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FairHealth: Long-Term Proportional
Fairness-Driven 5G Edge Healthcare in Internet 

of Medical Things
Xi Lin , Jun Wu  , Member, IEEE, Ali Kashif Bashir, Member, IEEE, Wu Yang, Aman Singh ,

and Ahmad Ali AlZubi

Abstract—Recently, the Internet of Medical Things (IoMT) 
could offload healthcare services to 5G edge computing 
for low latency. However, some existing works assumed 
altruistic patients will sacrifice quality of service for the 
global optimum. For priority-aware and deadline-sensitive 
healthcare, this sufficient and simplified assumption will 
undermine the engagement enthusiasm, i.e., unfairness. 
To address this issue, we propose a long-term propor-
tional fairness-driven 5G edge healthcare, i.e., FairHealth. 
First, we establish a long-term Nash bargaining game to 
model the service offloading, considering the stochas-
tic demand and dynamic environment. We then design a 
Lyapunov-based proportional-fairness resource schedul-
ing algorithm, which decouples the long-term fairness 
problem into single-slot subproblems, realizing a tradeoff 
between service stability and fairness. Moreover, we pro-
pose a block-coordinate descent method to iteratively solve 
nonconvex fair subproblems. Simulation results show that 
our scheme can improve 74.44% of the fairness index 
(i.e., Nash product), compared with the classic global time-
optimal scheme.
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I. INTRODUCTION

NOWADAYS, the emerging Internet of Medical Things
(IoMT)-based healthcare has achieved remote disease di-

agnosis and patient monitoring, which makes up for the scarcity
of medical resources in local clinics, especially in pandemic
scenarios, e.g., COVID-19. IoMT-based healthcare is commonly
dubbed Medicine 4.0 or Health 2.0 [1], relying on real-time gen-
erated medical data from the exponentially adopted diagnostic
tools, such as physician’s notebooks, nurses’ smartphones, and
sensor-based patient-monitoring tools. For network delay and
data privacy concerns, cloud infrastructure-based IoMT data
analysis methods are impractical, while 5G multiaccess edge
computing (MEC) equipped with cellular infrastructures (e.g.,
base stations) has enabled IoMT data proximal storage and
processing [2]. By offloading computing-intensive IoMT data
services to MEC servers for handling, IoMT devices can break
through the bottleneck of their constrained storage, computing,
communication, and energy resources [3], thereby realizing
low-latency and energy-saving edge healthcare.

However, realizing such a 5G edge healthcare in IoMT still
faces considerable challenges from the perspective of service
providers (SPs) and requesters (SRs). On the one hand, the
randomly generated IoMT data brings stochastic demands, while
the dynamic 5G edge environment includes time-varying chan-
nel parameters, available resources, etc. For SPs, considering
the stochastic demands and network dynamics [4], how to
scheduling communications and computing resources for vari-
ous healthcare services with a high quality of service (QoS) (i.e.,
lower service delay)? A dynamic scheduling policy provision
is required to ensure long-term service stability for 5G edge
healthcare, i.e., avoiding long-term service backlog. On the other
hand, when serving IoMT-based healthcare to a large number
of requesters (i.e., patients), the fairness requirements among
them urgently need to be satisfied. Some existing works [5], [6]
assume altruistic patients will sacrifice QoS for global optimum
coordination, which is not often feasible in the absence of a fair-
ness guarantee. For instance, some patients who request emer-
gency healthcare services (e.g., remote surgery) cannot tolerate
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the QoS reduction. Thus, fairness-driven 5G edge healthcare
should comprehensively customize offloading policies for re-
questers with different priorities and deadlines. In summary, it is
significant to design a long-term stable and fairness-guaranteed
edge healthcare service scheme in 5G-enabled IoMT.

We investigate the fairness topic in the view of utilitarianism.
In 5G edge healthcare, there are various distinct stakeholders,
including different patients and SPs. Intuitively, patients would
like to engage in the 5G edge healthcare if they obtain higher QoS
than if they were not to participate, which implies some fairness
concepts. The patients’ payoffs are fairly distributed during the
service process, and individuals are not needed to sacrifice their
own QoS in service offloading. The individuals are not needed
to sacrifice their own QoS in service offloading. In fact, rational
individuals who observe their own QoS consistently detrimental
will cease the engagement [7]. Meanwhile, for almost all high-
priority and delay-sensitive healthcare services, the life-related
QoS should not be allowed to reduce. We consider that 5G edge
healthcare should be established on fairness, even if it may result
in a global performance reduction. Although the global optimal
performance seems very attractive, from a practical point of
view, it will undermine the engagement enthusiasm and service
feasibility. Moreover, considering the long-term dynamics of
edge networks, fairness also needs to achieve long-term dynamic
adaptation.

Despite this, most existing MEC task offloading algo-
rithms [5], [6] consider altruistic nodes just struggle to achieve
a global optimum, which could not be applied in scenarios
where multiple parties participate. There are also some works
[8]–[10] focusing on general fair resource allocation in MEC
but do not consider priority-aware and deadline-sensitive service
characteristics in healthcare sectors. Consequently, we propose a
long-term proportional fairness-driven edge healthcare scheme,
referred to as FairHealth. By supplying deadline-sensitive
proportional-fairness service configuration for priority-aware
healthcare applications, our FairHealth could effectively im-
prove long-term patients’ QoS, acting as exogenous incentives
for patients’ engagement in healthcare. The contributions of our
work are summarized as follows.

1) We propose a novel FairHealth scheme, which realizes
a long-term proportional fairness-guaranteed 5G edge
healthcare in IoMT.

2) We establish and analyze a long-term dynamic Nash bar-
gaining game for priority-aware and deadline-sensitive
healthcare services, jointly considering service stability
and proportional fairness.

3) We design a dynamic fairness-aware resource online
scheduling algorithm via Lyapunov optimization technol-
ogy and block coordinate descent (BCD) method.

4) We conduct extensive simulations to show the QoS im-
provement in our scheme. And we demonstrate the pro-
portional fairness could be ensured compared to the ex-
isting works.

The rest of this article is organized as follows. We discuss
the related works in Section II. We then present the motivation
and system model of our work in Section III. The long-term
proportional fair healthcare problem is formulated as a dynamic

Nash bargaining game in Section IV. Besides, we propose a
Lyapunov-based resource scheduling algorithm with propor-
tional fairness in Section V. In Section VI, through extensive
simulations, we show the advanced performance of our scheme.
Finally, Section VII concludes this article.

II. RELATED WORKS

A. IoMT-Enabled Smart Healthcare

IoMT is a new paradigm of Internet of Things (IoT) that
provides an intelligent healthcare service. The IoMT system can
realize remote disease monitoring for patients. Therefore, it can
provide patients with timely diagnoses and save their lives in
emergency situations. However, it needs further advancement.
The framework, challenges, and future issues were discussed and
analyzed in [11]. Philip et al. [11] also illustrated the factors that
drive the development of IoT-based in-home health monitoring
systems. They claimed that the private medical records of the
patients should be carefully processed and stored for modern
society. Some work focuses on the collection and analysis of
IoMT data [12], [13]. For instance, Usman et al. [12] established
a general data collection and analysis framework for IoMT
applications. The proposed framework divided the underlying
wireless multimedia sensor network into multiple clusters. Each
cluster is responsible for aggregating IoMT data and extracting
meaningful information on the cloud. Peng et al. [13] designed a
highly concurrent and massive IoMT data collection algorithm.
The ability of IoMT data-parallel collection can be well realized
in [13]. However, these works [12], [13] have not considered
the dynamic nature of IoMT data collection, that is, time-series
and stochastic data generation. Some other works are concerned
about IoMT security. Ghubaish et al. [14] comprehensively
overviewed IoMT systems’ potential physical and network
attacks during data collection, communication, and storage.
Deebak et al. [15] proposed a secure and privacy-preserving
cloud-based medical healthcare framework. In addition, the
blockchain technique was adopted in [16] to realize secure and
decentralized medical data sharing among entities in the IoMT
system.

B. 5G MEC-Based Smart Healthcare

The low latency feature of 5G will greatly facilitate the de-
velopment of healthcare services. Existing research work [17]–
[21] mainly focuses on how to effectively jointly optimize
the computing, communication, and storage resources of the
MEC system to provide delay-sensitive healthcare services.
Ning et al. [17] constructed an MEC-enabled 5G IoMT which
can minimize the system-wide cost. And the utility-optimal
wireless channel resource strategies in [17] were derived by
the decentralized noncooperative game. They also theoretically
calculated the upper bound of the time complexity of this
framework. Computing resource allocation is also an issue that
needs paying attention to. Lin et al. [18] designed a three-tier
edge network framework for smart healthcare applications in
terms of communication, computing, and service. They also
proposed an algorithm that optimizes the resource allocation and



Fig. 1. Motivational example of 5G edge healthcare.

computation offloading in the MEC scenario. Thus, the system
can realize efficient medical data storing and requesting. For the
lack of global information, the resource allocation for 5G MEC-
based healthcare faces challenges. Zhou et al. [19] proposed a
learning-based task offloading approach under the constraints
of ultralow-latency communications (URLLC). There are also
some studies focusing on intelligent resource allocation. The
integration of edge computing and artificial intelligence gives
birth to edge intelligence. Hayyolalam et al. [20] have pro-
posed an improved edge intelligence framework for IoMT-based
healthcare systems. Rahman et al. [21] proposed a B5G network
architecture that leverages the features of 5G like low-latency
and high-bandwidth to realize a better remote diagnosis. Dis-
tributed deep learning was also integrated into the framework
proposed by the authors.

In summary, in terms of IoMT, most existing works [12],
[13] often ignore the dynamic time-series IoMT data generation
process, making it difficult to meet the stochastic services de-
mand. In terms of edge computing, most existing MEC resource
allocation schemes [17]–[21] ignore the dynamic fair service
configuration of priority-aware healthcare for patients. Unlike
existing works, we focus on dynamic proportional fairness-
powered 5G edge healthcare, while guaranteeing stochastic
healthcare service stability.

III. MOTIVATION AND SYSTEM MODEL

In this section, to show our design purpose more clearly, we
start with a simple motivational example of 5G edge healthcare
in Fig. 1, which presents the service delay of four cases in the
mini edge healthcare system. After that, we then introduce our
system model, i.e., the long-term dynamic service offloading
model for 5G edge healthcare.

A. Motivational Example of Fair Healthcare

We employ a simple edge healthcare service offloading sys-
tem as a motivating instance. Considering one MEC server and
five nearby patients requesting IoMT-based service offloading.
It is desirable that both parties collaborate to determine how

to allocate computation resources, e.g., to improve QoS for all
patients. Intuitively, each patient will selfishly focus on some
concept of individual payoff. In 5G edge healthcare, we measure
this payoff as the QoS they obtain during the offloading, i.e., to
greatly reduce the service delay. The computation of the MEC
server and local IoMT devices is 30 and 5 GHz, respectively.
The healthcare data size of five patients is [5,10,15,20,25] Mbit,
respectively. The required CPU cycles of each data packet are
500 cycles/bit. The communication time of all the patients is
simply denoted as 0.1 s. We compare four resource scheduling
strategies for four optimization goals as follows.

Case 1: Local strategy, where the patients just perform data
processing locally. Even in the absence of communication time,
the constrained local computation cannot enable patients to
obtain higher QoS. As the benchmark, the local strategy means
that patients will not resort to the 5G edge healthcare system for
service offloading.

Case 2: Global optimal strategy, where the SP assumes that
each patient participates in the 5G edge healthcare system spon-
taneously. Therefore, the SP will take the total service delay of all
patients as the global optimization goal. The total delay reaches
the theoretical minimum, i.e., 6.36 s. However, if we check the
individual QoS and compare to the local strategy, we observe
that patients 1 and 2 will increase in service delay causing a
lower QoS.

Case 3: Clobal suboptimal strategy, where the SP introduces
some restrictions with the total service delay minimization, i.e.,
the service time of each patient should not exceed the benchmark
time in Case 1. The total delay (i.e., 6.69 s) has increased
compared to Case 2, while each patient will not reduce QoS
compare to Case 1. However, it can be clearly noticed that the
QoS of patients 4 and 5 is obviously improved compared to
patients 1, 2, and 3.

Case 4: Fair-aware strategy, where the SP struggles to fairly
improve the QoS of each patient rather than pursue pure global
optimum. Fair-aware strategy increases the total service delay
from 6.36 to 6.93 s, while compared to Cases 1 and 2, it guaran-
tees that all the patients fairly increase QoS to the same extent,
reaching the Pareto-optimal efficiency. All the patients will be
encouraged to join such a fairness-guaranteed edge healthcare
system.

The above four cases illustrate a serious but easily over-
looked issue. When we consider the global optimum, it will
always go against the QoS of some participants. Time-sensitive
edge healthcare requires a prompt response, such as emergency
treatment and remote surgery, where the life-critical QoS must
not be reduced. The SP should provide QoS that exceeds the
local baseline, and improve the QoS equally among patients.
Otherwise, patients who are unfairly treated for global optimum
would cancel edge healthcare services. 5G edge healthcare needs
to find the optimal tradeoff between overall performance and
individual fairness.

B. System Model of 5G Edge Healthcare

The above motivational example is relatively simple, while the
actual system model of 5G edge healthcare is more complicated.
In the 5G ultradense heterogeneous network, MEC servers are



TABLE I
MAIN TERMS REFERRED IN OUR ARTICLE

densely deployed, requiring resource collaboration to break
single MEC server resource constraints. The interaction between
multiple MEC servers and multiple patients will be investi-
gated, thereby introducing the patient association challenge, i.e.,
where to offload the IoMT-based healthcare service. In addition,
there are some dynamic uncertainties over edge networks. For
patients, the generated IoMT data are time-varying, resulting
in dynamic service demands. For MEC servers, the wireless
network status is unstable (e.g., communication bandwidth and
channel parameters), and the available resources are also dy-
namic. All the dynamics are difficult to accurately predict. We
employ time slicing to capture the dynamics. The main symbols
and explanations in our article are presented in Table I.

In Fig. 2, we show the system model of 5G edge health-
care, including the L service requesters (patients) and K
providers (MEC servers). The L patients are denoted as
L= {1, 2,. . ., l, . . ., L}. And the K MEC servers located in dif-
ferent regions, which are denoted as K = {1, 2, . . ., k, . . .,K}.
Similar to the previous work [4], [5], cloud-based centralized
resource control and management of MEC servers could be
realized by softwarized networking paradigms, i.e., software-
defined networks (SDN). With the information flow tables, the
SDN controller can easily obtain the system parameters and
achieve more efficient network management. As shown in Fig. 2,
we could show the interaction process among the three layers
of IoMT, MEC, and cloud. IoMT generates medical data for
5G healthcare, then MEC processes the uploaded IoMT data to
provide medical services for patients. And the cloud center is
responsible for managing and scheduling resources of multiple
MEC servers via the SDN controller.

1) Service Requesters (patients) in IoMT Layer: The IoMT
will continuously produce healthcare data from the patients.
The entire timeline is divided into a series of time slots, i.e.,
Γ = {1, 2, . . ., t, . . ., T − 1, T}. Considering the Age of Infor-
mation, healthcare data are required to analyze and process in
real time. During time slot t, IoMT data will generate from
the patients, and the data size is sl[t], (∀l ∈ L). cl[t] is the
required CPU cycles for the unit data packet, which presents
the different types of healthcare services. The dynamic sl[t] and
cl[t] are still upperbounded, i.e., sl[t] ≤ s̄, cl[t] ≤ c̄. In time slot
t, the patients will offload the IoMT data to one MEC server

Fig. 2. System model of 5G edge healthcare.

through wireless uplinks. The patient association is denoted as
ylk ∈ {0, 1}, where

∑K
k=1 ylk[t] = 1, (l = 1, 2, . . ., L). In 5G

ultradense networks [5], [22], [23], we could model the wireless
channel gain Hlk[t] as follows:

Hlk[t]=127+30log10 (dlk[t]) + 20 (1− δlk[t]) (1)

where δlk[t] ∈ {0, 1}, and δlk[t] = 1 is for indoor scene, while
δlk[t] = 0 is for outdoor scene. In our work, we mainly consider
in-home healthcare, thus δlk[t] = 1. dlk[t] (km) presents the
geographic distance between patients and MEC servers. And
we consider the distance dlk[t] keeps constant in time slot t,
thus Hlk[t] is also constant in a time period. The transmission
rate of the wirelss uplink between the patient l and MEC server
k could be formulated as

rlk[t] = Blk[t] · log2

(
1 +

Hlk[t] · Plk[t]

σ2
lk[t] + θlk[t]

)
(2)

where Blk[t] is channel bandwidth, Plk[t] presents the transmit
power, σ2

lk[t] denotes the environmental noise, and θlk[t] shows
the intercell interference noise. Therefore, the uplink communi-
cation time T com

lk [t] is presented as

T com
lk [t] =

K∑
k=1

ylk[t] · sl[t]
rlk[t]

, ylk[t] ∈ {0, 1}. (3)

2) Service Requesters (MEC Servers) in MEC Layer: For
each MEC server, the arriving IoMT data are considered



as a single server sequence. That is, the arriving healthcare
service follows the first-in–first-out processing principle. We
consider the computation capacities of the MEC servers as
Ω[t]= {ω1[t],ω2[t],. . .,ωk[t], . . ., ωK [t]}, while the local IoMT
devices of patients are V [t]= {ν1[t],ν2[t],. . .,νl[t], . . ., νL[t]}.
The computation capacity shows the CPU cycles that can be
executed in unit time. Thus the computing time T local

l [t] and
T cmp
lk [t] could be formulated as follows:

T local
l [t] =

cl[t]sl[t]

νl[t]
, T cmp

lk [t] =
K∑
k=1

ylk[t] · cl[t] · sl[t]
ωk[t] · λlk[t]

(4)

where λlk[t] presents the computation allocation rate, and∑L
l=1 λlk[t] ≤ 1,(k = 1, 2, . . .,K). And the downlink commu-

nication time is ignored due to the smaller feedback data and
faster downlink speed, thus we have

T offload
lk [t] =

K∑
k=1

ylk[t] · sl[t] ·
(

1
rlk[t]

+
cl[t]

ωk[t] · λlk[t]

)
. (5)

The amount of data and the number of services reaching to the
MEC server k can be expressed as

Zk[t] =

L∑
l=1

ylk[t] · cl[t] · sl[t],Mk[t] =

L∑
l=1

ylk[t]. (6)

Let Dk[t] be the data backlog of the MEC server k. Thus, the
data backlog update rule is formulated as

Dk[t+ 1] = max{Dk[t]− tωk[t], 0}+
∑

ylk[t]cl[t]sl[t].

(7)
Thus, Dk[t] are considered as dynamic service queues. Consid-
ering the dynamic congestion control of the healthcare service,
we build the virtual queues Xk[t] to model the dynamic number
of healthcare services [4], [24], i.e.,

Xk[t+ 1] = max{Xk[t]−mk, 0}+
∑

ylk[t] (8)

wheremk indicates the upper-bound number of services at MEC
server k. According to the Lyapunov queue theory [4], [24], if
service queues Dk[t] are stable, the long-term average arriving
rate

∑
ylk[t]cl[t]sl[t] will not exceed the queue serving rate

tωk[t]. Also, if virtual queues Xk[t] are stable, the long-term
average arriving rate

∑
ylk[t] will not exceed the queue serving

rate mk. We could realize both the service stability and conges-
tion avoidance of each MEC server via the control of service and
virtual queues, respectively. Now, we introduce the mean-rate
stability of queues as follows:

lim
t→∞

E{|Dk[t]|}
t

= 0, lim
t→∞

E{|Xk[t]|}
t

= 0, (∀k ∈ K). (9)

If the above (9) is satisfied, the long-term average queue arriving
rate will not exceed the queue serving rate, i.e.,

lim
T→∞

sup
1
T

T−1∑
t=0

E{Zk[t]} ≤ tωk[t], (∀k ∈ K) (10)

lim
T→∞

sup
1
T

T−1∑
t=0

E{Mk[t]} ≤ mk[t], (∀k ∈ K). (11)

TABLE II
COMPARISON OF NBS AND KS

IV. DYNAMIC NASH BARGAINING GAME FORMULATION

In this section, we aim to find a fair solution for 5G edge
healthcare services. In specific, we model a Nash bargaining
game to realize a balance of high system performance and patient
fairness. The Nash bargaining game could enable a multiparities
collaboration via fair utility value allocation.

Fairness should strictly satisfy the five axioms [7], [25] in
Table II. Nash has proved that the unique equilibrium in the
multiparities Nash bargaining game could satisfy axioms (1)–
(4), which is defined as Nash bargaining solution (NBS). We
consider u∗ as a NBS in P for umin, i.e., u∗ = g(P, umin), the
axioms of the NBS could be explained as follows.

1) Pareto optimality: u∗ is Pareto-optimal; no individual can
be better off without making at least one individual worse
off or without any loss thereof.

2) Scale invariance: If u∗ ∈ P′ ⊂ P , u∗ = g(P, umin), then
we have u∗ = g(P,′ umin).

3) Symmetry: IfP is invariant under all exchanges of players
(patients), gl(P, umin) = gk(P, umin) ∀l, k ∈ L.

4) Independence: For any linear scale transformation Υ, we
have Υ(g(P, umin)) = g(Υ(P),Υ(umin)).

And the Kalai–Smorodinsky solution (KS) could satisfy ax-
ioms (1)–(3) and (5). Table II presents the comparison of NBS
and KS. Both the NBS and KS have the corresponding fair-
ness metrics. In our work, we pay more attention to NBS and
corresponding proportional fairness, for NBS commonly has a
closed-form expression with equal treatment among multiple
players (i.e., patients), compared with KS.

A. Dynamic Bargaining Game and Proportional Fairness

The patients act as players in the bargaining game, which
try to maximize their own utility. In 5G edge healthcare, the
utility of the patient could be concretized as the QoS during
the service offloading, which is inversely proportional to service
time. All the patients would struggle to obtain the lowest possible
service time. Thus, selfish patients strive to optimize their QoS
via the combination of utility-optimal edge association ylk[t]
and computation schedule λlk[t]. Obviously, if QoS can be
maximized by only local strategy, the patient will not turn to
the edge healthcare system. We now define the NBS to address
the fairness issue as P1, i.e.,

max
ylk[t],λlk[t]

L∏
l=1

(
αT local

l [t]− T offload
l (ylk[t], λlk[t])

)
. (12)

As discussed in Section III-B, we denote T local
l [t] to present the

initial disagreement value for patients l, which is also the worst



QoS a patient would join the 5G healthcare service offloading.
In other words, the service time T offload

l [t] for each patient
should be no higher than the local service time. This ensures
that each patient can improve their QoS by participating in
5G edge healthcare. In practice, it is necessary to consider the
priorities of different IoMT services in 5G healthcare, and it
will not harm the fairness of patients. For example, the priority
of emergency services is higher than ordinary medical report
analysis. As is shown in (12), we introduced α to represent
the priority parameter. When α is smaller, αT local

l [t] is smaller,
which represents a smaller initial disagreement value. A smaller
and stricter initial disagreement value (or serving deadline)
means that patients have a stronger priority for the service.
Therefore, healthcare services with a smaller α have a higher
priority. In this article, we consider the priority-sensitive service
delay for edge healthcare, Nash product optimization goal in P1
tries to proportionally reduce the service delay of each patient
in order to achieve fairness, i.e., NBS. We then formulate the
formal Nash bargaining game and define the fairness for 5G
edge healthcare.

Definition 1: The service offloading bargaining game is for-
mulated as a tuple P[t] = {Λ[t],Π[t]}, where Λ[t] includes all
the serving time values via service offloading. And Π[t] consists
of all the disagreement values (i.e., local time) as a breakdown
point in bargaining.

The fair service offloading game is accompanied by a Nash
bargaining solution. We are required to find Pareto-efficient edge
association and resource schedule strategies to uniquely maxi-
mize the Nash product. By taking the logarithm and negation of
(12), P1 is equivalently transformed to P2

minU total[t] = −
L∑
l=1

ln (αT local
l [t]− T offload

l [t]). (13)

Definition 2: Proportional fairness: The service offloading
strategies {y∗lk[t], λ∗lk[t]} satisfy the proportional fairness if and
only if ∀(ylk[t], λlk[t]) 
= (y∗lk[t], λ

∗
lk[t]), we have

∑ T ∗l (y
∗
lk[t], λ

∗
lk[t])− T offload

l (ylk[t], λlk[t])

T local
l [t]− T ∗l (y

∗
lk[t], λ

∗
lk[t])

< 0. (14)

We believe that each patient needs to improve QoS compared
to local computing during the service offloading, and the im-
provement among patients is equal, following some concepts
of fairness. If patients are treated unfairly, they will further
go away from the edge healthcare system. There are three
classic and clearly defined fairness, that is, egalitarian, max-min,
and proportional fairness. Egalitarian fairness cannot achieve
Pareto efficiency, which is not commonly adopted in practice.
Proportional fairness is built on NBS, while max-min fairness
is defined by KS. In our work, we concentrate on NBS, thus we
just consider proportional fairness in Definition 2.

We could consider a service offloading strategy is proportional
fairness if the reassociation or allocation of any patients would
increase the proportional service time of a patient by less than
the aggregated reduced service time for others. For instance,
a patient adopts a reassociation or allocation strategy. If such
an operation increases the service time of patient A by 30%,

causing patient B to decrease the service time by just 1%, it is not
considered fair. But if patient B could decrease the service time
by 70%, it is fair. Proportional fairness could improve the QoS of
all the patients over their local computing by themselves. Other-
wise, the service offloading will intuitively break down, replaced
by local computing. P2 describes the optimization problem for
the static Nash bargaining game, considering the unpredictable
system dynamics, we further consider the long-term dynamic
Nash bargaining game P3, which is also shown as follows:

min lim
T→∞

inf
1
T

∑T−1

t=0
E

{
−

L∑
l=1

ln(αT local
l [t]− T offload

l [t])

}

s.t. T offload
l [t] < αT local

l [t], (∀l ∈ L)
∑L

l=1
λlk[t] ≤ 1,

K∑
k=1

ylk[t] = 1, (∀k ∈ K, ∀l ∈ L)

lim
T→∞

sup
1
T

T−1∑
t=0

E{Zk[t]} ≤ tωk[t], (∀k ∈ K)

lim
T→∞

sup
1
T

T−1∑
t=0

E{Mk[t]} ≤ mk[t], (∀k ∈ K).

V. PROPOSED FAIR EDGE HEALTHCARE SCHEME

To guarantee long-term proportional fairness for 5G edge
healthcare, we next find the optimal solutions of the P2 and
P3, i.e., our proposed FairHealth scheme. We first consider the
static proportional fairness in P2, so as to in-depth reveal the
essential difference of the cases in Section III. For long-term
dynamic fairness in P3, we propose a Lyapunov-based online
algorithm to derive the optimal patient association and resource
schedule in each time slot t.

A. Motivational Bases of FairHealth Scheme

We consider an MEC server k, andL patients in 5G healthcare
system. The optimization goals of global optimum and propor-
tional fairness are expressed as follows:

min
λlk

T total =

L∑
l=1

(
T com
l +

clsl/ωk

λlk

)
, s.t.

l=1∑
l=1

λlk ≤ 1

min
λlk

U total =

L∑
l=1

−ln
(
αT local

l − T com
l − clsl/ωk

λlk

)

s.t. T offload
l < αT local

l ,
l=1∑
l=1

λlk ≤ 1.

1) Global Optimum Case: According to classical Cauchy’s
inequality, we could obtain

L∑
l=1

(√
clsl/ωk√

λlk

)2 L∑
l=1

(
√

λlk)
2 ≥

(
L∑
l=1

√
clsl/ωk

)2

.

(15)



For the global optimum strategies, we should obtain the resource
allocation to minimize the total time, we could obtain

T total ≥
L∑
l=1

T com
l +

∑√
clsl/ωk∑
λlk

≥
L∑
l=1

T com
l +

L∑
l=1

√
clsl/ωk. (16)

The inequality takes equal conditions as
√

c1s1/ωk/λ1k =

. . . =
√

clsl/ωk/λlk =
√

cLsL/ωk/λlk, The global optimal
resource allocation for the patients l is ωk

√
clsl/

∑√
clsl,

which is proportional to the required computing amount
√
clsl.

Although the global optimum seems the most attractive, it is
not suitable for priority-aware and deadline-sensitive 5G edge
healthcare as we discussed in Section III.

2) Proportional Fairness Case: To simplify, let Al =
αT local

l − T com
l , Bl = clsl/ωk, (∀l ∈ L), and we investigate the

concave of the optimization goal, i.e., the Hessian matrix of
U total, for ∀i, j ∈ L and i 
= j

∂2U total

∂λik∂λjk
=

B2
i /λ

4
ik

(Ai −Bi/λik)
2 +

2Bi/λ
3
ik

(Ai −Bi/λik)
> 0. (17)

And ∂2U total/∂λik∂λjk = 0 for i = j. It is concluded that the
Hessian matrix is a symmetrical positive definite matrix. Ac-
cording to the theorems in [26], it is concluded U total is convex.
Thus, the uniqueness of the NBS will exist in our proposed game.
For the restricted convex optimization problem for fairness case,
we employ the Lagrangian dual function to obtain the unique
NBS, i.e.,

L (λlk, μl, η) = −
L∑
l=1

ln(Al −Bl/λlk)

+ η

(
L∑
l=1

λik − 1

)

+
L∑
l=1

μl (Bl/λlk −Al) (18)

where μl and η are dual variables. We employ Karush–Kuhn–
Tucher (KKT) condition to derive the optimal solution, i.e.,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇L (λlk, μl, η) = 0

μl (Bl/λlk −Al) = 0

η((
∑L

l=1 λlk)− 1) = 0

μl ≥ 0, η ≥ 0

⇒
⎧⎨
⎩

λlk=
2η−1√

1+
4Al
ηBl
−1∑L

l=1 λlk = 1
. (19)

According to (18), the proportional fair resource allocation
is related to AlB

−1
l , which depends not only on the computing

amount clsl but also on service priority α and local deadline
T local
l . When the service priority is higher (or lower deadline),

and when the computing amount is larger, the patient will be
allocated more service resources. Compared with global opti-
mization, this proportionally fair scheme is much more practical
for 5G edge healthcare systems.

B. Long-Term Dynamic FairHealth Scheme

We further consider the long-term dynamic proportional
fairness via the Lyapunov optimization theory. The collab-
oration of multiple MECs needs to be studied, thus intro-
ducing the edge association problem. And the tradeoff be-
tween dynamic network stability and fairness also needs to
be explored. For each MEC server k, there are K ser-
vice queues and K virtual queues. We describe Θ[t] =
(D1[t], . . ., Dk[t], . . ., DK [t], X1[t], . . ., Xk[t]. . ., XK [t]) as the
queue vector in time slot t. And the Lyapunov function I(Θ[t])
and Lyapunov drift Δ(Θ[t]) is shown as follows:

I[t] =

L∑
l=1

D2
l [t] + Z2

l [t]

2
,Δ(Θ[t]) = I[t+ 1]− I[t]. (20)

In P3, we aim to reduce Lyapunov drift to ensure network
stability. Meanwhile, we still need to minimize the proportional
fair optimization goal. We resort to the drift-plus-penalty (DPP)
expression to integrate the network stability and fairness, i.e.,
Δ(Θ[t]) + V U total[t], where V > 0 is the adjustable parameter,
to weight service stability and fairness. Then, P3 is transformed
to P4, i.e.,

minE{Δ[t]− V

L∑
l=1

ln(αT local
l [t]− T offload

l [t])|Θ[t]}

s.t. T offload
l [t] < αT local

l [t], (∀l ∈ L)
L∑
l=1

λlk[t] ≤ 1,
K∑
k=1

ylk[t] = 1, (∀k ∈ K∀l ∈ L).

We cannot directly solve the above P4, for we need to obtain
Y (Θ[t+ 1]) in future time slot (t+ 1). According to the Lya-
punov optimization techniques, we could solve P4 by online
minimizing the upper bound of the DPP, without knowing future
system information. We then derive the upper bound of DPP
expression as follows.

Theorem 1 : For all the queues Θ[t] and V , the expected DPP
expression is upperbounded as

E

{
Δ[t]− V

∑L

l=1
ln(αT local

l [t]− T offload
l [t])|Θ[t]

}

≤ E

{∑L

l=1

∑K

k=1
ylk[t](Dk[t]cl[t]sl[t]+Xk[t])|Θ[t]

}

+G− E

{∑K

k=1
tDk[t]ωk[t]+

∑K

k=1
mkXk[t]|Θ[t]

}

− V

{∑L

l=1
ln(αT local

l [t]− T offload
l [t]

}
(21)

G = max

{
1
2

K∑
k=1

(t2ω2
k[t] + Z2

k[t]+m2
k[t] +M 2

k [t])

}
. (22)

Proof: Due to the limited space, the proof is omitted.
Based on Theorem 1, the upper bound of DPP expression is

only related to the current system status. The highly coupled
system control strategy includes ylk[t] and λlk[t]. Only when
ylk[t] is determined, MEC servers could allocate the resources



Algorithm 1: Lyapunov-Based Long-Term Proportional
Fairness Algorithm.

1: Input: V , α, K, L, P , θ;
2: Output: y∗lk[t] and λ∗lk[t];
3: Initialization: Initial queue vector Θ[0] = 0;
4: for t ∈ Γ do
5: for k ∈ K do
6: Getting the current status: Θ[t], sl[t], cl[t], ωk[t];
7: Setting W [t] = −V ∑ ln(αT local

l [t]− T offload
l [t]);

8: Setting
Q[t] =

∑∑
ylk[t](Dk[t]cl[t]sl[t]+Xk[t]);

9: (y∗lk[t], λ
∗
lk[t])← argmin(W [t] +Q[t]);

10: end for
11: Updating queue status:
12: Dk[t+ 1] =

max{Dk[t]− tωk[t], 0}+∑ ylk[t]cl[t]sl[t];
13: Xk[t+ 1] = max{Xk[t]−mk, 0}+∑ ylk[t];
14: end for

Algorithm 2: Block Coordinate Descent-Based Propor-
tional Fairness Algorithm.

1: Input: Θ[t], sl[t], cl[t], ωk[t];
2: Output: Block variables Y∗[t] and Φ∗[t], y∗lk[t], λ

∗
lk[t];

3: Initialization: Iteration threshold κ, initial value
Y(0)[t] and Φ(0)[t], τ = 0;

4: Setting R[t] = W [t] +Q[t];
5: while |R(τ+1)[t]−R(τ)[t]| > κ do
6: Φ(τ+1)[t]← argminR[t] with fixed Y(τ)[t];
7: Y(τ+1)[t]← argminR[t] with fixed Φ(τ+1)[t];
8: end while
9: for all the patients l ∈ L do

10: k∗ = argmaxk ylk[t];
11: y∗lk∗ [t]← 1; y∗lk[t]← 0, (k 
= k∗);
12: end for
13: λ∗lk[t]← argminR[t] with fixed y∗lk[t];

with a suitable λlk[t]. As presented in Theorem 1, only the first
and fourth item on the right of (21) is controllable, other items
are the state system parameters. That is, minimizing the DPP
expression is equal to minimizing the first and fourth items on
the right of (21). The first item can control the congestion level of
the service system, i.e., the service stability, while the fourth item
can achieve Pareto-optimal proportional fairness. Therefore, we
propose the Lyapunov-based long-term proportional fairness
algorithm, which is presented in Algorithm 1.

According to the Lyapunov optimization theory [4], [24],
we can achieve a O(V, 1/V ) tradeoff between queue stability
and proportional fairness. In specific, the long-term service
stability is determined by O(V ), while the long-term propor-
tional fairness is measured by O(1/V ). A smaller V means we
just need fewer time iterations to realize the queue stability.
When V is large enough, the solution of Algorithm 1 will be
infinitely approaching the optimization goal in P3. In practice,
we could employ suitable V to configure the 5G edge healthcare

Fig. 3. QoS improvement percentage of patients.

system [4]. In Algorithm 1, lines (5–10) represent the online op-
timization problem solved in each time slot. The online fairness
subproblem in line 9 is a mixed-integer nonlinear programming
(MINLP) problem, i.e., a nonconvex NP-hard problem, which is
hard to be solved in a polynomial time. Thus the global optimal
solution in line 9 is hard to obtain. We first relax the integer
variables ylk[t] into continuous variables [5], i.e., ylk[t] ∈ [0, 1].
Then, we could have two blocks of variables Y[t] and Φ[t] as
follows:

Y[t] =

∣∣∣∣∣∣∣∣∣∣∣∣

y11[t] · · · y12[t] · · · y1K [t]
...

...
...

...
...

yl1[t] · · · yl2[t] · · · ylK [t]
...

...
...

...
...

yL1[t] · · · yL2[t] · · · yLK [t]

∣∣∣∣∣∣∣∣∣∣∣∣
(23)

Φ[t] =

∣∣∣∣∣∣∣∣∣∣∣∣

λ11[t] · · · λ12[t] · · · λ1K [t]
...

...
...

...
...

λl1[t] · · · λl2[t] · · · λlK [t]
...

...
...

...
...

λL1[t] · · · λL2[t] · · · λLK [t]

∣∣∣∣∣∣∣∣∣∣∣∣
. (24)

We could easily find the online fairness subproblem is convex
with respect toY[t] andΦ[t]. Thus, we employ a low complexity
BCD and convex optimization method [27], [28] to iteratively
solve an approximate solution in line 9. The detailed process of
line 9 is presented in detail in Algorithm 2.

VI. SIMULATION AND DISCUSSION

We simulate the real network topology with Shanghai Tele-
com’s dataset [4], [29], which contains 3233 geographically
distributed base stations (BSs). It is an open-source dataset [29].
The dataset contains the detailed base station latitude and longi-
tude coordinates, and start time and end time of base station
access for service requesters. We select five real geographic
coordinates of the BSs located in a 300× 300-m square area, and
the number of IoMT devices is set as 20. The specific coordinates
of the five BSs are presented in Table III.



Fig. 4. Fairness level of 5G edge healthcare.

TABLE III
GEOGRAPHIC COORDINATES OF THE 5 BSS

Each BS is equipped with MEC servers. The IoMT devices
follow a homogeneous Poisson point process (PPP) distribution
in the given square area. In addition, data amount sl[t] is uni-
formly chosen from [5, 25] Mbit and cl[t] follows uniform distri-
bution from [500, 900] cycles/bit. The service priority α follows
a uniform distribution on an interval [1.1, 2.0]. The wireless
transmission bandwidth B[t] is 20 MHz and the transmit power
is 500 mW. And the Gaussian noise power σ2[t] is 2× 10−13 W.
The CPU computation resource of the MEC servers in BSs and
IoMT devices follows uniform distribution from [30, 35] GHz,
[3, 5] GHz, respectively.

The comparison offloading schemes in our article are the
global optimum offloading scheme (GOP) and global subopti-
mum offloading scheme (GSOP), which are commonly consid-
ered in previous works [5], [6]. The GOP and GSOP offloading
schemes both optimize the service delay of the entire system
from a global perspective, ignoring the requirement of fair
resource allocation among users.

1) Global optimum scheme: GOP offloading scheme would
take the total service offloading delay of all users as the
optimization goal. Thus the total offloading delay will
realize the theoretical minimum.

2) Global suboptimum scheme: GSOP offloading scheme
would introduce a restriction with the total service delay
minimization compared with GOP. That is, the service
time of each user should be less than the benchmark time,
i.e., local service time.

Fig. 3 investigates the QoS improvement in the three strate-
gies. The baseline is the local strategy, where patients just

perform data processing locally. Specifically, we analyze five
patients associated with the same BS, and their increasing order
is arranged by their service data amount. As shown in Fig. 3,
GOP will cause the QoS of patients 1 and 2 to drop 76.18%
and 17.52%, which is unacceptable in practice. Compared to
GOP, GSOP could ensure that the QoS of each patient will not
drop, while it is still not fair to patients 1 and 2. In GSOP,
patients 1, 2, and 3 have almost no improvement in QoS,
while patients 4 and 5 have increased by 14.34% and 26.63%,
respectively. In our FairHealth, the QoS of each patient has been
improved to a certain extent, and this improvement is fair and
unbiased.

In Fig. 4, we also study the fairness level of 5G edge health-
care, i.e., Nash product. As shown in Fig. 4, our FairHealth
can achieve the highest fairness level, GOS has the worst fair-
ness, while GSOP achieves a tradeoff between fairness and
total service delay. We could also quantitatively compare the
three strategies: when α = 2.0, FairHealth has increased by
74.44% and 5.66%, compared to existing GOS and GSOP,
respectively. At the same time, the fairness level will increase
as the service priority α increases, which is in accordance
with (12).

The Pareto-optimal computation allocation is more signif-
icant for proportional fairness in FairHealth, compared with
edge association strategies. Thus we focus on the computation
allocation in Fig. 5. As shown in Fig. 5(a), with the improvement
of service priority parameters α, our FairHealth will gradually
tend to provide more CPU computing resources to high-priority
healthcare services. The two strategies, GOP and GSOP, will not
take into account the different service priorities, while allocating
resources evenly among services. Therefore, GOP and GSOP are
hard to apply to priority-sensitive edge healthcare. In Fig. 5(b),
the data amount of healthcare services increases, GOP and
GSOP will supply more computation for services with more
data. This is an optimization measure taken by GOP and GSOP
to reduce the total service time, but this will lead to unreasonable
resource allocation for patients. Imagine a sudden emergency
treatment, whose pending data amount is usually lower than
ordinary medical log analysis. Should we allocate too much
computation for log analysis so that cause emergency treatment
not be processed in time? Our FairHealth is sensitive to priorities
rather than data amount, compared to GOP and GSOP.

The local task processing capabilities of IoMT devices also
need to be analyzed, which is ignored in GOP and GSOP,
as shown in Fig. 5(c). Note that, when the local computation
is higher, patients can get better QoS by themselves. Thus,
the SP needs to attract and motivate patients to participate by
more resource provision. Because most healthcare services are
delay-sensitive, patients concern more about QoS. If they cannot
improve QoS by participating in 5G edge healthcare, they will
only process data locally. As shown in Fig. 5(c), our FairHealth
can offer more computation when the local computation is high,
which will encourage patient engagement. In summary, our
FairHealth is better than GOP and GSOP when considering
the priority-sensitive and latency-critical 5G edge healthcare
services.



Fig. 5. Simulations of fair computation allocation. (a) Computation allocation ratio versus service popularity. (b) Computation allocation ratio versus
data amount. (c) Computation allocation ratio versus local computation.

VII. CONCLUSION

In this article, we proposed a long-term proportional fairness-
driven 5G edge healthcare, named FairHealth. FairHealth pro-
vides long-term Pareto efficiency and proportional fairness in
5G edge healthcare, guaranteeing that all patients are incen-
tivized to participate. Then, considering the priority-sensitive
and delay-critical healthcare, we formulated a Nash bargain-
ing game problem to jointly optimize edge associations and
computation resources in FairHealth. The long-term dynamic
game problem is a nonconvex stochastic network optimization
problem. We employed the Lyapunov techniques to transform
the original problem into a series of online fair subproblems.
Moreover, we utilized BCD and convex optimization method
to iteratively solve the online subproblems. Simulation results
demonstrated that our FairHealth significantly outperforms the
existing schemes. Our future work will focus on the intelligent
edge healthcare framework. Through advanced deep reinforce-
ment learning, we will design an adaptive multidimensional
edge resource (i.e., communication, computing, and energy)
scheduling scheme, which could achieve fairness-guaranteed
intelligent edge healthcare.

REFERENCES

[1] Y. A. Qadri, A. Nauman, Y. B. Zikria, A. V. Vasilakos, and S. W. Kim,
“The future of healthcare Internet of Things: A survey of emerging
technologies,” IEEE Commun. Surv. Tut., vol. 22, no. 2, pp. 1121–1167,
Apr./Jun. 2020.

[2] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, “A
survey on mobile augmented reality with 5G mobile edge computing:
Architectures, applications, and technical aspects,” IEEE Commun. Surv.
Tut., vol. 23, no. 2, pp. 1160–1192, Apr./Jun. 2021.

[3] X. Huang, S. Leng, S. Maharjan, and Y. Zhang, “Multi-agent deep rein-
forcement learning for computation offloading and interference coordina-
tion in small cell networks,” IEEE Trans. Veh. Technol., vol. 70, no. 9,
pp. 9282–9293, Sep. 2021.

[4] X. Lin, J. Wu, J. Li, W. Yang, and M. Guizani, “Stochastic digital-
twin service demand with edge response: An incentive-based conges-
tion control approach,” IEEE Trans. Mobile Comput., to be published,
doi: 10.1109/TMC.2021.3122013.

[5] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018.

[6] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-edge computation
offloading for ultradense IoT networks,” IEEE Internet Things J., vol. 5,
no. 6, pp. 4977–4988, Dec. 2018.

[7] L. Wang, G. Tyson, J. Kangasharju, and J. Crowcroft, “Milking the cache
cow with fairness in mind,” IEEE/ACM Trans. Netw., vol. 25, no. 5,
pp. 2686–2700, Oct. 2017.

[8] J. Zhou and X. Zhang, “Fairness-aware task offloading and resource
allocation in cooperative mobile edge computing,” IEEE Internet Things
J., vol. 9, no. 5, pp. 3812–3824, Mar. 2022.

[9] Y. Dong, S. Guo, J. Liu, and Y. Yang, “Energy-efficient fair cooperation
fog computing in mobile edge networks for smart city,” IEEE Internet
Things J., vol. 6, no. 5, pp. 7543–7554, Oct. 2019.

[10] X. Huang, S. Zeng, D. Li, P. Zhang, S. Yan, and X. Wang, “Fair computation
efficiency scheduling in NOMA-Aided mobile edge computing,” IEEE
Wireless Commun. Lett., vol. 9, no. 11, pp. 1812–1816, Nov. 2020.

[11] N. Y. Philip, J. J. P. C. Rodrigues, H. Wang, S. J. Fong, and J. Chen, “In-
ternet of things for in-home health monitoring systems: Current advances,
challenges and future directions,” IEEE J. Sel. Areas Commun., vol. 39,
no. 2, pp. 300–310, Feb. 2021.

[12] M. Usman, M. A. Jan, X. He, and J. Chen, “P2DCA: A. privacy-preserving-
based data collection and analysis framework for IoMT applications,”
IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1222–1230, Jun. 2019.

[13] J. Peng, K. Cai, and X. Jin, “High concurrency massive data collec-
tion algorithm for IoMT applications,” Comput. Commun., vol. 157,
pp. 402–409, May 2020.

[14] A. Ghubaish, T. Salman, M. Zolanvari, D. Unal, A. Al-Ali, and R. Jain,
“Recent advances in the Internet-of-Medical-Things (IoMT) systems se-
curity,” IEEE Internet Things J., vol. 8, no. 11, pp. 8707–8718, Jun. 2021.

[15] B. D. Deebak and F. Al-Turjman, “Smart mutual authentication proto-
col for cloud based medical healthcare systems using Internet of Med-
ical Things,” IEEE J. Sel. Areas Commun. vol. 39, no. 2, pp. 346–360,
Feb. 2021.

[16] A. A. Abdellatif et al., “ssHealth: Toward secure, blockchain-
enabled healthcare systems,” IEEE Netw., vol. 34, no. 4, pp. 312–319,
July/Aug. 2020.

[17] Z. Ning et al., “Mobile edge computing enabled 5G health monitoring for
Internet of Medical Things: A decentralized game theoretic approach,”
IEEE J. Sel. Areas Commun., vol. 39, no. 2, pp. 463–478, Feb. 2021.

[18] D. Lin and Y. Tang, “Edge computing-based mobile health system: Net-
work architecture and resource allocation,” IEEE Syst. J., vol. 14, no. 2,
pp. 1716–1727, Jun. 2020.

[19] Z. Zhou et al., “Learning-based URLLC-aware task offloading for Internet
of health things,” IEEE J. Sel. Areas Commun., vol. 39, no. 2, pp. 396–410,
Feb. 2021.

[20] V. Hayyolalam, M. Aloqaily, Ö. Özkasap, and M. Guizani, “Edge intel-
ligence for empowering IoT-Based healthcare systems,” IEEE Wireless
Commun., vol. 28, no. 3, pp. 6–14, Jun. 2021.

[21] M. A. Rahman, M. S. Hossain, N. A. Alrajeh, and N. Guizani,
“B5G and explainable deep learning assisted healthcare vertical at the
edge: COVID-I9 perspective,” IEEE Netw., vol. 34, no. 4, pp. 98–105,
Jul./Aug. 2020.

[22] Y. Sun, S. Zhou, and J. Xu, “EMM: Energy-aware mobility management
for mobile edge computing in ultra dense networks,” IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2637–2646, Nov. 2017.

[23] C. Niu, Y. Li, R. Q. Hu, and F. Ye, “Fast and efficient radio resource
allocation in dynamic ultra-dense heterogeneous networks,” IEEE Access,
vol. 5, pp. 1911–1924, 2017.

https://dx.doi.org/10.1109/TMC.2021.3122013


[24] M. J. Neely, “Stochastic network optimization with application to commu-
nication and queueing systems,” Synth. Lectures Commun. Netw., vol. 3,
no. 1, 2010, Art. no. 1211.

[25] D. Xu et al., “Peer-to-peer multienergy and communication resource
trading for interconnected microgrids,” IEEE Trans. Ind. Informat., vol. 17,
no. 4, pp. 2522–2533, Apr. 2021.

[26] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA:
Cambridge Univ. Press, 2004.

[27] Q. Liu, T. Han, and N. Ansari, “Joint radio and computation resource
management for low latency mobile edge computing,” in Proc. IEEE Glob.
Commun. Conf., 2018, pp. 1–7.

[28] T. Bai, C. Pan, Y. Deng, M. Elkashlan, A. Nallanathan, and L. Hanzo,
“Latency minimization for intelligent reflecting surface aided mobile edge
computing,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2666–2682,
Nov. 2020.

[29] Shanghai Telecom, Shanghai, China., The distribution of 3233 base sta-
tions, 2019. [Online]. Available: http://www.sguangwang.com/dataset/
telecom.zip

http://www.sguangwang.com/dataset/telecom.zip
http://www.sguangwang.com/dataset/telecom.zip

