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Abstract—Incumbent wireless technologies for futuristic fifth
generation (5G) and beyond 5G (B5G) networks, such as IEEE
802.11ax (Wi-Fi), are vital to provide ubiquitous ultra-reliable
and low latency communication services with massively connected
devices. Amalgamating Wi-Fi networks with 5G/B5G networks
has attracted strong researcher interest over the past two decades,
because over 70% of mobile data traffic is generated by Wi-Fi
devices. However, Wi-Fi channel resource scarcity for 5G/B5G
is becoming ever more critical. One current problem regarding
channel resource allocation is channel collision handling due to
increased user densities. Reinforcement learning (RL) algorithms
have recently helped develop prominent behaviorist learning
techniques for resource allocation in 5G/B5G networks. An
agent optimizes its behavior in an RL based algorithm based
on reward and accumulated value. However, densely deployed
Wi-Fi environments are distributed and dynamic, with frequent
changes. Thus, relying on individual local estimations leads
to higher error variance. Therefore, this article proposes a
federated RL based channel resource allocation framework for
5G/B5G networks, and suggests collaborating learning estimates
for faster learning convergence. Experimental results verify that
the proposed approach optimizes Wi-Fi performance in terms of
throughput by collaborative channel access parameter selection.
This study also highlights six potential applications for the
proposed framework.

Index Terms—5G, New Radio, MAC Protocol, URLLC, Fed-
erated Reinforcement Learning.

I. INTRODUCTION

Fifth generation (5G) and beyond 5G (B5G) networks
are promising to cooperate with future wireless local area
networks (WLANs) as their incumbent technologies to provide
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inspiring services, such as ubiquitous ultra-reliable and low
latency communication (URLLC) and high throughput ser-
vices. Amalgamating WLAN (Wi-Fi) networks with 5G/B5G
networks has been an active research topic over the past
two decades. Currently, over 70% of mobile data traffic is
generated by WLAN networks [1], and given Wi-Fi’s favorable
economics and high performance, it will remain an attrac-
tive choice for indoor and enterprise applications. Although
cellular networks originated outdoors, we expect Wi-Fi and
5G/B5G to co-exist in both indoors and outdoors. The IEEE
working group (WG) recently launched an amendment to
IEEE 802.11 WLANs, IEEE 802.11ax high-efficiency WLAN
(HEW), that addresses massively connected device deploy-
ment scenarios, such as train stations, sport stadiums, shopping
malls, etc. The International Telecommunication Union Radio
communication sector has specified that 5G/B5G and future
Wi-Fi requirements, such as HEW, will potentially satisfy
these requirements, allowing combining environment features
and device interactions with the environments to sponta-
neously manage channel resource allocation parameters at the
medium access control (MAC) layer. WLAN devices, also
referred as stations (STAs), proficiently and dynamically man-
age wireless channel resources, e.g. the MAC layer distributed
coordination function utilizes a carrier sense multiple access
with collision avoidance (CSMA/CA) mechanism to resolve
collision issues in the network. Station performance generally
relies upon exploiting uncertainty due to system heterogeneity
in terms of transmitted data variety. Therefore, it is imperative
to examine effective and robust resource allocation schemes
to accomplish HEW targeted objectives.
Reinforcement learning (RL) is the least demanding machine
learning (ML) sub-field suitable for this challenge. RL is a
difficult technique to realize, but essentially it trains the model
using cooperation and feedback, i.e., rewards for actions in
an environment. Several learners perceive and interpret their
environment; and then take actions, and interact with it. An
agent learns the environment and defines what actions generate
the highest rewards. Subsequently, the agent performs various
actions within its environment to change the environment’s
state, where each action generates a reward. The agent’s
policy maps environmental situations to actions, i.e., provides
decision making. Value accumulates over time from rewards
received implementing a specific policy. The Markov decision
process (MDP) is a probabilistic model for successive decision
problems’ current states and actions performed to determine
a probability distribution of prospective states. Finally, the
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Fig. 1. Example reinforced learning (RL) framework with core elements in
a WLAN environment.

agent’s environmental view maps state-action pairs to prob-
ability distributions over the states, crating the environment
model. RL is a flourishing research technique for studying
5G/B5G system use cases, ranging from learning complex
5G/B5G networks with unfamiliar channel resource allocation
parameters to deploying 5G/B5G networks [2]. It was inspired
by behaviorist learning, where learners accomplish their goals
by interacting with their environment, and employs explicit
learning algorithms, such as Q-learning (QL), to solve MDP
models [3].
Estimation parameters (e.g. Q-value estimates) are maintained
and dynamically updated in RL as information comes to hand
during learning. Excessive estimator variance during learning
can be problematic, resulting in uneven or unstable learning,
or even making effective learning impossible. Thus, few agents
will fail to build decision policies using an RL algorithm
with only local rewards available, due to tradeoff between
exploration and exploitation increasing error variance.
Therefore, federated learning (FL) has recently emerged, train-
ing an ML algorithm on multiple local datasets contained in
local devices without exchanging data samples. The general
principle comprises training local models on local data sam-
ples and exchanging parameters (e.g. deep neural network
weights) between these local models at some frequency to
generate a global model. This paper proposes a federated rein-
forcement learning (FRL) framework, extending FL techniques
into RL models. FRL aims to learn a local Q-network policy
for each agent by collaborating locally accumulated reward
information among nearby agents, based on the assumption
that all agents benefit from joining the federation in building
decision policies.

II. REINFORCEMENT LEARNING DISTRIBUTED
SETUP

RL includes an MDP, where an agent takes activities in
a stochastic environment over a sequence of time steps to
maximize their value function collected from the environment.
MDPs have been incorporated by many RL algorithms, such
as Q-learning (QL) algorithm. Although QL algorithms were
originally developed for single-learner tasks, several practi-
cal RL algorithms for 5G/B5G resource allocations involve
multiple learners operating in a distributed fashion, such as
autonomous resource provisioning and resource customization
[4], autonomous resource slicing with dueling deep Q-network
[5], and dynamic resource reservation with deep RL algo-
rithms [6]. The distributed setup for RL incorporates a central
device, such as an AP, which arranges learning procedures
for all agents in the environment. Different agents intend to
maximize accumulated reward using coordinated efforts in the
environment.
Similar learning models have been previously considered for
distributed supervised learning, such as FL. Collaboration
among distributed learners in FL involves central devices ex-
changing data with all learners in the environment by gathering
their rewards and local perceptions. However, this requires a
central controller and learners to communicate often, and such
frequent communication can become expensive and increase
latency for most FL applications, including cloud-edge AI
frameworks, becoming system performance bottleneck. Thus,
improved communication efficient approaches are essential for
URLLC and high throughput services under 5G/B5G systems.

A. Distributed Set-up of RL: Federated Reinforcement Learn-
ing

FRL, also known as collaborative RL, is one of the dis-
tributed setups of the RL that learns the environment across
numerous decentralized devices without sharing their actual
data. This ML technique is very different from traditional
centralized ML techniques, where all target data must be
uploaded to a single server. FRL empowers numerous agents to
construct typical strong ML models without sharing data and
information. This decentralized technique tends to address se-
curity and privacy concerns by disseminating the information
to distributed agents in the environment. FRL applications are
already recognized by several next-generation technologies,
such as 5G/B5G, IoT, and Blockchains [5]–[10]. Therefore,
this paper extends FL techniques to RL models, called an FRL
model.

III. ARTICLE CONTRIBUTIONS

Traditionally, WLAN CSMA/CA mechanisms use binary
exponential backoff (BEB) to maintain near collision-free
environment. BEB uses a randomly selected backoff value
from a contention window (CW) to contend for wireless
channel resources. Initial and maximum CW are fixed by
standardization, and an STA exponentially increases initial
CW size each time it encounters a collision (collision in the
WLAN is assumed if transmission acknowledgment is not
received) until it reaches maximum CW. CW size is reset
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to its initial value once a packet is transmitted successfully.
However, this blind increase/decrease of contention parameters
degrades network performance, e.g. resetting CW to its initial
(minimum) size causes more collisions due to smaller CW
for a more substantial number of contenders. Similarly, only a
few STAs are contending for channel resources when network
density is minimal, and exponential CW increase for coin-
cidental collisions causes unnecessary network delays. Thus,
WLAN resources are drastically constrained due to shared
channel resources, whereas applications become dynamically
refined and diverse. An RL based framework for channel
resource allocation at the MAC layer in dense WLANs was
proposed considering possible RL applications and features
in WLANs [10]. The proposed RL based framework utilized
the QL algorithm to select optimal contention parameters for
contending STAs, called an intelligent QL based resource
allocation (iQRA) mechanism. The authors showed that iQRA
optimized BEB performance by utilizing channel observation
based collision probabilities. In iQRA, Each STA manages
contention parameters based on observed collision probability,
which was iteratively optimized using the QL algorithm.
However, the proposed mechanism forces every STA to opti-
mize its contention parameters based on individually observed
and accumulated Q-values from the value function. Wireless
network environments are distributed and dynamic nature, and
change often. Thus, relying on individual local learning mod-
els (LLMs), such as RLs, leads to higher error variance, partic-
ularly when spectrum resources are shared among a massive
number of connected networks and devices. Therefore, this
paper proposes an ML aware architecture for next-generation
dense WLANs and beyond, using an FRL model to optimize
spectrum resource sharing. FRL is an ML technique where
learners collaborate by interacting across multiple distributed
edge devices holding LLMs without sharing actual data. This
enables numerous learners to build a shared, global learning
model (GLM) based on their learning without sharing the
local data, retaining critical data privacy and security. The
FRL model infers distributed complex patterns from dense
deployments, ensuring device minimum spectrum resource
requirements. Therefore, we propose an FRL framework to
optimize network contention parameters collectively and co-
operatively in ultra-dense WLANs; and discuss six potential
FRL framework applications for incumbent technologies in
5G/B5G networks.

IV. FEDERATED REINFORCEMENT LEARNING
FRAMEWORK

This section describes the proposed FRL model for Wi-Fi
channel resource allocation.

A. Reinforcement Learning as a framework

In RL based frameworks for Wi-Fi, an STA iteratively
learns its action behaviors at a given time and maps them to
prospective decisions to maximize reward, where the reward is
a numerical response from the environment at a specific state.
Typically, a learning STA in RL does not have any initial
preference for actions to perform, but must discover optimal

actions to achieve the best reward from the environment. The
primary goal is to maximize the accumulated reward. Rewards
for any action articulate how pleased the STA is in any specific
state, and hence are the key motivation for changing the policy
at any state, e.g. the strategy of selecting low reward actions
might be changed to choose other actions for a specific state
in the future.
Another important RL technique is Q-value, i.e., the aggre-
gated reward collected over a long term. Reward for an action
represents what is good in an immediate sense, whereas Q-
value is the most important outcome when assessing decisions.
For example, a state may reliably yield low reward, yet have
high Q-value if it is consistently trailed by various states that
produce high rewards. Thus, we generally look for actions that
yield high Q-value rather than high reward.
One RL challenge is the tradeoff between exploration and
exploitation. An RL enabled STA must learn toward actions
already attempted and check to be convincing in making a
reward to get a significant accumulated reward. However, the
STA needs to try actions that have not been picked previously,
known as exploration, to find higher reward actions; as well as
exploiting what has already been explored, under the constraint
that the ultimate goal is to acquire the maximized accumulated
reward, known as exploitation. Figure 1 shows an RL based
framework with core terminologies in a WLAN environment.

B. iQRA mechanism

The RL based iQRA mechanism assumes backoff stages as
an available finite set of states, where a learning STA changes
CW size by moving forward and backward in the states set. An
action receives a reward at a given time in a specific state, with
the objective to exploit its accumulated Q-value. One of the
main iQRA objectives is to minimize WLAN channel collision
probability. Therefore, the reward given by an action taken at
a specific time is formulated as a function of channel collision
probability [11], and then the STA observes its current state
and takes an action. This action moves the STA to the next
state. The iQRA mechanism aims to find an optimal policy
that exploits accumulated Q-value, which is updated as

(1)Qt(st, at) = (1− α)×Qt(st, at) + α

× {rt(st, at) + β ×maxa′Qt(s
′
, a

′
)},

that is, the Q-value Qt(st, at) is updated iteratively after the
STA performs action at at state st, where α ∈ [0, 1] is a
learning-rate control parameter; β ∈ [0, 1] is the discount
factor to weight instant reward more aggressively than future
reward; rt(st, at) is the current reward for action at in state
st; rt(st, at) + β × maxa′Qt(s

′
, a

′
) are learning estimates,

represented by ∆Q; where maxa′Qt(s
′
, a

′
) is the best esti-

mated Q-value for the future state-action pair.
Thus, α directly effects agent’s learning, since α = 0 means
the Q-values are never updated, hence nothing was learned by
the agent, whereas α = 0.9 means that learning can occur
instantly or faster. Similarly, β models that future rewards
are worth less than immediate rewards. Thus, lower the value
of beta is, lesser will be the worth of future rewards, and
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Fig. 2. Proposed FRL framework for channel resource allocation in 5G/B5G WLANs (A state transition diagram of Markov decision process is also included
at the bottom of the figure).

vice versa for the higher worth. An individually estimated Q-
value at each STA may produce a higher error variance due to
dynamic and/or dense WLAN environment, leading to more
severe estimations. Therefore, we propose to collaborate the
accumulated Q-value in the network with other STAs to reduce
estimation error variance.

C. Proposed FRL Model

We combine RL and FL techniques to formulate the pro-
posed FRL model. Combining RL and FL is performed
considering local and global learning phases. Figure 2 shows
the proposed FRL model, where we assume a WLAN access
point (AP) as the WLAN environment’s centralized device. A
state transition diagram for the proposed MDP is also included
(Fig. 2, bottom). The MDP defines that an STA moves from
one state to another based on the performed action, while
returning a reward back to the state. The STA accumulates
the collected reward with the reward received from the global

learning model, which is later federated within the network
as a global Q-value. STAs around the AP have LLMs (such
as RL based iQRA) to optimize channel access parameters
for transmission to and from the AP (estimated Q-value). In
this LLM, an STA senses the channel for observation based
collision probability as formulated by iQRA. Figure 3 shows
that under iQRA, competing STAs perform a BEB procedure
for channel resources with a random backoff value after the
channel is sensed idle for a distributed inter-frame space
period. Discretized time slots during the BEB procedure are
observed as either idle or busy. An STA in WLAN environ-
ment formulates channel collision probability as the sum of
total busy time slots divided by total number of time slots
[11], which forms the reward for the STA to accumulate its
Q-value further from (1). Since individual estimated Q-value in
the proposed FRL model may suffer from large overestimation
due to error variances, every STA integrates its locally updated
value in an acknowledgment (ACK) packet, i.e., a federated
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Fig. 3. FRL based ACK (FACK) collaboration method during the carrier sense multiple access with collision avoidance (CSMA/CA) module.

ACK (FACK) message, to collaborate with other active STAs
in the WLAN (see Fig. 3). This extra federated Q-value,
referred as double Q-learning (DQL) [12], is passed to the
QL algorithm (see Fig. 2), which is the GLM for the proposed
FRL. Equation (1) shows that action a

′
has maximum value for

prospective state s
′
, depending on Qt(st, at). However, rather

than using maxa′Qt(s
′
, a

′
) to update Q-value, FRL uses the

globally updated value received in FACK messages. Since FRL
updates federated Q-value in the same WLAN environment,
but with a different set of observations, it represents a fair Q-
value estimate for this action. Both Q-value functions (LLM
and GLM) must learn from separate sets of experiences in the
same environment under the proposed FRL framework. Thus,
an STA uses both Q-value functions to update its optimal Q-
value for (1),

(2)Qt(st, at) = (1− α)×Qt(st, at) + α

× {rt(st, at) + β ×QF
t (sFt , a

F
t )},

where QF
t (sFt , a

F
t ) represents a federated Q-value from other

STAs in the wireless network.

D. Performance Evaluation

We simulated the proposed FRL and RL based channel
access mechanisms using the ns-3 network simulator, with
an IEEE 802.11ax HEW model for dense WLANs. Table
1 shows some important simulation parameters. Figure 4(a)
compares Q-value learning estimate (∆Q) convergence com-
parison between an RL (QL) and FRL based (DQL) algorithm
for 1000 iterations. FRL converges considerably faster than
RL, suggesting significant performance enhancement. Rapid

convergence helps STAs to learn their WLAN environment
swiftly and hence optimize their resource allocations. The
reason for this faster convergence is that the RL mechanism
depends on an individual/local estimator (Q-value accumu-
lator), whereas the FRL mechanism depends on the double
estimator (individual/local and federated/global).
Figure 4(b) compares the proposed FRL based MAC layer
channel access mechanism (FiQRA) in terms of through-
put with respect to number of STAs with iQRA. The pro-
posed FRL based mechanism exhibits considerably improved
throughput compared with the RL based scheme. Conse-
quently, FRL is more effective at learning the wireless net-
work.

E. Substantial Impact

Limitations and challenges posed by current ML frame-
works are always ignored, including believing, and opti-
mization based on individual learning. The proposed FRL
framework expands wireless network capabilities by imple-
menting a distributed and coordinated spectrum resource,
providing a more dynamic and robust technique. This opens
new approaches beyond conventional RL enabled frameworks
to overcome spectrum resource sharing challenges. Higher
throughput verifies that shifting wireless networks from RL
to FRL based mechanisms has potential for 5G and B5G
networks.

V. POTENTIAL APPLICATIONS

This section presents some potential applications for the
proposed FRL model.
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TABLE I
MAC/PHY LAYER SIMULATION PARAMETERS FOR PERFORMANCE

EVALUATION.

Parameter Type Value
Frequency 5GHz

Channel bandwidth 160MHz
Data rate (MCS11) 1201Mbps

Payload size 1472bytes
Transmission range 10m

CWmin 32
CWmax 1024

Simulation time 500sec
Propagation loss LogDistancePropagation

Mobility ConstantPositionMobility
Rate-adaptation ConstantRateWifiManager

Error-rate NistErrorRateModel

Fig. 4. (a) Q-value estimate (∆Q convergence for FRL (DQL) and RL (QL)
algorithms (n = 25), (b) performance evaluation for proposed FRL based
MAC layer channel access mechanism with RL based MAC layer channel
access mechanism in terms of throughput.

A. FRL based iQRA Mechanism

Under iQRA, STAs optimize their contention parameters
based on their individually estimated Q-value. The QL al-
gorithm tends to performs poorly in dynamic and stochastic
WLAN environments, mainly from substantial Q-value over-
estimation due to using maxa′Qt(s

′
, a

′
) in the QL algorithm.

Therefore, we propose to use an FRL based iQRA (FiQRA)
mechanism where an STA competing for the channel resources
is expected to learn the WLAN environment faster than an STA
in iQRA mechanism, as shown in Fig, 4(a). Faster convergence
allows the FRL based MAC layer channel access mechanism
to choose optimal channel access parameters, e.g. CW, faster
than the iQRA mechanism.
Figure 4(b) shows that throughput for FRL based MAC
protocol is independent of the number of contending STAs in
the WLAN. This is justified since system throughput depends
upon channel access parameters, such as backoff CW, and
FiQRA optimizes CW based on federated information from
other STAs within the WLAN.

B. Shared Information Network Estimation Method

Performance for a WLAN environment strongly relies upon
the number of contending STAs simultaneously trying to
access channel resources. However, the actual number of
active STAs cannot be retrieved even in the presence of an
AP. Estimating the number of active devices raises many
implications for an STA in a WLAN environment. The BEB
CW depends upon the number of STAs to maximize WLAN
system performance [13], hence we propose to utilize FRL
based shared information network estimation (SINE). SINE
uses a FACK message to collaborate an estimated number of
STAs.

C. FRL at the Edge

Edge computing has received considerable research atten-
tion due to its capacity to broaden cloud computing efficiencies
to the network’s edge with low latency. Various low latency
5G/B5G applications utilize edge computing features, includ-
ing autonomous driving cars, augmented reality (AR), remote
surveillance, and tactile internet. However, connected edge
user devices have rigorous computational resource constraints.
One approach is to utilize a cloud network to furnish edge
devices with on-demand computing resources, but character-
istic deferral relating to end-to-end communications with a
cloud server can generate intolerable latency. Therefore, it
is essential to utilize FRL at the edge (FEdge) to empower
insightful applications.
Conventional RL based frameworks use centralized learning
data, requiring transferring information from numerous ge-
ographically distributed devices to a central device. In con-
trast, collaborative and edge deployed RL techniques, such as
FRL, cope with environment data privacy challenges in RL
mechanisms. FRL preserves data privacy in the network by
avoiding centralized or single point learning. FEdge includes
wireless devices within its environment and calculates the
global learning model at the edge of the network.
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Fig. 5. Potential FRL based framework applications.

D. FRL based Vehicle-to-everything Communications

Vehicle-to-everything (V2X) communication over 5G/B5G
networks is a key enabler for self-driving autonomous cars.
V2X communication also helps improve transportation frame-
works’ collaborative task handling [14]. However, autonomous
services performance in self-driving car, including instant
navigation, collision evasion, and collaborative task handling,
strongly depends on URLLC communication, which have
target end-to-end (E2E) latency < 1ms. Most current related
work focuses on improving V2X network expected latency to
achieve this target, utilizing probabilistic controls to sustain

queuing delays at the end devices.
However, although probabilistic control approaches may im-
prove network reliability on shorter queue length devices,
they fail to control exceptional actions for large queue length
devices with low channel access probability. Therefore, a
few end devices (vehicles) in V2X networks may encounter
volatile delays, degrading network performance. The major
issue with probabilistic methods is the lack of sufficient
information samples that include rare extraordinary events
[15]. In V2X communication, roadside units aid vehicles to
gather information samples over the network, but this incurs
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additional communication overheads.
As discussed above, FRL enables learning models to col-
laborates individual/local learning information with other de-
vices within available communication overheads (e.g. FACK
messages). The FRL framework also does not require syn-
chronization among other devices in a V2X network due to
implementing the QL algorithm locally. Thus, a vehicle can
learn and explore the environment with the help of locally
available information even if connectivity between the vehicle
and roadside unit(s) fail.

E. Secure FRL

One of the critical 5G/B5G challenges while fulfilling
URLLC requirements is to maintain data security and privacy.
Traditional ML techniques require need at least some private
information to be analyzed at the central device to implement
ML model training. Hence centralized training models may
cause potential security threats and privacy leakages within
the network. In contrast, FL models for wireless networks
enable trustworthy application scenarios for network devices.
However, there critical security and privacy challenges occur
due to training data leakages. A brutal security attack is
possible during GLM training; and user inference attacks at
any time, where rich semantic information may breach from
intermediate agents.
We propose FRL to overcome poising and user inference
attacks in the networks. The FRL model uses value based LLM
training models in an automated and anonymous manner for
each device in the network. LLMs have more robust defenses
against user inference attacks using locally designed learning
strategies during LLM updates. The proposed secure FRL
framework creates a decentralized and trustless data store to
eliminate dependency impacts upon agents in the conventional
FL model.

F. FRL based 5G/B5G Core Network

An essential improvement to the core network (CN) ar-
chitecture is to be able to handle the intimidating 5G/B5G
network services for URLLC requirements. A CN is the heart
of the network and transmits multi-radio access in a net-
work that requires seamless network-wide service experience.
3GPP [2] describes a CN architecture, called New Radio,
to enable services transmission over wired/fixed networks,
wireless networks, and converged access networks. A CN with
strategically located servers at the edges and cloud is critical
to support URLLC requirements. Effective network control
and resource management mechanisms are required to enhance
current deployed converged access network performance to
support URLLC requirements.
RL has been considered previously as a promising solution to
achieve intelligent and optimized network control and resource
allocation. However, the major issue with RL techniques is
that every RL enabled device must learn the optimal decision
through exploration. Thus, optimal actions are approached
at the expense of excessive time in performing sub-optimal
actions. Selecting sub-optimal actions during exploration could
negatively affect overall performance. Therefore, we proposed

to utilize FRL to leverage RL capabilities and hence improve
resource allocation strategies for 5G/B5G CN, whilst simulta-
neously achieving URLLC services through FRL techniques.
The proposed FRL based 5G CN enables multi-access net-
works to collaborate their LLM based decisions for common
(GLM based) resource allocation decisions. Multiple networks
share their individual exploration to speed up learning op-
timal strategies, hence benefiting all participating converged
networks.

VI. CONCLUSION

The reinforcement learning (RL) behaviorist learning tech-
nique has been employed recently to enable machine intelli-
gence in 5G and B5G wireless communication networks. RL
is an emerging ML technique in numerous active 5G/B5G
research areas. It employs explicit RL algorithms to learn
unfamiliar wireless network environments and resource alloca-
tions in ultra-dense WLANs, e.g. Q-learning to solve Markov
decision process models.
However, wireless networks are dynamic environments that
continuously change, and RL algorithms rely on individual
estimations. Excessive estimator variance during learning may
increase error variance. Therefore, we proposed a federated RL
(FRL) model for ML enabled resource allocations in ultra-
dense 5G/B5G wireless networks, such as IEEE 802.11ax
WLANs, to overcome wireless channel collision issues. Ex-
perimental results verified that the proposed FRL model was
superior to non-federated RL.
We also highlighted six potential applications for the proposed
FRL model in 5G/B5G; FiQRA mechanism, SINE method,
FEdge, FRL based V2X communication, Secure FRL, and
FRL based 5G/B5G core networks.
Future work will implement the proposed FRL model for
these applications and contribute to the research community.
We encourage researchers from institutions and industry to
consider the proposed FRL model for potential research and
practical applications.
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