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Abstract: Demographic factors, statistical information, and technological innovation are prominent
factors shaping energy transitions in the residential sector. Explaining these energy transitions re-
quires combining insights from the disciplines investigating these factors. The existing literature is
not consistent in identifying these factors, nor in proposing how they can be combined. In this paper,
three contributions are made by combining the key demographic factors of households to estimate
household energy consumption. Firstly, a mathematical formula is developed by considering the
demographic determinants that influence energy consumption, such as the number of persons per
household, median age, occupancy rate, households with children, and number of bedrooms per
household. Secondly, a geographical position algorithm is proposed to identify the geographical
locations of households. Thirdly, the derived formula is validated by collecting demographic factors
of five statistical regions from local government databases, and then compared with the electricity
consumption benchmarks provided by the energy regulators. The practical feasibility of the method
is demonstrated by comparing the estimated energy consumption values with the electricity con-
sumption benchmarks provided by energy regulators. The comparison results indicate that the error
between the benchmark and estimated values for the five different regions is less than 8% (7.37%),
proving the efficacy of this method in energy consumption estimation processes.

Keywords: demographic data; energy transitions; information management; residential sector;
smart cities

1. Introduction

Energy is a key driver of our communities. Every society, business, and building relies
on energy. Despite all the technological advancements in energy efficiency, by 2040, global
energy consumption is projected to be about 60% higher than it was in 2010 [1]. With a share
of nearly 35% of the global energy demand [2], buildings are the world’s largest energy
consumers. The majority of this global share is used by residential buildings. Nonethe-
less, we know very little about the demographic processes that drive energy demand in
residential buildings. The existing literature has neglected the role of occupants in energy
consumption by excessively focusing on the physical and technical characteristics of the
buildings [3–5]. However, demographic factors, such as the number of persons in a house-
hold, family composition, occupancy rate, ages of occupants and urbanization levels, have
both direct and indirect influences on household energy consumption. Understanding the
key determinants of residential energy consumption is essential for economic development,
energy justice, natural resources protection, and climate change policy.
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In the existing literature, there are research efforts aimed at estimating and reducing
energy consumption in the residential sector. In [6], a queuing-based demand framework
was presented for energy consumption management in the residential sector. A central-
ized algorithm for minimizing the energy cost and operational delays for consumers was
proposed. In [7], a support vector regression model for predicting electrical consump-
tion was developed. However, this study examined the residential energy usage without
considering the dwellings, occupations and socio-economic status of the people in the
households. In [8], a novel prediction model was established to forecast the building
electricity levels. A forecasting engine was presented based on the empirical mode de-
composition. A customer segmentation methodology for processing the load shapes of
residential energy consumers was developed in [9]. The main objective was to derive the
features from the household-encoded data to classify the variability in energy consumption.
In [10], a novel architecture based on the random behavior of the residential consumers
was proposed to predict the energy consumption in residential buildings. In [11], a bound
testing procedure for estimating residential electricity consumption was proposed. This
study [11] used an autoregressive distributed framework to model residential electricity
demand. In [12], the price elasticity of residential electricity consumption in Switzerland
was estimated. This study [12] investigated the effect of household appliances in residential
energy consumption using household production theory. A recent analysis of residential
buildings, considering the size of households, climatic conditions, and locations, is pre-
sented in [13]. A two-stage model was explored in [14] to estimate electricity consumption.
It considered weather-related electricity factors and implemented an agent-based analytical
tool to disaggregate the residual consumption levels of different appliances.

In recent studies, three categories are used for energy consumption modeling in
the residential sector: statistically based regression modeling, bottom-up and top-down
modeling, and artificial-intelligence-based modeling. Table 1 shows the related studies
in energy consumption estimates according to three categories. In terms of regression-
based modeling, a multiple linear regression was carried out to consider the effect of
climatic conditions in residential energy consumption in [15]. The techniques, including
quantile regression, ridge regression, and statistical regressions, were also used to model the
household characteristics, such as the effect of heating [16], cooling [17] and technological
factors [18]. Bottom-up and top-down models were also employed to estimate residential
energy consumption. For instance, an improved bottom-up energy-consumption estimation
approach based on energy-consumption-monitoring data and the Bayesian theory was
developed in [19]. In [20], a bottom-up model for estimating residential energy demands
using datasets available in the United States was proposed. This method used a micro-
simulation approach for estimations in metropolitan areas. A bottom-up approach to
building a high-resolution energy demand model was proposed in [21]. This study [21]
considered the passive energy consumption of each housing unit based on physical factors,
such as the weather and floor area. In [22], a bottom-up methodology for projecting the
energy demands of residential buildings was presented. It considered climate zones in
Algeria to evaluate the space loads for cooling and heating using a degree days method. To
address the behavior patterns of occupants, a bottom-up residential simulation approach
was developed in [23]. It simulated the behavior of occupants using an unsupervised
clustering algorithm. A comparison of the state-of-the-art between top-down and bottom-
up methods for residential energy consumption was drawn in [24]. Artificial-intelligence-
based models were also used to estimate energy use in the residential sector [25,26]. These
models [25,26] considered the impact of buildings’ physical features, including the number
of floors, land-use dimensions, and apartments versus detached houses. In [27], a deep
learning model was investigated to examine the influence of individual appliances in
household energy consumption.
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Table 1. Summary of relevant studies in the literature and enhancements in this paper.

Recent Studies Year Method Common Limitations Enhancements in This Paper

Nelson, F. [15] 2015 Linear regression

Rochus, N. [16] 2019 Quantile regression

• Existing studies mainly focused on
the physical features of residential
buildings (e.g., building structure,
including attached, semi-attached,
detached houses and apartments),
climatic (weather) conditions, and
heating and cooling devices, to
improve their energy efficiency. The
social demographic factors
influencing the energy transitions
were not properly investigated.

• The commonly used statistical
regression and artificial intelligence
models rely on data from smart
meters or the data provided by
energy companies. Energy
companies usually refrain from
providing data due to the risk of
privacy disclosures. This factor, in
turn, affects the validity of energy
consumption solutions. The data
restrictions have limited the
opportunities to undertake energy
consumption modeling, which
enables the projection of future
scenarios.

• These solutions are only validated for
a single demographic region or
household. However, this aspect
might differ across different
households, depending on the
demographic characteristics and
locations.

• The geographical locations of
household are not explicitly defined.
The spatial information defines
energy usage within groups of
buildings and can be used to identify
high-consumption areas.

• A comparison of energy estimates
with the electricity benchmarks
produced by energy regulators is
seldom provided.

• This paper proposes a new way of
estimating residential energy
consumption by collecting the real
demographics of household from
local government databases. A
mathematical formula is
developed, considering the social
elements, such as the statistical
information and demographic
factors of households, to examine
the key determinants of energy
consumption.

• A geographical position algorithm
(GPH) is proposed to identify the
geographical positions of
households. Its objective is to solve
the problem of obtaining
longitudinal data for households.

• As energy consumption varies
from region to region, the issue of
uncertainty in energy usage at
different demographic regions is
addressed by calculating
households’ energy usage in
different locations.

• The practical application of the
proposed solutions is validated in
five regions in Australia. For
fairness, five regions, with distinct
demographics, are selected and
compared.

• Comparisons are made between
estimated and energy consumption
benchmarks produced by energy
regulators. The comparison results
support our findings in validating
the crucial role that demographic
factors play in overall energy
consumption

Mathieu, B. [17] 2019 Statistical regression

Xu, G. [18] 2020 Ridge regression

Zhao, T. [19] 2019 Bottom-up modeling

Zhang, W. [20] 2019 Bottom-up model

Subbiah, R. [21] 2017 Bottom-up approach

Ghedamsi, R. [22] 2015 Bottom-up method

Diao, L. [23] 2017 Clustering analysis

Deb, C. [24] 2021 Review of energy
modelling techniques

Aguilar, J. [25] 2021
Artificial intelligence

techniques

Despite the effective solutions that exist for the residential sector, new challenges and
requirements have emerged with the rapid increase in population as well as the evolution
of smart cities. To obtain meaningful results, several issues need to be resolved, such as
demographic characteristics and the human factor, which are key determinants of energy
consumption in the residential sector. To date, most studies have focused on physical
features of buildings (e.g., types of air conditioning), climatic (weather) conditions, and
individual appliances, as well as the heating and cooling devices used to improve their
energy efficiency. An analysis of occupant characteristics, considering their demographic
factors, has not been properly investigated. The existing solutions, such as statistical
regression analysis and artificial-intelligence-based models, are dependent on the data of
smart meters and the data provided by energy companies. The energy companies usually
refrain from providing data due to the risk of privacy disclosures [28,29]. This factor, in
turn, affects the validity of energy consumption solutions. In this study, investigations
are conducted from the publicly available open-data by collecting the real demographics
of households from local government databases, such as that of the Australian Bureau
of Statistics (ABS) [30]. The scale of data in ABS is vast, presenting unprecedented
opportunities to examine complex demographic factors that effect energy consumption in
the residential sector. Another important issue is the uncertainty of dwelling characteristics
or demographics, making it more difficult to formally model and eventually estimate
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energy consumption. In the existing literature, the solutions were only validated for
a single demographic region or household. However, this aspect might differ across
different households, which mainly depend on the number of people living in them, their
genders, ages, and employment status, as well as the average number of bedrooms. The
research discussed in this paper contributes to the existing literature by studying the key
demographic factors of five distinct regions that have major impacts on energy consumption
in the domestic sector. The role of human occupancy is also investigated in the current
situation of COVID-19, where most people work from home and occupancy has a major
impact on overall energy usage [31].

This paper aims to present a new solution for estimating energy consumption in
the residential sector by explicitly modeling the human demographic factors. The main
contributions are as follows:

• A mathematical formula is developed by considering social elements, such as sta-
tistical information and the demographic factors of households, to estimate energy
consumption in the residential sector.

• A new way of estimating residential energy consumption from publicly available
information such as local government databases is proposed. The ability to access
these reliable public sources means that there is now a greater level of transparency
than ever before, particularly when it comes to information from the government.

• Occupancy is considered to have impact on energy consumption in the domestic
sector. This is particularly important in the current situation of COVID-19, where most
people work from home and occupancy has an important impact on overall energy
consumption.

• A geographical position algorithm (GPH) is proposed to solve the problem of obtaining
individual-level longitudinal data for households.

• The practical application of proposed solutions is validated by collecting real demo-
graphics of five regions in Australia. The estimated energy consumption values are
then compared with energy consumption benchmarks produced by energy regulators.

2. Methodology

2.1. Collection of Household Demographics Data

The demographic factors of households were collected from the ABS website [30].
The ABS is Australia’s official and most reliable source of energy statistics, providing
open-source data from a variety of different sources including censuses, surveys, and
administrative collections for research purposes. This paper focused on publicly available
data sources as the availability of data is a typical barrier that has restricted opportunities for
researchers to model the key drivers of energy consumption in the residential sector [32,33].
The demographic data were collected for the five regions in Colac, Victoria, Australia, as
shown in Table 2. The data provide details of the household characteristics that enable socio-
economic and occupant demographic factors to be included in the analysis of household
energy usage.
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Table 2. Demographic factors of households collected from local government databases.

Demographics
Region

Colac-SA 2 Colac-East Colac-Elliminyt Colac-State Suburbs Colac-Corangamite

Population 12,250 217 2900 9048 37,040

Male 48.9% 55.2% 49.9% 48.4% 50.2%

Female 51.1% 44.8% 50.1% 51.6% 49.8%

Median age 42 57 40 43 45

Families 3008 36 791 2155 9389

Avg families with children 1.9 2.2 2 1.9 1.9

Total Houses (Consumers) 5593 79 1120 4358 19,378

Average people per household 2.3 2.1 2.8 2.2 2.3

Average bedrooms per household 3 2.6 3.4 2.9 3.1

Weekly household income (AUD) $1055 $875 $1463 $964 $1051

Median monthly mortgage
payments $1270 $1400 $1517 $1170 $1200

Median weekly rent $215 $190 $245 $215 $200

Average motor vehicles per
dwellings 1.7 1.6 2.2 1.6 2

Occupied Houses 4693 53 977 3645 14,021

Un-occupied houses 602 16 106 471 4222

2.2. Research Method

In Figure 1, the research framework of this paper is presented. The key demographic
factors, such as population, number of people per household, median age, occupancy
rate, households with children, and number of bedrooms per house, were selected for the
analysis. Using these demographic factors, a mathematical formula was developed by
considering the key determinants of energy consumption. The idea was to estimate the
projection of energy consumption by injecting the key demographic variables of households.
After establishing the formula, the geographical locations of households were obtained
by implementing a GPH algorithm. The GPH process aimed to achieve three tasks: (a) re-
trieve household addresses; (b) convert them into geographical coordinates (latitude and
longitude); and (c) plot these coordinates on online maps, such as Google maps, for the
validation of energy consumer (household) locations. In this paper, the households’ ad-
dressess were retrieved from the databases of the Australian government land-planning
department. The geographical locations were then visualized using the open-source QGIS
tool [34], and the data were stored in the required formats. After obtaining the geographical
locations, the proposed techniques were tested in the five regions of Australia. For each
region, average household energy consumption values were estimated and then validated
by comparing them with the energy consumption benchmarks produced by the energy
regulator, AER. For fairness, five regions with distinct demographics were selected and
compared.
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Figure 1. Framework of the proposed methodology.

2.3. Mathematical Model for Household Energy Consumption

Equation (1) is the formula developed to estimate residential energy consumption.
Several demographic factors that influence energy consumption were considered, such as
the number of persons per home, the number of children in the household, the average
number of rooms per household, and the median age of households in the given region.
Due to the recent effect of COVID-19 in energy transitions, the occupancy factor was also
included in the developed model. Based on the combination of these factors, the energy
consumption formula is proposed as follows:

EAT = (Ec/Bh)× Ph ×Or × Hc × Ah (1)

The occupancy percentage Or of households is computed from the information of the
occupied Oh and unoccupied Uh households and is mathematically written as

Or = Oh / Uh × 100 (2)
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The average energy consumption of each house in a year is computed by

EI = EAT / Th (3)

The average daily, weekly, and monthly energy consumption of household in each
region is calculated as

Em = EI/Tm (4)

Ew = Em/Tw (5)

Ed = Ew/Td (6)

The notations in Equations (1)–(6) are explained in Table 3.

Table 3. Notations summary.

Variables Description

EAT Total energy consumption of households in the whole region

Ec Number of energy consumers (households)

Bh The average number of bedrooms per household

Ph The average number of people per household

Hc Households with children

Ah The median age of households in the given region

Or Human occupancy in households

Oh Occupied houses

Uh Un-occupied houses

EI Average energy consumption of an individual house

Th Total number of houses in the selected area

Em Monthly energy consumption of household

Tm Total months in a year

Ew Weekly energy consumption of household

Tw Total number of weeks in a year

Ed Daily energy consumption of household

Td Total number of days in a year

A unique feature of the proposed mathematical formulation is that it calculates the
energy consumption of the entire region, as well as that of an individual house. In practice,
as energy consumption estimates vary from region to region, the formula is tested on
different demographic regions. In total, five areas in the Colac region, that is, the Colac
Statistical Area 2 (SA 2), Colac East, Colac Elliminyt, Colac State Suburbs and Colac-
Corangamite, are considered. All these regions have different demographic characteristics,
as shown in Table 4. The number of households, population,median age, and occupancy
rate varies according to the region. A variety of demographic factors were used as inputs in
the formula, as shown in Algorithm 1 to address the uncertainties of energy consumption
due to different dwelling characteristics.
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Table 4. Energy consumption calculations based on public demographic data.

Demographics

Region

Colac
SA 2

Colac
East

Colac
Elliminyt

Colac
State

Suburbs
Colac

Corangamite

Population 12,250 217 2900 9048 37,040

Houses (Energy Consumers) 5593 79 1120 4358 19,378

Average people per household 2.3 2.1 2.8 2.2 2.4

Average bedrooms per household 3 2.6 3.4 2.9 3.1

Occupied Houses 4693 53 977 3645 14,021

Un-occupied houses 602 16 106 471 4222

Occupancy rate (%) 83.91 67.09 87.23 83.64 72.36

Average families with children 1.90 2.20 2.00 1.90 1.90

Median age 42 50 40 43 45

Energy consumption per region (kWh/year) 28,711,774 4,70,885 6,436,706 22,591,459 88,942,892

Energy consumption per household (kWh/year) 5134 5961 5747 5184 4590

Algorithm 1: Modeling residential energy consumption.
Input: Demographic factors D f

1 Required: D f = {Ph, Ec, Bh, Hc, Ah, Or, Oh, Uh}
2 for Mathematical model do
3 Collect D f from government databases
4 for D f i(i = 1, 2, . . . n) do
5 Filter the regions by postcode
6 Data analysis on raw data
7 Determine the key characteristics of households
8 end
9 for each region do

10 Compute human occupancy, Or = Oh / Uh × 100
11 Estimate energy usage of the whole region, EAT Compute energy usage of

each house, EI = EAT/Th
12 Estimate average daily Ed, weekly Ew, monthly Em, yearly Ey energy usage
13 Get the benchmark values from energy regulators
14 Calculate the difference by absolute error
15 Compare the benchmark and estimated values
16 end
17 Store results in the output variable
18 end
19 Output: Estimated energy consumption

2.4. Algorithm for Geographical Positions of Households

A key research gap in the existing literature is longitudinal (geographical) individual-
level data for households, as indicated in [35,36]. The longitudinal data are a pivotal factor
when examining the energy consumption patterns of individual households. To address
this issue, a GPH algorithm is proposed in this paper. The GPH steps are provided in
Algorithm 2 and the results are shown in Figure 2. In the first step, the household addresses
or position address points Pa are retrieved from the local government database [37], pro-
vided by the Victorian government environment, land, and planning department. The
required data are accessed from the geocoded spatial database. The address identifiers of
each house in the selected region are extracted. Then, in the second stage, the household
addresses are converted into geographical coordinates (latitude and longitude). A bulk
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geolocation process is performed to move large batches of addresses into their geographical
locations. It parses each address to return a set of geocoded locations. The output contains
the full address, location, and attributes such as the postcodes. As geolocation services are
usually not free for bulk addresses, the ’add geometry’ function [38] in the QGIS tool [34] is
used, which provides free-of-cost bulk geocoding services. In the final stage, the obtained
results are plotted in online maps, such as Google maps, to validate energy consumers
(household) locations.

Algorithm 2: Geographical positions of households.

1 for GPH in given area do
2 Get position address points Pa
3 for Pa(i = 1, 2, 3 . . . n) do
4 Connect data-share platform from local government.
5 Select the area based on postcode
6 Access geocoded database from spatial database
7 Obtain address identifiers of a given region
8 Obtain the vector type (shapefile) data of addresses
9 Request the order and download Pa

10 end
11 for large batches of addresses do
12 Import Pa shapefile into QGIS
13 Apply geometry attributes feature to each point in Pa
14 Compute geometric property Lat, x-coordinate of Pa
15 Compute Long, y-coordinate of Pa
16 Obtain the geographical coordinates (Gc) of each house
17 Store the Gc in the output variable
18 end
19 Map the Gc into Google maps
20 Generate satellite view for validation
21 end

28

RESULTS:

Task 2:  Energy consumers in the distribution network

Figure : Energy consumers in COLAC, Victoria, Australia. 

Geographical position of Energy 
Consumers (households)

Class Energy Consumer

location 14 Rodger Drive, Colac

Postcode 3250

Lat -38.345206249999990

Lon 143.599564490000034

House id 14

Road name Rodger Drive

Zoom-in

Figure 2. Satellite view of GPH algorithm showing the geographical positions of households.
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Although geographical locations may not be explicitly related to the energy usage of
individual buildings, their spatial position specifically defines energy usage within groups
of buildings and may be used to identify high-consumption areas.

3. Experiments on Five Regions

In this section, the results obtained from the proposed techniques are described.
Detailed results are shown for region 1, i.e., Colac SA 2, which covers various demographic
factors in the residential sector. The calculated results for other regions are also briefly
described. Considering Equation (1), the energy consumption estimation for Colac SA
2 region is calculated, with a total population of 12,250 as shown in Table 4. The total
number of houses (energy consumers) in this area are 5593 with, on average, 2.3 persons
per household. The average number of bedrooms per dwelling in this area is three, with a
median age of 42. Another important factor is the occupancy of dwellings. The 83.9% of
the dwellings were occupied, and 16.1% were unoccupied. Considering all these factors,
the average energy consumption by a household in Colac SA 2 is calculated by applying
Equation (1)

EATcolac =

(
5593

3

)
× 2.3× 83.91× 1.90× 42

= 1864.33× 2.3× 83.91× 1.90× 42

= 28,711,774 (kWh)/year

where EATcolac is the aggregated energy consumption per year for the whole region. The
term Ec is the total number of energy consumers (households) in the Colac SA 2 region and
the variables Ph, Or, Hc and Ah are explained in Table 3. To calculate the average energy
consumption of an individual house, the aggregated energy usage is divided by the total
number of households in that area. This is calculated by applying Equation (3)

Ey Colac SA 2 = 28,711,774/5593

= 5134 (kWh)/year

where Ey Colac SA 2 is the yearly average energy consumption of an individual house in the
Colac SA 2 region. This value can vary across different demographic regions. To analyze the
impact of demographic determinants across different groups, the energy consumption for
households in other areas in the Colac region are estimated, and their values are presented
in Table 4 (last column).

These results indicate that every region has different energy consumption levels
throughout the year based on their demographic characteristics. The occupancy rate and
median age have greater impacts on overall energy consumption. A graphical illustration
of all these energy levels in different regions is presented in Figure 3.

The average monthly energy consumption per household is calculated by applying
Equation (4).

Em Colac SA 2 = 5134/12

= 427.79 (kWh)/month

where Em Colac SA 2 is the average monthly energy consumption in Colac SA 2 region. The
term Tm is total number of months in a year. Similarly, the weekly energy consumption is
computed by Equation (5).

Ew Colac SA 2 = 5134/52

= 98.72 (kWh)/week
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where Ew Colac SA 2 denotes the average weekly energy consumption in Colac SA 2 region
and Tw is total weeks in a year. The daily energy consumption is calculated by applying
Equation (6).

Ed Colac SA 2
= 5134/365

= 14.06 (kWh)/day

where Ed Colac SA 2
represents the average daily energy consumption in Colac SA 2 region and

Td represents the total number of days in a year. The same process is repeated for the other
four regions and estimated energy consumption results are summarized in Figure 4. The
estimates shown in Figure 4 illustrate that the average yearly, monthly, weekly, and daily
energy consumption differs from region to region. This is due to the unique demographic
characteristics of each region. For instance, the average energy consumption of households
in Colac east is 5961 kWh/year, owing to the region’s highest median age and elderly
people’s preference to stay at home [39]. This region has the highest average number of
families with children, which has an impact on overall energy consumption [40]. It is
worth noting that the number of people per household influences energy consumption. For
example, the region of Colac Elliminyt has an average of 2.8 people per household and an
average energy usage of 5747 kWh/year, compared to 2.3 people per household in Colac
SA2 and 5134 kWh/year. The occupancy rate and the average number of bedrooms both
have an impact on the overall energy transition. For example, Colac Elliminyt’s energy
consumption of 5747 kWh/year is greater than Colac State Suburbs 5184 kWh/year, due to
the higher occupancy rate of 87.3% and higher number of bedrooms (2.8). From the results,
it can be concluded that different factors contribute to energy consumption in households,
and this study finds that there may be variances in energy consumption due to the different
demographic characteristics between regions.
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Figure 3. Variations in household energy usage among different demographic regions (a) Colac SA2,
(b) Colac Elliminyt, (c) Colac East, (d) Colac State Suburbs, (e) Colac Corangamite.
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Figure 4. Daily, weekly, monthly, and yearly energy consumption at five demographic regions.

4. Comparison with Energy Benchmarks

After obtaining the energy consumption estimates and geographical locations of
households, the calculated values are compared with the energy consumption benchmarks
published by the AER [41]. The benchmark document contains electricity consumption
estimates for residential customers in Australia. The benchmarks are based on climatic zone
and household size, as the climate has a substantial impact on the way in which energy
is used and, therefore, on the benchmarks’ levels of usage. For the region in this study,
the climate zone is 6 in Victoria, Australia, as shown in Table 5. The aim is to compare the
estimates of energy consumption obtained by the developed formula with the benchmark
statistics and identify any differences between them.

Table 5. Energy consumption benchmarks published by the Australian energy regulator.

Location: Victoria

(Climate Zone: 6, Region: COLAC, 3250)

Autumn Summer Winter Spring Total

kWh/Season kWh/Season kWh/Season kWh/Season kWh/Year

1 Person Household 737 671 958 720 3086
2 Person Household 1077 1031 1340 1078 4526
3 Person Household 1253 1176 1615 1218 5262
4 Person Household 1402 1304 1738 1338 5782
5+ Person Household 1508 1421 1911 1465 6305

Table 6 summarizes the results of the evaluation. The comparisons were made ac-
cording to the demographic variables. For instance, a household with 2.3 persons per
household in climate zone six consumes 5409 kWh energy per year. This benchmark value
is compared with the estimated value 5134 kWh energy per year. The comparison results
indicate that the estimates produced by the proposed scheme are reasonable comparable to
the benchmarks, demonstrating its effectiveness in energy consumption processes. Errors
between the benchmarks and estimated values are calculated by computing the absolute
and percentage errors, as in Equations (7) and (8). For a better understanding of this, the
energy consumption estimates for each region are also presented in Figure 5. This graph
shows the errors for the five different regions and it can be seen that the minimum error
was observed in Colac Elliminyt region, with a percent error of 0.52%, while the maximum
error was observed for the Colac Corangamite, with a percent error of 15.14%. The average
error for the five regions was less than 8% (7.37%). The percent error varied from 0.52 to
15.14 across the five regions, with three main reasons for this variation: differences in demo-
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graphic characteristics, as varying demographic factors contribute to energy consumption
in households, high heterogeneity in human behaviors, and the unique characteristics of
society and social groups to which households belong [42].

Absolute Error = |Benchmark− Estimated| (7)

Percent error =
|Benchmark− Estimated|

Benchmark
× 100% (8)

Table 6. Comparison of results using energy benchmarks.

Method Demographics Total kWh/Year

Electricity
Benchmarks 2.3 Person Household 5409

Estimated 2.3 Person Household 5134
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Figure 5. Comparison of benchmark and estimated values for five regions.

5. Conclusions

This paper developed a framework for estimating residential energy consumption
by combining the human demographic characteristics that have an inherent effect on
residential energy consumption. Three novel strategies were proposed by collecting the
real demographic data of households from government databases, where a wide range
of statistical information is available. The first stage involved developing a mathematical
formula to estimate energy consumption while considering the primary determinants of
energy consumption. The second stage consistsed of the development of a GPH algorithm
to determine the geographical locations of households. In the third stage, the solutions
were evaluated according to the real demographic factors of five regions in Australia. For
a practical demonstration, the techniques were tested on different demographic charac-
teristics. Estimated and energy consumption benchmarks were compared in terms of
absolute and percent error. The comparison results indicate that the estimated energy
consumption values reflect their similarity to the original energy consumption benchmarks
that were produced by energy regulators. For the five regions, the average error between
the estimated and benchmark values was less than 8% (7.37%).
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The benefit of the proposed method is that, instead of solely depending on the data
from the operational and planning systems of electrical network operators, energy usage
was estimated from the public statistical data, which are usually available from local
government databases. In this way, the problem of data availability is addressed, assisting
researchers, government entities, and decision-makers in contributing to sustainable futures
and resilient communities.

This study is based on data samples derived from the Australian regions. As a result,
this conclusion may only apply to Australian residents. Differences may exist in results
based on samples from various countries or regions. There may be some other demographic
characteristics, which are not included. For instance, the economic factors and lifestyle
of households, such as income, are correlated with higher electricity consumption, as
was concluded in recent research [42]. Future studies should include more demographic
characteristics. Comparative research in different nations or areas could systematically
investigate the influence of demographic characteristics on residential energy consumption.
It would be interesting to explore how seasonal variations affect energy consumption
modeling by clustering the results into urban and rural communities. An exploration of
the differences in energy consumption according to season and climate zone can assist
energy planners in making informed decisions when planning future energy and electricity
development, as well as developing climate and energy policies. In addition, the emerging
concept of electric vehicles (EVs) in modeling electricity consumption trends would be
advantageous in terms of saving energy and lowering carbon emissions [43]. Modeling
occupant behaviors using publicly accessible data, as well as the incorporation of energy
feedback systems, would provide significant future work for sustainable smart cities.
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