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A B S T R A C T   

Plants associated with traditional forms of coppice management are affected by changes in, or cessation of, stand 
management which produce differences in structure, usually in the direction of high forest. The habitat structure, 
ground flora richness, and composition of an ancient woodland in southern England were compared across three 
distinct management treatments: traditional Coppice (the cyclical cutting of underwood on rotations), Limited 
Intervention (representing the effective cessation of management), and Irregular High Forest silviculture (a form 
of continuous cover forestry using single and small group selective tree harvesting). Coppice and Irregular 
silviculture showed a more complex woody stand structure whereas Limited Intervention was strongly correlated 
with closed-canopy, single-storied structures and no developing understorey. Increased bramble Rubus fruticosus 
cover was strongly associated with Irregular silviculture, bare ground mostly with the limited intervention 
closed-canopy stands. Distinct plant-habitat associations were identified across stand management types with the 
greatest differences between Limited Intervention and the two active interventions. Overall vascular plant 
species and Coppice group species were lowest in Limited Intervention stands. Using ancient woodland indicator 
and Coppice plant species and groups, we found a similar community pattern between Coppice and Irregular 
silviculture. More ancient woodland species were accommodated within the comparatively heterogenous 
woodland habitat associated with active silvicultural interventions of Coppice and Irregular High Forest man-
agement. The study indicates that the introduction of Irregular silviculture as practiced here can conserve most 
ancient woodland and Coppice plants associated with traditional coppicing, a practice which has declined 
significantly in the UK since the late 19th Century.   

1. Introduction 

The woodland ground flora contributes to biological diversity and 
plays an important role in the ecological functioning of temperate 
woodland via nutrient cycles, soil formation and resource provision for 
other species (Decocq et al., 2004, Ford & Newbould, 1977, Jaroszewicz 
et al., 2021). Specialist ancient forest and woodland plants e.g., ancient 
woodland vascular plants (Rose, 1999), are distinguished by their as-
sociations with light and dark phases relating to canopy openness, 
edaphic factors and adaptation to periods of shade and stress tolerance 
(Naaf & Wulf, 2010, Gilliam, 2007, Peterken, 1993). Generalist species 
are characterised by a wider ecological niche related to open and ruderal 
habitats often associated with external woodland edges and higher 
nutrient levels influenced by agriculture (Hermy, 2015). Abandonment 
of coppicing can reduce plant species diversity as succession leads to 

closed canopy and conditions where only specialist shade-adapted 
woodland plants can persist (Campetella et al., 2011). This is a 
limiting factor favouring species with higher light demands which 
restrict their flowering phenology to the short vernal periods prior to 
canopy closure (Ottaviani et al., 2019). 

In the United Kingdom, woodland specialists associated with ancient 
woodland are important as determining criteria for the ageing of a 
woodland and for its inclusion within the ancient woodland inventory 
(Spencer & Kirby, 1992, Goldberg, 2015) and are an important means of 
conservation evaluation (Rose, 1999, Goldberg et al., 2007, Kimberley 
et al., 2013). Supposedly, Coppice-adapted plants are relicts of species 
assemblages in ancient woodlands with a direct physical link to the past 
activities of people and provide both biological and archaeological value 
(Nordén, et al., 2014, Barnes & Williamson, 2015). However, it is not 
entirely clear how these species respond to changes in silviculture 
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practice (von Oheimb & Härdtle, 2009) or the lack of it (Peterken & 
Mountford, 2017). 

Over many centuries, simple Coppice, stands comprising only a 
coppiced layer and Coppice with standards, a predominant coppiced 
layer (the ‘underwood’) with a low-density upper layer of un-coppiced 
trees were the predominant practices in ancient woodlands across 
much of western and Mediterranean Europe (Rackham, 2003). Plants, 
which became to be regarded as ‘Coppice-adapted’, particularly vernal 
spring flowering species, were likely responding to the oscillations of 
light through opening of the canopy every 10–30 years (Hermy & Ver-
heyen, 2007, Buckley, 2020). Forest-edge specialists, or ruderal species 
(opportunist plants with a broad tolerance of conditions), responding to 
pulses of light through new openings and disturbances, can also tell us 
much about the species potentially ‘in waiting’ contained within the 
seed bank of woodland soils from historical legacies (Grime et al., 1988, 
Verheyen et al., 2003, Hermy, 2015). Traditional coppicing, in which 
the production of underwood is the primary aim, became less econom-
ically attractive in the UK during the 19th century, had declined 
significantly by the 1980’s (Buckley & Mills, 2015a). This decline has 
been associated with conversion of simple Coppice and Coppice-with- 
standard stands to high forest by planting and through neglect 
(Peterken & Mountford, 2017). The rising dominance of sawtimber, and 
firewood, and the demise of underwood markets, within the woodland 
economy and the substantial rise in the impact of deer browsing since 
the 2nd World War led to significant changes in woodland structure 
(Mason, 2007, Hopkins & Kirby, 2007). 

Across Europe, Coppice management is still practiced on a significant 
scale reflecting a long history and importance associated with the use of 
underwood (see, e.g., Buckley, 2020). Coppice was likely to have been 
dynamic in varying rotation lengths, in response to societal demands as 
resource needs changed (Szabó, 2010). Coppice management has been 
shown to maintain favourable conditions for vascular plant species di-
versity including in woodlands where it has been reintroduced following 
abandonment suggesting a legacy effect that may be important for their 
conservation (Ewald et al., 2018). Structural characteristics of Coppice 
woodland succession can exert strong effects on vascular plant richness 
and diversity and are essential to our understanding of sustainable 
silvicultural management (Bartha et al., 2008, Bricca et al., 2020). In 
France, Coppice stands comprise canopy-forming species (e.g., lime Tilia 
cordata, hornbeam Carpinus betulus, ash Fraxinus excelsior, birch Betula 
pendula/pubescens) with an overstorey dominated by oak Quercus spp. 
The stemmed coppiuce layet (taillis) is cut on long rotations (30 years 
plus) and is combined with the removal of a proportion of the overstorey 
(Rochel, 2015). The conversion of Coppice to Irregular High Forest 
management, the keystone silvicultural system associated with the 
somewhat wider term Continuous Cover Forestry (CCF), has been a 
developing trend in France over the last 25 years and has provided a 
model for the silviculture practiced on the study site (Susse et al., 2011). 
This involves more frequent interventions than under the Coppice 
regime, and the use of permanent timber harvesting extraction racks 
(trackways) is important to avoid increased disturbance to the ground 
layer particularly on heavier soils (Sanchez, 2017). Studies in Europe 
identified that an increasing intensity of disturbances through mecha-
nised forest operations can lead to more ruderal species and reduced 
numbers of forest specialist plants which may be at a competitive 
disadvantage (von Oheimb & Härdtle, 2009). Spatial heterogeneity 
associated with a mix of actively managed Coppice and abandoned 
stands has been found to be important in maintaining species richness of 
woodland specialist plants although this depends on locality and scale 
(Campetella et al., 2016, Tardella et al., 2019). Understanding the in-
fluence of management on woodland specialist plants is crucial because 
of the functional value they provide in respect of nutrient and decom-
position cycles (Chelli et al., 2022). 

In UK stands previously managed on shorter underwood rotations, 
longer periods of shade may negatively impact several woodland spe-
cialists, yet increased periods of openness may increase the numbers of 

more light demanding and competitive plants (Kirby, 2015). Therefore, 
species richness as a metric may mask the impacts of silviculture to 
woodland specialist plants (Boch et al., 2013). Irregular silviculture, a 
form of continuous cover forestry (hereafter CCF), (Puettmann et al., 
2015), which aims at permanently irregular structures and uses selective 
harvesting of single, or small groups of trees leads to a mixed size 
structure and species composition, and through stand manipulation and 
gap creation utilises natural regeneration of successive cohorts (San-
chez, 2017, Susse et al., 2011). Studies in beech Fagus sylvatica-domi-
nated European forests showed how Irregular High Forest may reduce 
homogenisation of the ground flora and retain forest specialists (von 
Oheimb & Härdtle, 2009). 

The benefits of changing to Irregular High Forest Management for 
biodiversity, including ancient woodland plants adapted to traditional 
Coppice management or indeed unmanaged woodland, mostly remain 
unclear (Coll et al., 2018, Bürgi, 2015). Very little is known about 
silvicultural changes in ancient broadleaved woodland and the resulting 
environmental gradients that influence the plant community (Hermy & 
Verheyen, 2007, Buckley, 2020, Bergès & Dupouey, 2021). There is 
considerable interest in the promotion of natural processes in building 
resilience in the face of climate change, including the adoption of CCF 
alongside Coppice (Forestry Commission, 2020, Department for Envi-
ronment, Food & Rural Affairs, 2021). Silvicultural management sys-
tems including Irregular High Forest, are also likely to become 
important as an adaptive response to reducing disease transmission such 
as ash Fraxinus excelsior die-back Hymenoscyphus fraxinaea (Short & 
Shawe, 2018). 

Using a range of plant groups (Rackham, 2003, Kimberley et al., 
2013), we explored the responses of vascular plants in ancient woodland 
with a focus on ancient woodland indicator plants and coppice plant 
groupings to the introduction of this novel silviculture in a working 
ancient semi-natural broadleaved woodland (for a definition see 
Spencer & Kirby, 1992) in southern England together with a comparison 
between the actively managed stands and those assigned to a Limited 
Intervention treatment. Assuming the woodland flora across our study 
had a common origin and shared a similar land-use history, it also seems 
reasonable to believe that any variation in species and groups between 
the actively managed and limited intervention stands is potentially due 
to management decisions over the last thirty years (Depauw et al., 
2020). We 1) compare variation across Irregular High Forest, traditional 
Coppice and Limited Intervention stands using structural measures and 
assessed plant species composition, richness, and relative abundances. 
We then asked 2) whether there are species similarities between stand 
management types and 3) can we identify indicator species for each 
which help explain stand structural characteristics and inform silvicul-
tural management? 

2. Methods 

2.1. Study area 

The study area sits within 442 ha of semi-natural broadleaf wood-
land, across two contiguous blocks on the Rushmore Estate, in the 
Cranborne Chase, southern England (110–190 m a.s.l; 395724.26 E, 
117963.15 N; Fig. 1). The principal National Vegetation Classification 
(NVC) (Rodwell et al., 1998), and European Nature Information System 
EUNIS categories of woodland that could be assigned to codes (Latham 
et al., 2018) relate to broadleaf stands on base-rich and mesotrophic 
soils (Rodwell et al., 1998), and were: W8 Fraxinus excelsior – Acer 
campestre - Quercus robur – Corylus avellana – Mercurialis perennis - 
Eurhynchium praelongum – Rubus fruticosus – Hyacinthoides non-scripta 
(EUNIS G1.A22 Fraxinus -Sorbus aucuparia -Mercurialis perennis forests) 
associated with base-rich soils within which W10 Quercus robur – Betula 
pendula – Corylus avellana – Rubus fruticosus – Pteridium aquilinum – 
Lonicera periclymenum – Hyacinthoides non-scripta (G1.A11 Mixed 
Atlantic Quercus forests with Hyacinthoides nonscripta) that fall within 
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the broad category of lowland mixed deciduous woodland (Rodwell 
et al., 1998). The dominant tree and shrub species are ash Fraxinus 
excelsior, pedunculate oak Quercus robur, field maple Acer campestre, 
silver birch Betula pendula, downy birch Betula pubescens, hazel Corylus 
avellana, spindle Euonymus europaeus, hawthorn Crataegus monogyna, 
sallow Salix cinerea, goat willow Salix caprea, dogwood Cornus sanguinea 
and blackthorn Prunus spinosa. There is scattered mature and veteran 
whitebeam Sorbus aria, and more locally distributed beech Fagus syl-
vatica and sycamore Acer pseudoplatanus. 

2.2. Silvicultural management 

The 442 ha of semi-natural woodland on the Rushmore Estate 
woodlands were historically managed under a coppice and coppice with 
standards system for many centuries (Poore, 2016). Originally mixed 
underwood of ash, hazel, birch, maple and whitebeam was cut on 
lengthening rotations during the early Modern Period, but during the 

18th & 19th centuries underwood species composition was altered to 
increase the proportion of hazel and the area became a centre of the 
hazel underwood trades. The area under coppice management declined 
after the 1st World War and was accompanied by a long-term natural 
process of high-forest development, largely through the development of 
pole-stage ash within the coppice stands. Systematic coppice manage-
ment had largely ceased in the 1980′s but given the designation of site as 
a Site of Special Scientific Interest, a major project was undertaken from 
1990 to restore areas of coppice, create a wide ride network, and allo-
cate areas to a limited intervention treatment. Because of the precarious 
economic basis of coppice management efforts were also made to 
develop a diverse high forest management approach which could sup-
plement coppice management in maintaining and enhancing biodiver-
sity on the site (Poore, 2016). 

We evaluated three broadleaved stand management types (Fig. 2). 
We define woodland management as harvesting of woody material and 
the stand as the silvicultural unit at which forest management was 

Fig. 1. Location of study: a) study location in southern England, UK; b) sampling points across study area for the collection of vegetation, structural and plant 
community measures within locations of. Woodland stand types indicated by colour; Yellow – Limited intervention, Orange – Coppice, Red – Irregular High-Forest; c) 
example of plot layout for measuring habitat structures and from where plant species and community features were recorded in a 20 × 20 m quadrat and 3 m 
diameter circular sub-plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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undertaken. 
Coppice stands (covering 59.0 ha of the project area) include both 

simple coppice and coppice with standards with up to 20 % cover of 
upper canopy trees. It should be noted, however, that effective under-
wood production requires a maximum cover of 10 % upper canopy trees 

(Harmer & Howe, 2003). Underwood cycle lengths vary with use: hazel 
dominated coppice cut every 8–15 years, birch coppice was managed on 
two rotations, with birch for horse jumps cut at 3–4 years and the 
remainder on > 25 year cycles for wood fuel. There was a broad rep-
resentation of growth stages across our study site, with a mean age of 

Fig. 2. Stand management types and examples of AWI plants associated with each (see Table 3 in results, arrows depict strongest association with a stand type in the 
examples), a) coppice with Lamiastrum galeobdolon in a diverse ground layer, mix of recently felled coppice and 7-year-old stems b) Irregular High Forest, varied tree 
sizes, canopy gaps with a patchily distributed understorey including bramble and variable ground layer composition including Adoxa moschatellina and c) limited 
intervention with Allium ursinum ground layer, dense shade no understorey. Rushmore, UK, April 2022. 
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coppice during the study of 7.3 ± 3.9 (SD) years with 0–5 years (n = 10), 
6–9 years (n = 19), and 12–15 years (n = 11). Basal areas were in a range 
of 2–24 m2/ha-1. At each cutting, the entire panel (felling) between 0.5 
and 1.5 ha of underwood is removed leading to even-aged regrowth 
(Harmer & Howe, 2003). 

Irregular High-Forest stands (covering 52.9 ha) were transformed 
from unmanaged coppice stands from the mid-1980′s. They had already 
undergone some transition to a high forest structure over the preceding 
20 – 50 years. This transformation involves the selective removal of 
harvestable trees and of weaker growing specimens and cutting the re-
sidual hazel and birch dominated understorey to increase light levels 
reaching the woodland floor. The aim is, however, for a suitable pro-
portion of the understorey to re-grow, both for silvicultural reasons (to 
control seed bed conditions) and in order to create a complex habitat 
structure where the shrub layer is integrated within the high forest 
structure. The aim is to increase incremental growth and vigour of the 
retained trees to increase their resilience, enhance their economic value, 
promote natural regeneration of trees and shrubs and establish a range 
of tree size-classes. 

With regard to the overall growing stock size, ‘moderate stocking’ is 
aimed for with basal areas (>7.5 cm diameter at breast height) in the 
range of 17–24 m2 /ha− 1. Lower stocked areas still in transition can have 
a range of 10–16 m2 /ha-1. Understorey is dense in places yet patchily 
distributed as influenced by previous management and the effects of 
deer browsing. Species diversity is encouraged and individual trees with 
particular biodiversity values are retained, including senescent and 
standing deadwood (Susse et al., 2011). Irregular silviculture as prac-
ticed in our study involves interventions every 8–15 years (Poore, 2016). 
An intervention involves cutting all, or more usually a proportion, of the 
understorey, prior to selective removal of canopy trees as part of timber 
harvesting (Susse et al., 2011). 

Limited Intervention stands (covering 43.4 ha) are closed canopy 
stands, with a higher tree density and basal area in the range 18–40 m2 / 
ha− 1, and more limited understorey due to a period of between 30 and 
50 years without formal silvicultural intervention. Some closed-canopy 
have also be created by areas of abandoned overstood hazel that were 
last cut ≥ 50 years ago (Poore, 2016). 

Such structures appear to be typical of ancient woodland which has 
become neglected with closed canopy and understorey which is sparse 
or has grown up to become part of the woodland canopy layers (Amar 
et al., 2010, Hopkins & Kirby, 2007). 

2.3. Field sampling 

Plots were selected with each location a minimum of 100 m apart, 
and to reduce the influence of proximate habitats, plots were located a 
minimum distance of 30 m from stand edges stratified equally across the 
3 stand management types (n = 120). Measurements of habitat struc-
tural variables were collected within a 30 m diameter circle (0.07 ha) 
with five sub-plots of 3 m diameter within each (four located at the 
cardinal points at 10 m radii and one at 2 m off-centre along a random 
compass bearing (Fig. 1) (Bibby et al., 2000). The plant community data 
were collected within a 20 × 20 m quadrat at each plot (Kent, 2012). 
Fieldwork was conducted between 1st May and 31st July. 

Within each plot, the following habitat structural measurements 
were recorded:  

• Percentage of canopy openness was measured at each circular sub- 
plot with a spherical convex mirror densiometer (Lemmon, 1956) 
taken at 1.5 m above ground to gauge light levels.  

• To calculate understorey density using the proportion of the shrub 
layer cover at 0.5 m and 2 m height bands, a percentage score of 
obscurations to the nearest 5 % was visually estimated. At each 
cardinal point of the plot at the sub-plot centres understorey density 
was visually assessed against a 50 × 30 cm chequer board with 10 ×
10 cm squares (Alder et al., 2018).  

• Percentage cover of bramble was visually estimated overall within 
the plot because it can exert an important influence over the vascular 
plant community (Harmer et al., 2017), and % area of bare ground 
without plant growth or deep litter was visually estimated.  

• Vascular plant richness and % cover (as an estimate of abundance of 
each plant species) at each plot within the quadrat scored using the 
Domin scale, subsequently converted to mid-point % categorical 
variables adapted from Kirby et al. (2022) (Supplementary 
Table S.1). 

Vascular Plant groups (supplementary Table S.2 with all species 
recorded and their groupings). 

We used all vascular plant species identified to compare species 
richness between the three stand management types described above. 

Species were differentiated by groups. For ancient woodland in the 
UK, Rackham (2003) developed an approach based on Coppice- 
associated plants which represent phytocoenological groups (Borhidi 
1995), described as follows:  

• Spring plants; species which flower early in the year and being vernal 
species have set seed by mid-summer.  

• Summer plants; shade resistant summer flowering which actively 
grow during canopy leaf-cover.  

• Buried seed plants; species which prolifically germinate following 
canopy opening with a persistent seed bank capable of withstanding 
decades of shade lying dormant until conditions become favourable 
with an increase in light.  

• Mobile plants; windblown species that move around woodland, 
typically are short-lived biennials and are more abundant in open 
conditions though some may persist as perennial.  

• Non-responsive plants; which are shade tolerant species and do not 
respond to canopy openings or may decline. 

Finally, species have been checked against the list of Ancient 
Woodland Indicators – (hereafter AWI). 

Ancient Woodland Vascular Plants are species with a direct associ-
ation with woodland identified as being of ancient origin and are 
therefore a specialist group indicative of continuity (Rose, 1999, 
Peterken, 2000). Furthermore, with traits of dispersal limitation and 
sensitivity to intensive disturbance regimes their distinctiveness makes 
Ancient Woodland Vascular Plants important as a group on which to 
base conservation evaluation in UK woodland (Kimberley et al., 2013). 

2.4. Data analysis 

Differences in the percentages of individual habitat structural mea-
sures, and species richness for each plant group, across stand manage-
ment types were tested using generalised linear mixed models (GLMMs), 
with Arcsine data transformation and Poisson distribution respectively 
(Bates et al., 2015). Plot nestedness (pseudoreplication) was accounted 
for by including stand unit number as a random effect in the models 
(Alder et al., 2021). Principal components analysis (PCA) was performed 
on the habitat structural variables to identify the main gradients and 
relative contribution of each variable to these (Alder et al., 2018). 

A non-metric multidimensional scaling (NMDS) ordination (using 
the package ‘vegan’ (Oksanen et al., 2020)) was used to explore Ancient 
Woodland Indicator plant composition and percentage cover across 
stand types. NMDS ranked the species in order and used the Bray-Curtis 
coefficient (Kent, 2012) between samples to create a dissimilarity matrix 
of plant communities for the stand types. An analysis of similarity 
(ANOSIM) was performed on the resulting ranked data using a non- 
parametric multiple permutation test (999 runs) for testing differences 
in the plant communities (McCune et al., 2002). 

We used indicator species analysis (ISA) which combines abundances 
and frequencies of the plant occurrences to group those AWI species 
most strongly associated with particular stand management types 
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(Dufrêne, & Legendre, 1997). Indicator species values were calculated 
across a range between 0 (no indication) or 100 (exact indication). In-
dicator values were also calculated for combinations of stand types using 
an extension of the indicator species analysis method (De Cáceres et al., 
2010). Values were tested using a permutation test run 999 times. ISA 
was performed using the package ‘indicspecies’ version 1.7.8 (De 
Cáceres, 2010). All data analysis was run using R version 4.1.0 (R Core 
Team, 2021) with figures produced using ggplot2 (Wickham et al., 
2016). Significance was set at P < 0.05. 

3. Results 

3.1. Habitat structural measures across stand management types 

Understorey densities in Irregular stands were intermediate between 
Limited Intervention and Coppice stands (See supplementary Table S.3). 
In the Coppice understorey densities at the 2 m height layer were 
significantly greater than in both other stand types. Bramble density was 
highest in Irregular over both other stand types, although the densities 
were as wide ranging in Coppice as Irregular. Canopy openness was 
greater in Irregular over Limited stands, while the latter was strongly 
associated with bare ground compared with the intervention stands. The 
first two PCA axes accounted for 67.1 % of original variation, Table 1. 
Axis 1 was associated with increasing bare ground and sparser under-
storey, especially at 0.5 m height, which was itself closely related to 
bramble Rubus fruticosus cover. For Axis 2, increasing canopy openness 
correlated with Irregular High Forest while understorey density at 2 m 
height associated with coppice and represented a closed understorey 
canopy, Fig. 3 a. 

3.2. Vascular plant and group richness 

A total of 91 vascular plant species were identified from seven plant 
groups including from all five of Rackham’s Coppice plant groups 
(Rackham, 2003), ancient woodland indicators ( AWI), and ‘other’ 
species which included several AWI that were not categorised as 
Coppice plant species (see supplementary Table S.2). While there were 
differences in species richness between different stand types, this varied 
depending on the plant group (Table 2). Four of the seven plant groups: 
All vascular plants; AWI’s; Spring plants; and Buried seed plants, were 
similar between the two active intervention stands while significantly 
lower in Limited Intervention plots. There were no significant differ-
ences between species richness across stand types for Summer and Non- 
responsive plant groups. Irregular stand type had significantly more 
Mobile plant species than Limited while Coppice was not significantly 
different from either. 

3.3. Ancient woodland indicator species 

The AWI plant community varied significantly between stands 
(ANOSIM statistic R: 0.13, P < 0.001) while NMDS for ancient woodland 
indicator species cover, had a stress value of 0.19 indicating a good fit of 
the data (McCune et al., 2002). Ordination ellipses (95 % confidence) 
revealed distinct spatial patterns with most AWI species cover associated 
with Coppice followed by Irregular. Limited intervention plots had more 

variation in their AWI plant communities, and generally AWI plant cover 
correlated strongly with open canopy, yet also included plots with dense 
understorey and bramble cover (Fig. 3b). As with the PCA, both NMDS 
Axis 1 and 2 reflect a gradient from closed to open canopy; Axis 1 is 
positively associated with increasing understorey complexity and open 
canopy from bare ground while Axis 2 follows a transition from open, 
bare ground with a lack of understorey complexity to some bramble 
cover. 

The frequency of occurrences across all 25 AWI species at plots or-
dered along the two main habitat structural (PCA) gradients are shown 
in Fig. 4. Axis 1 shows that most common species separate evenly be-
tween the active interventions and limited, while for both axis 1 and axis 
2 less common species are more frequent in the active interventions. 
(See supplementary Table S.4 for correlations between AWI species and 
PCA factor scores for axis 1 and 2). 

3.4. Stand type indicator species 

Indicator species analysis (ISA) identified 22 species with a signifi-
cant association with a particular stand type or stand type pair (Table 3). 
These included nine of the twenty-five AWI species from four Coppice 
plant groups. The Spring vernal species were all included in both 
coppice and Irregular and reinforce the results from the pairwise group 
tests which show richness in limited intervention decreases. Most dif-
ferences between Coppice and Irregular were for either Buried seed 
plants or Summer perennials, while Limited Intervention had only one 
Non-responsive species which it shared with Irregular. 

4. Discussion 

4.1. Structural effects of silvicultural management 

A primary aim of Irregular silviculture is the adoption of ecologically 
sustainable methods (Susse et al., 2011, Sanchez, 2017). An important 
objective of sustainable forest management is for forest managers to 
consider the potential impacts, following restructuring of woodlands, 
upon a range of taxonomic groups especially in ancient woodlands 
(Bricca et al., 2020, Larrieu et al., 2019, Brown et al., 2015). Irregular 
silviculture in temperate broadleaf woodland does appear to positively 
benefit other groups such as birds (Alder et al., 2018), and bats (Alder 
et al., 2021). Generally, we found Irregular silviculture has created dy-
namic woodland structures across a continuum not unlike a Coppice 
woodland with a broad range of age classes in varying stages of growth 
(Alder et al., 2018), although we recognise it may not be directly anal-
ogous (Bürgi, 2015). Irregular silviculture in our study retained several 
characteristics of early successional understorey associated with tradi-
tional coppicing (Sanchez, 2017) with a significantly more open canopy 
than Limited Intervention. In mixed hazel and birch coppices such as 
those within our study the ground flora is adapted to the rapid turnover 
of light to shade, and woodland species with varied requirements can 
persist side by side according to the stage of the coppice cycle (Buckley 
& Mills, 2015b, Kirby et al., 2017). Notably, we did not detect a sig-
nificant difference in openness between Coppice and Limited stands 
which reflects the way we measured canopy openness in Coppice below 
understorey closure at 2 m height. The proportion of Coppice at <3 years 
age in our study was 10 % and so the majority was actively growing with 
closed canopy at around the fourth or fifth year since cutting (Mitchell, 
1992). The creation of larger canopy gaps which remain open for many 
years can be detrimental to coppice adapted plants as the community 
can shift to grassland (Barkham, 1992) or develop a ruderal community 
(Klug et al., 2019). Although not tested, our study area had localised 
patches of woodland with high grass cover which may have been due to 
increased canopy opening followed by incursion by deer Cervidae (Kirby 
et al., 2022, Joys et al., 2004). 

Within-stand gap creation in the Irregular High-forest stands is 
patchier than even-aged high-forest and regeneration of woody species 

Table 1 
Factor loadings/correlations for habitat structural variables on the first two 
Principal Components axes with percentage variation given in parenthesis.  

Habitat Variable Axis 1 (45.4 %) Axis 2 (21.7 %) 

Bare ground  0.43  − 0.14 
Bramble  − 0.47  0.17 
Canopy openness  − 0.30  0.69 
Understorey density 0.5mht  − 0.58  − 0.12 
Understorey density 2mht  − 0.41  − 0.68  
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becomes more varied with a wider range of age-classes (Alder et al., 
2021). This is unlike clear-cutting or more intensive even-aged high- 
forest management which can result in an increase in transient and non- 
woodland plants (Tinya et al., 2019). Irregular High Forest manage-
ment, as we have shown, produces both early successional and old 
growth characteristics important for maintaining biodiversity in 
temperate European woodlands, features which are often under- 
represented (Hilmers et al., 2018). Despite the presence of deer, which 
are managed through a culling regime designed to significantly reduce 

their impact, our study showed how bramble Rubus fruticosus flourished 
within Irregular stands following canopy opening. This may indicate an 
effect of increased ground disturbance combined with reduced density 
and competition from the rapid understorey regrowth typically associ-
ated with the coppice cycle. Decocq et al. (2005) and Harmer et al. 
(2017) found that bramble decreased overall plant species richness in 
selectively cut forests, which was not the case in our Irregular stands. 
Van Calster et al. (2008) found a similar increase in bramble cover 
during canopy opening, yet increases in species richness in the herb 
layer correlated with uneven-aged high forest compared with even-aged 
and was related to edaphic factors influenced by silviculture. The impact 
of bramble can be varied according to land-use history (Hédl et al., 
2021), local site conditions, the degree of canopy opening and the 
development of a competing woody understorey (Harmer et al., 2017). 
We found bramble was generally absent in Limited Intervention stands 
and suppressed in closed canopy coppice. However, despite highest 
cover values, bramble presence did not appear to have a negative effect 
for any plant group in Irregular stands. Bramble in these stands is 
selectively controlled where higher densities are deemed likely to sup-
press tree regeneration although this is infrequent and targeted. The 
rapid development of a woody understorey in gaps is generally desirable 
in Irregular stands as it negates such intervention and increasing 
understorey density within the 2-metre height band (analogous to 
Coppice at 3–5 years) may help in this respect. 

Limited Intervention stands in our study appear to be typical of 
ancient woodland in lowland Britain which has become neglected and 
homogenously structured with closed canopy and a sparse understorey, 
or abandoned coppice that has grown up to become part of the woodland 
canopy (Amar et al., 2010, Hopkins & Kirby 2007). Species diversity in 

Fig. 3. Ordinations from Principal Components Analysis factors 3a) of the main habitat structural variables associated with the three stand management types, Non- 
metric Multidimensional Scaling biplot showing NMDS 1 and 2 positions 3b) for Ancient Woodland Indicator plant species % cover with 95% confidence ellipses for 
habitat / species separation across stand types. 

Table 2 
Results of GLMM and pairwise comparisons of species richness for seven plant 
groups across the stand management types; medians are given with range shown 
in parenthesis. Those pairs of stand types which differ significantly are shown 
between columns, the values across rows indicate whether the difference is 
positive or negative; L – Limited, I – Irregular, C – Coppice with those in bold 
denoting significant difference from pairwise test P < 0.05.  

Woodland Plant 
Group 

Limited Irregular Coppice P 

All vascular plants 8 (3 – 25) IC 18 (10 – 31) 
L 

16 (9 – 32) 
L 

<

0.001 
Ancient Woodland 

Indicators 
2.5 (0 – 14) 
C 

7.5 (1 – 13) 8 (2 – 12) L 0.016 

Spring plants 1.5 (0 – 6) C 3.5 (0 – 6) 4 (0 – 6) L 0.033 
Summer plants 1.5 (0 – 9) 3 (1 – 6) 4 (0 – 7) 0.116 
Buried seed plants 2 (0 – 8) IC 6 (2 – 14) L 5.5 (1 – 14) 

L 
<

0.001 
Mobile plants 0 (0 – 2) I 1 (0 – 5) L 1 (0 – 4) 0.006 
Non-responsive plants 3 (1 – 5) 3 (1 – 6) 2 (0 – 5) 0.458  
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UK ancient woodlands is associated with structural heterogeneity 
(Peterken & Game 1984, Peterken & Mountford 2017) and our results 
suggest that Irregular High Forest management may offer a feasible 
alternative to coppicing where it is no longer practiced. The proximity of 
small canopy gaps created (every 7–10 years) within and between 
Irregular stands may retain habitat conditions suitable for ancient 
woodland indicator species (Klug et al., 2019). Chelli et al. (2021) 
suggest canopy heterogeneity developed by larger trees with a complex 
vertical distribution (as found in Irregular High Forest) may modulate 
the light heterogeneity in abandoned coppice and drive functional 
diversity. 

4.2. Vascular plant groups and species responses 

Most woodland plant groups in our study were tolerant of Irregular 
silviculture management, with the main differences in the plant com-
munities being between managed and unmanaged stands. In central 
Europe the conversion to High Forest from traditional Coppice has been 
associated with losses of forest plant species of high conservation value 
(Müllerová et al., 2015). While our study found Summer perennials and 
Non-responsive groups were not significantly different across the three 

stand types, overall vascular plant richness was highest in Irregular High 
Forest followed by coppice. However, plant species richness per se does 
not necessarily provide a measure of the conservation value of a 
woodland, because it also includes both generalist and common non- 
woodland species (Kirby et al., 2022, Hupperts et al., 2020, Boch 
et al., 2013, Bartha et al., 2008, von Oheimb & Härdtle 2009). 

Decoq et al. (2005) found more ruderal and generalist plant species 
in a selective high-forest system that originated from a coppice with 
standards silviculture. Such effects may be related to the actual treat-
ment on a site sensitive to soil compaction, in particular the lack of 
defined, permanent timber extraction racks leading to a wider area of 
the woodland subject to disturbance (Harmer et al., 2010). Moreover, 
even where ruderal/generalist plants occur they are likely to diminish as 
the stand structure develops (Bartha et al., 2008). While we did not 
detect a significant difference between Coppice and Irregular, Buried 
seed plant richness was significantly higher in the Irregular than Limited 
Intervention stands, which included widespread species which are more 
typical of disturbed soils. ISA identified 9 Buried seed species in Irreg-
ular with only 5 (of the same) species in Coppice (including bramble) 
while Limited Intervention had none. None of 4 Buried seed species ISA 
identified uniquely in Irregular are AWI. Following Hill et al. (2000) and 

Fig. 4. Occurrence of ancient woodland plant species at each plot (n = 120; coloured by stand type) ordered along ordination axes 1 and 2 of the PCA.  
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Hill et al. (2004) we identified these species as generalists found in a 
broad range of temperate habitats in light (L) levels with an Ellenberg L 
value of 6, comparatively higher than other species of this group such as 
Bugle Ajuga reptans and the AWI species, Wood spurge Euphorbia 
amygdaloides with Ellenberg L values of 5 and 4 respectively. Of these 
Buried seed species cleavers Galium aparine is a species with an Ellen-
berg N (Nitrogen) value of 8 for nutrient rich soils. It is likely to have 
responded to soil disturbance following harvesting which may explain 
why Cock’s-foot grass Dactylis glomerata was similarly commonest in 
Irregular stands (von Oheimb & Härdtle 2009). We did not test for soil 
compaction in our study, although species such as cleavers are known to 
be intolerant of compact soils (Godefroid & Koedam 2004). 

Ancient woodland plants are susceptible to nutrient enrichment, 
especially nitrogen, which may arise through atmospheric deposition or 
localised agricultural drift (Kirby 2020). There have been concerns over 
the impact of canopy opening after many decades of neglect which re-
leases the so-called ‘nutrient time-bomb’, yet this remains uncertain 
(Verheyen et al., 2012). While there were significantly more mobile 
species in Irregular stands than Limited Intervention, Coppice had a 
similarly high number. Buried seed species such as perennial nettle 
Urtica dioica were found as much in Limited Intervention stands as in 
Irregular and may be a response to localised enrichment especially of 
phosphates, (Capstick et al., 2019) from pheasant Phasianus colchicus 
rearing rather than silviculture (Sage et al.2005). 

4.3. Woodland management implications 

We recognise that our study is limited to one site with its own his-
torical ecology which poses difficulties in making general recommen-
dations (Hédl, et al., 2021). Nevertheless, we did not detect many 
significant differences between the ancient woodland plant commu-
nities of Coppice and Irregular stands. Neither did we find strong evi-
dence of negative effects, e.g., from competitive exclusion, as a result of 
increases in species such as bramble and cleavers. This may be because 
Irregular High Forest as practiced in our study has a relatively low rate 
of disturbance compared to clear-felling (Harmer et al., 2010). Brown 
et al. (2015) found that ancient woodland plants were able to withstand 
high levels of exotic tree removal during restoration of ancient wood-
lands, although there may be a reduction in those shade adapted species 
initially. Clearly the intensity and methods of silvicultural practice vary 

which can greatly influence the resulting woodland plant community 
(Hermy 2015). For ancient woodlands however, Irregular silviculture as 
we have found appears to be benign and a preferable option to man-
agement neglect and the potential demise of specialist woodland plants 
as a result of closed canopy, shading and intense grazing by deer 
(Rackham 2008, Van Calster et al., 2008, Roleček et al., 2017). 

Despite evidence of there being a time-lag between cause and effect 
of climate change in temperate forests (Bertrand et al., 2011) stand 
manipulation offers the prospect to evaluate responses of different 
taxonomic groups (Larrieu et al., 2019). At Rushmore coppice man-
agement is likely to continue as part of the mix of management types 
albeit greatly reduced compared to the early 19th century. This provides 
a unique opportunity for long-term comparison with Irregular High 
Forest management in an ancient woodland, see for example Kirby et al. 
(2022) and recommendations therein. The Rushmore Estate woodlands 
are particularly valuable in this respect with an important historical 
ecology and intimate mix of traditional and novel silvicultural man-
agement types for assessing how woodland plants respond (Bergès & 
Dupouey 2021). The interaction between canopy and woody under-
storey (and bramble) is likely to be important and warrants further 
research (Chelli et al., 2022, Landuyt et al., 2019, Dölle et al., 2017, 
Brown et al., 2015). Importantly, investigating how environmental 
conditions are moderated for Coppice adapted plants of ancient wood-
lands (Buckley 2020, Cervellini et al., 2017, Boch et al., 2013). This is 
important for ground flora because of the effects of increased tempera-
tures (thermophilisation) following canopy opening in a changing 
climate (Zellweger et al., 2020, Schall & Heinrichs 2020, Landuyt et al., 
2019). Moreover, Ash die-back Hymenoscyphus fraxineus will alter the 
canopy cover and the ground-layer composition, including natural 
regeneration of woody species (Mitchell et al., 2016, Broome et al., 
2019). 

The dynamics of woodland flora is complex and varies within a 
season as well as between sites and to fully understand changes in the 
patterns of woodland plants, long term studies in a range of stand 
management types is key (Keith et al., 2009, Hédl & Chudomelová 
2020). To fully comprehend responses to the conditions produced by 
silvicultural management on woodland flora requires understanding of 
the management histories across a range of sites (Bricca et al., 2020, 
Barnes & Williamson 2015, Spencer 1990). Slow dispersing ancient 
woodland plants may be particularly vulnerable to changes in climate 

Table 3 
Results of Indicator Species Analysis across stand types; Coppice plant groups are shown in superscript, Nr – Non-responsive, Bu – Buried seed, Sp – Spring, Su – 
Summer perennial, Mo - Mobile.  

Ancient Woodland Species  Limited Irregular Coppice Test P 

Adoxa moschatellina Nr Moschatel  ✓   0.34  0.02 
Allium ursinum Nr Ramsons ✓ ✓   0.76  <0.001 
Carex sylvatica Bu Wood sedge  ✓ ✓  0.59  0.002 
Conopodium majus Sp Pignut  ✓ ✓  0.82  <0.001 
Euphorbia amygdaloides Bu Wood Spurge  ✓ ✓  0.76  <0.001 
Holcus mollis Su Creeping Soft-grass   ✓  0.42  <0.001 
Hypericum androsaemum Su Tutsan   ✓  0.35  0.05 
Lamiastrum galeobdolon Sp Yellow Archangel  ✓ ✓  0.8  <0.001 
Primula vulgaris Sp Primrose  ✓ ✓  0.66  0.004 
Other Vascular Plants       
Arctium spp Mo Lesser/Greater Burdock  ✓ ✓  0.37  0.045 
Ajuga reptans Bu Bugle  ✓ ✓  0.42  0.02 
Circaea lutetiana Mo Enchanter’s Nightshade  ✓   0.37  0.011 
Cirsium arvense Mo Creeping Thistle  ✓ ✓  0.4  0.024 
Cirsium palustre Mo Marsh Thistle   ✓  0.5  0.001 
Clematis vitalba Traveller’s Joy   ✓  0.38  0.047 
Dactylis glomerata Bu Cock’s Foot grass  ✓   0.39  0.006 
Deschampsia caespitosa Su Tufted Hair-grass  ✓ ✓  0.75  0.001 
Eupatorium cannabinum Su Hemp Agrimony   ✓  0.45  0.005 
Ficaria verna Bu Lesser Celendine  ✓   0.44  0.023 
Galium aparine Bu Cleavers  ✓   0.6  0.001 
Geranium robertianum Bu Herb Robert  ✓   0.45  0.001 
Rubus fruticosus agg. Bu Blackberry  ✓ ✓  0.96  0.001 
Rumex sanguineus Bu Wood Dock  ✓ ✓  0.39  0.022  
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and nutrient enrichment even though they may be buffered from its 
effects initially (Hermy 2015). Improving our knowledge of the impacts 
from raised temperatures (Govaert et al., 2020) is vital for ecosystem 
services where the ground flora plays an important role (Mitchell et al., 
2014, Mitchell et al., 2016, Kirby et al., 2022). 

Natural restructuring which creates a range of successional habitats 
and old growth can take centuries to establish in formerly managed 
woodland (von Oheimb et al., 2005, Peterken & Mountford, 2017). 
However, the choices for high-forest are varied and Irregular silviculture 
appears to offer a broad range of structures and habitat conditions 
(Alder et al., 2021). Using plant indicators based around AWI and 
Coppice-adapted groups (Rackham, 2003) we feel offers a robust 
mixture of species indicators to guide ancient woodland management 
(Ellis, 2015, Lelli et al., 2019, Swallow et al., 2020) (. 
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De Cáceres, M., Legendre, P., Moretti, M., 2010. Improving indicator species analysis by 
combining groups of sites. Oikos 119 (10), 1674–1684. 

Decocq, G., Aubert, M., Dupont, F., Alard, D., Saguez, R., Wattez-Franger, A., 
DeFoucalt, B., Delelis-Dusollier, A., Bardat, J., 2004. Plant diversity in a managed 
temperate deciduous forest: understory response to two silvicultural systems. 
J. Appl. Ecol. 41, 1065–1079. 

Decocq, G., Aubert, M., Dupont, F., Bardat, J., Wattez-Franger, A., Saguez, R., De 
Foucault, B., Alard, D., Delelis-Dusollier, A., 2005. Silviculture-driven vegetation 
change in a European temperate deciduous forest. Ann. Forest Sci. 62 (4), 313–323. 

Depauw, L., Perring, M.P., Landuyt, D., Maes, S.L., Blondeel, H., De Lombaerde, E., 
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