
Please cite the Published Version

Ghayvat, Hemant, Awais, Muhammad, Bashir, AK, Pandya, Sharnil, Zuhair, Mohd, Rashid,
Mamoon and Nebhen, Jamel (2023) AI-enabled radiologist in the loop: novel AI-based frame-
work to augment radiologist performance for COVID-19 chest CT medical image annotation and
classification from pneumonia. Neural Computing and Applications, 35 (20). pp. 14591-14609.
ISSN 0941-0643

DOI: https://doi.org/10.1007/s00521-022-07055-1

Publisher: Springer (part of Springer Nature)

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/630988/

Usage rights: In Copyright

Additional Information: This version of the article has been accepted for publication, after peer
review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version
of Record and does not reflect post-acceptance improvements, or any corrections. The Version of
Record is available online at: http://dx.doi.org/10.1007/s00521-022-07055-1

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1007/s00521-022-07055-1
https://e-space.mmu.ac.uk/630988/
https://rightsstatements.org/page/InC/1.0/?language=en
http://dx.doi.org/10.1007/s00521-022-07055-1
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


AI-enabled radiologist in the loop: novel AI-based framework to augment radiologist performance 
for COVID-19 chest CT medical image annotation and classification from pneumonia 

 

Hemant Ghayvat, Muhammad Awais, A. K. Bashir, Sharnil Pandya, Mohd Zuhair, Mamoon Rashid, 
and Jamel Nebhen 

 

Introduction 

The novel coronavirus, which first was found in Wuhan, China, has exponentially spread to the entire 
world since December 2019 [1]. The World Health Organization (WHO) named the transmittable 
infection triggered by this virus as the coronavirus infection of 2019 (COVID-19) on Feb 11, 2020 [2]. 
As of May 31, 2020, approximately 6,126,802 cases of COVID-19 and 371,220 deaths related to 
COVID-19 have been confirmed worldwide [3, 4]. Thus, COVID-19 is the worst pandemic triggered by 
the coronavirus family burdening the complete health care system. In addition, the lockdown 
measures adopted by most countries to contain the spread are pushing economies to their limits. 

The clinical characteristics of COVID-19 are nonspecific and may include fever, cough, and dyspnea in 
most cases. In complicated cases, respiratory failure with acute respiratory distress syndrome (ARDS) 
has been observed [5, 6]. Radiological imaging that includes chest radiographs and CT could be a 
possible alternative diagnostic instrument for COVID-19 as patients commonly exhibit two-sided 
patchy shadows or ground-glass opacity (GGO) within the lung [7], typically with a peripheral and 
lower-zone predominance. Based on these, recent studies have reported that chest imaging could 
be a feasible option to diagnose patients manifesting symptoms and diagnose asymptomatic 
subjects [8]. The bigger challenge is in delineating COVID-19 from pneumonia and other pneumonia 
type etiologies. These abnormalities' classification is instinctively extra composite, accounting for the 
nonspecific clinical ciphers of Covid-19 [9]. However, with an appropriate automated solution using 
AI, robust enough to be adapted to various parts of the world, it will drastically reduce the radiology 
burden and significantly support the diagnosis rapidly, consequently enabling instant isolation and 
curbing the disease spread. Moreover, the quick diagnosis will also aid in early treatment leading to 
better patient outcomes. 

Our work proposes a RILML framework for automated segmentation where a radiologist is partially 
employed to annotate data for training sets, classification based on textural changes in CT, with 
clinical expandability via heat maps. Testing is performed on external test datasets to validate the 
robustness and generalizability of the system. We demonstrate that our technique is more robust to 
unseen datasets. Therefore, the proposed framework can be employed directly in clinical setups to 
diagnose Covid-19 and gain deeper clinical insights into the disease. 

This investigation was directed in two phases. 

• The first phase is the preliminary phase, which involved the SARS-CoV-2 infection (COVID-19 
and Pneumonia) in datasets comprising CT scans and chest X-ray images. Section 3.1 offers 
the methodology of in-depth transfer learning model development and the definition of the 
experimental parameters. Section 3.2 presents the performance metrics, description, and 
results of the pre-trained models. 

• The second phase of research involves developing ML-based humans in the loop system to 
annotate, segment, and classify SARS-CoV-2 infection from Covid-19, Pneumonia, by the CT 
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scan images. Section 4.1 presents the methodology, including designing a novel descriptor 
for the feature extraction from the patches, ML model design, learning, development, 
annotation-segmentation strategy, and evaluation of the proposed method radiologist-in-
the-loop machine learning (RILML) System. The experiments and results Sect. 4.2 comprises 
computational cost, experimental approach, and results recorded. The observation and 
discussion from the tests are specified in Sect. 5. Finally, Sects. 6 and 7 cover the summary 
and future works, respectively. 

The structure of the article is as follows. Section 2 presents the state-of-the-art techniques and 
necessity of research. The proposed scheme operates in two phases, namely phase I and phase II. 
Section 3 presents the phase 1 (transfer learning approach) and Sect. 4 presents the phase II (RILML 
model). Section 5 presents the observation and discussion of the proposed scheme. 
Section 6 presents the conclusion and finally Sect. 7 presents the future work of the article. 

State-of-the-art techniques and necessity of research 

The false-positive of the current diagnostic gold standard at the primary staging of the COVID-19 is 
significantly performed the comparative analysis of non-contrast chest CT with RT-PCR and identified 
that viral nucleic acid is the current ground standard in recognition of COVID-19. Recent research 
claimed that the recognition of Covid-19 through non-contract chest CT was 98% compared to 
preliminary RT-PCR sensitivity of 71% [10, 11]. Studies have indicated that COVID-19 can be detected 
early by combining laboratory results with clinical image features [12]. Radiological images provide 
useful information for the diagnosis of COVID-19. Narin et al. used data mining methods for 
distinguishing typical Pneumonia and SARS in X-ray images [13]. CNN-based image processing 
identifies features in chest X-ray images and cystoscopic images to diagnose pediatric Pneumonia 
[14]. The X-ray-based imaging technique is more popular because it is economical as compared to a 
CT scan. In one of the researches, the investigator selected a deep learning-based transfer learning 
network to diagnose pneumonia by applying the ImageNet model and ensemble learning [15, 16]. 
Many studies have been conducted on AI-based COVID-19 recognition applied deep learning 
approaches on CT scan images to identify features associated with COVID-19 [17–19]. 

Diseases are diagnosed and treated based on medical image segmentation results. Suitable results 
have been obtained for many biomedical image segmentation tasks using AI techniques [20]. 
However, in contrast to images of natural scenes, labeled medical data for COVID-19 chest CT scans 
are expensive and rare. The annotation of COVID-19 images is a tedious task that can be effectively 
performed only by radiologists. Even radiologists do not have sufficient experience in annotating 
such images. Image annotation methods [21], active learning methods [22], and weakly supervised 
segmentation algorithms [23] have been proposed for alleviating the burden of manual annotation. 
As mentioned earlier, the approaches are applied to analyze natural scene images and not be 
straightforwardly applied in biomedical applications due to the limited availability of and large 
variations in biomedical training data [24–27]. Most of the approaches mentioned above do not 
explicitly exploit the interdependencies among annotations. These methods are not based on a 
standard lexicon, and they limit their labeling at an advanced level than diagnostics. This research 
was offering a semiautomatic RILML system. The projected system is founded on the Bayesian tree-
structured model and SVM algorithm. It provides preliminary results for COVID-19 chest lesions in CT 
images. The RILML system allows radiologists to contribute the most crucial evidence in each 
iteration. Moreover, it uses a network model for updating the full annotation online. The proposed 
structure’s efficiency was examined in this study. 
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To achieve this aim, we suggest opening the radiologist-in-the-loop machine learning (RILML) 
process by providing radiologists with labeled images (LIs) proximal to the present image (PI) for 
increasing the explicitness of the uncertainty and decision rationale. The aforementioned LIs act as 
supports for machine learning (ML) tools. In supervised methods, these LIs are utilized for training, 
cross-validation, and testing; however, the LIs are used for only validation and testing in 
unsupervised methods. If the PI is localized in a classification space and proximal LIs are chosen 
according to suitable metrics, the LIs can be presented to radiologists as COVID-19 chest CT scan 
images (their original form) with annotation; thus, the LI classification can be immediately 
interpreted. Furthermore, the LI density in the PI neighborhood and the classification confidence, 
COVID-19 chest CT scan image saliency maps, clinical information, and demographics can be 
obtained by radiologists. Thus, radiologists can determine the salient image regions enriched by LIs 
and the system output and use it for classification. 

Phase 1 (Transfer learning approach) 

This section presents the methodology of in-depth transfer learning model development and the 
definition of the experimental parameters in Sect. 3.1. The performance metrics, description, and 
results of the pre-trained models are presented in Sect. 3.2. 

Methodology and experimental setup parameters 

Pre-trained Transfer learning networks are the only solution when you have limited datasets, such as 
the case of the COVID-19 X-Ray and CT scan dataset [28]. Transfer learning networks are pre-trained 
from the large dataset and applied for the application with a comparatively smaller dataset. This 
helps deep researchers to overcome the limitation of the size of the dataset. Additionally, transfer 
learning networks considerably decrease the lengthy training period, as it is essential for deep 
learning models when it is designed from scratch [29]. For example, when we look into states of 
confirmed COVID-19 cases, there are millions of cases. However, the publicly available chest X-ray 
and CT scan image dataset is comparatively small, full of noise, unannotated, and scattered [28]. The 
block diagram of the first phase (Transfer Learning approach) research applying a pre-trained 
network is represented in Fig. 1. 
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Fig. 1 

Block diagram of the deep learning-based system 

According to the transfer learning models, the preliminary step of the data pre-processing is to 
resize the X-ray and CT scan images as image input vary from model to model. Therefore, all the 
images were standardized according to the pre-trained network protocols and standards [30]. 
Unfortunately, this is a state where the number of annotations belonging to the COVID19 class is 
lower than those associated with the Pneumonia class. This problem is prominent in this situation as 
anomaly detection features belong to COVID19 to detect disease. In this condition, the pre-trained 
transfer learning model developed using deep convolutional neural networks could be biased and 
inaccurate. This occurs as deep learning algorithms are characteristically designed to advance 
accuracy by reducing the error. Thus, they do not give importance to the class 
distribution/proportion or balance of classes. 

We adopted Synthetic Minority Over-sampling Technique (SMOTE) to balance Pneumonia to 
COVID19 [31]. SMOTE outperformed the conventional oversampling and under sampling methods in 
the current problem. In this learning, we have applied three augmentation approaches (Rotation, 
Scaling, and Translation) to produce a fivefold training set of COVID19 images [30]. The rotation 
process used for image augmentation was completed by spinning the images in the clockwise and 
counterclockwise direction with an angle of 15°, 30°, 45°, 60°, 75°, and 90° [32]. The scaling 
procedure is the amplification or lessening of the image's frame size. Image translation was done by 
transforming the image horizontally and vertically by 5% to 20%. Now, the system investigates the 
features from the images by spotting which region in the convolutional layers is activated and 
relating with the equivalent regions in the novel images. The activated region is normalized to 0, 1, 
as it takes a different range of values that needs to be normalized. The channels with the highest 
values were compared with the original image. The cross-validation approaches were performed, 
and the cross-validation approach with the best performance, namely fivefold cross-validation, was 
selected. 

Experiment, results, and discussion 

In the present research, we had proposed and implemented a classification of COVID-19 from other 
pneumonia using pre-trained transfer learning algorithms using both types of Radiographic images 
(CT scan, X-ray images). The pre-trained networks did not take the manual feature extraction, and it 
uses the end-to-end structure. Popular pre-trained models such as MobileNet, ResNet18, ResNet50, 
ResNet101, AlexNet, GoogleNet SqueezeNet, and InceptionV3 have been trained and tested on 
medical images. The research investigation found that MobileNet performed all other pre-trained 
networks. The ROC performance of selected transfer learning networks was significantly well during 
controlled testing from Fig. 2. However, it dropped severely when the new dataset was applied for 
the testing, as presented by Fig. 3. 
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Fig. 2 

Evaluation of the ROC curves for the pre-trained networks under a fivefold cross-validation test 
dataset for X-Ray and CT scan images 

 

 

 

Fig. 3 

Comparison of the ROC curves for the pre-trained networks under real-world dataset 

Majority of the existing researches based on COVID-19 diagnosis using X-Ray and CT scan images 
documented the AUC from 0.90 to 1 [13, 30]. Our research using MobileNet secured AUC 1 under 
the testing dataset, though it was below 0.64 for the real-world new dataset. When these existing AI 
models are applied to real-world new datasets, they fail to repeat the performance. We tested these 
AI for COVID-19 models with our dataset, and their AUC was below 0.65 it displays the overfitting 
and high variance, which misguides the Radiologist instead of assisting in decision-making. 
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To prevent overfitting, the best arrangement is to utilize more training data, which is impossible in 
the present cases of Covid-19. As radiologists and doctors are busy in the treatment, they do not 
have enough to provide data for the research, so data access is limited. The pre-trained model 
prepared on more information will generally sum up better; otherwise, the best arrangement is to 
utilize regularization strategies [33]. In general, deep learning models will be acceptable at fitting to 
the training data, yet the genuine test is a generalization, not fitting. So to see the generalization, we 
brought a new real-world dataset for the testing. Then again, if the system has restricted 
memorization assets, it will not have the option to learn the mapping without difficulty. To limit its 
misfortune, it should learn packed portrayals that have increasingly predictive power. 
Simultaneously, on the off chance that you make your model excessively little, it will experience 
issues fitting to the training dataset. There is a trade-off between "too much capacity" and "not 
enough capacity" [34]. Tragically, there is no mystical equation to decide the model’s correct size or 
design (regarding the number of layers or the right size for each layer). The only solution was to 
design a new integrated machine learning-based approach which can learn and generalize with 
inadequate training data. 

Additionally, overfitting occurred in the existing pre-trained network implementation because a 
scheme learned the feature and noise in the training data to the degree that it destructively 
influenced the deep learning pre-trained model's performance on a new dataset (real-world 
dataset). This explained that the noise or arbitrary variations in the training data were elected and 
cultured as features by the model. The difficulty was that those features did not become applicable 
to the new dataset and deleteriously influenced the pre-trained network's aptitude to generalize. 
Therefore, the feature extraction methods need to apply, exploring the textures for the feature 
extraction and discards the error-noise. 

Phase 2 (RILML model) 

We created an ML-based RILML model to address the above poor performance relating to 
radiological information to detect COVID-19 from pneumonia patients. Sensitivity, specificity, 
accuracy, AUC, and Kappa metrics were used to investigate the classification performance. The 
optimum classification performance was obtained with fivefold cross-validation. A dataset of the 
offering chest CT scan images from 441 subjects for whom there was medical distress of COVID-19 
was received. The skilled radiologists recognized from CT images that COVID-19(+) shows different 
characteristics from other viral pneumonia. Therefore, medical experts necessitate that COVİD-19 
infection needs to be analyzed in the early phase. AI may deliver a technique to augment the timely 
uncovering of COVID-19 infection [35, 36]. Our objective was to project an AI scheme to classify 
COVID-19 infection built on preliminary chest CT scans that could swiftly categorize COVID-19 (+) 
patients in the preliminary stage. For uncovering the COVID-19, datasets were designed by taking 
patches from CT scan images of COVID-19 (+) and pneumonia. The feature mining process was 
applied to patches to advance the classification process. Projected research used the support vector 
machine (SVM) and Bayesian network classifiers to classify patients with COVID-19(+). 

Methodology 

The proposed RILML system involves image pre-processing, feature extraction through descriptors, a 
preliminary annotation according to SVM classification, and iterative radiologist-in-the-loop fine-
tuning of annotations by applying a Bayesian model of interdependencies. The purpose behind the 
SVM selection is that it is impervious to over fitting, even in circumstances where the number of 
attributes is more than the number of observations or annotations. The SVM is an estimated 
execution of a bound on the generalization error that relies on the margin (fundamentally the 
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distance from the decision boundary to the closest pattern from for each class). However, it is 
autonomous of the dimensionality of the feature space. Furthermore, the Bayes classifier uses a 
classical linear hypothesis function. As an outcome, it undergoes high bias, or error follow-on from 
erroneousness in its hypothesis class, because its hypothesis cannot correctly characterize various 
complex circumstances. Alternatively, it displays low variance or failure to specify to concealed data 
based on its training set. Bayesian hypothesis class' uncomplicatedness stops it from overfitting to its 
training data. As an outcome of this attribute, the Bayes classifier has been presented remarkably 
well with minimal volumes of training data in the current Covid-19 CT scan images that most other 
classifiers would discover considerably inadequate. In the first stage, feature extraction methods 
mined the features, and the RILML system classified the features, as shown in Fig. 4. In the 
classification procedure, fivefold cross-validation approaches were applied. The mean classification 
outcomes subsequently cross-validations were attained. The proposed methodology is divided into 
two parts, which are described in the following sections. 

 

 

 

Fig. 4 

Proposed textural analysis block diagram 

Extraction of features from patches by the descriptor 

Texture plays a vital role in biomedical image classification. An image can be extracted from an 
extensive medical image database according to its texture. To identify COVID-19 infection in CT data, 
we must first determine the primary feature types that define the image, such as its texture, color, 
gradient, and shape. Textural highlights are essential for extracting features from a medical image. 
They provide information regarding spatial tonal variations and object surfaces. Descriptors are used 
successfully to advance the accurateness of the diagnosis system by picking noticeable features. 

In specific, we applied some options of descriptors, which includes gradient directional pattern 
(GDP.), gradient directional pattern (GDP2), Geometric Local Textural Patterns (GLTP), improved 
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Weber local descriptor (IWLD.), localized angular phase (LAP), a local binary pattern (LBP), Local 
directional pattern (LDIP), Local Directional Pattern Varianceldn (LDiPv), Inverse difference moment 
normalized (IDN), local directional number pattern (LDNP.), Local gradient increasing pattern (LGIP), 
local gradient patterns (LGP), local phase quantization (LPQ.), Local Ternary Pattern (LTeP), Local 
tetra pattern (LTrP), Monogenic Binary Coding (MBC), Local Frequency Descriptor (LFD), Local 
Mapped Pattern (LMP), those are extensively considered state of the art in texture descriptors 
[7, 30, 37, 38]. We performed new trials using the mentioned descriptors and offered features 
extracted from the patches of COVID-19(+) CT scan images. 

The features mined from the descriptors are fed to the RILML model, LTrP, and LPQ. Performed 
significantly well as compare to other descriptors. To enhance the performance of RILML model, we 
modeled a novel descriptor called LTrP-VAR. The proposed descriptor variant is achieved by seeing 
diverse profiles for the locality calculation and different encodings to investigate the local grayscale 
variance. Extracted sets of features are then applied for training a machine learning-based RILML 
system. LTrP-VAR demonstrated salient micro-patterns to distinguish the infective region and train a 
RILML model to distinguish between the COVID-19(+) infection and the ones who are pneumonia. 
Most COVID-19 detection approaches depend on lesion detection. However, lesion segmentation 
may involve uncertainties and inaccuracies, which can cause classification errors. Therefore, in this 
study, specific lesion segmentation was not performed. Instead, the complete image information 
was used for decision-making. Also, with LTrP, which contributes a better spatial texture pattern, we 
figure rotation invariant contrast (VAR) modeling. LTrP and VAR measures complement each other, 
and we apply their joint functionality to advance the performance of the complete proposed 
algorithm to classify COVID-19(+) and pneumonia from chest CT scan images. 

ML model for classification and segmentation 

When expert radiologists encounter diagnostic uncertainties regarding COVID-19 chest CT scan 
images, they refer to textbook cases similar to the case regarding which uncertainty exists or digital 
atlases and obtain information regarding the classification confidence. Radiologists accept the 
classification obtained with an external source only when reasonable classification confidence and 
satisfactory similarity are achieved. However, if insufficient previous annotated images are available 
to understand the segmentation of the area infected by COVID-19, radiologists' task becomes 
challenging. Therefore, we propose an ML model-based outcome inspection strategy that imitates 
the behavior of radiologists in real scenarios. At present, when ML-based models are used to analyze 
complex cases, heat maps are matched with ground truth annotations so that radiologists can trust 
black box systems. In addition, the RILML method allows the processing of large-volume medical 
image data and the consolidation of multicenter data for big data analytics. 

According to our hypothesis, when a PI without any annotation must be analyzed, decision-making 
support can be provided by similar LIs. Heat maps are useful for identifying the image part that 
guides the ML model to a verdict but does not indicate the verdict's cause. To achieve a secure link 
between the aforementioned image part and the classification result, radiologists should match this 
image part with the ground truth annotation. However, when investigating the PI, ground truth 
annotations are not obtained. Adding reference images or cases and fuzzy or probabilistic 
information for providing advanced decision-making support to the Radiologist is not tricky. These 
resolutions can be implemented, studied, and validated, as depicted in Fig. 5. The usefulness of the 
projected scheme is described in the following text. First, it provides radiologists with relevant LIs. 
Second, in the proposed method, the proximal LIs provide the original images and ancillary 
information, including annotation agreements (radiologist confidence), annotation masks, heat 
maps localizing image regions for the classification, validation confidence, and the subject’s clinical 
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profile and demographics. Third, the proximity of the n-closest LIs indicates the library's density in 
which the subject lies, which suggests the training robustness and validation relevant to the PI. The 
proposed model considers the interdependencies among concepts. 

 

 

 

Fig. 5 

Outlines the diagnostic procedure supported by machine learning tools to display procedure 
dissimilarities, a, Stand-alone Radiologist, without the assistance of RILML model, b Stand-alone 
RILML without Radiologist input and c Radiologist with RILML; classification outcomes (what), lesion 
localization-segmentation (where), and additional evidence on the diagnosis procedure (why) 
resultant from the annotated collection 

Model formation 

Three sets of random variables Xsvm, Xm, and Xh are modeled, represents SVM interpretations, 
modeled, and hidden variables. These are characterized in the setup as a bottom-up approach in the 
applied tree representation ranked representations. XSVM are children of Xm in individualized 
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communication, and Xh are presented by parents to several subsets of Xm to encrypt their 
dependencies [37]. 

The variance of low-level image features (256 features LTrP descriptor extracted) unfolding position, 
outline, and texture of chest and chest lesions are applied. The feature sets are briefing the chest's 
common graphical properties, all lesions, and replicating advanced levels of visual evidence 
associated with discrete lesions. The Bayesian network model, represented by Bnet, was built. The 
clustering mentioned above was applied to present hidden nodes. Bnet has a tiered arrangement 
through a set of unseen nodes, indexed from set h = {r + 1 = 31,…, n}, signifying the lesion with 
conception classes, which are outline, texture (calcification as its sub-category), and locality (with 
closeness as its sub-category). Each modeled node is connected to an SVM-based observation node 
representing a multi-class RBF-SVM [37]. Classifier result that was prepared for modeled value. 
These classifiers order the lesion, utilizing low-level data highlights, into equivalent concept node 
positions. The projected scheme is tree-structured with Bnet carrying discrete variables [37]. Thus, 
scheme parameters Mm are conditional probabilities p(Yi = Q|Xi;V) of a pixel Xi to the ith class, 
where V is the network parameter. Given each child-parent pair (Yi, Xi) in the tree, each of their 
probable state formations (Q, V). 

Model learning 

The machine learning model is adjusted with network parameters, and it iteratively records the 
scheme to take full advantage of the Bayesian Information Criterion (B.I.C.). Assumed a scheme Mp 
at the recent iteration with a set of hidden node h, assume S is the set of all sibling triplets in Mp 
with a mutual hidden parent. S's features are arranged in a descendant arrangement in a nested 
style primary according to the triplets’ parent’s entropies, E(Xh). A novel unseen node is introduced 
as the parent of the uppermost triplet in S and forming a contestant network model M. Forms all 
parents were exchanging transfers on the contestant network model, where a parent exchanging 
move is definite by means of varying the parent of a node from one unseen node to the next. The 
model learning executes the move that surges the BIC grade of the contestant network the most 
[37]. Then, the hidden nodes with one or no children are removed [31, 39]. The contestant 
network M is recognized as the new Mp if its BIC score is higher than the preceding model's; 
otherwise, S's next triplet is measured. The practice dismisses when none of the triplets in S 
succeeds for unseen node insertion. 

The certainty score for a region Xh is defined as 

;PXh=maxp(Ypi=i|Xh;V) 

1 

PXh is the maximum probability of the lesion area to all the sample pool PIs. In PIs, Xh's label is 
unidentified, and consequently, a higher PXh reflects greater certainty for the annotation. To 
correctly label hard samples, we simply define the selection criteria for hard samples in the 
segmentation task. The hard samples are small compared to easy background samples; easy samples 
are considered to be discovered, so add less to the development. Whereas the hard samples (e.g., 
mimics) are small, complex to be distinguished, and consequently offer more information to the 
model learning. 

The entropy of a particular region of interest directly can be understood by local consistency Lc. Lc is 
defined as the average certainty score of the region forecasted as the lesion, but the probability is 
less than a threshold Ɯ. 
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where Ŋc is the number of pixels recognized as the object COVID lesion. If PXh < Ɯ, then Æ is 1. 
Otherwise, Æ is zero. If the local consistency is low, the object region's edge is not consistent and 
hence cannot be RILML annotated. The active learning approach is designed according to local 
consistency performance. If the confidence score PXh of the pixel Xh is less than the threshold value 
ʖ, the ML model's annotation is untrustworthy, and consequently, pixel Xh will not be machine 
labeled. Thus, the pixels with maximum confidence scores are machine labeled and contribute to the 
training model's fine-tuning procedure. As the performance of the ML is incrementally improved 
with iterations, we introduced a loss function. The loss function is defined as follows: Min 
(X, V, Ɯ, ʮ). The parameters Ɯ and ʮ for active learning are restructured during the training 
process. Ɯ is a threshold to confirm that the selected pixel is the object edge, and this edge is not 
reliable. ʮ characterizes the share of RILML annotations in the iteration. The approach is defined as 
where Ɯ0 and ʮ0 are the initial thresholds. ΔƜ and Δʮ control threshold variation with respect to 
the number of iterations. 

Annotation strategy and classification 

This paper presents a RILML scheme for annotating the concept states iteratively in a specific COVID-
19 CT lesion image. The proposed scheme simultaneously allows users to provide modeled 
annotations in a definite order and update the probable states of annotations that have not yet 
been annotated according to the collected indication. An appropriate model is selected for user 
annotation in each step, which raises the confidence of unresolved assessments with a minimal 
extent of user energy until a discontinuing principle is fulfilled. An active learning approach and the 
Bayesian network model were combined to annotate CT scan images. First, the network model was 
trained using a small dataset. The trained model was then used for testing unlabeled data. 
Subsequently, a doctor judged the test performance's acceptability (fail or pass analysis of the entire 
dataset). If the test results did not meet the doctors' requirements, the uncertainty extracted with a 
well-trained ML network was used for determining which data had to be annotated. We retrained 
the model until a satisfactory performance was obtained by incorporating new annotation applicants 
into the novel training data. Finally, a stable model was achieved by annotating only useful data 
rather than all the unlabeled data. This procedure is better explained in the below algorithm 1. 



 

Evaluation of the RILML system 

The process of medical image annotation was used for training, validating, and testing ML models. 
Thus, we obtained noteworthy ratings and clinical knowledge, which were ultimately encrypted 
within the trained model. However, as depicted in Fig. 6, the aforementioned information is not 
transferred to the clinician in charge of the PI, who must rely on their experience to justify the model 
prediction. Therefore, a communication barrier is created even when the entire procedure from 
development to application achieves classification rule consensus and provides public clinical 
knowledge. LIs from the library better convey the aforementioned information. The portion of the 
library relevant to the PI is triggered periodically according to a proximity concept. Thus, a 
radiologist can exploit the localization and classification capabilities of the model as well as examine 
reference cases to verify their decision (Fig. 6). 
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Fig. 6 

Proposed RILML workflow 

Moreover, the proposed scheme allows the detection of poorly addressed cases by the model; thus, 
users can provide feedback to designers. The obtained feedback can be verified and used to develop 
and test enhanced model versions prior to certifying and delivering them to the clinical community. 
Improvements in medicine are frequently achieved through the sharing of empirical observations 
among the clinical community. 

Experimental result and approach 

SARS-CoV-2 infection was detected and classified with the proposed model using CT scan images. 
The infection was classified into two categories: COVID-19 and Pneumonia. The proposed model’s 
performance was assessed using fivefold cross-validation for the binary class. It is well recorded that 
the loss values increased significantly at the beginning of training and decreased considerably. This 
variation occurred due to the number of images in the COVID-19 class, which was considerably lower 
than in the pneumonia class. However, the magnitudes of the aforementioned rapid increases and 
decreases gradually declined in the latter part of the training when the proposed system repeatedly 
examined all the CT scan images. 

A three-level hierarchical procedure was performed to segment the COVID-19 CT region in images. 
First, isotropic resampling was conducted on the extracted volume, which was subsequently 
processed using an edge-enhancing diffusion filter for noise suppression. Next, a modified MaxFlow 
or MinCut algorithm was used to segment the chest. In this algorithm, the shape representation 
based on the Poisson equation was used to generate chest boundary maps on 1D across-boundary 
CT profiles through autonomously trained KNN classifiers (K = 20). To avoid errors due to image 
processing, all the segmentations were manually verified and corrected if required. Each lesion’s 
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low-level image features were computed. These features were used in separately trained radial basis 
function SVM classifiers to obtain markings for the observation nodes. 

The RILML model SVM-based annotation method, which uses the SVM algorithm and linear 
collaborations of steerable Riesz wavelets, was compared with the proposed system to assess the 
projected plan's strength in contradiction of autonomous annotations (preliminary observations). 
We extracted 2D cross-sectional images from each lesion, selected image patches arbitrarily from 
peripheral and internal regions, and generated feature vectors to perform the comparison [37]. The 
study of specific SVM classifiers, trained on features, is useful to each concept value associated with 
texture and shape-related modeled value set to obtain a probability. Therefore, the SVM 
observations (XSVM) setting depended on the maximum probability among the related value sets, and 
the proposed iterative online annotation was used [37]. 

The training data were divided into many groups. Initially, radiologists hand-labeled some CT images 
belonging to a group with a small amount of data. Descriptor methods were then used to extract 
features. Subsequently, the ML annotation model was trained as an initial model by using the 
aforementioned data group. This model was used to annotate infection areas in the images 
belonging to the following group. The radiologists performed manual checks to improve the 
annotation results obtained with the ML annotation model. The modified annotation outcomes 
were then used as new training data, and model retraining was performed with an augmented 
training dataset. The procedure as mentioned above resulted in a repeated increase in the training 
dataset's size and the final ML model generation. In the testing phase, infected regions were 
annotated on new CT images by using the trained annotation model. The proposed approach 
performs well after 4–5 repetitions. 

Observation and discussion 

Chest CT is a popular tool for diagnosing patients who are suspected of having a pulmonary 
infection. During the COVID-19 outbreak, chest CT has been extensively used in medical practice in 
certain countries, such as India, South Korea, and China, due to its availability and speed. According 
to the WHO, the most accurate COVID-19 diagnosis test involves detecting nucleic acid in secretion 
fluid collected from a throat swab by using the RT-PCR test. However, nucleic acid detection kits are 
scarce and provide outcomes in up to 2 days. Therefore, the chest CT has also been projected as an 
essential COVID-19 diagnostic tool. In addition, studies have used AI techniques to distinguish 
COVID-19 from other forms of pneumonia according to only chest CT images. However, the use of 
chest CT scans in diagnosis involves two potential limitations. First, health systems may be 
overburdened during epidemics. Consequently, radiologists may be unable to interpret CT scans on 
time. Second, the severity and morphology of pathological findings vary on CT scans. More 
specifically, mild cases may exhibit few or no anomalous findings on chest CT scans. 

The limitations as mentioned earlier can be overcome using the proposed model. First, the proposed 
model can be used to assess CT scans immediately after their completion. Second, it supports 
radiologists in identifying COVID-19-positive patients who exhibit normal CT results in the primary 
phase of the sickness. Third, the proposed model reduces segmentation. In particular, the proposed 
model exhibited a significantly higher AUC than the pre-trained model that uses only CT images. 
Fourth, the proposed model can be run as an application on a simple workstation to assist 
radiologists. Finally, the proposed model must be integrated with communication systems, radiology 
picture archiving systems, clinical database systems, or other image storage databases, easily 
achieved in modern hospitals for hospital use. 

https://europepmc.org/article/med/35250181#CR37
https://europepmc.org/article/med/35250181#CR37


Feature extraction and machine learning performance 

The RILML system is based on texture feature mining and a machine learning classification approach. 
The features mined from the above the mentioned descriptor were applied to develop a machine 
learning algorithm and performance under 5-cross fold verification recorded. The modeled machine 
learning algorithm performed well for the local tetra pattern (LTrP) descriptor; the rest descriptors 
did not significantly perform. The testing under patches generated features (by LTrP), algorithm 
recorded sensitivity (Sen) 0.83 ± 0.05, (Spe) specificity 0.95 ± 0.04, kappa (K) 0.80 ± 0.03, and AUC 
0.91. Whereas the results for testing under full image generated features, algorithm displayed Sen 
0.87 ± 0.04, Spe 0.96 ± 0.02, K 0.83 ± 0.03, and AUC 0.97. When a similar approach applied and 
tested under real-world new data, the performance decreased, for patches generated features Sen 
0.73 ± 0.06, Spe 0.95 ± 0.03, K 0.70 ± 0.05, and AUC 0.80 and for the full image generated features 
Sen 0.67 ± 0.04, Spe 0.76 ± 0.05, K 0.63 ± 0.05, and AUC 0.82 [3]. To enhance the classifier 
algorithm’s performance, we derived a new descriptor variant LTrP-VAR, which improved 
performance. For the testing under patches generated features Sen 0.88 ± 0.03, Spe 0.94 ±
0.04, K 0.85 ± 0.05, and AUC 0.94 were recorded, and for the full image generated features Sen 89 ±
0.03, Spe 96 ± 0.02, K 0.85 ± 0.01, and AUC 0.98 were recorded. This performance dropped slightly 
for testing under real-world new dataset patches generated features Sen 0.80 ± 0.03, Spe 0.97 ±
0.01, K 0.79 ± 0.02, and AUC 0.88 were recorded, and the full image generated features Sen 0.71 ±
0.02, Spe 0.79 ± 0.05, K 0.70 ± 0.02, and AUC 0.88 was recorded [3]. Tables Tables11 and 
and22 present the comparison of test vs real-world database CT images using multiple textural 
descriptors. 

Table 1 

Patches annotated CT images texture analysis on test database versus real-world database 

Patches Test database Real-world database 

Descriptors Kappa Sensitivity Specificity AUC Kappa Sensitivity Specificity AUC 

GDP 0 0.5 1 NA 0 0.30 0.9 0.5 

GDP2 0 0.5 1 NA 0 0.20 0.8 0.43 

GLTP 0 0.5 1 NA 0 0.20 0.7 0.49 

IWLD 0.05 0.51 1 0.76 0.03 0.49 0.7 0.59 

LAP 0.33 0.6 1 0.80 0.26 0.5 0.9 0.66 

LBP 0.77 0.85 0.9 0.85 0.67 0.75 0.8 0.80 

LDIP 0 0.5 1 NA 0 0.2 0.65 0.55 

LDIPV 0.63 0.73 1 0.86 0.53 0.64 0.92 0.79 

IDN 0 0.5 1 NA 0 0.30 0.6 0.45 
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Patches Test database Real-world database 

Descriptors Kappa Sensitivity Specificity AUC Kappa Sensitivity Specificity AUC 

LDNP 0 0.5 1 0,5 0 0.50 0.9 0.53 

LGIP 0.36 0.66 0.71 0.68 0.26 0.59 0.601 0.63 

LGP 0 0.5 0 NA 0 0.50 1 NA 

LPQ 0.69 0.77 1 0.88 0.59 0.67 0.90 0.82 

LTEP 0.58 1 0.71 0.85 0.48 0.90 0.61 0.78 

LTrP 0.80 0.84 1 0.92 0.71 0.76 0.95 0.8 

MBC 0 0.50 0 0.50 0 0.30 0.8 0.43 

LFD 0.47 0.66 1 0.83 0.37 0.55 0.86 0.75 

LMP 0.28 0.58 1 0.80 0.26 0.51 0.99 0.70 

LTrP-VAR 0.852 0.88 1 0.94 0.79 0.80 0.97 0.88 

Table 2 

CT images texture analysis on test database versus real-world database 

Full images Test database Real-world database 

Descriptors 
Kapp
a 

Sensitivit
y 

Specificit
y AUC Kappa 

Sensitivit
y 

Specificit
y AUC 

GDP 0.58 0.72 0.92 0.81 0.48 0.62 0.82 0.73 

GDP2 0.77 0.83 0.96 0.9 
0.677
8 0.73 0.86 0.80 

GLTP 0.75 0.8 1 0.87 0.7 0.7 0.91 
0.80
5 

IWBC 0.97 0.97 1 0.98 
0.872
2 0.87 0.91 0.89 

LAP 0.69 0.82 0.87 0.84 
0.594
4 0.72 0.77 0.74 



Full images Test database Real-world database 

Descriptors 
Kapp
a 

Sensitivit
y 

Specificit
y AUC Kappa 

Sensitivit
y 

Specificit
y AUC 

LBP 1 1 1 1 0.88 0.89 0.95 
0.93
1 

LDIP 0.69 0.76 1 0.88 0.69 0.76 1 0.84 

LDIPV 0.83 0.89 0.94 0.91 0.733 0.79 0.84 0.81 

IDN 0.72 0.82 0.9 0.86 0.62 0.72 0.8 0.76 

LDTN 0.63 0.76 0.89 0.89 0.53 0.56 0.69 0.61 

LGIP 0.38 0.63 0.85 0.72 
0.388
1 0.63 0.75 0.68 

LGP 0.55 0.75 0.81 0.89 
0.455
6 0.65 0.71 0.67 

LPQ 0.83 0.85 1 0.94 
0.633
3 0.65 0.8 0.71 

LTEP 1 1 1 100 0.6 0.75 0.8 0.77 

LTRP 0.83 0.87 0.96 0.97 
0.633
3 0.67 0.76 0.71 

MBC 0.86 0.87 1 0.96 
0.461
1 0.67 0.81 0.73 

LFD 0.4 0.65 0.83 0.74 0.45 0.66 0.84 0.74 

LMP 0.57 0.7 0.60 0.73 
0.595
6 0.73 0.64 0.67 

LTRP-VAR 0.85 0.89 0.96 0.98 0.7 0.71 0.79 0.64 

When we analyzed, we found the transfer learning model had a better performance than the 
proposed RILML model under training and controlled training, whereas, during real-world new 
datasets used, pre-trained networks showed a significant decrease (MobileNet AUC controlled 
testing 0.97 and real-world testing 0.67). In contrast, the projected machine learning model 
performs decently during controlled testing AUC (0.94 (patches) and 0.98 (full image) to real-world 
new dataset AUC (0.88 (patches) and 0.88 (full image) with a slight decrease in performance. Tables 
Tables33 and and44 show the performance metric of the deep learning model on CT/X-rays images 
using with/without augmentation (Tables (Tables55 and and66). 
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Table 3 

Performance metrics for deep learning models [CT-Scan] (without augmentation) 

Classification tasks 
Deep learning 
models Accuracy Sensitivity Specificity Precision 

F1 
scores 

Normal Pneumonia 
and COVID19 
Pneumonia 

MobileNet 0.9756 0.9782 0.9729 0.9739 0.9760 

AlexNet 0.9413 0.9471 0.9356 0.9348 0.9413 

ResNet-18 0.9065 0.9083 0.9048 0.9043 0.9063 

ResNet-50 0.8587 0.8511 0.8667 0.8696 0.8602 

ResNet-101 0.8043 0.8182 0.7917 0.7826 0.8000 

Inception-V3 0.7755 0.7826 0.7692 0.7500 0.7660 

GoogLeNet 0.7646 0.7671 0.7625 0.7304 0.7483 

SqueezeNet 0.7604 0.7626 0.7586 0.7261 0.7439 

Table 4 

Performance metrics for deep learning models [CT-Scan] (with augmentation) 

Classification tasks 
Deep learning 
models Accuracy Sensitivity Specificity Precision 

F1 
scores 

Normal Pneumonia 
and COVID19 
Pneumonia 

MobileNet 0.9770 0.9777 0.9762 0.9762 0.9770 

AlexNet 0.9762 0.9777 0.9747 0.9746 0.9762 

ResNet-18 0.9444 0.9375 0.9516 0.9524 0.9449 

ResNet-50 0.9246 0.9280 0.9213 0.9206 0.9243 

ResNet-101 0.8849 0.9008 0.8702 0.8651 0.8826 

Inception-V3 0.8532 0.8678 0.8397 0.8333 0.8502 

GoogLeNet 0.8214 0.8347 0.8092 0.8016 0.8178 

SqueezeNet 0.7649 0.7680 0.7638 0.7619 0.7649 

Table 5 

Performance metrics for deep learning models [X-ray] (without augmentation) 



Classification tasks 
Deep learning 
models Accuracy Sensitivity Specificity Precision 

F1 
scores 

Normal Pneumonia 
and COVID19 
Pneumonia 

MobileNet 0.9883 0.9860 0.9906 0.9860 0.9883 

AlexNet 0.9852 0.9889 0.9814 0.9816 0.9852 

ResNet-18 0.9350 0.9355 0.9346 0.9346 0.9350 

ResNet-50 0.9085 0.9108 0.9061 0.9065 0.9087 

ResNet-101 0.8439 0.8459 0.8420 0.8411 0.8435 

Inception-V3 0.7921 0.7907 0.7934 0.7944 0.7925 

GoogLeNet 0.7547 0.7619 0.7523 0.7477 0.7547 

SqueezeNet 0.5810 0.5128 0.6652 0.6542 0.5749 

Table 6 

Performance metrics for deep learning models [X-ray] (with augmentation) 

Classification tasks 
Deep learning 
models Accuracy Sensitivity Specificity Precision 

F1 
scores 

Normal Pneumonia 
and COVID19 
Pneumonia 

MobileNet 0.9944 0.9958 0.9930 0.9930 0.9944 

AlexNet 0.9884 0.9907 0.9861 0.9860 0.9883 

ResNet-18 0.9417 0.9439 0.9398 0.9395 0.9417 

ResNet-50 0.9186 0.9206 0.9167 0.9163 0.9184 

ResNet-101 0.8953 0.8972 0.8935 0.8930 0.8951 

Inception-V3 0.8256 0.8271 0.8241 0.8233 0.8252 

GoogLeNet 0.7786 0.7804 0.7778 0.7767 0.7786 

SqueezeNet 0.7326 0.7336 0.7315 0.7302 0.7319 

Human-in-the-loop strategy performance 

The additional information provided by the proposed strategy may cause an increase in the 
reporting time. However, regular close inspection of similar cases should be avoided. Such 
inspection should be mainly conducted for critical cases, determining systematic classification flaws, 
and ML algorithm debugging (e.g., enriching a poorly represented class in the validation and training 
sets). Furthermore, additional information regarding the system decision can be provided on 
demand when required. The most suitable clinical decision support method involves providing well-



explained and objective classification confidence indices specific to the PI (e.g., the proximal 
classification space density for similar cases). 

Figure 7 shows the comparative R.O.C. analytics between RILML systems, a consensus of three 
radiologists, and RILML system-Radiologist joint performance. We recorded that Radiologists' 
performance (three radiologists R1, R2, and R3) alone was always better than the stand-alone RILML 
system, as displayed in ROC graph Fig. 7. The performance of R1 (Sen 0.89 ± 0.04, Spe 0.86 ±
0.02, K 0.79 ± 0.03, and AUC 0.85), R2 (Sen 0.88 ± 0.03, Spe 0.85 ± 0.04, K 0.783 ± 0.03, and AUC 
0.83), and R3 (Sen 0.90 ± 0.04; Spe 0.87 ± 0.03, K 0.80 ± 0.01, and AUC 0.91). Whereas we observe 
the joint operation, RILML system-Radiologist performs best in these three [3]. RILML Stand-alone 
system recorded lower performance indices (Sen 0.82 ± 0.05; Spe 0.84 ± 0.05, K 0.71 ± 0.03, and AUC 
0.81). On the other hand, the joint venture of the RILML system-Radiologist shown notable figures 
(Sen0.93 ± 0.02; Spe 0.91 ± 0.01, K 0.87 ± 0.02, and AUC 0.93). 

 

 

 

Fig. 7 

Comparative ROC between RILML, Radiologists, and RILML with Radiologist 

The proposed strategy was evaluated using two metrics. First, the time taken by the proposed model 
for labeling a CT scan was compared with the time required for manual contouring. Second, we 
assessed the proposed model’s segmentation accuracy in different stages to determine whether an 
increase in the annotated training data increased the model accuracy. The manual contouring of 
COVID-19 infection regions on one CT scan required 187 ± 38.5 min. The contouring time decreased 
considerably to 59 ± 6.3 min when the proposed model was trained with 48 annotated CT scans and 
used. The contouring time further decreased to 31 ± 5.2, 17 ± 2.5, and 6.2 ± 0.58 min when the 
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proposed model was trained with 107, 168, and 275 annotated CT scans, respectively, and used. The 
proposed model’s segmentation accuracy was evaluated by calculating the Dice similarity coefficient 
for the entire validation dataset (550 CT scans). The segmentation accuracy increased from 74 ±
15.4% when using 48 samples for training to 81 ± 9.7%, 85 ± 5.3%, and 90 ± 2.9% when using 107, 
168, and 275 samples for training, respectively. The high segmentation accuracy considerably 
decreases human intervention and, thus, the time required for annotation and labeling. 

Structure learning is crucial for successfully implementing probabilistic graphical schemes because 
the arrangement is the primary factor affecting the model's generalizability, and it defines the 
statistical relationships between concepts. Structure learning involves searching the space for all 
possible networks by exploiting the model's capacity to explain the observed (training) data while 
avoiding overfitting. Because the exploration space is generally huge, structure learning algorithms 
use heuristics to increase the speed of what would otherwise be a close search concerning a generic 
cost function. In this study, the B.I.C. score was used to achieve performing structure learning. The 
results presented in Fig. 8 indicate that complex structures with high human-in-the-loop 
performance, such as opening from a straightforward naïve Bayes model, can be learned through 
structure learning. Table Table77 shows the Performance Metrics for RILML model and Radiologists. 

 

 

 

Fig. 8 

Confusion Matrix of a RILML, b Radiologist, and c Radiologist + RILML 

Table 7 

Performance metrics for RILML model and radiologists 

 

Radiologists 
only 

First 
iteration 

Second 
iteration 

Third 
iteration 

Fourth 
iteration 

Time (min) 187 ± 38.5 59 ± 6.3 31 ± 5.2 17 ± 2.5 6.2 ± 0.58 

Dice coefficient 
(%) Not applicable 74 ± 15.4% 81 ± 9.7% 86 ± 5.3% 90 ± 2.7% 

Number of 
images 1 48 107 168 275 

The aforementioned results suggest that the RILML model can replace high-cost pre-trained transfer 
learning networks that are prone to data overfitting if the training datasets are incomplete and 
sparse. Thus, the human-in-the-loop network can overcome the limitations caused by incomplete 
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domain representation or sparse training data. If rich data are available, the proposed structure 
learning approach can construct a useful RILML system. The pre-trained and ML networks exhibit a 
smaller performance gap after model learning than before model learning. This finding verifies the 
status of data learning ability and hidden variables. The results obtained for the pre-trained 
structure subsequently model learning indicate that the neural networks clustered texture, 
calcification, and proximity nodes to a great extent but distributed shape and location nodes more. 
The behavior of pre-trained networks or data-centric structure learning algorithms depends on the 
data used. Therefore, if scarce data are available, these networks are prone to overfitting. This 
finding should be confirmed on massive datasets. 

Images reflected incomprehensible by any of the three radiologists were discarded from the 
investigation. Of the 810 images (390 COVID and 420 pneumonia), 780 (380 COVID and 400 
pneumonia) were productively read by Radiologists at Symbiosis University Hospital and Research 
Centre (SUHRC), SIU campus at Lavale, Pune, India. Radiologists were not mandatory to list reasons 
for eliminating CT scan images, though, where remarks were delivered these associated with 
deprived image quality initiated by unskilled CT scan operators and inappropriate patient placing. 
Below, Fig. 8 presents the confusion matrix of Radiologists alone, with RILML and RILL alone. 360 
images were COVID-19(+) read as COVID-19(+), 35 images those were pneumonia recognized as 
COVID-19(+), 20 images those were COVID-19(+) labeled as pneumonia, 365 subjects were 
pneumonia marked as pneumonia. This shows the mixed performance of Radiologists when they 
operate standalone. Whereas the performance of RILML model standalone was slightly poor than 
the Radiologists standalone, 351 images those were COVID-19(+) read as COVID-19(+), 29 images 
those were pneumonia recognized as COVID-19(+), 47 images those were COVID-19(+) labeled as 
pneumonia, 357 subjects were pneumonia marked as Pneumonia by RILML model standalone. The 
best performance recorded when the RILML model-Radiologists collaborated, 369 images those 
were COVID-19(+) read as COVID-19( +) correctly, 11 images those were pneumonia recognized as 
COVID-19(+), 14 images those were COVID-19(+) labeled as pneumonia, 386 subjects were 
pneumonia marked as pneumonia by the joint venture. 

Assessment of the model outputs by the radiologists 

This section presents the interpretations provided by expert radiologists and obtained with the 
proposed model. The RILML model can automatically detect COVID-19 infection by using CT scan 
images and without any feature extraction procedures. The proposed model provides a subsequent 
estimation to expert radiologists working in health centers. It can save diagnosis time; thus, 
specialists can provide more attention to severe cases. Moreover, the Grad-CAM heat map method 
was used to visualize the proposed model's decisions. The heat map indicates the areas focused on 
by the model in the CT scan analysis. Thus, we ensured that a radiologist could approve the model 
outcome. 

The comments of the radiologists on the proposed model’s output were as follows: 

• The proposed model exhibited an outstanding COVID-19 detection performance in the 
binary classification task. 

• The proposed model successfully detected COVID-19. 

• Images of patients infected with pneumonia were also included in this research. The 
proposed model diagnosed some subjects with COVID-19 as having pneumonia. However, 
COVID-19 is a type of pneumonia. Thus, in the aforementioned cases, the model diagnoses 
were correct, but the interpretations were wrong. 

https://europepmc.org/articles/PMC8886865/figure/Fig8/


• The proposed RIML model is sensitive to pneumonia detection. Although it can positively 
forecast pneumonia and labeled as no discoveries in the dataset. 

• The proposed scheme provided wrong forecasts for low-quality CT scan images and for a 
subject with ARDS, for whom the lung image is diffuse and considerable lung ventilation is 
missing. 

• The proposed scheme can accurately notice COVID-19 with a heat map in standard subjects. 
However, its efficiency decreases for cases of ARDS and Pneumonia. The heat map exhibited 
a lower concentration area for the CT scan images of patients without COVID-19 than those 
with COVID-19 

• The proposed model is adequate for assessing the effectiveness of the treatment based on 
the heat map. Moreover, it can assist experts in the diagnosis, isolation, treatment, and 
follow-up of patients. 

Radiological imaging plays an essential character in the early diagnosis, isolation, and treatment 
stages of COVID-19. The proposed research can straightforwardly detect nodular opacities, 
consolidation areas, and GGO, which are pathognomic results obtained from the CT data of the 
subject with COVID-19. Peripheral, lower lobe, and bilateral involvement are observed in patients 
with COVID-19, and the planned research can distinguish lesion localization. These researches can be 
used to identify patients with the primary phases of COVID-19 [39]. Primary disease diagnosis can 
enable immediate treatment to be provided and disease transmission to be prevented. As 
mentioned above, the models are also crucial for identifying patients with COVID-19 who do not 
exhibit early symptoms. The proposed model may provide erroneous diagnoses for patients with 
significantly reduced lung ventilation and diffuse late lung parenchyma due to the low-quality CT 
scan images obtained for such patients. Radiologists find it challenging to evaluate low-quality CT 
scan images. The radiological and clinical images of patients with later-stage COVID-19 are well 
established, and experts can easily detect the disease in these patients. Deep learning models play 
an essential role in screening and diagnosis in the case of early-stage infections. 

Conclusion 

In conclusion, the research results indicate that highly accurate A.I. algorithms can be used for 
rapidly identifying COVID-19 patients, which would assist the combating of the current COVID-19 
outbreak. The proposed model, which has the same accuracy as a radiologist, is useful for quickly 
diagnosing infectious diseases, such as COVID-19, without physical tests or radiologist inputs. The 
role of ML in COVID-19-related CT scanning is expanding. An increasing number of studies have 
shown that computer algorithms can outperform radiologists. However, the aim should not be to 
determine whether an ML tool can outperform a physician but to determine whether a radiologist 
can achieve better performance with an ML aid than without it. Interactive cooperation between 
automated systems and radiologists should be encouraged. Radiologists can integrate their clinical 
experience by visualizing well-labeled cases classified by the automatic system as proximal to the P.I. 
Such integration would enable a critical assessment of the automatic tool’s performance. In this 
research, an ML-based model is proposed for detecting and classifying COVID-19 cases from CT 
scans. The proposed model has an end-to-end structure, is fully automated, and does not require 
manual feature extraction. 

It can also serve as a valuable tool for testing the proposed model’s generalizability during the 
processes of certification and development. Large-scale experiments on clinical and public datasets 
indicated that the proposed method could effectively alleviate the burden on radiologists for 
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annotating COVID-19 CT scan images. The proposed approach combines algorithmic effectiveness 
and clinical feasibility, and it can be directly used in clinics by radiologists. The developed system 
uses an SVM model and a Bayesian network. Patients diagnosed as COVID-19-positive by the 
proposed model can be directed to advanced centers for diagnosis confirmation. After diagnosis 
confirmation, these patients can be treated immediately. Moreover, patients diagnosed as COVID-19 
negative by the proposed model can be prevented from unnecessarily undergoing RT-PCR tests and 
occupying health centers. 

Future work 

In future research, we will improve the developed annotation platform and algorithm in the 
following aspects. (1) First, we will design a user-friendly graphical interface. (2) We will collect 
additional adequate data for testing the proposed method. We plan to use the GAN network [39] to 
compare a large number of similar Covid-19 CT scans with the ground truth. (3) The annotation 
platform’s accuracy will be improved through boundary marking out. (4) A large dataset with clinical 
information will be arranged because the spread of COVID-19 is increasing. Different ML approaches 
will be explored. The proposed model’s generalizability will be evaluated at many health centers to 
validate its robustness. (5) The proposed model will be placed in a cloud so that it can provide 
instant diagnosis and immediately assist the rehabilitation of affected patients. This step would 
significantly decrease the clinician workload. Moreover, we will attempt to collect radiology images 
of COVID-19 patients from Denmark, India, and China and evaluate these data with the proposed 
model. After the improvements, as mentioned above, are conducted, attempts will be made to 
position the proposed model in local hospitals for screening. 

Appendix 

Terminologies Description 

AUC Area Under the Curve 

CT Computed Tomography 

ARDS Acute Respiratory Distress Syndrome 

SARS Severe Acute Respiratory Syndrome 

WHO World Health Organization 

SARS-CoV Severe Acute Respiratory Syndrome- coronavirus 

MERS-CoV Middle East respiratory syndrome- coronavirus 

V.S.T Visual Semantic Terms 

P.I Present Images 

L.I Labeled Images 

ML Machine Learning 
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Terminologies Description 

AI Artificial Intelligence 

SMOTE Synthetic Minority Over-sampling Technique 

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 

SVM Support Vector Machine 

RILM Radiologist-in-the-loop-machine 

RILML Radiologist-in-the-loop-machine learning system 

G.D.P Gradient directional pattern 

GDP2 Gradient directional pattern 2 

G.L.T.P Geometric Local Textural Patterns 

I.W.L.D Improved Weber local descriptor 

L.A.P Localized angular phase 

LBP Local Binary Pattern 

L.D.I.P Local directional pattern 

LDiPv Local Directional Pattern Variance 

IDN Inverse difference moment normalized 

L.D.N.P local directional number pattern 

L.G.I.P Local gradient increasing pattern 

L.G.P Local gradient patterns 

L.P.Q Local phase quantization 

LTeP Local Ternary Pattern 

LTrP Local tetra pattern 

M.B.C Monogenic Binary Coding 

L.F.C Local Frequency Descriptor 



Terminologies Description 

L.M.P Local Mapped Pattern 

B.I.C Bayesian Information Criterion 

RT-PCR Reverse transcription polymerase chain reaction 

COVID-19 A novel Coronavirus disease 
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