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ABSTRACT

Diabetic Foot Ulcer (DFU) is one of the major complications of Diabetes, which leads to lower limb
amputation if not treated early and properly. In addition to the clinical diagnostic services provided
by all medical staff, recently, research in automation using computer vision and machine learning
methods play an important role in DFU classification. Most recent automatic approaches to DFU
classification are based on Convolutional Neural Networks (CNNs) using RGB images only as input.
In this paper, we present a new CNN-based DFU classification method, in which we show that feeding
an appropriate feature (texture information) to the CNNmodels provide a complementary performance
to the standard RGB-based deep models of DFU classification task and better performance can be
obtained if both RGB images and its texture features are combined together and used as input to the
CNN. To this end, our proposed method consists of two main stages. The first stage extracts the
texture information from the RGB image using Mapped Binary Patterns technique. The obtained
mapped image is used to aid the second stage in recognizing DFU as it contains texture information
of ulcer. The stack of RGB image and Mapped Binary Patterns can be fed to the CNN as a tensor
input, or as a fused image which is a linear combination of RGB and Mapped Binary Patterns images.
Extensive experiments on DFU dataset show that the proposed methods provide better performance
than the state-of-the-art CNN-based methods that use the RGB images only with an area under the
receiver operator characteristic curve (AUC) of 0.981 and F-Measure of 0.952.

1. Introduction and Background
Diabetic Foot Ulcers (DFU)may results in lower extrem-

ity amputation, which is a major complication of Diabetes
[46]. One way of helping to identify and treat DFU is to
build an automatic (computer-based) DFU diagnostic sys-
tem which can be beneficial not only in early DFU detec-
tion but also in reducing clinical workloads, cost-efficacy,
standardizing treatment, improving patient care and could
reduce the number of misdiagnoses. Building such a diag-
nostic system can be done using several computer vision and
machine learning approaches including convolutional neu-
ral networks (CNNs) and non-CNNs approaches. Although
both approaches are applied to the DFU problem and the
former provided better performance than the later, the auto-
matic DFU diagnostic system is still in its infancy. In this pa-
per, we show that non-CNNs approaches, where the appro-
priate information regarding the DFU disease can be found,
may still important and fuse it with CNNs approaches can
enhance the performance of the automatic DFU classifica-
tion system.

Broadly speaking there aremany researchers that focused
on diagnosis theDFU fromdigital images using several com-
puter vision andmachine learning algorithms into two schemas.
The first schema is by using conventional approaches, where
handcrafted such as texture features are used for image rep-
resentation. Many texture feature extraction techniques were
introduced in the literature and used for texture image clas-
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sification issues including medical and non-medical appli-
cations [2, 3, 32, 21, 16]. Local Binary Patterns (LBP) [33]
is one of the most successful texture description approaches
in several medical and non-medical applications, because of
its easy implementation, invariance to rotation and robust-
ness to monotonic illumination changes. The process of cap-
turing the spatial structure of a texture pattern using LBP
method is done by describing the pixel neighbourhood us-
ing its binary codes which are used then to form a local bi-
nary pattern code. In DFU classification, the development of
conventional-based DFU classification system was first pro-
posed by Goyal et al. [18]. The authors measured the varia-
tion between DFU and healthy skin by training a classifier on
the texture and colour information. In their study, they used
LBP [22] and Histogram of Oriented Gradients (HOG) [13]
for feature extraction and Support Vector Machine (SVM)
for healthy versus unhealthy skin classification. The SVMs
were trained and test using sequential minimal optimization
(SMO) algorithm [34].

The second schema is by using CNNs approaches, where
deep features are used for the image representation leading
to the development of CNNs-based DFU detection and clas-
sification methods [5, 9, 14, 20, 25, 43, 4, 12, 18, 19]. Some
of the previously mentioned studies have focused only on us-
ing deep features for building DFU detection methods [5, 9,
20, 25, 43, 47]. Such a model is a critical requirement for
medical problems (e.g.DFU) since it is used to localize the
appropriate unhealthy (DFU) region for subsequent modules
such as feature extraction and classification. The other stud-
ies [4, 5, 12, 18, 19] have focused on using deep representa-
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tion for the development of DFU classification for classify-
ing healthy versus unhealthy skin region, which is the focus
of this paper. Goyal et al. [18] proposed a novel CNN archi-
tecture called DFUNet and shared a dataset. The authors first
used a manual whisker annotator, an open source annotator
(MWA) [23], to outline the healthy and DFU patches from
the original foot image. These patches were then used to
train the proposed network for binary classification of healthy
versus unhealthy (DFU) classes. Experimental results on
their DFU dataset demonstrated that the proposed network
has successfully outperformed the performance of some pop-
ular networks, including GoogLeNet [44] and AlexNet [29]
with 94.5%, 93.4% and 93.9% of precision, recall and F-
Measure respectively. Later in 2020, Alzubaid et al. [4]
designed a newCNN architecture called DFU-QTNet for au-
tomatic recognition of healthy class versus unhealthy (DFU)
class. The authors first cropped the healthy and unhealthy
(DFU) patches from the original foot images and labelled
themmanually bymedical Experts. These patches were used
to train the proposed DFU-QTNet. Due to gradient, they
found that increasing the width of the network with keep-
ing the depth comparable to the traditional neural networks
helped to increase the overall performance, whereas, increas-
ing the number of network layers has decreased the over-
all performance. Experimental results on DFUNet dataset
[18] demonstrated that the proposed network has success-
fully outperformed the performance ofGoogLeNet [44], AlexNet
[29] and DFUNet [18] with 95.4%, 93.6% and 94.5% of pre-
cision, recall and F-Measure, respectively.

The CNN approaches are gaining more and more atten-
tion as they are successfully applied to many image process-
ing and computer vision tasks, providing better performance
than the non-CNN approaches. DFU classification tasks are
not the exceptions, for example, the CNNs in [18] provide
better DFU classification performance than the conventional
methods such as LBP [22] and HOG [13]. To the best of
the authors’ knowledge, the majority of CNN-based studies
in DFU classification used the RGB image (not the hand-
crafted features) as the input, and they learn and extract the
features from the training data without human intervention.

In spite of the usefulness of deep features in DFU classi-
fication, texture analysis on the other hand is a useful way of
increasing the information obtainable from medical images
as it contains texture features regarding the disease. These
features are, in fact, mathematical parameters computed from
the distribution of pixels, which characterize the texture type
and thus the underlying structure of the objects shown in the
image. This information is an important feature for any di-
agnostic system since different types of disease have differ-
ent characteristics in texture distribution [7, 10, 11, 22]. In
case of DFU problem, the skin of healthy foot usually dis-
play smooth textures whereas the skin of diabetic foot with
ulcer tends to exhibit distinct features including skin color
changes, intensity changes, large edges and quick changes
between surrounding normal skin and the ulcer.

Recently, hybrid approaches, the combination of convo-
lutional and CNN approaches is applied in some computer

vision applications such asmedical and non-medical images.
The hybrid approaches attempt to utilize the advantages that
come from both approaches. The convolutional approaches
is often used to capture the discriminative features that char-
acterize the texture type, these feature can be used to enhance
the performance of CNN system by trying to feed more in-
formation of the texture type. A common way of this com-
bination is by extract the hand crafted feature vector using
any convolutional method and combine it with last convolu-
tional layer features and the obtained feature vector is used
as a input feature for a classifier to classify the texture type as
in [38, 26, 1, 36]. Because each part of this method is indi-
vidually trained, thus it cannot be benefited from end-to-end
learning.

Interestingly, in a recent performance evaluation for sev-
eral other computer vision tasks [6, 24, 30], the CNNs mod-
els trained on the handcrafted features only or in combina-
tion with the RGB images were shown to achieve competi-
tive performance than the CNNs models trained on the RGB
images only. For example, an ensemble of CNN models
trained on RGB and LBP mapped coded images for emotion
recognition [30], texture recognition [6], and remote sensing
scene classification [6]. In addition, [24] used a weighted
sum of RGB images and Gabor responses images is fed the
CNN for age estimation, gender classification, face detec-
tion, and facial expression recognition. Inspired by these re-
search, and with the great recent success of deep learning
and the importance of the texture features in medical imag-
ing, we propose to combine the importance of texture coded
images within the deep learning framework to investigate its
potential in DFU classification.

Contribution: Motivated by the above observations, this
paper introduces a new framework for DFU classification.
Since the texture features contain special and important in-
formation regarding the DFU disease and for compact repre-
sentation, our contribution is achieved by training the CNN
model of our system on both the texture features and RGB
images jointly. Precisely, we propose a method to get the
benefits of LBP, together with the features that are learned
by CNN with the input images. In other words, we extract
several LBP responses and concatenate them with the in-
put image. This can also be considered as a fusion of input
image and LBP responses, which looks like an image with
enhanced textures and the fused image is fed to the CNN.
The advantage of using a combination of all representations
is that more information about the disease can be obtained,
and the disease whose appearance similar to healthy skin are
dealt with more effectively. We train several CNNmodels to
distinguish between healthy and unhealthy (DFU), and we
demonstrate that a combination of the two independent mea-
sures leads to better overall discrimination.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the framework of the proposed DFU classifi-
cation method. The dataset used in the current work are then
described in section 3. Section 4 reports the experimental
design and results, and Section 5 discusses the results. Fi-
nally, Section 6 presents conclusions and future works.
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2. Methodology
In this work, we investigate the benefits of using LBP

codes as input to CNNs models in DFU classification. We
design a CNN architecture with three different input: DFU-
RGB-Net using original RGB images, DFU-TEX-Net using
texture coded mapped LBP images, and DFU-RGB-TEX-
Net using both RGB and texture coded mapped LBP images.

The proposed DFU classification method classifies the
input image in healthy and DFU classes. The stages of the
process are (i) extract the texture features (LBP codes) using
Basic LBP method [33], and then convert the extracted LBP
codes to the 3D space using the method described in [30] in
order to make the LBP codes suited as a CNN’s input, and
(ii) train several CNNs models on the RGB images and the
mapped LBP codes separately and in combination. The first
aim is to investigate the ability of the CNNs model trained
on texture features only in DFU classification in comparison
to the CNNs models trained on RGB images only. The sec-
ond aim is to demonstrate which are the best features for the
problem of DFU classification. The third aim is to inves-
tigate the importance of textures features when fused with
the RGB images in DFU recognition. In the following, we
describe the proposed method in detail.

LBP codes Extraction: As mentioned in the beginning,
LBP is one of the most successful and widely used descrip-
tor in analysing images and texture classification. LBP de-
scriptor capture local image micro-textures and it works by
labelling each pixel in the image with a binary number. This
number results from thresholding the grey level intensity of
neighbourhoods of each pixel with the intensity of the centre
pixel. Thresholded values are coded as 0 or 1 and are read
systematically to form a binary number which is used then
to label each pixel with a decimal number, called an LBP
code, which represents the local structure around each pixel.
The formal definition of LBP is given in Equations 1 and
2. Given an image I of widthw and height ℎ, the LBP code
LBPCn,r(xc , yc) of the centre pixel I(xc , yc) from any patch
in the image is computed as:

LBPCn,R(xc , yc) =
n−1
∑

n=0
s(I(xn, yn) − I(xc , yc))2n (1)

where n is the total number of involved neighbours, R
is the radius of the local neighborhood, I(xn, yn) is the gray
value of the neighbors, I(xc , yc) is the gray value of the cen-
tral pixel and s(t) is the thresholding function and is com-
puted as:

s(t) =

{

1 if t >= 0
0 otℎerwise.

(2)

The final LBP code from (1) is 2n bit string. For exam-
ple, in case of n = 8 pixel neighbourhoods, the final output
will be 8 bit number between 0 and 255. Generally the oc-
currence of LBP code is then used to generate a histogram

to represent an entire image region. This histogram is then
used for classification among several classes either by com-
puting the histogram’s similarities or by training a classifier
such as Support Vector Machines (SVMs) to use on the test
image. Owing to the recent extreme success that achieved by
deep learning, we seek to investigate the strength of training
the CNN architecture instead of learning a classifier on the
LBP feature in the problem of DFU classification. Train-
ing the CNN model directly on the LBP code is not applica-
ble owing to the unordered nature of the LBP codes which
are not suited for the convolution operations, which equiv-
alent to a weighted average of the input values, performed
within CNN. This problem can be solved by mapping the
LBP codes to 3D metric space as already done in [30] with
the context of emotion recognition.

Mapped LBP codes: The work of [30] provides a so-
lution to the unordered nature of LBP codes. They pro-
pose to map the LBP codes to points in a 3D metric space
in which the Euclidean distance approximates the distance
between the LBP codes. After the transformation of the
LBP codes they can be averaged together using convolution
operations within CNN models. In [30], the authors have
successfully solved the problem of unordered nature of the
LBP codes by mapping the LBP codes to points in 3D met-
ric space where the distance between the LBP codes is ap-
proximated using Euclidean distance. Once the LBP codes
are transformed, they can average together using convolution
operators of CNN models. The method is accomplished by
defining a distance �m,n between the LBP codesLBPCm and
LBPCn. In [30], the authors choose the Earth Movers Dis-
tance (EMD) [37] since it accounts for both the different bit
values and their locations. Once the distance between LBP
codes is defined, it is possible to obtain a mapping of the
LBP codes into D-dimensional space which approximately
preserves this distance. Multi Dimensional Scaling (MDS)
method [8, 39] can be used to obtain this mapping as follow:

�m,n ≈ ‖Lm−Ln‖ = ‖MDS(LBPCm)−MDS(LBPCn)‖
(3)

whereLm =MDS(LBPCm) andLn =MDS(LBPCn)
are the mapping of code m and n into the D-dimensional
space. Based n this mapping, we can transfer the LBP codes
into a representation that suitable to be used as CNN’s input.
Authors in [30] also proposed a mapped method to calculate
a cyclic distance to accounts for cyclic nature of the LBP
code. For more details about the mapped LBP code see [30].
In this paper, the texture coded mapped images are obtained
by first extracting the LBP values. Since the best results for
LBP values are obtained using three different values of ra-
dius parameter: 1, 5 and 10 [30]. Therefore, in this paper,
we use the same parameter settings of three different values
of radius parameter: 1, 5 and 10. These convert the values
of pixels intensity of an image to one of the range from 1 to
256 LBP values (see the third row of Figure 1).

Those three LBP codes are then processed using the en-
coding from Equation 3 with the Regular (R) and Cyclic (C)
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Figure 1: Example of the mapped LBP coded images using (a) healthy image and (b) image with ulcer: original RGB (first row),
converted to gray value (second row), converted to LBP codes (third row from left to right with 1 radius, 5 radius and 10 radius)
and the LBP codes are mapped to a 3D metric space (fourth row from left to right LBP-1-R, LBP-1-C, LBP-5-C and LBP-10-C).

distance (see fourth row of Figure 1). In total, each image
was represented using both RGB values and by extraction
four mapped LBP codes: LBP-1-R, LBP-1-C, LBP-5-C and
LBP-10-C. Figure 1 shows an example of a healthy and DFU
images mapped to a 3D metric space. The resulting texture
coded mapped image I∗ with 3-channel are then used as in-
put to CNN models as described below.

Fusing RGB image and Mapped LBP codes: Once the
mapped LBP coded image I∗ are computed from the original
RGB image I as described above, where the micro texture
pattern regarding the diseases can represented, the fused im-
age I∗∗ can be computed as follows:

I∗∗(x, y) = I(x, y) + I∗(x, y) (4)

where the value of each pixel in the output image I∗∗ is a
linear combination of the corresponding pixel values in the
input images I and its mapped LBP coded image I∗. The ad-
vantage of fusing the images this way is to obtain more infor-
mation about the ulcer and normal skin. Thus this informa-
tion can help to maximize the sharpness of the object (DFU)
and the robustness of local image features in the merged im-
age since both the RGB and mapped LBP images contain
overlapping information and combined them together lead
to better discrimination of image data into two pixel groups.
Therefore, more features regarding the disease (DFU) can
be learned by CNN learning. Figure 2 shows an example
of combining RGB images with the mapped LBP coded im-
ages.

CNN Model:
Our proposed network consist of four convolution layers

and two fully connected layers without padding. Each con-
volution layers consists of one Rectifier Linear Unit (ReLU)

Figure 2: Illustration of fusing RGB and mapped LBP coded
images: (top row) RGB image, (middle row) mapped LBP
coded image and (bottom row) the resulting fusion of both
the RGB and the mapped LBP coded images.

activation function and followed by one pooling layer. The
last fully connected layer consists of one Sigmoid function
which is usually used for binary classification problems. Bi-
nary cross entropy was used as a loss function optimized
with Adaptive Moment Estimation (Adam) [27]. Weights
and biases were initialised with the Xavier uniform kernel
initializer [17] and zeros respectively. The input patch size
was 151×151. The optimal size of the proposed CNN archi-
tecture is found empirically where the number of the con-
volution and max-pooling is increased gradually and subse-
quently, the number of the filters are adjusted gradually as
well, and then the network with the best performance was
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Table 1
Summary of the proposed CNN architecture.

Layer Type Kernel Size Stride Size Activation Function No. of filter FC units Layer Input Shape Output Shape

Convolution 3×3 1 ReLU 32 - (151,151,3) (149,149,32)

Max pooling 2D 2×2 2 - - - (149,149,32) (74,74,32)

Convolution 3×3 1 ReLU 64 - (74,74,32) (72,72,64)

Max pooling 2D 2×2 2 - - - (72,72,64) (36,36,64)

Convolution 3×3 1 ReLU 128 - (36,36,64) (34,34,128)

Max pooling 2D 2×2 2 - - - (34,34,128) (17,17,128)

Convolution 3×3 1 ReLU 256 - (17,17,128) (15,15,256)

Max pooling 2D 2×2 2 - - - (15,15,256) (7,7,256)

Flatten - - - - - - 12544

Fully connected 3×3 1 ReLU - - - -

Dropout (rate=0.5) - - - - 250 - -

Fully connected - - Sigmoid - 2 - -

chosen. Table 1 summarized the details of the CNN archi-
tecture proposed in this paper.

Our goal is to classify the input image into DFU and
healthy classes using CNNs. One way to predict the class y
of the new image is to train a CNN classifier f on the RGB
images I as follows:

y = f (I) (5)

Another way is to train the f function on the the mapped
LBP codes image I∗ as follows:

y = f (I∗) (6)

An alternative is to train the f function on the fused im-
age I∗∗ which obtained from Equation 4 as follows:

y = f (I∗∗) (7)

Figure 3 illustrates the deep architecture proposed in this
paper. In the beginning, the performance of the proposed
network is investigated using RGB images only as input,
what we referred to as DFU-RGB-Net. Secondly, the perfor-
mance is investigated using LBP codes only as input, what
we referred to as DFU-TEX-Net. Finally, the information
of the original image value and the texture features are com-
bined before the first convolution layer and both RGB images
and the LBP codes together are used as input to the CNN,
what we referred to as DFU-RGB-TEX-Net.

For benchmark algorithms, we implemented two of the
existing state-of-the-art CNN architecture includingAlexNet
and GoogLeNet [44] for the classification of healthy and un-
healthy (DFU) classes. These networks are widely and suc-
cessfully used in several computer vision problems such as
classification of medical [31, 35, 41] and non-medical ap-
plications in general and in particular for DFU classification

[18, 4]. AlexNet CNN architecture was developed by [29]
and emerged as a winner of ImageNet ILSVRC-2012 com-
petition in the classification category by achieving 99%. This
network consists of eight layers. The first five layers are con-
volution layers, some of them are followed by max-pooling
layers. The last three layers are fully connected layers. The
input layer of AlexNet takes an image size of 227 x 227 x 3
dimension and the output from the last fully connected layer
is fed to a softmax function to produce the probabilities of
1000 different classes. See [29] for more details about the
AlexNet network.

GoogLeNet CNNarchitecturewas developed by [44] and
was the winner in the ILSVRC-2014 challenge. This net-
work consists of 22 layers deep, nine of them are inception
modules with three different convolutional kernels (1 x 1, 3
x 3 and 5 x 5) in each. Using such a module, multiple con-
volution filter inputs can be processed on the same input and
do pooling at the same time. All the results are then com-
bined into a single feature layer which allows the model to
take advantage of multi-level feature extraction from every
input. The input layer of GoogLeNet takes an image size of
224 x 224 x 3 dimension and the last layer is a softmax layer
for classifying 1000 different classes.

In this paper, we resize the images of the DFU dataset
to 227 x 227 and 224 x 224 in order to fit the shape input
of AlexNet and GoogLeNet respectively. Furthermore, the
final layer of both networks was adjusted to work well with
our binary (2 classes) classification problem.

3. Dataset
We evaluate our approach by performing experiments on

the recently introduced DFU classification dataset [18]. The
dataset consists of 1,679 images divided in 641 healthy (nor-
mal) and 1038 Ulcer (abnormal)foot images. Since the Deep
networks require a huge amount of data to train, validate, test
and obtain a convincing conclusion, the number of images

Page 5 of 13



DFU Classification using Mapped Binary Patterns

Figure 3: Three-stream deep CNN architectures: (a) DFU-TEX-Net trained using RGB images, (b) DFU-RGB-Net trained using
Mapped LBP coded imagesand (c) DFU-RGB-TEX-Net trained on the combination of RGB and mapped LBP coded images
before the first fully connected layer.

is increased by 10 times using data augmentation techniques
similar to that in [18] and in total the data is increased from
1679 images to 16790 images. The data augmentation is per-
formed by using a combination of several techniques includ-
ing: rotation, flipping, and using different color space. The
rotation is accomplished by rotating the original images with
several angles: 90◦ , 180◦ , 270◦ . The flipping is performed
by flipping the original image with horizontal flip, vertical
flip and horizontal+vertical flip. Then the the color space
augmentation is performed by using four color space includ-
ing YCbCr, NTSC, HSV and L*a*b on the original images.
Before the augmentations, we have split the dataset into 10
folds, each fold represents 10% from the original dataset.
Then, the augmentations techniques are performed in each
part separately to make sure all the augmented images origi-
nated from the original images. We further perform 10-fold
cross validation experiments in 5 iterations. In each itera-
tion 8 folds (80%) (13,432 images) from the dataset used as
a training set, 1 fold (10%) (1,679 images) from the dataset
used as a validation set, 1 fold (10%) (1,679 images) from the
dataset used as a testing set. In the first iteration, the first and
second folds are used to test and validate the models respec-
tively and the rest are used to train the model. In the second
iteration, the third and fourth folds are used as the testing
and validation sets respectively while the rest are used as the
training set. In the third iteration, the fifth and sixth folds are
used to test and validate the models respectively and the rest
are used to train the model. In the fourth iteration, the sev-
enth and eighth folds are used to test and validate the models
respectively and the rest are used to train the model. In the
fifth iteration, the ninth and tenth folds are used to test and
validate the models respectively and the rest are used to train
the model. In each iteration, the validation and testing sets
are swapped to ensure that each fold of the 10 folds have
been used to test the model and every image was tested ex-
actly once. Figure 4 illustrates the data pipeline and cross
validation protocol used in this paper.

4. Experiments and Results
We performed a series of experiments to investigate the

effect of feeding texture features (i.e. mapped LBP) to the
CNN models along with/without the RGB images on the
performance of the automatic DFU recognition method. We
then compare the performance of the proposed approachwith
the recently publicised results on DFU recognition.

The performances were evaluated by calculating area un-
der the Receiver Operating Characteristic curve (AUC) [15].
The Receiver Operating Characteristic (ROC) curve plots
the performance of the binary classification between positive
and negative classes by plotting the true positive rate (num-
ber of correctly classified true images) (Sensitivity) against
the false positive rate (number of misclassified true images)
(1-Specificity). The AUC is a measure of how well a clas-
sifier can distinguish between two groups (binary classifica-
tion) (e.g.DFU/normal) and is in the range [0,1]. We also
report Sensitivity, Specificity, Precision, Accuracy and F-
Measure as our evaluationmetrics. Inmedical imaging, Sen-
sitivity and Specificity are considered reliable evaluationmet-
rics for classifier completeness.

In all experiments, the results are reported as average
of 5-fold cross validation as described in Figure 4 to give
a mean accuracy, standard deviation and AUC. During the
training of the network, the learning rate with Adam solver
was set 0.001,the epoch and batch size were set to 30 and 32
respectively and then we selected the model with lowest val-
idation loss. At the start of each epoch, the training data was
randomly shuffled in order to produce different batches each
time. In every experiment, the image was represented us-
ing five different representations including both RGB values
and four extracted mapped LBP codes: LBP-1-R, LBP-1-C,
LBP-5-C, LBP-10-C.

Implementation: LBP encoding andmapping, as described
in Section 2, was implemented in Matlab R2014a as in [30].
Training and testing the CNN models were done using the
Keras 2.3.1 open source framework for Deep Convolutional
Neural Networks library written in Python 3.8.3 that runs on
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Figure 4: The illustration of our cross validation protocol.

Table 2
DFU classification results. Overall, the texture features (mapped LBP codes) achieved
approximately similar performance to that of using RGB values and our proposed network
provide better results than AlexNet and GoogLeNet.

Network Features Sensitivity Specificity Precision Accuracy F-Measure mean AUC (stdev.)

DUF-RGB-Net (ours) RGB 0.912 0.897 0.936 0.906 0.952 0.961 (± 0.005)

DUF-TEx-Net (ours) LBP-1-R 0.918 0.877 0.922 0.902 0.920 0.960 (± 0.007)

DUF-TEx-Net (ours) LBP-1-C 0.897 0.882 0.925 0.892 0.911 0.950 (± 0.006)

DUF-TEx-Net (ours) LBP-5-C 0.921 0.931 0.956 0.925 0.938 0.953 (± 0.015)

DUF-TEx-Net (ours) LBP-10-C 0.912 0.899 0.937 0.907 0.924 0.965 (± 0.016)

Alexnet RGB 0.898 0.778 0.869 0.852 0.892 0.929 (± 0.020)

Alexnet LBP-1-R 0.912 0.825 0.894 0.878 0.902 0.945 (± 0.023)

Alexnet LBP-1-C 0.923 0.722 0.873 0.846 0.889 0.898 (± 0.155)

Alexnet LBP-5-C 0.904 0.726 0.855 0.836 0.874 0.890 (± 0.132)

Alexnet LBP-10-C 0.870 0.837 0.896 0.857 0.883 0.922 (± 0.011)

GoogLeNet RGB 0.890 0.826 0.893 0.866 0.891 0.930 (± 0.014)

GoogLeNet LBP-1-R 0.915 0.835 0.902 0.884 0.908 0.952 (± 0.035)

GoogLeNet LBP-1-C 0.853 0.727 0.837 0.804 0.908 0.892 (± 0.021)

GoogLeNet LBP-5-C 0.904 0.726 0.855 0.836 0.874 0.895 (± 0.133)

GoogLeNet LBP-10-C 0.890 0.826 0.893 0.866 0.891 0.929 (± 0.017)

Tensorflow 2.1.0.

4.1. RGB Images vs. Mapped LBP Coded Images
In this experiment, the performance of CNNs models

that used texture features (mapped LBP codes) as input cal-
culated using Equation 3 is compared with the performance
of CNNs models that used RGB images only as input in or-
der to investigate whether RGB images and mapped LBP
coded images have complementary features. Using the pro-

posed CNN architecture described in section 2 and Figure
3(a,b), five CNNs models (one for each representation) were
trained using similar configurations. The cross validation
mean AUC results are shown in Table 2 and ROC curves in
Figure 5 (a). These results show that using the mapped LBP
codes only provides satisfactory and approximately similar
performance to that of using RGB images only. The results
also show that the best LBP codes in splitting the data were
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Figure 5: ROC curves of all representations: RGB images, LBP-1-R images, LBP-1-C images, LBP-5-C images and LBP-10-C
images in detecting DFU vs. non-DFU (a) Our proposed DFU-RGB-TEX-Net, (b) AlexNet, and (c)GoogLeNet. Overall, the
mapped LBP features achieved approximately similar performance to that of using RGB values and our proposed net (top)
provides better results than AlexNet (middle) and GoogLeNet (bottom).

LBP-1-R and LBP-10-C, with an AUC of 0.960±0.007 and
0.965 ± 0.016 respectively.

For more validation regarding the effectiveness of using
texture coded images as an alternative to the RGB images
as input to the CNN and in particular, in the DFU classifi-
cation, we used two different existing network architectures:
the AlexNet networks [29] and the GoogLeNet network [45]
(see original papers for more details regarding design and ar-
chitecture of each network) and our adjustment on these net-
works described in 2. The results again show that using the
mapped LBP codes only provides satisfactory and approxi-
mately similar performance to that of using RGB values only
( see the cross validation mean AUC results illustrated in Ta-
ble 2 and ROC curves described in Figure 5 (b and c). The
best extracted features again are the LBP-1-R and LBP-10-C
features, with an AUC of 0.945 ± 0.023 and 0.922 ± 0.011
using AlexNet and 0.952 ± 0.035 and 0.929 ± 0.017 using
GoogLeNet respectively.

Overall, we showed that feeding Mapped LBP codes im-
ages to the three different CNN architectures (GoogLeNet,
AlexNet and our proposed method) as an alternative to RGB
images can achieve better or comparable performance to that
of using RGB images in terms of Sensitivity, Specificity,

Precision, Accuracy and F-Measure as shown in Table 2.
The results in Table 2 also showed that our proposed net-
works (DFU-RGB-Net and DFU-TEX-Net) provide signifi-
cantly better performance than AlexNet and GoogLeNet that
why we use our proposed CNN architecture in the rest of the
experiments. The other reason behind using our proposed
CNN architecture rather than using AlexNet and GoogLeNet
architecture is to speed up the calculations using 4 layers
with the aid of the handcrafted information

4.2. Fusion of RGB images and Mapped LBP
coded images

In this experiment, the performance of CNNs models
that used the fused images (the combination of RGB and
mapped LBP coded images) as input calculated using Equa-
tion 4 is compared with the performance of CNNs models
that used RGB images only as input in order to investigate
whether the coded texture features can improve the overall
performance of the network. We train four DFU-RGB-TEX-
Net networks using similar configurations described in sec-
tion 2 and Figure 3(c). Every network was trained using
RGB images fused with one of mapped LBP codes (LBP-
1-R, LBP-1-C, LBP-5-C, LBP-10-C). The cross-validation
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Table 3
DFU classification results. Comparison of RGB results to Combined (RGB and mapped
LBP codes) results.

Network Features Sensitivity Specificity Precision Accuracy F-Measure mean AUC (stdev.)

DFU-RGB-Net RGB 0.912 0.897 0.936 0.906 0.952 0.961 (± 0.006)

DFU-RGB-TEX-Net RGB+ (LBP-1-R) 0.943 0.939 0.962 0.941 0.952 0.981 (± 0.006)

DFU-RGB-TEX-Net RGB+ (LBP-1-C) 0.925 0.908 0.943 0.919 0.934 0.970 (± 0.014)

DFU-RGB-TEX-Net RGB+ (LBP-5-C) 0.921 0.931 0.956 0.925 0.938 0.971 (± 0.020)

DFU-RGB-TEX-Net RGB+ (LBP-10-C) 0.921 0.946 0.965 0.930 0.942 0.977 (± 0.006)

Figure 6: ROC curves comparing the performance of using
the combined RGB images and mapped LBP codes to the
RGB images only in detecting DFU vs. non-DFU. Overall our
proposed combined both RGB images and LBP codes achieved
the best result.

mean AUC results are shown in Table 3 and ROC curves
in Figure 6. These results show that feeding the mapped
LBP codes to the CNN significantly increases the AUC from
0.961, 0.960, 0.950, 0.953 and 0.965 using RGB, LBP-1-
R, LBP-1-C, LBP-5-C and LBP-10-C respectively to 0.981,
0.970, 0.971 and 0.977 of using fused features of (RGB +
(LBP-1-R)), (RGB + (LBP-1-C)), (RGB + (LBP-5-C)) and
(RGB + (LBP-10-C)) respectively.

In summary, we showed that feeding the combination of
mapped LBP codes and RGB images can significantly in-
crease the performance by large gap of 2.2% in sensitivity,
2% in specificity, 1% in precision, 2% in accuracy and 2% in
AUC. The increase could come from the specific measure-
ments of texture features regarding the disease adding to the
RGB information captured by mapped LBP features.

4.3. Comparison to the other methods
The above experiments have shown that our DFU-RGB-

TEX-Net, where the model train on both the RGB and the
hand-crafted (LBP codes) features jointly, achieves better ac-
curacy inDFU classification thanDFU-RGB-Net (trained on
RGB value only) or DFU-TEX-Net (trained on LBP coded

images only). This is likely because the specific information
of the disease adding to the RGB information captured by
LBP codes. Here we compare the results of our approach to
the state of the art results published by [18] and [4] in DFU
classification applied on the same dataset.We have added
these results(adopted from [18] and [4]) to Table4. These
comparisons are summarized in Table 4. The results show
that using the combined RGB and texture features achieve
better than using RGB features only or texture features only
as in [18] by large gap of 1% in sensitivity, 4% in specificity,
2% in precision, 2% in accuracy, 1.3% in f-measure and 2%
in AUC (see Table 4). The results of our method also out-
performed the results of other methods as in [4] by small gap
of 0.7 in sensitivity, 1.1% in precision and 0.7 in f-measure
(see Table 4).

Our proposed method performed better than the meth-
ods used in DFUNet [18] and DFU-QUTNet [4] because
our method combined the texture features with RGB images
(compact representation), while in [18], texture features and
RGB images were used separately and in [4],the RGB values
was used only.

4.4. Model Interpretability
In this section, we use both visualizing the intermedi-

ate convolution layer output technique and Grad-CAM [40]
technique to interpret and understand how the model make
prediction. The former technique help to understand how
different filters are learned by the model and how the input
is transferred by the layers whereas Grad-CAM technique
visualizing where a CNN model is looking.

For the analysis of the effects of feeding the LBP re-
sponses, we compare some feature maps from both the DFU-
RGB-Net where the CNN trained on RGB images only (see
Figure 7 (a)) and the DFU-RGB-TEX-Net where the CNN
trained on the fusion of RGB and LBP responses (see Figure
7 (b)). Figure 8 shows the Grad-CAM for a DFU and healthy
skin class. The regions in red show the areas which acti-
vate more units (neurons) in the last convolutional layer be-
fore the classification. From the results, we can see that the
features from the DFU-RGB-TEX-Net contain more strong
DFU features than the DFU-RGB-Net, which is believed to
be the cause of better performance.

Page 9 of 13



DFU Classification using Mapped Binary Patterns

Table 4
Comparison of our approach with the state-of-the-art approaches in DFU classification, in
which our proposed method achieved the best result.

Ref Method features Sensitivity Specificity Precision Accuracy F-Measure AUC

[1
8]

LBP texture 0.919 0.764 0.878 0.865 0.898 0.932

LBP + HOG texture 0.881 0.841 0.906 0.866 0.893 0.931

LBP + HOG + Colour texture + colour 0.902 0.845 0.904 0.880 0.904 0.943

LeNet (CNN) RGB 0.912 0.810 0.871 0.872 0.893 0.929

Alexnet (CNN) RGB 0.895 0.886 0.933 0.893 0.914 0.950

GoogLeNet (CNN) RGB 0.905 0.912 0.949 0.907 0.927 0.960

DFUNet RGB 0.934 0.911 0.945 0.925 0.939 0.961

[4
]

VGG16 [42] RGB 0.897 - 0.923 - 0.909 -

Alexnet (CNN) [28] RGB 0.872 - 0.911 - 0.891 -

GoogLeNet (CNN) [44] RGB 0.905 - 0.956 - 0.929 -

DFU-QUTNet [4] RGB 0.936 - 0.954 - 0.945 -

T
hi
s
W
or
k DFU-RGB-TEX-Net RGB + (LBP-1-R) 0.943 0.939 0.962 0.941 0.952 0.981

DFU-RGB-TEX-Net RGB+ (LBP-1-C) 0.925 0.908 0.943 0.919 0.934 0.970

DFU-RGB-TEX-Net RGB+ (LBP-5-C) 0.921 0.931 0.956 0.925 0.938 0.971

DFU-RGB-TEX-Net RGB+ (LBP-10-C) 0.921 0.946 0.965 0.930 0.942 0.977

Figure 7: Illustration of model interpretability Comparison using feature maps technique: (a) Features from CNN model which
trained using RGB images as input and, (b) Features from CNN model which trained using the fused of Mapped LBP coded
images and RGB images as input.
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Figure 8: Illustration of model interpretability Comparison using Grad-CAM technique for a DFU (left) and healthy (right) skin
classes show localizing map of the important feature in the image which activate more units (neurons) in the last convolutional
layer before the classification: (top) activation from CNN model which trained using RGB images as input and, (bottom) activation
from CNN which model trained using the fused of Mapped LBP coded images and RGB images as input. L and S refereed for
large and small.

5. Discussion
Diabetic Foot Ulcer (DFU) is one of the major compli-

cations of Diabetes, which leads to lower limb amputation
if not treated early and properly. Therefore, early prediction
and early treatment of patients with mild symptoms at a high
risk of DFU progression to a severe/critical stage are impor-
tant ways to reduce lower limb amputation.

In this study, since texture features contain important in-
formation regarding the disease and subsequently such fea-
tures are important for disease’s classes classification (e.g.
DFU verse healthy), we argue that fuse the handcrafted fea-
tures with the original RGB images in order to utilize the
advantages of both and then use the fused images as input to
CNN instead of using RGB images only is important for an
accurate DFU recognition. We have conducted extensive ex-
periments to demonstrate that our system, which effectively
fuses the two complementary representations regarding the
disease, achieves better performance (0.981%AUC) than us-
ing either representation as input to the CNN separately (e.g.,
0.965% vs. 0.961% in AUC when using the texture features
and RGB values). More importantly, due to the capability
of our system in learning texture information in combination
with the RGB values, our system reports a higher sensitiv-
ity, specificity, precision, accuracy and f-measure and AUC
compared with the counterparts that consider the RGB im-
ages only as illustrated in Table 4.

Since traditional approaches for fusing handcrafted fea-
tureswith CNN learning cannot benefit from end-to-end learn-
ing because each part of this method is individually trained
where the handcrafted feature vector is extracted using any
convolutional method and then it combined with the features
of the last convolutional layer and the obtained feature vec-
tor is used as an input for a classifier. In this study, we at-

tempted to explore ways to fuse handcrafted features with
deep learning to improve DFU predicting in an end-to-end
manner. Experimental results show that both handcrafted
features and deep features of paramount importance to this
problem. Furthermore, the texture features contributed sig-
nificantly to the prediction of DFU as it reveals the change
of the foot’s skin appearance.

To investigate the interpretability of the DFU patterns
learned by our model, we used visualizing the inter-mediate
convolution layer output technique to understand how dif-
ferent filters are learned by the model and how the input is
transferred by the layers. Experimental results showed that
the model trained on the fused texture and RGB images con-
tain stronger DFU features7 (b)) than the model trained on
the RGB images only (see Figure 7 (a)). We also showed
the activation maps using Grad-CAM. Experimental results
described in Figure 7 illustrate that the DFU region has the
greatest influence on the prediction task. Hence, they are
valuable for DFU classification.

6. Conclusion
Recently, most of the DFU classification method trained

the CNN models on the RGB images, with the belief that
the CNN will automatically capture the appropriate features
regarding the object (DFU) from the data. In this paper,
we conducted extensive experiments to investigate the ben-
efit of training the CNN model on fusion of Mapped LBP
coded images (handcrafted features) and RGB images as in-
put on the performance of DFU recognition tasks. We have
noticed that using Mapped LBP coded images instead of
RGB images as input to the CNN provided comparable per-
formance on the similar experimental settings and dataset.
We observed that train the CNN model on the RGB im-
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ages and handcrafted features jointly can enhance the over-
all performance of the DFU classification. Specifically, we
have shown that feeding the mapped LBP coded images with
the RGB images provided better results in DFU classifica-
tion. Our proposed DFU classifier outperformed the existing
methods with AUC of 0.981 on cross-validation experiments
on DFUNet dataset [18].

Finally, the results of our approach (using mapped LBP
and CNN) are encouraging and will lead to further inves-
tigations in designing a robust solution for DFU pathology
recognition. Therefore, for future works, we will revise the
present work using different hand-crafted descriptors such
as Gabor filter response and Histogram of Gradient. We
will expand our work to other DFU pathology, including the
recognition of infection and ischaemia. Future research will
be benefited by investigating appropriate handcrafted fea-
tures as the input or convolutional layers of the CNNs. Addi-
tionally, the newer deep learning models, such as DenseNet
and EfficientNet, will be explored in the future.
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