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a b s t r a c t 

The International Skin Imaging Collaboration (ISIC) datasets have become a leading repository for re- 

searchers in machine learning for medical image analysis, especially in the field of skin cancer detection 

and malignancy assessment. They contain tens of thousands of dermoscopic photographs together with 

gold-standard lesion diagnosis metadata. The associated yearly challenges have resulted in major contri- 

butions to the field, with papers reporting measures well in excess of human experts. Skin cancers can 

be divided into two major groups - melanoma and non-melanoma. Although less prevalent, melanoma is 

considered to be more serious as it can quickly spread to other organs if not treated at an early stage. In 

this paper, we summarise the usage of the ISIC dataset images and present an analysis of yearly releases 

over a period of 2016 - 2020. Our analysis found a significant number of duplicate images, both within 

and between the datasets. Additionally, we also noted duplicates spread across testing and training sets. 

Due to these irregularities, we propose a duplicate removal strategy and recommend a curated dataset 

for researchers to use when working on ISIC datasets. Given that ISIC 2020 focused on melanoma classi- 

fication, we conduct experiments to provide benchmark results on the ISIC 2020 test set, with additional 

analysis on the smaller ISIC 2017 test set. Testing was completed following the application of our dupli- 

cate removal strategy and an additional data balancing step. As a result of removing 14,310 duplicate im- 

ages from the training set, our benchmark results show good levels of melanoma prediction with an AUC 

of 0.80 for the best performing model. As our aim was not to maximise network performance, we did 

not include additional steps in our experiments. Finally, we provide recommendations for future research 

by highlighting irregularities that may present research challenges. A list of image files with reference to 

the original ISIC dataset sources for the recommended curated training set will be shared on our GitHub 

repository (available at www.github.com/mmu-dermatology-research/isic _ duplicate _ removal _ strategy ). 

© 2021 Elsevier B.V. All rights reserved. 

1. Introduction 

Skin cancer is the most common of all cancers, with more peo- 

ple being diagnosed with the condition each year than all other 

cancers combined. There are 9500 new cases being diagnosed ev- 

ery day in the US ( Skin Cancer Foundation, 2017 ). Melanoma, the 

deadliest form of skin cancer, is projected to reach almost half a 

million cases by 2040. This represents a 62% increase since 2018. 

One person dies of skin cancer every 4 minutes. As such, the 

rise of skin cancer incidence is seen by many dermatologists as 

a global epidemic ( Melanoma UK, 2020 ). Early intervention for 

skin cancer, melanoma in particular, is essential to ensure high 
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survival rates in the face of an ever growing number of cases 

( Thörn et al., 1994; Cormier et al., 2015 ). The main identifiable 

cause of skin cancer is excessive exposure to ultraviolet (UV) ra- 

diation ( NHS, 2020a ). This may be due to exposure to natural sun- 

light ( Cancer Research UK ), or from other UV sources such as in- 

door tanning devices ( World Health Organization, 2017 ). Depleted 

ozone levels lead to a rise in ground-level UV radiation which can 

increase the risk of exposure in natural sunlight ( Department for 

Environment Food & Rural Affairs, 2020 ). There is also evidence of 

increased incidence of non-melanoma skin cancer in populations 

living in lower latitude regions where UV radiation levels are high 

( Henriksen et al., 1989 ). Other modifiable risk factors may also 

include poor diet ( Sarnoff and Gerome, 2017 ), alcohol consump- 

tion ( Ruiz, 2018; American Institute for Cancer Research, 2018 ) and 

smoking ( De Hertog et al., 2001 ). 

https://doi.org/10.1016/j.media.2021.102305 
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Dermoscopy is a widely used imaging technique that enables 

the skin surface to be visualised by light-amplification using im- 

mersion fluid ( Kittler et al., 2002 ), however, its diagnostic accuracy 

is highly dependant on the experience of dermatologists ( Brinker 

et al., 2019b; 2019c; Haenssle et al., 2018 ). Scarcity of expert re- 

sources in poorer countries can significantly impact timely treat- 

ment for skin cancers. Many of the publicly available statistics re- 

lating to skin cancer are thought to be underestimates due to is- 

sues such as non-melanoma cases not being tracked by cancer 

registries, incomplete registrations due to successful treatment or 

poorer countries not having cancer registries ( American Institute 

for Cancer Research, 2018 ). 

Due to increased demands that skin cancer cases are incurring 

on global healthcare services, the need for remote automated di- 

agnosis solutions is becoming increasingly important. This is par- 

ticularly pertinent in poorer countries where patients do not have 

access to the latest medical equipment and expertise required for 

accurate diagnosis. Skin lesion classification has become a popu- 

lar field of research in recent years following the growing adoption 

of deep learning techniques in the field of medical image analy- 

sis. However, as the majority of the state-of-the-art solutions are 

data-driven, the reliability and the consistency of open datasets 

are key factors for algorithm development. Therefore, in this pa- 

per we analyse images from the largest dermoscopic open datasets 

released over the past five years - the International Skin Imaging 

Collaboration (ISIC) datasets. The main contributions of this paper 

are as follows: 

1. We analyse the usage of ISIC image datasets with a selection of 

well-cited research papers from the past 3–4 years and identify 

related issues. 

2. We propose a duplicate removal strategy to curate the datasets. 

By removing the duplicate images (overlap images between and 

within the test and training sets), we produced a cleaned (non- 

duplicate) dataset and a balanced dataset. 

3. We benchmark the curated balanced training set using 19 state- 

of-the-art deep learning architectures for melanoma recogni- 

tion. We evaluate the performance of our benchmark algo- 

rithms on the ISIC 2020 testing set (on Kaggle) for binary clas- 

sification (melanoma and non-melanoma), with additional anal- 

ysis on ISIC 2017 testing set. 

4. We provide recommendations for future research and share 

our research findings on our GitHub repository (available 

at www.github.com/mmu-dermatology-research/isic _ duplicate _ 

removal _ strategy ). 

2. Related work 

This section outlines the usage of dermoscopic datasets, focus- 

ing on the ISIC image datasets and issues relating to their use, in- 

cluding research discussing duplicate images, class imbalance, im- 

age resolution and label noise. A growing number of studies have 

demonstrated that CNNs are just as capable as human experts in 

the diagnosis of malignant and benign skin lesions, and in some 

cases are able to out-perform them ( Esteva et al., 2017b; 2017a; 

Brinker et al., 2019b; 2019a; Fujisawa et al., 2019; Pham et al., 

2020; Jinnai et al., 2020 ). A shortage of experienced dermatol- 

ogists in some countries, combined with high observer variabil- 

ity, presents an opportunity to develop solutions that address this 

problem. 

2.1. Usage of ISIC datasets 

We conducted a survey on the usage of ISIC datasets for re- 

search purposes. As ISIC datasets are widely used, it is not possible 

to provide an exhaustive list, however, we have selected some of 

the more prominent well-cited papers from the past 3–4 years for 

our analysis of usage that demonstrate significant contributions in 

the field. Table 1 shows a summary of the 35 papers we surveyed. 

From these publications, only 5 implemented some sort of dupli- 

cate removal. The remaining 30 papers did not mention any form 

of duplicate removal. Additionally, we observe that most of the re- 

cent research used multiple datasets, where the number of papers 

indicating the use of single ISIC datasets was 13, and 22 papers 

indicated the use of multiple ISIC datasets. Given the large num- 

ber of duplicates across the ISIC datasets, we observe that exper- 

iments that utilise multiple ISIC datasets that do not implement 

some form of duplicate removal may exhibit bias in their results. 

Therefore, we propose to perform an analysis to verify the exis- 

tence of such biases. 

The usage of ISIC datasets is broad, with the majority of tasks 

focusing on classification and segmentation. The most popular re- 

search involves binary classification, as these challenges provide 

more images to train the algorithms. With the introduction of 

ISIC 2018 and ISIC 2019, researchers started to explore multi-class 

classification, the majority of which used the ISIC 2020 dataset. 

However, the ISIC 2020 challenge focused on melanoma detec- 

tion, therefore further additional binary classification papers are 

expected. Segmentation tasks appear to be not as popular as le- 

sion diagnosis as ISIC did not continue this challenge type be- 

yond 2019. Only the ISIC 2016–2018 datasets provided delineated 

segmentation masks, and are relatively few in number compared 

to those found in the classification tasks. Other usage of ISIC 

datasets include a study of the effect of colour constancy ( Ng et al., 

2019 ) and data augmentation using generative adversarial net- 

works ( Kendrick et al., 2020 ). 

2.2. Related issues 

In this section we present the issues related to the usage of ISIC 

dataset images, supported by the findings of recent state-of-the-art 

research. 

Image duplication and images exhibiting high similarity within 

datasets used to train CNNs may introduce unwanted bias in the 

resulting models. To address this problem, researchers have inves- 

tigated methods of identifying visually similar images within large 

datasets. Hu et al. (2018) proposed the use of a deep constrained 

siamese hash coding network with binary constrained regulariza- 

tion to detect near duplicate images. They tested their network 

on three datasets and demonstrated an additional load balancing 

method that was shown to further increase performance in terms 

of accuracy and speed. Zhang (2018) adopted a different approach 

to test for image similarity. They implemented a deep CNN us- 

ing a double-channel architecture. Such architectures might prove 

useful in the balancing of deep learning datasets, especially those 

where a high number of samples have been sourced from a low 

number of participants. More recently, a number of researchers 

( Sucholutsky and Schonlau, 2020 ) have suggested that the number 

of unique features contribute more to network performance as op- 

posed to simply increasing the number of input images. Although 

data augmentation is widely used in the majority of previous re- 

search (as shown in Table 1 ), it is unclear if this helps in increasing 

the number of unique features. 

Brinker et al. (2018) and Gessert et al. (2020) showed 

that there was a clear benefit to network performance 

from the inclusion of patient metadata when training CNNs. 

Rezvantalab et al. (2018) conducted experiments on two public 

dermoscopy skin cancer datasets using four CNNs pretrained on 

ImageNet in the classification of eight skin lesion types, including 

melanoma. These networks were trained using the HAM10 0 0 0 

and PH 

2 datasets, the former comprising a large part of the 

ISIC datasets, namely ISIC 2018 - 2020. This work concluded 
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Table 1 

A summary of a subset of research papers that use the ISIC image datasets (non-exhaustive list). ∗Multi-class classification divided into seven classes: (1) actinic keratosis, 

(2) basal cell carcinoma, (3) benign keratosis, (4) dermatofibroma, (5) melanocytic nevi, (6) melanoma, (7) vascular skin lesion. ∗∗Multi-class classification into eight 

classes: (1) melanoma, (2) melanocytic nevi, (3) basal cell carcinoma, (4) benign keratosis, (5) actinic keratosis and intraepithelial carcinoma, (6) dermatofibroma, (7) 

vascular lesions, (8) atypical nevi. ∗∗∗(keratinocyte carcinomas vs benign seborrheic keratosis and malignant melanomas vs benign nevi ∗∗∗∗Three classes: (1) melanoma, 

(2) nevi, and (3) benign. 

Publication Dupl. Removal Datasets No. of Images DA Usage 

Le et al. (2020) Yes HAM10000 7470 Yes Multi-class (7 classes ∗) 

Hekler et al. (2020) Yes HAM10000, ISIC (not specified) 804 No Binary classification 

Rotemberg et al. (2020) Yes ISIC 2020 33,126 No Binary classification 

Bisla et al. (2019a) Yes ISIC 2017, ISIC 2018, PH 

2 , Dermofit 1875 Yes Binary classification 

Bissoto et al. (2019) Yes Atlas, ISIC 2018 3466 Yes Binary classification 

Hasan et al. (2021) No ISIC 2016, ISIC 2017, ISIC 2018 14,044 Yes Binary classification 

Xie et al. (2021) No ISIC 2017/2018 6344 Yes Segmentation 

Brinker et al. (2019a) No train ISIC (not specified), test PH 

2 4204 No Binary classification 

Acosta et al. (2021) No ISIC 2017, PH 

2 malignant 2,742 Yes Binary classification 

Adegun and Viriri (2020a) No ISIC 2017, PH 

2 2860 Yes Binary classification 

Hasan et al. (2020) No ISIC 2017, PH 

2 2750 Yes Semantic segmentation 

(3-class ISIC, binary PH 

2 ) 

Xie et al. (2020) No ISIC 2017, PH 

2 3520 Yes Segmentation and binary 

classification 

Nahata and Singh (2020) No ISIC 2018/2019 35,348 Yes Binary classification 

Ha et al. (2020) No ISIC 2018, ISIC 2019,ISIC 2020 33,000 + Yes Binary classification (with 

9-class output) 

Gessert et al. (2020) No ISIC 2019, 7-point, In-house 27,665 Yes Multi-class (8 classes ∗∗) 

Adegun and Viriri (2020b) No ISIC 2018, ISIC 2019 - - State-of-the-art survey 

Goyal et al. (2019) No ISIC 2017, PH 

2 3520 Yes Segmentation 

Hekler et al. (2019) No HAM10000, ISIC supplement 11,444 Yes 5-class and binary 

classification 

Brinker et al. (2019b) No ISIC 2016, HAM10000 12,378 No Binary classification 

Mahbod et al. (2019) No ISIC 2016/2017 2787 Yes Binary classification + 

seborrheic keratosis 

Hosny et al. (2019) No MED-NODE, Derm (IS & Quest), ISIC 2017 2376 Yes Binary classification and 

Multi-class (3 classes) 

Bisla et al. (2019b) No ISIC 2017/2018, Dermofit, PH 

2 16,270 Yes GAN Segmentation and binary 

classification 

Tang et al. (2019) No ISIC 2016/2017, PH 

2 4079 Yes Segmentation 

Rezvantalab et al. (2018) No HAM10000, PH 

2 10,135 No Multi-class (8 classes ∗∗) 

Carcagn et al. (2019) No HAM10000 10,015 Yes Multi-class (7 classes ∗) 

Tschandl et al. (2019) No HAM10000 10,015 - Multi-class (7 classes ∗), 

State-of-the-art survey 

Sagar and Dheeba (2020) No ISIC (not specified) 3600 Yes Binary classification 

Brinker et al. (2019c) No ISIC 2019 13,737 No Binary classification 

Kassem et al. (2020) No ISIC 2019 25,331 Yes Multi-class (8 classes ∗∗) 

Ratul et al. (2020) No HAM10000 10,015 Yes Multi-class (7 classes ∗) 

Majtner et al. (2019) No ISIC 2016 1279 No Binary classification 

Almaraz-Damian et al. (2020) No HAM10000 10,015 Yes SMOTE Binary classification 

Barbosa and Baleiras (2019) No ISIC 2017 2,750 Yes Binary classification 

Gessert et al. (2018) No ISIC 2018 13,500 Yes Multi-class (7 classes ∗) 

Al-antari et al. (2018) No ISIC 2018 11,720 Yes Multi-class (7 classes ∗) 

Dupl. Removal–authors mention removal of duplicate images, DA–Data augmentation, ISIC (not specified)–year not stated in the paper 

that all models had difficulty discerning between melanoma and 

melanocytic nevi. Additionally, all 4 networks performed poorly 

when classifying actinic keratosis and benign keratosis. 

Class imbalance has been shown to significantly impact model 

performance ( Tschandl et al., 2019 ), with data augmentation being 

used in the training of CNNs as a means of addressing this prob- 

lem. Hosny et al. (2019) conducted six classification experiments 

using AlexNet to achieve > 95% accuracy. They performed two sets 

of experiments on three datasets - ISIC 2017, MED-NODE and der- 

matology information system (DermIS). This work showed that var- 

ious data augmentation techniques combined with adjustments to 

Softmax contributed to significant improvements in output mea- 

sures for networks trained on all three datasets. This work was 

also notable for using a dataset with known low quality images, 

found in the DermIS dataset, which may have contributed to the 

robustness of the classification model. 

Le et al. (2020) devised an ensemble of ResNet50 networks that 

utilised class-weighting with a focal loss function to mitigate the 

inherent class imbalance in the HAM10 0 0 0 dataset, which they 

used as training data. They experimented using a pre-processing 

stage where lesions were segmented. However, this approach re- 

sulted in a reduction in accuracy, suggesting that the area of skin 

surrounding the lesion provides a vital contribution to the discern- 

ing features learned by the network. 

With the recent development of EfficientNet ( Tan and Le, 2020 ), 

Gessert et al. (2020) found that EfficientNet models trained on 

higher resolution images from the ISIC 2019 dataset improved net- 

work performance. This is likely due to the scaling functionality 

inherent within the EfficientNet architecture, where model width 

and depth are scaled uniformly to input size. They also found that 

addressing class imbalance using loss balancing improved network 

performance. 

Hekler et al. (2020) investigated the effects of label noise on 

CNNs for skin cancer classification. This research noted that many 

skin cancer classification studies used non-biopsy-verified training 

images, and that such imperfect ground truth could introduce sys- 

tematic error. They observed a correlation between models trained 

with diagnosis from several dermatologists and high quality re- 

sults on a test set whose labels had been produced by dermatol- 

ogists. They found that CNNs could identify the features that der- 

matologists also identified, but that the CNNs also learned sources 

of errors in dermatological decisions. They also observed that if 
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Table 2 

Summary of the ISIC 2016 - 2020 datasets. 

Note that image counts do not include mask 

and superpixel images. 

Dataset Train Test Total 

ISIC 2016 900 379 1279 

ISIC 2017 2000 600 2600 

ISIC 2018 10,015 1512 11,527 

ISIC 2019 25,331 8238 33,569 

ISIC 2020 33,126 10,982 44,108 

a CNN trained with majority decisions was tested on a biopsy- 

verified ground truth, there was a significant decrease in perfor- 

mance, with accuracy dropping from 75.03% to 64.24%. However, 

there were several limitations in this study, namely (1) they used 

only 804 test and training images; (2) they tested only one deep 

learning architecture (ResNet50 pretrained on ImageNet); (3) all 

lesions assessed were biopsied, which are naturally more difficult 

to classify, and therefore represent edge cases, with the authors 

noting that the introduction of simpler cases would likely increase 

network accuracy. 

Researchers in medical image analysis of skin cancer who use 

dermoscopic image datasets for the early detection of skin can- 

cer and malignancy assessment are focused on developing new 

computer algorithms. However, issues inherent within the datasets 

used are often overlooked or under researched. In the following 

section we analyse the largest and most widely used dermoscopic 

datasets, namely, the ISIC datasets. 

3. Datasets 

The ISIC challenges have become a driving force for research 

into melanoma classification. They provide biopsy-proven digital 

high resolution skin lesion image datasets, with expert annota- 

tions and metadata from around the world. The aim is to pro- 

mote research in the field, which will lead to the development of 

automated Computer Aided Diagnosis (CAD) solutions for the di- 

agnosis of melanoma and other cancers. This community also or- 

ganises yearly skin lesion challenges to attract wider participation 

of researchers to improve the diagnosis of CAD algorithms and to 

spread awareness of the growing problem that skin cancer repre- 

sents ( Codella et al., 2018b ). Table 2 shows a summary of the num- 

ber of images within the ISIC datasets (2016–2020). We note that 

the number of images has increased substantially every year since 

its introduction. 

The ISIC 2016 dataset ( Gutman et al., 2016 ) contains 900 train- 

ing images and 379 test images, a total of 1279 images. Ground 

truth data is provided for both training and test sets, indicating if 

each lesion is malignant or benign. This dataset has limited future 

use, as in clinical practice dermatologists often identify the specific 

types of malignancy and benignancy. 

The ISIC 2017 dataset ( Codella et al., 2017 ) contains 20 0 0 train- 

ing images and 600 test images, a total of 2600 images. Ground 

truth and patient metadata are provided for both training and 

test sets, indicating if the lesion is one of four class groups: (1) 

melanoma; (2) nevus or seborrheic keratosis; (3) seborrheic ker- 

atosis; or (4) melanoma or nevus. The patient’s approximate age 

and gender are also provided as additional metadata. Table 3 

shows the detailed split of class distribution for ISIC 2017 - 2020. 

In 2018, ISIC shared a more substantial dataset ( Codella et al., 

2018a; Tschandl, 2018 ) which contains 10,015 training images and 

1512 test images, a total of 11,527 images. Ground truth data is 

provided for the training set only, which includes more detailed 

lesion type labels, including melanoma, melanocytic nevus, basal 

Table 3 

Class distribution within the ISIC 2017 - 2020 training sets. Note that all un- 

known cases for ISIC 2020 are diagnosed as benign. 

Class 2017 2018 2019 2020 

Melanoma 374 1113 4522 584 

Atypical melanocytic proliferation - - - 1 

Cafe-au-lait macule - - - 1 

Lentigo NOS - - - 44 

Lichenoid keratosis - - - 37 

Nevus - - - 5193 

Seborrheic keratosis 254 - - 135 

Solar lentigo - - - 7 

Melanocytic nevus - 6705 12,875 - 

Basal cell carcinoma - 514 3323 - 

Actinic keratosis - 327 867 - 

Benign keratosis - 1099 2624 - 

Dermatofibroma - 115 239 - 

Vascular lesion - 142 253 - 

Squamous cell carcinoma - - 628 - 

Other / Unknown 1372 - - 27,124 

Total 2000 10,015 25,331 33,126 

cell carcinoma, actinic keratosis, benign keratosis, dermatofibroma 

and vascular lesions. 

In the following year, the ISIC 2019 dataset ( Tschandl, 2018; 

Codella et al., 2017; Combalia et al., 2019 ) was released. This 

dataset contains 25,331 training images and 8238 test images, a 

total of 33,569 images. Similar to ISIC 2018, ground truth data is 

provided for the training set only, indicating the following classes: 

melanoma, melanocytic nevus, basal cell carcinoma, actinic kerato- 

sis, benign keratosis, dermatofibroma, vascular lesions and squa- 

mous cell carcinoma. The testing set consists of 9 classes, 8 classes 

as in the training set plus an additional unknown class. Patient 

metadata is provided for both training and testing sets. The train- 

ing metadata indicates the patient’s approximate age, anatomical 

site, lesion ID and gender. Lesion ID is specified for 23,247 images, 

and unspecified for 2084 images, with 11,848 unique IDs from a 

total of 25,331 images. The testing metadata indicates the patient’s 

approximate age, anatomical site and gender. The ISIC 2019 dataset 

is also notable for including multiplets of single lesions which fea- 

ture the same lesion at different zoom levels which may provide 

important unique features at different levels of magnification. 

In 2020, the largest ISIC dataset was released ( Rotemberg et al., 

2020 ) which contains 33,126 training images and 10,982 test im- 

ages, a total of 44,108 images. Similar to the previous year, ground 

truth data is provided for the training set only, indicating patient 

ID, lesion ID, gender, approximate age, anatomical site, diagnosis 

(see Table 3 ) and benign or malignant status. Of the 33,126 images 

in the training set, there are 2056 unique patient IDs and 32,701 

unique lesion IDs. This would suggest that a large number of lesion 

images have been sourced from a relatively small pool of patients 

at different intervals. The test set also includes patient metadata 

indicating patient ID, patient approximate age, anatomical site and 

gender. 

The ISIC datasets (2016–2020) comprise of 18 underlying sub- 

datasets. A summary of these sub-datasets is shown in Table 4 . We 

obtained these figures from the ISIC Archive Gallery ( ISIC, 2020 ). 

The first observation on overlap images can be seen in the 

ISIC 2018 - 2020 datasets, which include the HAM10 0 0 0 dataset, 

comprising 10,015 training images and 1511 test images, a total of 

11,526 images. Moreover, the ISIC 2019 and 2020 datasets include 

the BCN20 0 0 0 dataset, a total of 19,424 images, which includes le- 

sions found in hard to diagnose locations such as nails and mucosa. 

Note that we excluded segmentation masks and super-pixel images 

from our experiments and analysis. 

As shown in Table 3 , there are a total of 16 classes and 70,472 

images for ISIC training sets 2017 - 2020. We note that although 
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Table 4 

Composition of the ISIC datasets (2016–2020). 

Sub-dataset No. of Images 

2018 JID Editorial Images 100 

BCN 20,000 12,413 

BCN 2020 Challenge 7311 

Brisbane ISIC Challenge 2020 8449 

Dermoscopedia (CC-BY) 5 

HAM10000 10,015 

ISIC 2020 Challenge - MSKCC contribution 11,108 

ISIC 2020 Vienna (part 1) 2231 

ISIC 2020 Vienna (part 2) 2143 

MSK-1 1100 

MSK-2 1535 

MSK-3 225 

MSK-4 947 

MSK-5 111 

SONIC 9251 

Sydney (MIA/SMDC) 2020 ISIC challenge contribution 1884 

UDA-1 557 

UDA-2 60 

Total 69,445 

Table 5 

Train and test splits for individual ISIC datasets associated 

with classification tasks. 

Dataset Task No. Train Test Total 

2016 3 900 379 1279 

2017 3 2000 600 2600 

2018 3 10,015 1512 11,527 

2019 1 25,331 8238 33,569 

2020 - 33,126 10,982 44,108 

Split Total - 71,372 21,711 93,083 

the total number of images has doubled from 2019 to 2020, the 

dataset remains imbalanced, with deficiency in actinic keratosis, 

dermatofibroma, vascular and squamous cell carcinoma. We also 

note the significant reduction in the number of melanoma exam- 

ples between the 2019 and 2020 training sets, in addition to the 

large number of unknown cases present in the 2020 training set. 

To analyse and compare the datasets, we downloaded the ISIC 

datasets from 2017 to 2020. The following section describes the 

approaches that we used to analyse these datasets. 

4. Method 

This section details the following: (1) the implementation of 

a proposed duplicate removal strategy to address class imbalance 

within and across the ISIC datasets; (2) following the implementa- 

tion of our proposed duplicate removal strategy, we curated a new 

cleaned and balanced dataset (henceforth curated dataset), using 

images from the ISIC 2017 - 2020 datasets (ISIC 2016 was excluded 

due to missing labels of the type melanoma and non-melanoma); 

and (3) we train a selection of the most widely used pretrained 

deep CNNs using our curated dataset and report on the benchmark 

results. 

4.1. Duplicate removal strategy 

As an initial preprocessing stage, we removed all 20 0 0 super- 

pixel images contained in the ISIC 2017 training dataset and all 

600 superpixel images contained in the ISIC 2017 test dataset. A 

summary of all datasets following the removal of all superpixel im- 

age files is shown in Table 5 . Task number refers to the task num- 

ber category on the ISIC dataset website, as some datasets are split 

into tasks for each year. We only used datasets from classification 

tasks, where comma-separated value (CSV) ground truth labelling 

was available for the corresponding training set. Table 6 shows a 

Table 6 

Summary of binary identical image files 

within individual ISIC datasets. Note that 

these figures do not include downsampled 

duplicates. 

Dataset Train Test Train & Test 

2016 1 0 3 

2017 0 2 2 

2018 2 0 0 

2019 50 0 0 

2020 433 78 0 

Table 7 

Summary of downsampled duplicate image files 

where the ISIC code in the downsampled file name is 

the same as a non-downsampled file name. Note that 

all downsampled image files are part of the 2019 

training set. 

2016 2017 2018 2019 2020 

Train 291 1283 0 0 0 

Test 95 594 0 0 0 

summary of binary identical image files present in each dataset. 

The total number of binary identical duplicate image files found 

across all training sets is 12,039. This includes duplicates found 

both within individual training sets and across training sets. The 

total number of binary identical duplicate image files across all test 

sets is 1,592, which includes duplicates found both within individ- 

ual test sets and across test sets. The total number of binary iden- 

tical image files across all training and test sets is 13,976 which 

includes duplicates found both within individual training and test 

sets, and across training and test sets. 

The main aim of our experiments was to remove duplicates 

from the training sets only, as we would be evaluating our base- 

line results on the ISIC 2020 challenge website. Duplicates were 

removed in year order, e.g. remove all 2016 training set duplicates, 

then remove all 2017 training set duplicates, etc. The 2019 train- 

ing set contains a subset of 2074 downsampled image files, de- 

noted by the filename suffix “_downsampled”. These are images 

that have been reduced in size (height and width) so would not be 

identified by algorithms that check for identical binary data. There 

were no images containing the “_downsampled” suffix in any other 

training or testing set. No formal description of the downsampled 

images is provided on the ISIC 2019 challenge website or in the 

associated challenge papers. We identified a total of 2263 dupli- 

cate image files in the downsampled set where the ISIC code in 

the downsampled image file name is the same as the ISIC code 

in a non-downsampled image file name. A summary of the down- 

sampled duplicates is shown in Table 7 . Given that duplicates may 

exist within training sets, within testing sets and across training 

and testing sets, we devised a duplicate removal strategy, compris- 

ing the following stages: 

1. Delete all image files from the 2019 training set where the fol- 

lowing criteria are satisfied: (i) the filename contains the suffix 

“_downsampled”; and (ii) the filename contains the ISIC code 

found in any other image file in any of the testing sets. 

2. Delete all image files from the 2019 training set where the fol- 

lowing criteria are satisfied: (i) the filename contains the suffix 

“_downsampled”; and (ii) the filename contains the ISIC code 

found in any other image file in any of the training sets. 

3. Delete all duplicate binary identical image files across all train- 

ing sets (2016–2020). 

4. Delete all image files from each individual training set where a 

duplicate is found in any of the test sets. 
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Table 8 

Number of image files deleted from each ISIC training set af- 

ter applying our duplicate removal strategy. Note that figures 

include both binary identical duplicates and downsampled du- 

plicates in the 2019 training set. 

Year Task No. Images Removed Images Remaining 

2016 3 826 74 

2017 3 801 1199 

2018 3 10,015 0 

2019 1 2235 23,096 

2020 - 433 32,693 

Total - 14,310 57,062 1 

1 Note: this total differs from the total number of images we 

used in our combined training set as we did not use the 2016 

dataset. 

Fig. 1. Illustration of images identified by ImageHash with high similarity, cutoff = 

5 (a and b); cutoff = 1 (c and d). 

The total number of duplicate image files deleted from all train- 

ing sets is 14,310, of which 1927 downsampled duplicate image 

files were deleted from the 2019 training set. Table 8 shows a sum- 

mary of image files deleted from each training set, and the number 

remaining, after applying our duplicate removal strategy. We note 

that the deletion of all of the 2018 training set is due to the 2018 

training data comprising the HAM10 0 0 0 dataset, which was used 

in its entirety in subsequent ISIC datasets. Additionally, we do not 

count multiplets as duplicates, given that they represent lesions at 

different levels of magnification with slight variations in angle and 

lighting. As a final checking stage, we counted the number of bi- 

nary identical files across all training sets, with a total of zero du- 

plicate image files found. 

Following the completion of stages 1–4 of our duplicate re- 

moval strategy, we conducted experiments using four image sim- 

ilarity algorithms to determine if there were any other examples 

of downsampled images that had not yet been identified. First, 

we tested the ImageHash Python library which uses multiple im- 

age hash algorithms (average, perceptual, difference and wavelet) 

to analyse the image structure on luminance without colour in- 

formation. The colour hash algorithm analyses the colour distri- 

bution and black and gray fractions without position information 

( Buchner, 2020 ). We tested this method with cutoff values set to 

5 and then to 1 on a random selection of training images for 72 

hours. No exact matches were found within this time frame, how- 

ever, we report on two examples of the false positives identified 

by the algorithm (see Fig. 1 ). Note that lower values indicate closer 

similarity. 

Fig. 2. Illustration of images identified by MSE with high similarity (MSE < 100). 

Fig. 3. Illustration of images identified by SSIM with high similarity (SSIM > 0.8). 

Fig. 4. Illustration of images identified by cosine similarity with high similarity ( > 

0.9). 

The second image similarity method we tested was mean 

squared error (MSE) which tests for image similarity by calculating 

the sum of the squared difference between the two images, result- 

ing in an estimate of the perceived errors. An MSE value of zero 

indicates perfect similarity, with larger values indicating reduced 

similarity. Although this was faster than the ImageHash algorithm, 

the results were all false positives when tested over a 72 h period 

on a random selection of training images. See Fig. 2 for two such 

examples. Note that the closer the value is to zero, the closer the 

similarity. 

The third image similarity method we tested was the Struc- 

tural Similarity Index Measure (SSIM) which models the perceived 

change in the structural information of the image ( Zhou Wang 

et al., 2004 ). After testing for 72 hours on a random selection of 

the training images, this method resulted in only false positive re- 

sults (see Fig. 3 ). Note that a value of 1 indicates perfect similarity. 

For the fourth image similarity method, we tested cosine sim- 

ilarity. This method measures the similarity between two vectors 

of an inner product space using the cosine of the angle between 

two vectors, and determines whether the two vectors are point- 

ing in roughly the same direction ( Han et al., 2012 ). After testing 

for 72 hours on a random selection of training images, this method 

also resulted in only false positive results (see Fig. 4 ). Note that the 

closer the value is to 1, the closer the similarity. 

Although none of the image similarity methods we tested were 

able to identify any identical images, the application of image sim- 

ilarity techniques might be employed in future studies in order 

to reduce the over-representation of features within datasets. This 
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Fig. 5. Illustration of (a) cropped lesion; (b) obfuscation of lesion by dermoscope 

measurement overlay; (c) lesion obfuscated by hair; (d) presence of clinical mark- 

ings; (e) presence of circular size reference stickers; (f) presence of physical ruler; 

(g) presence of immersion fluid causing distortion of lesion; (h) presence of immer- 

sion fluid air pocket. 

may help to improve a network’s ability to generalise. However, 

such an approach would need to be carefully considered, as the 

removal of too many images may result in the opposite desired ef- 

fect, causing a reduction in the model’s ability to generalise. 

All stages of our duplicate removal strategy were completed us- 

ing the Linux application FSlint, created by Brady (2014) , which 

uses rigorous file comparison techniques that compare file size, 

hardlinks, Message Digest 5 (MD5) and Secure Hash Algorithm 1 

(SHA-1). MD5 is used to check both the first 4 kilobytes of a file 

and the entire file, whereas SHA-1 is used to check the entire file. 

Other notable observations of images found within the training 

sets which may impede model performance include: 

• Images may be heavily cropped - removing large amounts of 

the lesion and/or normal skin boundary regions (see Fig. 5 (a)). 
• Images may exhibit dermascope measurement overlays, some- 

times obfuscating the lesion or lesion boundary (see Fig. 5 (b)). 
• Images may contain varying amounts of hair, which has been 

shown to impede model performance ( Le et al., 2020 ) (see 

Fig. 5 (c)). 

Fig. 6. Illustration of (a) duplicate image with different filenames (ISIC_0016018.jpg 

and ISIC_0012271.jpg) found in the 2017 training and testing sets; (b) duplicate im- 

age with the same filename (ISIC_0029847.jpg) found in the 2018 and 2019 training 

sets; (c) duplicate image with the same filename (ISIC_0011132.jpg) found in two 

training sets (2017, 2019) and one testing set (2016); (d) duplicate image with dif- 

ferent filenames (ISIC_5448850.jpg and ISIC_9881235.jpg) found in the 2020 train- 

ing set. 

• Images may contain clinical markings around the lesion (see 

Fig. 5 (d)). 
• Images may contain size reference stickers placed close to the 

lesion (see Fig. 5 (e)). 
• Images may contain physical rulers placed close to the lesion 

(see Fig. 5 (f)). 
• Images may show pockets of air, a result of the application of 

immersion fluid used during a dermoscopic examination (see 

Fig. 5 (g) and (h)). 

Fig. 6 shows examples of images with duplicated file names and 

duplicate images with different file names found both within indi- 

vidual datasets and across multiple datasets. The ISIC 2019 train- 

ing set contains 2074 image files with the suffix “_downsampled”. 

We observed that although the image dimensions for many of 

these files had been reduced compared to the non-resized originals 

found in other training sets, the file sizes were often more than 

double that of the original non-resized images. This is most likely 

a side-effect of using a lower compression rate when the images 

were resized in order to avoid introducing additional compression 

artefacts. Fig. 7 shows two examples of downsampled images that 

fall into this category. 

We observe that there may be edge cases where our duplicate 

removal strategy may have missed some duplicates. E.g. an image 

may have been resized, but does not contain the “_downsampled”

suffix in the filename, or duplicates (of a different image size) may 

also have different filenames. However, we believe that our strat- 

egy will at least provide a basis for removing a large number of 

duplicates, which could help to eliminate bias and to enable net- 

works trained on the ISIC datasets to better generalise to new data. 

We note that for the ISIC 2016 dataset, the ground truth data 

does not indicate if a lesion is of melanoma type. Only the ma- 

lignant and benign status is defined. Given that not all malignant 

skin cancers are melanomas ( NHS, 2020b ), we did not include the 

ISIC 2016 data in any of our experiments reported in this paper. 

For researchers who do not intend on uploading their results 

to the ISIC competition website, we recommend an additional step 

for duplicate removal. This step would involve the removal of all 

duplicates found across all test sets. For our study, we did not per- 

7 



B. Cassidy, C. Kendrick, A. Brodzicki et al. Medical Image Analysis 75 (2022) 102305 

Fig. 7. Illustration of downsampled image files that have a larger file size 

compared to the non-resized original files: (a) duplicate image found in 

the 2016 (ISIC_0 0 0 0 019.jpg; 1504x1129; 107.6KB), 2017 (ISIC_0 0 0 0 019.jpg; 

1504x1129; 107.6KB) and 2019 (ISIC_0 0 0 0 019_downsampled.jpg; 1024x768; 

211.7KB) training sets; (b) duplicate image found in the 2016 (ISIC_0 0 0 0 030.jpg; 

1503x1129; 95.1KB), 2017 (ISIC_0 0 0 0 030.jpg; 1503x1129; 95.1KB) and 2019 

(ISIC_0 0 0 0 030_downsampled.jpg; 1024x769; 195.6KB) training sets; Both examples 

exhibit a file size more than double that of the original image file. 

form this final step as our intention was to submit our results to 

the ISIC competition website. 

Our initial experiments showed that the significant class imbal- 

ance in the curated dataset resulted in model over-fitting, despite 

the use of categorical crossentropy as a means to address the im- 

balance. For our subsequent experiments, we balanced the dataset 

using undersampling by removing images from the majority class 

(non-melanoma). We refer to this dataset as the curated balanced 

dataset. 

The ISIC 2020 dataset includes patient ID for each image. As 

a further dataset cleaning step to make the data more heteroge- 

neous, it might be appropriate to include only images from unique 

patient IDs. We observed that from a total of 33,126 images in 

the ISIC 2020 training set, there are 3078 unique patient IDs and 

30,048 duplicates. With duplicate patient IDs removed, there are a 

total of 428 melanoma and 2650 non-melanoma cases. In the ISIC 

2020 test set, there are a total of 10,982 images with 690 unique 

patient IDs and 10,292 duplicates. With such a limited number of 

patient examples, and the very low number of unique melanoma 

cases, this may represent a bias in the dataset which could af- 

fect the robustness of models trained exclusively on this dataset, as 

limited unique cases might not represent the general public from 

different skin types. However, patients may have presented the 

same lesion over a period of time during different clinical visits, 

thus the lesions may provide important unique indicators at dif- 

ferent stages of development. Additionally, a patient may present 

more than one lesion. 

4.2. Recommendations of curated datasets for training 

Our duplicate removal strategy resulted in a curated dataset 

with a total of 45,590 image files in the training set (3,924 

melanoma and 41,6 6 6 other) and a total of 11,397 image files in the 

validation set (981 melanoma and 10,416 other). The total number 

of image files is 56,987 (4,905 melanoma and 52,082 other). Users 

may consider using this curated dataset if they have high perfor- 

mance machines and additional datasets to balance the classes. 

Due to the high level of class imbalance (with a ratio of 1:10.62 

for melanoma versus others), we recommend a cleaned and bal- 

anced dataset (curated balanced dataset). This resulted in a total 

of 7848 image files in the training set (3924 melanoma and 3924 

others) and 1962 image files in the validation set (981 melanoma 

and 981 others). The total number of image files is 9810 (4905 

melanoma and 4905 other) with a 1:1 ratio. For this study, since 

we are focusing on ISIC datasets only, we will analyse and experi- 

ment using the curated balanced dataset. 

To study the distribution of the curated balanced dataset of 

9810 training images, we perform statistical analysis and analyse 

its distribution using Unified Uniform Manifold Approximation and 

Projection (UMAP), devised by McInnes et al. (2018) . 

UMAP is a dimensional reduction tool based on manifold learn- 

ing. McInnes et al. (2018) demonstrated that UMAP is a compet- 

itive tool when compared to t-SNE, which has been shown to be 

less computationally expensive. Fig. 8 shows the UMAP visualisa- 

tion data feature distributions (input, EfficientNetB0, top dropout 

layer, dense layer and output), where blue regions represent non- 

melanoma and orange regions represent melanoma. It is noted that 

after training with EfficientNetB0, the two classes become separa- 

ble, which is further supported by the statistic metrics in Table 9 . 

On the input distribution, the intra-class and inter-class values 

show high similarity. 

We can observe that moving from the input dataset through the 

feature vector of EfficientNetB0 to the dense layer that both intra- 

class and inter-class values increase, which indicates a better sepa- 

rability of the dataset. This is further confirmed by higher values of 

the silhouette score and Calinski-Harabasz index. We observe that 

the feature distribution of EfficientNetB0 shows that the inter-class 

distance (18.6252) is larger than the intra-class distances (7.6235 

for melanoma and 8.6028 for non-melanoma). 

Recent developments in the field have shown a growing em- 

phasis on models capable of multi-class predictions ( Codella et al., 

2018b; Kassem et al., 2020 ). Due to the growing importance of 

multi-class CNNs in this domain, we conduct further analysis on 

multi-class using our curated dataset, and evaluate the perfor- 

mance on the ISIC 2018 test set (Task 3: multi-class lesion di- 

agnosis) ( Codella et al., 2018b ). Task 3 ISIC 2018 consists of 7 

different types of skin lesions, including Melanoma (MEL), Nevi 

(NV), Basal cell carcinoma (BCC), Actinic keratosis / Bowens disease 

(intraepithelial carcinoma) (AKIEC), Benign keratosis (BKL), Der- 

matofibroma (DF) and Vascular (VASC). The curated dataset con- 

sists of 4905 MEL, 11,421 NV, 3316 BCC, 859 AKIEC, 2520 BKL, 239 

DF and 253 VASC, respectively. Fig. 9 illustrates the UMAP visuali- 

sation data feature distribution of multi-class. Due to factors such 

as class imbalance and image similarity, the composition of the 

dataset presents a significant challenge for skin lesion diagnosis, 

with overlaps on every stage during training. It is noted that the 

value of Calinski-Harabasz, silhouette score and Davies-Bouldin in- 

dex indicate low separability for distribution, with some improve- 

ment from input distribution (411.8463, -0.0613 and 12.3489) after 

training with EfficientNetB0 (928.5820, -0.1254 and 3.9409). 

To allow for reproducibility of this work, the list of 

image files and corresponding labels can be downloaded 

from our GitHub repository (available at www.github.com/ 

mmu-dermatology-research/isic _ duplicate _ removal _ strategy ). 

4.3. Benchmarks 

For baseline experiments, we trained 19 of the most widely 

used deep learning architectures: DenseNet121, DenseNet169, 

DenseNet201, EfficientNetB0 - B4, InceptionResNetV2, InceptionV3, 

ResNet50, ResNet50V2, ResNet101, ResNet101V2, ResNet152, 

ResNet152V2, VGG16, VGG19 and Xception. For training data, we 

used an 80:20 split for training and validation using our curated 

balanced dataset based on images from the ISIC 2017 - 2020 

datasets. Transfer learning was not used for any of the experi- 

ments, as the purpose of this paper is to provide baseline results 

without additional strategies. 

We trained each of the 19 networks for 50 epochs with a batch 

size of 32 using stochastic gradient descent with an initial learning 

rate of 0.01 and momentum of 0.9. We implemented early stop- 

ping, until each network converged, determined by a patience of 

10 epochs. For pre-processing, all images were resized, with the 
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Fig. 8. UMAP visualisation of the curated balanced training set, where orange regions represent melanoma and blue regions represent others. From left to right: input, 

feature distributions extracted with EfficientNetB0, the top dropout layer, dense layer and output. These graphs visually illustrate an increase in the separability of melanoma 

versus non-melanoma in the deep learning architecture. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Table 9 

Statistical analysis on the separability of melanoma versus non-melanoma on the curated balanced dataset. Intra: av- 

erage distance between samples of the same class; Inter-class: average distance between samples of different classes; 

Si: silhouette score; CH: Calinski-Harabasz index; DB: Davies-Bouldin index. 

Method Metrics 

Intra (melanoma) Intra (non-melanoma) Inter-class CH Si DB 

Input 5.5740 6.2936 6.8420 1284.7040 0.1041 2.2834 

EfficientNetB0 7.6235 8.6028 18.6252 14421.3350 0.5399 0.7032 

Dropout layer 7.5033 8.2194 17.5380 13994.5712 0.5223 0.7334 

Dense layer 10.8150 13.4581 19.3595 4755.8860 0.3618 1.2904 

Fig. 9. UMAP visualisation of the curated multi-class training set, where orange regions represent MEL, blue regions represent NV, green regions represent BCC, red regions 

represent AKIEC, purple regions represent BKL, brown regions represent DF and pink regions represent VASC. From left to right: input, feature distributions extracted with 

EfficientNetB0, the top dropout layer, dense layer and output. These graphs visually illustrate the low separability of multi-class skin lesions within the deep learning 

architecture. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

shortest side reduced to 224 pixels and center-cropping (224 ×
224 pixels) using the high-quality downsampling filter found in the 

Python Image Library, created by Lund and Clark (2013) . To address 

the limited size of the training set, we applied several data aug- 

mentation techniques, including random rotations, random zooms, 

random width and height shift, shearing and horizontal and verti- 

cal flipping. 

The hardware configuration used to train the networks was an 

Intel i7-7700 Quad Core 3.60GHz CPU with 64GB DDR4 2400MHz 

Duel Channel RAM and a GTX1080 Ti 11GB GPU. The software con- 

figuration used Tensorflow GPU 2.4.1 and Keras 2.3.1 running on 

Windows 10. 

We evaluate the performance of the baseline models on Kaggle, 

however, given that we do not have access to the ground truth la- 

bels for the ISIC 2020 test set, we cannot perform further analysis 

on this dataset. In order to discuss the performance of the baseline 

models, we use the ISIC 2017 test set, which is fully exclusive from 

our curated balanced training set. 

To produce baselines for our curated multi-class dataset, we 

use four popular deep learning models (VGG19, DenseNet121, 

ResNet101 and EfficientNetB0) and evaluate the results on the ISIC 

2020 live leaderboard. Our experiments set the maximum epoch 

to 200 and adopt an early stopping strategy. We save the best 

model that maximised validation accuracy, with early stopping im- 

plemented when the categorical accuracy of validation did not in- 

crease after 8 epochs. The initial learning rate was set to 0.001, 

which was reduced by a factor of 0.1 when the validation score 

did not increase after 5 epochs. 

5. Results 

Table 10 presents benchmark results using our curated balanced 

dataset for 19 deep learning architectures of their best epochs on 

the ISIC 2020 test set. Note that the ground truth for ISIC 2020 is 

not publicly available, therefore the metric provided by the organ- 

iser on Kaggle is used - area under the Receiver Operating Charac- 

teristics Curve (AUC). 

For the ISIC 2020 test results, the highest performing network 

was VGG19 with an AUC of 0.80, indicating an increase of 0.03 

over the next best performing networks (VGG16 and DenseNet121). 

The next best performing networks were ResNet101, ResNet50, 

ResNet50V2, EfficientNetB2, EfficientNetB3, Xception, Efficient- 

NetB0, EfficientNetB1, ResNet101V2, VGG16 and DenseNet121, re- 

porting an AUC in the range of 0.70 - 0.77. InceptionV3 was 

shown to be the lowest performing network with an AUC of 

0.5. In addition to InceptionV3, the other lowest performing net- 

works were DenseNet201, InceptionResNetV2, ResNet152V2, Effi- 

cientNetB4, DenseNet169 and ResNet152, all reporting an AUC in 
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Table 10 

A performance comparison of the baseline models on the ISIC 

2020 testing set without the use of a pre-trained model, re- 

sults are reported on their best epoch. 

Model Params Best epoch AUC 

DenseNet121 7,039,554 25 0.77 

DenseNet169 12,646,210 47 0.66 

DenseNet201 18,325,826 5 0.63 

EfficientNetB0 4,052,133 37 0.75 

EfficientNetB1 6,577,801 30 0.76 

EfficientNetB2 7,771,387 67 0.73 

EfficientNetB3 10,786,609 8 0.75 

EfficientNetB4 17,677,409 45 0.65 

InceptionResNetV2 54,339,810 10 0.64 

InceptionV3 21,806,882 47 0.50 

ResNet50 23,591,810 27 0.71 

ResNet50V2 23,568,898 41 0.73 

ResNet101 42,662,274 21 0.70 

ResNet101V2 42,630,658 37 0.76 

ResNet152 58,375,042 18 0.67 

ResNet152V2 58,335,746 25 0.65 

VGG16 134,268,738 21 0.77 

VGG19 139,578,434 30 0.80 

Xception 20,865,578 16 0.75 

Table 11 

More detailed performance measures on the ISIC 2017 test set. Note that 

these results can not be compared with the ISIC 2017 leaderboard as these 

results are based on binary classification, while the ISIC 2017 leaderboard 

is based on 3-class. 

Method Accuracy Precision Recall F1 AUC 

DenseNet121 0.41 0.20 0.68 0.31 0.50 

DenseNet169 0.46 0.16 0.42 0.23 0.46 

DenseNet201 0.36 0.21 0.83 0.33 0.56 

EfficientNetB0 0.55 0.19 0.41 0.26 0.51 

EfficientNetB1 0.46 0.20 0.60 0.30 0.53 

EfficientNetB2 0.41 0.21 0.71 0.32 0.53 

EfficientNetB3 0.53 0.22 0.58 0.32 0.54 

EfficientNetB4 0.52 0.17 0.39 0.24 0.49 

InceptionResNetV2 0.40 0.20 0.67 0.30 0.49 

InceptionV3 0.30 0.21 0.94 0.34 0.53 

ResNet50 0.40 0.20 0.71 0.32 0.52 

ResNet50V2 0.44 0.20 0.64 0.31 0.53 

ResNet101 0.45 0.21 0.66 0.32 0.54 

ResNet101V2 0.38 0.20 0.73 0.31 0.54 

ResNet152 0.32 0.21 0.86 0.33 0.54 

ResNet152V2 0.40 0.20 0.67 0.30 0.51 

VGG16 0.48 0.20 0.57 0.30 0.54 

VGG19 0.56 0.20 0.41 0.26 0.51 

Xception 0.44 0.19 0.59 0.29 0.50 

the range of 0.63 to 0.67. For all reported networks, the mean av- 

erage for AUC was 0.704, with a standard deviation of 0.071. The 

poor performance of EfficientNetB4 compared to EfficientNetB0 - 

B3 may be due to a disparity between the large size of the net- 

work architecture and the relatively small size of the training set 

images. We note that the best performing network (VGG19) also 

has the highest number of parameters, however, the poorest per- 

forming network (InceptionV3) did not have the lowest number of 

parameters. 

Table 11 shows the benchmark results using our curated bal- 

anced dataset for 19 deep learning architectures of their best 

epochs on the ISIC 2017 test set. For the ISIC 2017 test results, 

VGG19 demonstrated the highest accuracy at 0.56, with Incep- 

tionV3 having the lowest accuracy of 0.30. For precision, Efficient- 

NetB3 showed the highest result at 0.22, while DenseNet169 re- 

ported the lowest result at 0.16. InceptionV3 showed the high- 

est recall, with a result of 0.94, indicating that the network over- 

classified melanoma cases. Conversely, EfficientNetB4 showed the 

lowest recall at 0.39, which is comparable to its low performance 

on the 2020 test set. For AUC, DenseNet201 showed the highest 

result at 0.56, with DenseNet169 reporting the lowest result of 

0.46. Measures for all networks using the ISIC 2017 test set demon- 

strated poor performance compared to those returned by the ISIC 

2020 test set experiment. 

F1-score is the best indicator of overall network performance, 

indicating the harmonic mean between precision and recall. Fig. 10 

shows six examples of test images from the ISIC 2017 test set 

where noise affected the performance of three predictions. Fig. 11 

shows a selection of heatmaps for test images from the ISIC 2020 

test set, compared against original test images. Given that the 

ground truth data is not publicly available for the ISIC 2020 test 

set, we present these results to demonstrate that the trained net- 

works are clearly focusing on noise present within the dataset. 

However, in the case of the ISIC 2017 test results, noise would ap- 

pear to not always affect the accuracy of the prediction. 

Table 13 shows the benchmark results of multi-class classifica- 

tion evaluated on Task 3 of the ISIC 2018 testing set. As the ground 

truth of this dataset is not publicly available, we evaluate our re- 

sults on the live leaderboard and report the Balanced Multi-class 

Accuracy ( Codella et al., 2018b ). The deep learning models achieve 

better accuracy with pretrained models based on ImageNet. We 

observe that the best baseline accuracy of our curated dataset is 

0.621, achieved by EfficientNetB0 with a pretrained model. 

Since we do not have access to ground truth data for the ISIC 

2018 test set, we conduct further analysis of our best baseline 

model on the ISIC 2017 classification dataset, which consists of 3 

classes: MEL, NV and seborrheic keratosis (SK). Fig. 13 illustrates 

the Grad-CAM heatmap visualisation of correct predictions (on the 

left: a), c) and e)) and incorrect predictions (on the right: b), d) and 

f)). We note that although the majority of the network focused on 

regions for correct predictions for skin lesions, some cropped re- 

gions and areas of noise were also included. Our findings on multi- 

class classification are consistent with our binary classification re- 

sults, where noise appears to not always affect the accuracy of the 

prediction. 

We further analyse the curated dataset by annotating features 

that enable the network to further inflate its results, e.g. clinical 

pen markings. We categorise these non-lesion features into 7 sep- 

arate class labels: (1) dermoscope ruler; (2) light and dark hair; 

(3) clinical pen marking; (4) size reference sticker; (5) air pocket; 

(6) dermoscope borders; (7) Other. The last category contains arte- 

fact types where there were too few examples to warrant creating 

new categories for, including images with dates printed onto them 

and images that were extremely blurry. Next, we train the network 

with all the non-lesion classes removed, similar to a cross-fold val- 

idation. This experiment shows how non-lesion features (noise) af- 

fect model accuracy. We train each model by removing all non- 

lesion images in the dataset, then rebalance by removing images 

from the majority class, with 20% reserved for validation. 

Table 14 demonstrates the diversity of images within the ISIC 

datasets, including within our curated dataset. Furthermore, it 

highlights how certain features could give bias to melanoma, 

such as the dermoscopic borders which are much less present 

in melanoma cases, which gives a minor accuracy increase. Sim- 

ilarly, dermoscope ruler overlays have a slight bias towards non- 

melanoma. However, the best performing network uses the full 

dataset (None removed), which is in contrast to Table 15 where 

none of the best scores come from networks trained on the 

full dataset. Training with dermoscope ruler artefacts removed, 

DenseNet 201 and InceptionV3 received improved accuracy. Sim- 

ilarly, VGG19 with air pocket artefacts removed had the best per- 

formance overall. These results show that some models are suscep- 

tible to noise from the artefacts that disrupt performance, in some 

cases significantly. Future work could involve the use of ensemble 

networks trained on the removed class to overcome these obsta- 

cles. 
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Fig. 10. Grad-CAM heatmap visualisation for the ISIC 2017 test results: a) network focused only on areas surrounding the lesion, including immersion fluid (DenseNet201) 

- prediction: melanoma; ground truth: other, b) network focused only on areas around the lesion, including clinical pen markings and dermascope measurement overlay 

(DenseNet201) - prediction: melanoma; ground truth: melanoma, c) network focused mainly on areas surrounding the lesion, including clinical pen markings and dermascope 

measurement overlay (DenseNet201) - prediction: melanoma; ground truth: melanoma, d) network focused mainly on immersion fluid (VGG16) - prediction: melanoma; 

ground truth: melanoma, e) network focused mainly on clinical pen markings and hair (VGG19) - prediction: melanoma; ground truth: other, f) network focused on lesion 

and cropped image area (VGG19) - prediction: melanoma; ground truth: other. 

Fig. 11. Grad-CAM heatmap visualisation for the ISIC 2020 test results using DenseNet121: a) network focused on both lesion and clinical pen markings, b) network focused 

primarily on dermoscope measurement overlay, c) network focused on surrounding skin and wound dressing, d) network focused primarily on clinical pen markings. 
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Fig. 12. UMAP visualisation of EfficientNetB0 on the ISIC 2017 test set, where orange regions represent melanoma and blue regions represent others. From left to right: 

input, feature distributions extracted with EfficientNetB0, the top dropout layer, dense layer and output. These graphs visually illustrate the separability of melanoma versus 

non-melanoma. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 12 

Statistical analysis on the separability of melanoma versus non-melanoma on the ISIC 2017 testing set. Intra: average 

distance between samples of the same class; Inter-class: average distance between samples of different classes; Si: 

silhouette score; CH: Calinski-Harabasz index; DB: Davies-Bouldin index. 

Method Metrics 

Intra (melanoma) Intra (non-melanoma) Inter-class CH Si DB 

Input 3.8030 3.2105 3.6288 10.3804 -0.0238 5.1868 

EfficientNetB0 8.7547 9.0875 9.0051 1.49800 0.0206 15.3246 

Dropout layer 8.8238 9.1935 9.0970 1.8324 0.0217 13.7170 

Dense layer 13.7832 13.8319 13.9366 1.9848 0.0065 13.4191 

6. Discussion 

All network architectures we trained using our curated bal- 

anced dataset provided comparable results. However, we note that 

the ISIC 2020 testing set we used to evaluate our models is sig- 

nificantly larger than our training set - 7848 training examples 

vs 10,982 test examples. Performance may be further impacted by 

possible class imbalance in the ISIC 2020 testing set. We also note 

that the ISIC 2020 test set contains 78 duplicate image files, iden- 

tified using FSlint. Exact details of the ISIC 2020 test set are not 

currently publicly available, therefore we can only speculate on its 

composition and possible effects when obtaining evaluation met- 

rics. 

Given the comparatively small dataset size of our curated bal- 

anced dataset, and the lack of any additional fine-tuning of the 

trained networks, we would regard the test results from the 

ISIC 2020 test set to be good for the best performing networks. 

However, the results for the experiment performed on the ISIC 

2017 test set were poor for all measures for all networks. As 

shown in the UMAP visualisation (using the same settings for 

the balanced training set) in Fig. 12 and statistical analysis in 

Table 12 , the ISIC 2017 test set is less separable, with inter- 

similarities and intra-dissimilarities between the two classes. We 

identify four possible causes for this: (1) the number of dupli- 

cates within the ISIC 2017 test set; (2) class imbalance in the ISIC 

2017 test set; (3) the amount of noise present in both the train- 

ing and testing sets; and (4) the relatively small size of our cu- 

rated balanced training set. We identify noise as cases where le- 

sions may be obfuscated by hair follicles, hair, air pockets result- 

ing from the application of immersion fluid, size reference stick- 

ers, rulers, dermascope measurement overlays and clinical pen 

markings. Ju et al. (2021) noted that medical datasets tend to 

have asymmetric (class-dependent) noise and suffer from high ob- 

server variability. Rolnick et al. (2018) showed that deep learn- 

ing models trained on large supervised datasets are capable of 

generalising from training data where true labels are massively 

outnumbered by incorrect labels. However, this was only demon- 

strated on MNIST, CIFAR and ImageNet datasets and requires a 

significant increase in dataset size that is related to the factor 

by which correct labels have been diluted. Our results may indi- 

cate the importance of transfer learning and dataset size in this 

domain. 

Table 13 

Benchmarking the performance of the curated dataset on 

multi-class classification evaluated on the ISIC 2018 test set. 

The primary metric value for the live leaderboard is Bal- 

anced Multi-class Accuracy. Pretrained indicates that the 

model is using a pretrained model based on ImageNet. 

Model Settings Metric 

Pretrained Best epoch Accuracy 

VGG19 × 20 0.279 

VGG19 � 31 0.322 

DenseNet121 × 26 0.436 

DenseNet121 � 18 0.565 

ResNet101 × 14 0.410 

ResNet101 � 18 0.495 

EfficientNetB0 × 12 0.368 

EfficientNetB0 � 17 0.621 

We balanced our curated dataset using undersampling, which 

involved the removal of images from the majority class (non- 

melanoma). However, it may be useful for future research to com- 

pare the results of this approach with other balancing techniques 

such as image augmentation of the minority class (melanoma), or 

weight balancing such as the implementation of a focal loss func- 

tion, as per Lin et al. (2017) . 

For multi-class classification, we provide baseline results with 

four popular deep learning models on the ISIC 2018 Task 3 le- 

sion diagnosis test set. The curated dataset is imbalanced and re- 

quires additional strategies to improve the performance of net- 

works trained using this dataset. For future improvement, we rec- 

ommend the use of data augmentation methods and/or the inclu- 

sion of external non-ISIC datasets to balance the classes, particu- 

larly on AKIEC, DF, VASC and SCC. 

Future work might focus on the effect of the large number 

of visually similar images on trained models that use the ISIC 

datasets. We tested four image similarity methods on a limited 

set of data over a short period of time. However, other techniques 

such as those employing feature extraction, may be worth inves- 

tigating given that recent works, such as Sucholutsky and Schon- 

lau (2020) , suggest that unique features are more important than a 

large number of training images when training deep CNNs. We also 

note the importance of colour space in the processing of medical 

image data ( Barata et al., 2014 ). This could contribute to future im- 
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Fig. 13. Grad-CAM heatmap visualisation for multi-class classification on the ISIC 2017 test results: a) network focused mainly on the lesion - prediction: melanoma; ground 

truth: melanoma, b) network focused on the lesion and clinical pen marking - prediction: nevus; ground truth: melanoma, c) network focused on lesion and cropped area 

- prediction: nevus; ground truth: nevus, d) network focused mainly on clinical pen markings and hair regions - prediction: melanoma; ground truth: nevus, e) network 

focused on the lesion and clinical pen markings - prediction: seborrheic keratosis; ground truth: seborrheic keratosis, f) network focused entirely on the surrounding skin - 

prediction: Seborrheic keratosis; ground truth: melanoma. 

Table 14 

Results on the validation set for artefacts removed. Note: when removing artefacts we re-balance the dataset to the class with the 

lowest number of remaining images, then take 20% from both classes for validation. 

Class Removed Images Mel Image Oth Total train DenseNet 201 Inception V3 VGG 19 EfficentNet B3 

None removed 4905 4905 7848 0.7900 0.7935 0.7956 0.7848 

Dermoscope ruler 3760 4163 6016 0.7267 0.7434 0.7407 0.7314 

Hair 2265 2241 3586 0.6462 0.6406 0.5826 0.6395 

Clinical markings 4793 4831 7670 0.6584 0.6923 0.6208 0.6563 

Size reference sticker 4893 4890 7824 0.6752 0.6445 0.6639 0.6747 

Air pockets 4067 4744 6508 0.6981 0.6994 0.6975 0.6444 

Dermoscope borders 2564 4426 4104 0.7441 0.7354 0.7305 0.7080 

Other 4577 4833 7324 0.6990 0.6957 0.6864 0.6831 

Table 15 

Results of individual artefact class removal on the ISIC 2020 testing set. 

Class removed DenseNet201 InceptionV3 VGG19 EfficentNetB3 

None Removed 0.4514 0.6480 0.7988 0.7079 

Dermoscope ruler 0.7411 0.7377 07967 0.7060 

Hair 0.7293 0.6524 0.6588 0.7239 

Clinical markings 0.6477 0.6500 0.6065 0.6801 

Size reference sticker 0.6900 0.6369 0.7884 0.7363 

Air pockets 0.7208 0.6229 0.8067 0.6700 

Dermoscope borders 0.6976 0.5933 0.7210 0.6464 

Other 0.7368 0.6362 0.7925 0.6913 

provements to algorithm design for skin lesion diagnosis, and will 

be explored further in future work. 

As our paper focuses on skin lesions classification, we did not 

include duplicate analysis on skin lesion segmentation datasets. 

Whilst classification tasks provide the diagnosis of the lesions, le- 

sion segmentation, such as in ISIC 2018 Task 1 on lesion boundary 

segmentation, provides better localisation of the lesions. This could 

be used in future studies for the overlap of the computer generated 

heatmap and the dermatologist’s annotation. 

7. Conclusion 

In this work, we propose a strategy for removing duplicate im- 

age files from the ISIC 2017 - 2020 datasets as a means of reducing 

bias in deep learning models trained on these datasets. We present 

results from a variety of commonly used CNN architectures trained 

on a curated balanced dataset which indicates excellent class dis- 

tribution and good performance measures. The aim of this work 

is to highlight the potential biases of the usage of duplicate im- 

ages of ISIC datasets, and other numerous issues, such as noise, 
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present within the ISIC datasets and to better understand their ef- 

fects on deep CNNs. This work is not intended to maximise the 

performance of the CNNs, therefore we did not include any ad- 

ditional steps such as transfer learning with different pretrained 

models, fine-tuning or adjustments to network configurations. The 

effects of noise inherent within the ISIC datasets, in addition to 

a relatively small training set size, were shown to contribute to a 

significant reduction in network performance. 
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