, have recognized the potential of electronic wearable textiles. This
project enables a seamless and dependable wearable computing concept that can assist
customers in performing daily tasks, such as answering phone calls without interrupting
an ongoing activity [326].

5.4. EM Shielding Textiles

The rapid expansion of electronic technologies and the vast spread of advanced
electrical components in automation, communications, space, computations, and other
sectors have introduced the adverse effects of electromagnetic interference (EMI)—mainly
in the radio frequency ranging from 104 to 1012 Hz. Many international radiation regulatory
bodies, such as the Australian Radiation Protection and Nuclear Safety Agency Standard
(ARPANSA) and International Commission on Non-ionizing Radiation Protection (ICNIRP),
have set the safety limit for a specific absorption rate of radiation within 2 WKg−1 of human
tissue [327,328]. Wearable EM shielding has become a crucial demand to prevent adverse
biological effects, such as raising human eye temperature [329], damaging the human
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tissues, leading to childhood cancer [330], and even causing hazardous effects on the
human reproduction system [331] from EM radiation generated from electrical devices.

A distinguished aspect of conductive textiles is that they can interact with electromag-
netic radiation (EMR) by absorbing and deflecting EM waves [278]. This feature facilitates
the employment of conductive textiles in EM shielding devices very solemnly. CNT/PANI-
coated fabrics were developed, which exhibited a low sheet resistance (20.1 ± 1.7 Ω/sq)
along with a moderate range of EMI SE of 23 dB over the frequency range of 4–6 GHz
(C-band) and possessed high EMSE retention against various treatments such as wash,
sonication, acidic, and alkali [332]. Zhu et al. reported eco-friendly EM shielding textiles
consisting of SWCNT, biomass-derived chitosan, and glucaric acid coatings, which retained
a convenient EMI SE of 30 dB and better durability than Ag or Ag/polymer composite-
film-coated textiles [333]. Yin et al. described multi-layered PANI/MXene/CF fabrics
with appropriate EMI shielding properties (26 dB) included with high specific shielding
effectiveness (135.5 dB·cm3/g) [334]. In another study, they coated 1D PANI NW/2D
MXene nanosheets/carbon fiber fabrics with PDS, resulting in an outstanding increase in
EMI shielding performance (SE = 35.3 dB, SSE = 63.8 dB·cm3/g) even at a very low thick-
ness (0.376 mm) with a convenient self-cleaning and air permeability performance, which
would provide great access to commercial EMI shielding textiles [335]. Jia et al. demon-
strated a machine washable, highly conductive (1227 Sm−1) EMI shielding textile prepared
with PU/AgNWs, which exhibited an excellent SE of 63.9 dB—even at a lower density
(0.34 gcm−3) and thickness (0.6 mm) compared to other metallic shielding textiles based on
AgNW, copper nanowire (CuNW), and CNTs—and it could be integrated even in harsh
conditions with long-term EMI shielding durability [336]. Wang et al. reported a water-
resistant, breathable, mechanically robust PDMS-coated nickel ferrite/MWCNTs/cotton
fabrics with a superior EM SE of 84.5 dB in the X-band and an outstanding EMI SE retention
(above 90%) against washing cycles [169]. AgNW/Fe3O4/PDMS coating was integrated on
cotton fabrics, having an outstanding EMI SE of 100.9 dB, which could withstand extreme
acidic (pH = 2) and alkali (pH = 12) conditions and retain about 96% and 99% of SE reten-
tion, respectively [337]. An ultrahigh SE of 106 dB was evaluated for AgNW/PU/carbon
fiber fabrics that retained 95.8 dB of SE even after 100 peeling cycles [338].

Shielding effectiveness (SE) is the total shielding through absorption (SEa), reflection
(SEr), and multiple reflections (SEm). SE due to multiple reflections (SEm) is neglected for
practical applications when the SE due to absorption is higher than 10 dB [339].

5.5. Supercapacitor

With the rising demand for fast charging as well as high energy storing devices and the
growing concern for human comfort in the wearable smart textiles industry, textile-based
supercapacitors are making a revolutionary step due to some of their unique features, such
as their extreme wearability, flexibility, comfort, durability, effective electrochemical redox
performance, and cost-effective production process [340].

The energy storage performance of supercapacitors is mainly dependent on selecting
the electrode and electrolyte materials; moreover, the development of supercapacitors
concerning flexibility with comfort and a combination of supercapacitors with textile fabric
is resulting in a revolution [341–343]. Consequently, a large amount of research has been
done to develop advanced electrode materials for flexible supercapacitors with suitable
structural properties with deformation, stretching, bending, and washability [344,345].

Song et al. reported textile-based electrodes for supercapacitors composed of PANI/G/HCL
through a simple dipping and drying process of graphene on fabrics followed by in situ poly-
merization of aniline, which exhibited an impressive areal specific capacitance of 1601 mF cm−2

at the current density of 1 mA cm−2. In contrast, over 75% of initial area-specific capacitance
was preserved after 10,000 cycles [346]. The deposition of rGO and SnO2 on textile fabric via
supersonic spraying showed the highest specific capacitance of 1008 mF cm−2 at a current
loading of 1.5 mA cm−2, with a capacitance retention of 93% after 10,000 cycles [347].
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Lu et al. designed a flexible electrode with a high specific surface area provided by
metal–organic frameworks (MOFs) and flexibility provided by CNTs [348]. The perfor-
mance of that supercapacitor showed a stable energy supply under cyclic deformations
and even wearable conditions. Mechanically strengthened ultralong MnO2 nanowire com-
posites were developed as a stretchable electrode that showed a specific capacitance of
227.2 mF cm−2 and can be stretched up to 500% without degradation of electrochemical
performance. Around 98% of the initial capacitance after 10,000 stretch-and-release cycles
was performed under 400% tensile strain [349].

6. Challenges and Future Outlook

During the past two decades, conductive textiles have been a promising segment
of textile engineering and have drawn significant research interest. Though outstanding
progress has been achieved in this segment through the relentless effort of researchers, there
are still some challenges that hinder the commercialization of conductive textiles on a large
scale. Most of the textile materials are not conductive, and it is a daunting challenge to make
them conductive by incorporating conductive materials within them. There are several
challenges to conductive textiles, including connectivity, textiles and conductive materials
and their fabrication, and wear of the materials [350]. Besides these challenges, the designer
faces some challenges during the prosperity of conductive textiles, such as mechanical
environment, washability of the textiles, power supplies in the circuit, commercialization,
and cost of the conductive materials [5]. Durability is one of the major concerns for
conductive textiles because textiles are prone to wear abrasion, bending of the coated
materials, and stretching [351]. The mechanical characteristics of textiles sensors resist being
flexible and permeable to air and water [249]. The mass production of conductive textiles is
challenging due to the self-energy generation form and the high number of elements [288].
The textile sensor is one of the widespread areas of conductive textiles in which the
conventional concept of attaching the solid-state electrical components with textile materials
has been turned into flexible e-textiles capable of sensing various phenomena. Until now,
one of the major challenges in this regard is maintaining the efficiency of these textile
sensors compared to the solid components [352]. The challenge with textile connectors is
maintaining the connectivity eminently through the complete textile surface during the
assembling stage of developing wearable e-textiles [353]. The textile composite electrode
has drawn eminent attention to converting conventional batteries and supercapacitors
into flexible energy storage devices. Some challenges are still present to pave the way
for the commercialized production of these flexible electrodes. These possess relatively
higher resistance, reduced mechanical strength of yarn-like electrodes, and lower energy
density than rigid-state batteries and supercapacitors [354]. Higher resistance is mainly
due to textiles’ porous structures and lower intrinsic conductive nature. Textile yarn-like
electrodes seem more vulnerable to mechanical stress, resulting in more yarn breakage
during the fabrication process than conventional yarn [355]. This indicates a challenge to
maintaining the high speed of industrial machinery during the fabrication process of these
electrodes. Future researchers should focus on these challenges of conductive textiles to
pave the way for large-scale commercial production of these materials.

7. Conclusions

This review has highlighted various fabrication methods for conductive textiles with
detailed information about conductive polymers. Research should be carried out to elimi-
nate the disadvantages of various coating and printing methods of imparting conductivity.
Graphene has become the center of fascination for researchers for its extraordinary proper-
ties. Smart textiles with electrical conductivity and signal-sensing capabilities are gaining
more and more attention due to their various applications. E-textiles face many challenges,
such as washability, power supply, product development, and commercialization, from
users’ perspective. There is a huge research gap in this aspect to investigate post-usage
problems and the development of solutions.
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