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Abstract—Communications over millimeter-wave (mmWave)
frequencies is a key technology for the fifth generation (5G) cel-
lular networks due to the large bandwidth available at mmWave
bands. The short wavelength of mmWave bands enables large
antenna arrays to be placed on the transceivers which forms
massive multiple-input multiple-output (MIMO). Massive MIMO
with conventional fully-digital (FD) beamforming is difficult to
be implemented due to high power consumption and hardware
cost. One of the most effective solutions to this problem is hybrid
beamforming which can be used to balance the beamforming
gain, hardware implementation cost, and the power consumption.
However, due to the non-convex constraints imposed by phase
shifters, finding the global optima for the hybrid beamforming
system is very challenging with high computational complexity.
To address this issue, deep learning (DL)-based hybrid precod-
ing with geometric mean decomposition (GMD) algorithm for
narrowband mmWave massive MIMO system is proposed in
this paper, where it can directly estimate the hybrid analog and
digital precoders (combiners) from a given optimal FD precoder
(combiner). Simulation results demonstrated that the proposed
hybrid precoding model can more accurately approximate the
FD precoding performance.

Index Terms—Massive MIMO, millimeter-wave, fully digital
precoding, hybrid precoding, deep learning, CNN.

I. INTRODUCTION

A key technology for the fifth generation (5G) of wireless
communications and beyond is millimeter-wave (mmWave)
communication, which offers greater data rates on the order
of gigabit per second (Gbps), wider bandwidth, and higher
spectral efficiency than conventional cellular communications
[1]. However, the communication over the mmWave band
is very challenging due to signal propagation and channel
properties. To address these issues, massive multiple-input
multiple-output (MIMO) with beamforming techniques is re-
quired, where a large antenna arrays are used to concen-
trate the radiated energy and steer it toward the receiver
direction [2]. Higher diversity and multiplexing gains can
be attained through massive MIMO with beamforming gain,
which leads to higher spectral efficiency and higher radiated
energy efficiency [3]. Massive MIMO is costly and very
difficult to be combined with mmWave, though. One of the
promising approaches to address these problems is hybrid
beamforming, which utilizes significantly fewer power-hungry
radio frequency (RF) chains to achieve the performance of
fully digital (FD) beamforming, hence reducing the power
consumption and the system implementation complexity [4].

The hybrid beamforming design problem is a non-convex
optimization problem due to the constant modulus constraints
that imposed by phase shifters. Most existing methods reduce
the complexity by decoupling the optimization problem into
two sub-problems, where the objective of each sub-problem is
to approximate the FD precoding using matrix decomposition
[5]. In [6], a phase-extraction (PE) and manifold optimization
(MO)-based alternating minimization algorithm have been pro-
posed. Although the MO algorithm can achieve near optimal
performance by iteratively reducing the Euclidean distance
between both the hybrid beamformer and the FD beamformer,
its computational complexity prevents it from being used
in implementations. In the PE algorithm, the computational
complexity has been reduced with slight performance loss, but
it still provides a better precoding algorithm than most existing
algorithms. These algorithms are based on the singular value
decomposition (SVD) which requires complicated bit alloca-
tion schemes to achieve the channel capacity. To avoid this
issue, geometric mean decomposition (GMD) was proposed in
[7] to decompose the channel matrix into several parallel sub-
channels with equal signal-to-noise-ratios (SNRs), and hence
the simple identical bit allocation can be utilized for all sub-
channels. However, high computational complexity is still a
great challenge in hybrid beamforming design.

Recently, embedding deep learning (DL) into wireless
communications has had a great impact on solving com-
plex problems and high computation issues. For example,
the authors in [8] used deep recurrent neural network to
optimize the resource allocation problem with low compu-
tational complexity for the non-orthogonal multiple access
(NOMA) heterogeneous internet of things (IoT) network. In
[9], two convolutional neural networks (CNNs) were proposed
to address the problem of modulation classification, where it
can accurately recognize various modulation types. In another
work [10], a deep neural network (DNN) was employed
to estimate the channel and direction-of-arrival for massive
MIMO systems with better performance than the conventional
methods.

DL-based hybrid precoding schemes for mmWave massive
MIMO systems has also gained the attention of many re-
searchers. For example, in [11], a DNN is trained to optimize
the hybrid precoding using GMD. In another work [12], a
CNN-based hybrid precoding is proposed with two CNNs,
where each CNN is trained to estimate the hybrid precoders.
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Fig. 1. Block diagram of mmWave massive MIMO system with hybrid precoding.

Later, a joint hybrid precoding framework based on DNN is
proposed with end-to-end optimization [13]. In order to reduce
the computation time, deep reinforcement learning has been
applied to hybrid beamforming designs in [14], while an auto-
encoder based on DNN is proposed in [15] for multi-user
scenarios. In a recent work [16], the authors designed a hybrid
precoding algorithm based on attention layer and CNN which
is trained via unsupervised learning to maximize the spectral
efficiency directly.

Motivated by the foregoing introduction and recent work,
a CNN-based hybrid precoding with GMD-based algorithm
is proposed in this paper. More specifically, the main contri-
bution of this paper is to design hybrid precoding using DL
approaches. The proposed hybrid preceding model simulate
the working operation of phase shifters, and satisfy the power
constraint on digital precoder. In addition, the model can
directly estimate the hybrid analog and digital precoders and
combiners from a given FD precoder and combiner, and also
is trained with GMD preceding dataset to take advantages
of GMD over SVD precoding. Simulation results verified the
ability of the proposed hybrid preceding model to approximate
the FD precoder performance.

The rest of this paper is organized as follows. In Section
II, the system and channel models are presented for mmWave
massive MIMO system with hybrid precoding. The system
model of the proposed CNN-based hybrid precoding with
GMD-based algorithm is presented in Section III. The simu-
lation results are discussed in Section IV, and the conclusions
and possible future work are given in Section V.

II. SYSTEM MODEL

In this section, the system and channel models for mmWave
massive MIMO system with hybrid precoding are described,
and the problem formulation for maximizing the achievable
rate is also discussed.

A. System Model

In Fig. 1, a narrowband mmWave massive MIMO system
with hybrid precoding is considered. The Nt transmit antennas
transmit Ns independent data streams collected by Nr receive
antennas. The transmitter and the receiver are equipped with

NRF
t and NRF

r RF chains, respectively, where Ns ≤ NRF
t ≤ Nt

and Ns ≤ NRF
r ≤ Nr in order to enable data stream multi-

plexing between the transmitter and receiver [5]. In Fig. 1, the
symbol vector s ∈ CNs×1 that satisfy E[ss∗] = 1

Ns
INs is firstly

precoded by low dimensional digital precoder FBB ∈ CNRF
t ×Ns ,

and then the high dimensional analog precoder FRF ∈ CNt×NRF
t

is applied using phase shifters to shift the input phase and
keep the amplitude as a constant. Therefore, all elements of
FRF matrix are constrained to satisfy (F(i)

RFF(i)H
RF )i,j =

1
Nt

and
can be represented by

FRF =
1√
Nt
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 , (1)

where θF
ij ∈ [0, 2π] for phase shifters of the analog precoder.

The transmitted signal at the transmit antenna array can be
written as x = FRFFBBs, where FBB must be normalized to
satisfy the total power constrain ∥FRFFBB∥2F = Ns. Therefore,
the received signal ỹ ∈ CNr×1 can be written as

ỹ =
√
ρHFRFFBBs + n, (2)

where ρ denotes the average received power, H ∈ CNr×Nt is
the channel matrix that satisfy E[∥H∥2F] = NtNr, and n is the
additive white noise vector that follows an independent and
identical distribution, n ∼ CN (0, σ2

n).
The receiver has the similar structure as the transmitter,

where the received symbol vector s̃ after the combining
process can be represented by

s̃ = WH
BBWH

RFỹ
=

√
ρWH

BBWH
RFHFRFFBBs + WH

BBWH
RFn,

(3)

where WRF ∈ CNr×NRF
r and WBB ∈ CNRF

r ×Ns are the analog
and digital combiners, respectively. WRF has a similar property
as the analog precoder FRF which means it satisfies the



constraint (W(i)
RFW(i)H

RF )i,j = 1
Nr

, and the entire elements
matrix can be represented by
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 , (4)

where θW
ij ∈ [0, 2π] for phase shifters of analog combiner.

The spectral efficiency (in bits/s/Hz) achieved by the mmWave
hybrid precoding system when Gaussian symbols are conveyed
over the wireless channel can be expressed as [17]

R = log2

(∣∣∣INs+
ρ

Ns
C−1

n WH
BBWH

RFHFRFFBB

× FH
BBFH

RFHHWRFWBB

∣∣∣), (5)

where Cn = σ2
nWH

BBWH
RFWRFWBB ∈ CNs×Ns is the noise

covariance matrix after combining.

B. Channel Model
The mmWave propagation is characterized as limited scat-

tering environment due to severe free-space pathloss. For this
reason, the extended Saleh-Valenzuela model is used in this
paper to cluster the channel into Nc scattering clusters, each
of which contributes Nray propagation paths. Therefore, the
narrowband clustered channel matrix H ∈ CNr×Nt can be
represented by [5]:

H =

√
NtNr

NcNray

Nc∑
i=1

Nray∑
j=1

αijar(ϕ
r
ij , θ

r
ij)at(ϕ

t
ij , θ

t
ij)

H , (6)

where αij is the complex gain of the j-th ray in i-th cluster,
(ϕt

ij , θ
t
ij) and (ϕr

ij , θ
r
ij) are the angle of departure and arrival

in azimuth and elevation planes, respectively. at and ar are
the normalized array response vectors of the transmit and
receive antenna arrays corresponding to j-th ray in i-th cluster,
respectively.

The antenna array that enables the beamforming in azimuth
and elevation planes is a uniform planar array (UPA) which
has the following response vector

aUPA(ϕ, θ) =
1√
N

[
1, . . . , ejkd(m sin(ϕ) sin(θ)+n cos(θ)),

. . . , ejkd((N1−1) sin(ϕ) sin(θ)+(N2−1) cos(θ))
]T

,

(7)

where k = 2π
λ , d is the element spacing between array ele-

ments, the antenna array size is N = N1N2, and 0 ≤ m < N1

and 0 ≤ n < N2 are the indices of an antenna element.

C. Problem Formulation
The hybrid precoder and combiner’s design aims to maxi-

mize the spectral efficiency as follows

max
FRF,FBB,WRF,WBB

R,

s.t. FRF ∈ FRF,

WRF ∈ WRF,

∥FRFFBB∥2F = Ns,

(8)

Hybrid 
Precoder 

Model

Geometric Mean
Decompsition

Feature 
Generator 

Feature 
Generator

H

Hybrid 
Combiner 

Model

Fig. 2. The block diagram of the proposed hybrid precoding based on DL
approach.

where FRF and WRF are the set of feasible analog precoders
and combiners with constant amplitude, and ∥FRFFBB∥2F = Ns
ensures the total transmitted power constraint. This optimiza-
tion problem is non-convex and difficult to be solved, because
it requires a joint optimization over four beamforming variable
matrices (FRF, FBB, WRF and WBB). Decoupling the joint
design problem into hybrid precoding and combining problems
can overcome the difficulty of the design and provide near-
optimal hybrid precoding [5], where the objective of each
problem is to minimize the Euclidean distance between the
hybrid beamformer with an FD beamformer. The decoupled
hybrid precoder design problem that can provide hybrid pre-
coders (FRF, FBB) which approximately maximize R can be
expressed as

min
FRF,FBB

∥Fopt − FRFFBB∥F ,

s.t. FRF ∈ FRF,

∥FRFFBB∥2F = Ns,

(9)

where Fopt is the optimal FD precoder.

D. Fully Digital Precoding Based on GMD

The channel matrix H can be decomposed using GMD into
Ns sub-channels with equal SNR as [7]:

H = QRPH =
[
Q1 Q2

] [R1 ∗
0 R2

] [
PH
1

PH
2

]
, (10)

where P1 ∈ CNt×Ns and Q1 ∈ CNr×Ns are semi-unitary
matrices (i.e., Q∗

1Q1 = P∗
1P1 = INs

). However, P1 can be
regarded as an optimal FD precoder such that Fopt = P1,
and Q1 as an optimal FD combiner such that Wopt = Q1.
In addition, R1 is an upper triangular matrix whose diagonal
elements equal to the geometric mean of Ns positive singular
values, and ∗ denotes an arbitrary matrix that can be neglected
[18], [19].

III. CONVOLUTIONAL NEURAL NETWORK-BASED
HYBRID PRECODER AND COMBINER

This section presents the proposed hybrid precoding based
on CNN approach as shown in Fig. 2. This figure shows
the block diagram of the proposed hybrid precoding which
composed of two models: hybrid precoder and combiner
models, where all models have the same building blocks. As



Ze
ro

 P
ad

di
ng

 
4x

4 

C
on

vo
lu

tio
na

l L
ay

er
12

8@
2x

2

CNN

C
on

vo
lu

tio
na

l L
ay

er
64

@
2x

2

C
on

vo
lu

tio
na

l L
ay

er
64

@
2x

2

C
on

vo
lu

tio
na

l L
ay

er
32

@
2x

2

Po
ol

in
g 

La
ye

r 
2x

2 

D
en

se
La

ye
r

O
ut

pu
t 

La
ye

r

D
en

se
La

ye
r

O
ut

pu
t 

La
ye

rFl
at

te
n 

La
ye

r 

Fig. 3. The proposed hybrid precoder architecture.

shown in Fig. 2, the channel matrix H is firstly decomposed
using GMD, and then Fopt and Wopt are fed to each hybrid
precoder and hybrid combiner feature generator. The feature
generator is a pre-process block that allows the model to
extract more features of the input, which provides better
training performance. The output of the feature generator
regarded as the input raw data of the model.

The hybrid precoder (combiner) model has two output
layers, where the first layer produces the phase angle of analog
precoder (combiner) to simulate the working operation of
phase shifters, while the second layer produces the normalized
digital precoder (combiner). Each model is trained to minimize
the decoupled joint optimization problem.

A. Feature Generator

Feature generator receives a complex-valued matrix such as
the optimal FD precoder, Fopt, and then it is converted to the
real valued raw data by using the real, imaginary and the phase
of the input matrix. For example, if the input matrix is Fopt,
the output vector xF ∈ R3NtNs×1 of the feature generator can
be expressed as

xF =
[
ℜ(Fopt)1,1,ℜ(Fopt)1,2, . . . ,ℜ(Fopt)Nt,Ns ,

ℑ(Fopt)1,1,ℑ(Fopt)1,2, . . . ,ℑ(Fopt)Nt,Ns ,

∠(Fopt)1,1,∠(Fopt)1,2, . . . ,∠(Fopt)Nt,Ns

]T
.

(11)

Similarly, the output vector is xW ∈ R3NrNs×1 when the
input matrix is Wopt.

B. Hybrid Precoder Model

The objective of the proposed CNN-based hybrid precoder
model is to minimize the hybrid precoder design problem as
stated in (9). Therefore, the proposed hybrid precoder model
must be trained to minimize the Euclidean distance between
the optimal FD precoder Fopt and hybrid precoders (FRF,
FBB). Fig. 3 shows the hybrid precoder model architecture.
As shown, the hybrid precoder model receives a feature vector
xF which contains a vectorized version of the real, imaginary
and angular values of Fopt. The first layer is zero-padding layer
with 4 × 4 padding which adds zeros with size 4 around the
input. Zero-padding layer is used to extract the features at the
corner as well as the center. Four convolutional layers with

different filter size and Leaky-ReLU activation functions are
utilized to extract complex features of the input, the first layer
has 128 filters with 2×2 filter size, the second and third layers
have 64 filters with 2×2 size. The last convolutional layer has
32 filters with 2×2 size. In addition, pooling layer is applied to
reduce the output size, and to speed the computation. Flatten
layer is also required to make a connection between all pooling
layer activation outputs and next dense layers neurons.

The output of the flatten layer is shared between two
neural networks, the first neural network for analog precoder
has a single dense layer with 2NtN

RF
t neurons and Leaky-

ReLU activation function, and output layer with 2NRF
t Ns

neurons which has been designed to meet the analog precoder
constraint (F(i)

RFF(i)H
RF )i,j = 1

Nt
. Consequently, the estimated

analog precoder with a constant amplitude F̂RF can be ex-
pressed as

F̂RF =
1√
Nt

ejθ̂
F
RF , (12)

where θ̂
F
RF ∈ RNt×NRF

t is the phase angle of the estimated
analog precoder, where each element must be between zero
and 2π, i.e., (θ̂F

RF)i,j ∈ [0, 2π]. Therefore, the sigmoid function
with 2π amplitude is used to limit the output in [0, 2π]
range. The second neural network for the digital precoder has
single dense layer with 8NRF

t Ns neurons and Leaky-ReLU
activation function, and the output layer has 2NRF

t Ns neurons
that produces a vectorized real and imaginary components of
the estimated digital precoder F̂BB. The hybrid precoder must
satisfy the total power constraint ∥F̂RFF̂BB∥2F = Ns. To meet
this constraint, F̂BB should be normalized as

F̂BB =

√
Ns

∥F̂RFF̂BB∥F
F̂BB. (13)

The model is trained with a defined loss function, that can
be expressed as the hybrid precoder design problem as

L(θ) = ∥Fopt − F̂RFF̂BB∥F , (14)

where θ denotes the parameters of hybrid precoder model, and
the hybrid precoder matrix F̂RFF̂BB should be a unitary matrix,
where all columns are orthonormal vectors, such that

F̂
H

BBF̂
H

RFF̂RFF̂BB = INs . (15)



Adding this constraint to loss function as penalty term can
improve the model performance. Thus, the loss function can
be rewritten as

L(θ) = ∥Fopt−F̂RFF̂BB∥F
+ λF∥F̂

H

BBF̂
H

RFF̂RFF̂BB − INs∥F ,
(16)

where λF is a non-negative constant of the penalty term
that used to satisfy F̂RFF̂BB to be semi-unitary matrix with
orthonormal vectors.

In order to minimize the lost function L(θ), Adam optimizer
is used during the training process to update the model
parameters in the direction of local minimum of L(θ). The
layers parameters at the first iteration should be initialized
at random points. In order to model a general problem as
possible, each initialized parameters have different random
distribution based on the layer activation function.

C. Hybrid Combiner Model

Hybrid combiner model is designed with the similar design
objectives of hybrid precoder model, where it has the same
building blocks: padding layer, four convolutional layers with
single pooling layer, flatten layer, dense layers and output
layers. The first output layer is designed to meet the analog
combiner constraint (W(i)

RFW(i)H
RF )i,j = 1

Nr
. Consequently, the

estimated analog combiner with a constant amplitude ŴRF can
be expressed as

ŴRF =
1√
Nr

ejθ̂
W
RF , (17)

where θ̂
W
RF ∈ RNr×NRF

r is the phase angle of the estimated
analog combiner, where each element in θ̂W

RF is limited in
[0, 2π] range using sigmoid function with 2π amplitude. The
second output layer produces the estimated digital combiner
ŴBB.

The model is trained with a defined loss function, that can
be expressed as the hybrid combiner design problem as

L(θ) = ∥Wopt−ŴRFŴBB∥F
+ λW∥Ŵ

H

BBŴ
H

RFŴRFŴBB − INs∥F ,
(18)

where λW is a non-negative constant of the penalty term
that used to satisfy ŴRFŴBB to be semi-unitary matrix with
orthonormal vectors. Adam optimizer is also used during the
training process to update the model parameters in order to
find a local minimum of L(θ).

IV. SIMULATION RESULTS

In this section, simulation results are presented to illustrate
the spectral efficiency of the proposed CNN-based hybrid
precoding model compared to FD precoding based on GMD,
PE and MO algorithms. Throughout the simulations, a massive
MIMO with Nt = 8 × 8 and Nr = 4 × 4 UPA antennas with
half-wave element spacing is considered and the channel is
modeled as cluster environment with Nc = 5 clusters, each
cluster with Nray = 10 rays and 10◦ angle of spread.

The proposed model is constructed and processed using
Keras Python package, and the training dataset is generated

TABLE I
A SUMMARY TABLE OF TRAINING PARAMETERS.

Parameter Value

Optimizer Adam (with β1 = 0.9, β2 = 0.999 )

Learning rate (η) 0.00005

Leaky-ReLU constant (α) 0.2

λF, λW 0.15

Mini batch size 64

Size of dataset 200,000

Epochs 200

using the channel model expressed in (6) with 200,000 realiza-
tions. Adam optimizer is selected during the back propagation
process with leaning rate of 0.00005. At each iteration, the
model is trained with 64 mini batch size. Table I summarizes
the training parameters.

Fig. 4 shows the spectral efficiency performance comparison
with NRF

t = NRF
r = 2 chains. It can be seen from Fig. 4

that the spectral efficiency of the proposed CNN-based hybrid
precoding model, PE and MO algorithms are almost the same
as the FD precoding in the case of Ns = 1, and are almost the
same as PE and MO algorithms and within a small gap from
the FD precoding in the case of Ns = 2 data streams. This
reveals that the proposed hybrid precoder (combiner) model
can more accurately approximate the optimal FD precoder
(combiner).

To explore the performance of the proposed hybrid pre-
coding model at larger input and output dimensions, Fig. 5
shows the spectral efficiency performance comparison with
NRF

t = NRF
r = 4 chains. It can be noticed from Fig. 5 that

the spectral efficiency performance of the proposed hybrid
precoding model is almost the same as PE algorithm and
within a small gap from MO algorithm and FD precoding
in the case of Ns = 2, and within a small gap from the FD
precoding, PE and MO algorithms in the case of Ns = 4 data
streams.

In addition, the estimation time comparison of MO and
PE algorithms with the proposed DL-based hybrid precoding
model for NRF

t = NRF
r chains which equal to Ns = 2 and 4

multiplexed data streams and 1,000 realizations is shown in
Fig. 6. It can be noticed from Fig. 6 that MO algorithm takes
a long time to estimate the hybrid precoders and combiners
compared with PE algorithm and the proposed hybrid precod-
ing model, and the latter is almost 19 times faster than PE
algorithm.

V. CONCLUSIONS

A novel CNN-based hybrid precoding model with GMD
algorithm is proposed in this paper. The main purpose of im-
plementing this proposed model in mmWave massive MIMO
is that the conventional precoding methods are deployed
numerically with high computational complexity. DL methods
have been introduced to overcome this issue by generating
the optimal hybrid precoders directly from a given optimal
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FD precoder. The precoder and combiner models trained
with decoupled precoding and combining design problems,
respectively, with addition term to satisfy the orthogonality in
the estimated precoder. The spectral efficiency performance of
the proposed DL-based hybrid precoding model is compared
to FD precoder, PE and MO algorithms for different numbers
of RF chains and multiplexed data streams. The results showed
that the proposed hybrid precoding model can more accurately
approximate the performance of FD precoding with lower
time consumption than PE and MO algorithms. Our future
studies will focus on integrating intelligent reflecting surfaces
technology into the proposed system model.
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