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Relationship existence recognition-based social group detection in urban
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a b s t r a c t

In urban public spaces, a social group consists of two or more individuals who share some social relation-
ships and interact based on mutual expectations. However, most existing studies found people’s F-
formations on a top view, which is hard to observe their social contexts and the top-view videos are 
not easily accessible in real urban life. Recently, some researchers turned to urban scenes and analysed 
front-view human behaviours for social group detection. But these methods still cannot grasp the nature 
of social groups, i.e., the relationships among individuals. It is the key to finding social groups to judge 
whether any two individuals belong to the same cluster. Therefore, this paper proposes a new paradigm: 
relationship existence recognition-based social group detection. Additionally, on top of the paradigm, we 
designed a new social group detection algorithm incorporated with the visual cue-based and non-visual 
cue-based components. Specifically, the former exploits the spatial interactions and the temporal infor-
mation to recognise the existence of social relationships through supervised deep learning. The latter 
estimates the similarities of trajectory pairs using the unsupervised spatial–temporal position informa-
tion. Social group detection achieves superior accuracy with the two components’ complementary 
results. On Social-CAD (Social Collective Activity Dataset) and PLPS (Public Life in Public Space) datasets, 
extensive experiments demonstrate that our algorithm outperforms the state-of-the-art (SOTA) methods. 

1. Introduction Fig. 1, the former detects the F-formation [7,8] structures to find
social groups according to the individual positions and head orien-
tations. Generally, an F-formation structure comprises three
spaces, i.e., o-space, p-space, and r-space. The essential o-space is
shared by all group members yet cannot access by anyone, so most
researchers focused on detecting this space. The latter emphasises
the pre-defined individual behaviours, such as waiting, walking,
and talking. Usually, it incorporates the study of collective activity
recognition, where the group detection module utilises the seman-
tic context of individual behaviours to find clusters.

Many efforts have been made in the past decades based on the
above two paradigms. However, there are still some limitations. As
for the position structure-based methods, the individual positions
and head orientations must be utilised on a top view. It restricts
the applications in urban public spaces, where human beings are
observed from a front view [9,1,2]. Besides, these methods mainly
detect the standing conversational groups, lacking robustness to
other types of social groups. To be polite, the standing conversa-
tional group members meet face to face and form a fixed F-
formation. However, in some other groups (e.g., the dawdling
group), the members’ orientations may go as they please. Under
this condition, these methods are hard to perform well even

In the urban research community, it is an important investiga-
tion method to observe citizens and their activities from the per-
spective of human beings [1,2]. This observation can guide the 
planning, construction and management of a people-oriented city. 
It is essential to develop a computer vision technique for finding 
social groups in urban public spaces to achieve this goal. However, 
few methods are robust to this scene setting. The following will 
give the related introduction to social group detection and analyse 
the challenges based on existing studies.

Social group detection aims to find clusters of two or more indi-
viduals. In such clusters, individuals share some social relation-
ships, e.g., friends, family, and professionals; hence it can be 
called a social group. Noting that detection task is only to group 
individuals and recognising their social relationships is another 
field. Existing methods of social group detection can be categorised 
into two paradigms, namely positional structure-based methods 
[3,4] and human behaviour-based methods [5,6]. As shown in
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though the top-view F-formations could be inferred from the front-
view videos. For the human behaviour-based practices, the pre-
defined behaviours cannot cover all types, especially for somemid-
dle actions (e.g., from standing to sitting), which are difficult to
describe and define. In some social groups, behaviours differ indi-
viduals in the same cluster. It can be easy to imagine a scenario:
one is standing and talking, but the others are sitting and listening.
Though the human behaviour-based methods made some achieve-
ments from the front view, it is hard to detect social groups accu-
rately, only according to the individual behaviours or their
semantic context.

In a word, the two paradigms cannot hit the nature of social
groups, which causes the above limitations in urban public spaces.
In social groups, social relationships exist, which are understood as
the set of connections among group members. These connections
determine who belongs to the same social group and their types
reflect the attributes of the social groups. For example, we establish
affective and labour relationships to form friend groups and profes-
sional groups, respectively. In other words, the social relationships
among group members are the nature of social groups. For the
social group division or detection, the core problem is to judge
whether individual pairs share connections, i.e., social relation-
ships. It differs from the two existing paradigms and can be viewed
as a binary classification problem, namely relationship existence
recognition.

Therefore, based on the new paradigm, this paper proposed a
corresponding algorithm incorporating the visual and non-visual
cues. Firstly, we exploit the visual interactions to recognise the
relationship’s existence between individuals using supervised deep
learning. Notably, the algorithm focuses on spatial and temporal
cues to avoid confusion between the focused and unfocused
encounters [8,10]. We also designed a feature extraction mecha-
nism for spatial cues to obtain the multilevel semantic information
from a pre-trained model. It can enhance the feature representa-
tions of fuzzy appearances in urban public spaces. Secondly, the
similarity of the trajectory pair is an important non-visual cue, so
we also measure it to recognise the relationship’s existence.
Finally, the recognition results from the visual and non-visual cues
are fused complementarily for better performance of social group
detection.

The main contributions of this paper are summarised as
follows:

1. A new paradigm based on social relationships is proposed for
social group detection. It first shifts the complex problem into
the simple yet effective binary classification, i.e., relationship
existence recognition. It hits the nature of social group detec-
tion, which can be described as the relationship between indi-
viduals determining whether they belong to the same social
group. Meanwhile, it provides the primary knowledge of inter-
personal relationships and bridges social group detection and
relationship understanding.

2. A new algorithm based on the above paradigm is proposed. It
complementarily fuses the spatial–temporal information of
the interactions and the positions. They are extracted from

the visual patches of person pairs and the non-visual similari-
ties of trajectory pairs using supervised deep learning and unsu-
pervised index measurements.

3. A novel multilevel feature extraction (MFE) mechanism is
designed to extract comprehensive semantic information from
a pre-trained model. It can enhance the feature representations
and weaken the side effect of fuzzy appearances in urban public
spaces.

4. Comprehensive experiments have been conducted on PLPS
(Public Life in Public Space) and Social-CAD Social Collective
Activity Dataset datasets. The algorithm outperforms the
state-of-the-art (SOTA) methods, demonstrating our algo-
rithm’s superiority in public spaces. Meanwhile, an ablation
study was also conducted to prove the effectiveness of visual
and non-visual cues.

The rest of this paper is organised as follows. Section 2 reviews
the literature of related work. Section 3 formulates the problem of
social group detection based on the new paradigm. Next, the corre-
sponding algorithm is described in Section 4. On public datasets,
experiments are implemented, and results are analysed in Sec-
tion 5. In the end, Section 6 concludes the paper.

2. Related work

This paper aims to solve the problem of social group detection
based on the existence recognition of social relationships. Hence,
this section reviews the related works from the following aspects,
i.e., social group detection and social relationship understanding.
To further state the significance of the MFE mechanism, we will
also introduce the related feature extraction based on pre-trained
models.

2.1. Social group detection

In the last two decades, researchers detected the social groups
based on positional structure and human behaviour, respectively
[11].

The positional structure-based social group detection was
derived from a sociological notion, F-formation [7,8]. An F-
formation consists of the individuals and the spatial pattern, deter-
mined by their positions and orientations. Based on this knowl-
edge, researchers in the computer vision field started to detect
the F-formation structure for finding the social groups in the
crowd. Yu et al. [12] proposed the modularity-cut algorithm to dis-
cover groups and their leadership structures. Cristani et al. [13] and
Hung et al. [10] first introduced the F-formation and designed algo-
rithms for social group detection. Bazzani et al. [14] estimated
attention’s visual focus and proposed an inter-relation matrix to
suggest possible social interactions. Cristani et al. [13] utilised
Hough voting scheme to determine the o-space based on the indi-
vidual position and head orientation. Hung et al. [10] calculated
the affinities of person pairs for the edge-weighted graph and used
a graph clustering algorithm for identifying dominant sets as F-
formations. It is worth noting that Tran et al. [15] used the same

Fig. 1. Positional structure-based (left) and human behaviour-based (right) social group detection.



[31–33], and interactive behaviour between persons [34,35]. Com-
pared with these intuitive aspects, a social relationship is defined
abstractively based on the theory of sociology and psychology
[36,37]. Specifically, it refers to the links among individuals in a
social group. Understanding the existence of these links is the
key problem in judging whether the two individuals belong to
the same social group. According to the research targets, scholars
mainly focus on two aspects: social relationship recognition [38–
42] and social network generation [43,44]. The former recognises
the specific types of social relationships while the latter aims to
find the different camps in films and TV shows. For example, Yang
et al. [40] derived inspiration from studying human gaze commu-
nication [45,46]. They proposed a gaze-aware graph convolutional
network to recognise social relations, e.g., friends, family, and col-
leagues. Lv et al. [44] explored video and subtitle text information
to form a relationship network, which is analysed to discover com-
munities and important roles in the story.

In this field, most works contribute to verifying the specific
social relations and only limited efforts are made for social net-
work generation. However, these works mainly understand social
relationships based on relationship existence. From the perspective
of datasets, most of them only consist of one person pair or one
social group in an image or video clip, e.g., [47], IRD [48], PIPA
[49], and ViSR [50]. In other words, ‘‘no relation” hardly exists in
these datasets. Even if ‘‘no relation” is labelled in PISC [51] dataset
and PLPS [6] dataset, their baselines still emphasise the recognition
of specific social relations in images. The existence verification of
the relationship is weak, and the temporal information is ignored,
which is vital for social group detection.

To summarise, the existing studies of social relationship under-
standing cannot meet the needs of our proposed paradigm. Hence,
designing the corresponding algorithms for social relationship
understanding and social group detection is pretty meaningful.

2.3. Feature extraction based on pre-trained models

In machine learning, it is a popular practice to use pre-trained
models for feature extraction, which falls under the category of
transfer learning. Usually, they are trained on an extensive dataset
and utilised to solve problems on another dataset based on deep
learning. Over the past two decades, data-driven artificial intelli-
gence has boomed and researchers have collected many large-
scale datasets, e.g., ImageNet [52], Places365 [53] and Kinetics
[54]. Consequently, various models, e.g., ResNet [55], ViT [56]
and BERT [57], are pre-trained on these datasets and used for other
tasks [39,58–60].

However, most existing methods only utilised the final feature
representations (i.e., the highest semantic features) as the input
of downstream tasks. They ignored the lower-level information.
Meanwhile, fuzzy appearances in urban public spaces are challeng-
ing for feature extraction and the final feature representations are
insufficient. Hence, this paper proposed a MFE mechanism to
obtain comprehensive semantics from pre-trained models.

3. Problem formulation

This paper proposes a new paradigm of social group detection,
namely the relationship existence recognition-based method. This
paradigm aims to group individuals who share some social rela-
tionships in a given urban public space video. The following will
formulate the general flow of our proposed paradigm. Let us first
define the set of individuals in a video sequence as
I ¼ fx1; x2; . . . ; xNg, where N denotes the total number of individuals
in the space. Then, our key problem is to judge whether the social
relationship exists for every person pair or not, i.e., relationship

graph clustering algorithm for group detection and activity recog-
nition. Following this line, Setti et al. [16] summarised the 
strengths and weaknesses of Hough voting scheme and graph clus-
tering algorithm. Besides, they pointed out that the former could 
resist the noise using head orientation information while the latter 
had better performance with only position information available.

Furthermore, Setti et al. extended the Hough voting scheme for 
a multi-scale F-formation detection [17] and proposed a graph-
cuts based framework for clustering individuals [18]. Yasuda 
et al. [19] proposed observing lower bodies to describe F-
formations further. Zhang et al. [20] developed an extensive study 
of social involvement and proposed to detect associates [21] of F-
formations. In addition to the above studies in still images, some 
researchers introduced extra temporal information to enhance 
the task of social group detection. Gan et al. [22] modelled the tem-
poral information for an extended F-formation system with the 
function of social interaction detection. Vascon et al. [23,24] 
embedded the temporal constraints into a game-theoretic frame-
work to check the head orientation and pose estimation. Inaba 
et al. [3] considered the individual visual attention field changes 
and presented the robust detection method for time-varying F-
formation. Cabrera-Quiros et al. [25] collected a multi-sensor data-
set to analyse social interactions and group dynamics, involving 
videos. In recent years, various methods have emerged for social 
human-robot interactions. Pathi et al. [26] proposed a real-time 
algorithm to estimate the face orientation and detect the F-
formations, expecting to boost the human-robot interactions.

Consequently, Pathi et al. [27] presented a model to find the o-
space and estimated the optimal placement for a robot. Pathi et al.
[9] also addressed the problem of optimal placement estimation 
under the circumstance of multiple groups from an ego-view. 
Besides, Barua et al. [4] extended to predict the robot’s path angle 
for joining the social group, depending on the real-time F-
formation recognition.

Compared to the above F-formation-based methods with a long 
history, human behaviour-based methods had increasing attention 
in multi-group activity recognition. After decades of studying indi-
vidual action and single group activity, the computer vision commu-
nity recently has started concentrating on the activity understanding 
of different groups in the same scenario. In this field, as the sub-task 
and pre-task, social group detection usually is learned and incorpo-
rated with the end-to-end framework with multiple tasks, i.e., group 
division, individual action classification and sub-group activity recog-
nition. Ehsanpour et al. [5] annotated different social groups and the 
corresponding social activity labels to extend the original collective 
activity dataset [28]. In their proposed multi-group activity recogni-
tion framework, individual behaviour features are extracted as nodes 
and graph spectral clustering is used to divide social groups. Qing 
et al. [6] collected a new dataset to sense the public life in public 
spaces. They proposed their framework, in which individual beha-
viour features are extracted, and the individuals with high similarity 
are grouped into one cluster.

The above descriptions review the literature on social group 
detection. However, as mentioned in Section 1, the methods are 
not robust to the urban public spaces andthe two paradigms can-
not hit the nature of social groups. They focused on the manifesta-
tions, including positions, orientations, and behaviours. Therefore, 
this paper proposes the relationship existence recognition-based 
method, exploiting the social cues of relationships among individ-
uals for social group detection.

2.2. Social relationship understanding

In computer vision, relationship understanding can be sum-
marised as three main aspects, involving relative position among 
objects [29,30], dominant action of the person over object
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Mij ¼ Mji ¼ f ðxi; xjÞ;M ¼ fMijj1 6 i 6 N;1 6 j 6 Ng ð1Þ

where f ð�Þ denotes the function of relationship existence recogni-
tion. Because both Mij and Mji denote the relationship existence
between the i-th individual and the j-th one, M is a symmetric
matrix, i.e., Mij ¼ Mji. In addition, the relationship between one
individual and themselves is meaningless, so Mii or Mjj equals zero
as default. Finally, we can map the result matrix M into social
groups based on the social relationship’s transitivity rule gð�Þ. That
is to say, if A shares a relationship with B and C, then so do B
and C.

Let us take Fig. 2 as an example to visualise the flow more
clearly. In the left picture, there are N ¼ 6 individuals with labelled
bounding boxes, who can be first initialised as I ¼ x1; x2; . . . ; x6
from left to right. Then, according to the function f ð�Þ of relation-
ship existence recognition, every person pair can be judged as
‘‘has relation” or ‘‘no relation” and the results can be shown as
the adjacent matrix. In this example, there are four person pairs
with relationships, i.e., x1 � x2; x1 � x3; x2 � x3, and x5 � x6. Corre-
spondingly, M12 ¼ M21 ¼ 1;M13 ¼ M31 ¼ 1;M23 ¼ M32 ¼ 1, and
M56 ¼ M65 ¼ 1, and the other elements are zero. It is worth noting
that x4 does not share a relationship with any others, and he is a
single-body individual, which is viewed as a special social group
in this paper. Finally, draw lines to illustrate the relationships
among individuals. In the topological graph, nodes and edges rep-
resent the individuals and relationships. It can be observed that
there are three social groups, i.e., fx1; x2; x3g; fx4g, and fx5; x6g.
The visualised sample is shown in the right picture.

Throughout the entire flow, there is no doubt that the relation-
ship existence recognition f ð�Þ is the key to the paradigm. Hence,
the following sections will elaborate on relationship existence
recognition, including the supervised and unsupervised
components.

As for the transitivity rule gð�Þ, it is a simple yet important pro-
cess method, which utilises the logical constraints among social
relationships of person pairs at the group level. As shown in
Fig. 3, take four people (A, B, C, and D) for example. From the per-
spective of social relationship detection for every person pair, it is
easy to determine the relationship existence of (A,B), (A,C), and (A,
D) because of their gaze communications. With this limited infor-
mation, (A,B,C,D) can also be inferred as a social group even though
we do not know the relationship existence of the person pair (B,C),
(B,D), and (C,D). In this inference, (B,C), (B,D), and (C,D) are
reasoned as person pairs with a social relationship based on
the logical constraints. It is worth noting that this group-level log-
ical constraint is proved in the field of social relation recognition
[61].

4. Method

As mentioned above, the key problem for the proposed para-
digm is to judge whether the social relationship exists for every
person pair or not. Therefore, this section will show how our algo-
rithm recognises person pairs’ relationship existence. As shown in
Fig. 4, the proposed algorithm first infers the existence of a rela-
tionship through visual and non-visual cues. Then the fusion mod-
ule combines the complementary results for the final prediction.
The following will first elaborate on the three parts, and then intro-
duce the relation classification and the model optimisation.

4.1. Visual cue-based component

According to traditional feature extraction of social relationship
recognition and the real situations of urban public spaces, we
extract the sequential temporal dynamics and spatial social inter-
actions to predict social relationships.

4.1.1. Temporal information extraction
To avoid the confusion between the focused and unfocused

encounters [8,10], we must consider the temporal information.
Hence we select three frames of the whole sequence to represent
the temporal information. The classic yet effective combination
of ‘‘CNN + RNN” is designed to explore it. We first utilise a pre-
trained ResNet-101 [55] on ImageNet [52] to extract the features
of the union patches cropped from the selected frames, respec-
tively. Given the bounding boxes of two individuals, the union
patch refers to their union part, as shown in Fig. 6. Then, these fea-
tures are fed into the long-short term memory (LSTM) [62] net-
work. Finally, its output is concatenated as the two individuals’
temporal information Fsd 2 R1536. Suppose that the input frames
are X ¼ fX1;X2; . . . ;Xng, then the temporal information extraction
can be expressed as follows,

Ti ¼ f resðXiÞ; i ¼ 1;2; . . . ;n ð2Þ

Fsd ¼ f lstmðT1; T2; . . . ; TnÞ ð3Þ

where Ti 2 R512 denotes the features extracted from the i-th union
patch, f resð�Þ denotes the ResNet-101 model and f lstmð�Þ denotes
the LSTM model.

4.1.2. Social interaction extraction
To alleviate the effect of fuzzy appearance in urban public

spaces, we further introduce the MFE mechanism for enhancing
semantic feature representations of social interactions in this sec-
tion. As shown in Algorithm1, given a pre-trained model Net with
multiple stacked layers or blocks, its multilevel features Ti are
mapped into Si by a set of extraction functions F. The final concate-
nation result Sout contains rich semantic information from low to
high levels.

Fig. 2. The visualised flow of the relationship existence recognition-based social group detection.

existence recognition. Let M 2 RN�N denotes the recognition 
results, where Mij equals to 1 if the i-th individual shares a social
relationship with the j-th one otherwise 0. It can be formulated
as follows,



Fig. 3. An example of the group-level logical constraints.

Fig. 4. The overall framework of relationship existence recognition. The visual cue-based component exploits temporal-spatial information using the ‘‘CNN + LSTM”
combination and the MFE mechanism. In the non-visual cue based component, the similarities of every trajectory pair are measured as extra information. Finally, this
information is complementarily fused to classify the existence of social relationships.

Fig. 5. Visual cue-based component.



Algorithm1 MFE: Multilevel feature extraction
mechanism

Require: Initialise input: Sin
Require: Initialise pre-trained model:

Net ¼ fb1; b2; . . . ; bng
Require: Initialise extraction function:

F ¼ ff 1; f 2; . . . ; f ng
Ensure: Feature Representations: Sout
1: T1 ¼ f 1ðSinÞ;
2: for i ¼ 2 : n do
3: Tiþ1 ¼ biðTiÞ;
4: end for
5: for i ¼ 1 : n do
6: Si ¼ f iðTiÞ;
7: end for
8: Sout ¼ Concat½S1; S2; . . . ; Sn�;

Based on the above mechanism, we utilise a pre-trained
ResNet-101 [55] on ImageNet [52] as the backbone to design
a multilevel feature extraction module (i.e., multilevel ResNet-
101) for extracting social interactions from the union patch
of the two individuals. The union patch, cropped from the

entire frame and resized to R3�224�224, covers amounts of inter-
actions, which are the most important representation of social
relations.

The designed multilevel ResNet-101 is shown in Fig. 7. The
ResNet-101 model consists of four blocks, and its extracted fea-
tures range from low to high level with the stack of blocks. In
urban public space videos, the features of personal appearances
are fuzzy; hence the multilevel ResNet-101 is designed to enhance
the representations of body features. Specifically, the extracted fea-
tures of four blocks are fetched out and processed to uniform low-
level or high-level features, respectively. Finally, these features are
concatenated as representations of social interactions. Take Block-
1, for example, whose output features are R256�56�56. First, adaptive
average pooling is utilised to compress the features as R256�2�4 The
feature maps are flattened into R2048, and finally, the dimension is
uniformly reduced to R512 by the fully-connected layer. So, the final
output is R2048 from the concatenation of four-level features. When
the multilevel ResNet-101 is embedded into the entire network,
the final output should be subsampled into R512 before the next
operation, which denotes Fsi.

After the above two features are extracted, they are concate-
nated to recognise the relationship’s existence.

F ¼ fFsi; Fsdg 2 R512þ1536 ð4Þ

Fig. 6. Union patch cropped from an image/frame. This figure is from [39].

Fig. 7. Multilevel ResNet-101: ResNet-101 with the MFE mechanism.



This component is the essential part of the proposed model,
which embodies the main idea, i.e., relationship existence
recognition-based social group detection. It is also worth noting
that the shared features of ResNet-101 can be reused, promoting
the efficiency of forward reasoning. In this module, introducing
spatial–temporal information is more important than networks,
and other advanced ones can replace them. Hence two-channel
architecture without shared features is more general for spatial–
temporal information extraction.

4.2. Non-visual cue-based component

Besides the above visual cues, some non-visual cues also indi-
cate the social relationship between individuals. One of the most
important is the trajectories, which reflect individuals’ various spa-
tial–temporal position information. As shown in Fig. 8, the individ-
ual trajectories are drawn in lines with different colours and the
social groups are labelled by the red bounding boxes. It can be seen
that the trajectories from the same social group are remarkably
similar to each other. On the contrary, there are huge differences
between the trajectories of different social groups. Therefore, it is
essential for the relationship existence recognition to utilise a
rational index and to measure the similarities of trajectory pairs.

This paper introduces the Fréchet distance as the similarity
degree of trajectory pair. It is a spatial path-based similarity
description index proposed by Maurice René Fréchet in 1906,
which concentrates on the spatial distance between paths and
has high calculation efficiency. Due to the discreteness of video
frames, this paper utilises the discrete Fréchet distance to measure
the similarity of trajectory pair, which is the approximate calcula-
tion of the Fréchet distance.

Before calculating the discrete Fréchet distance, we obtain the
trajectories of person pairs by their bounding boxes, which can
be expressed as follows,

bbox ¼ p1; q1ð Þ; m1;n1ð Þ½ �; p2; q2ð Þ; m2;n2ð Þ½ �; . . . ; pk; qkð Þ; mk;nkð Þ½ �f g
ð5Þ

posi ¼
pi þmi

2
;
qi þ ni

2

� �
; i ¼ 1;2; . . . ; k ð6Þ

P ¼ fpos1;pos2; . . . ; poskg ð7Þ
where bbox denotes the set of individual bounding boxes in k
frames, in which ½ðpi; qiÞ; ðmi;niÞ� denotes the coordinates of the
top left and bottom right corners of the bounding box in the i-th
frame. The final P represents the two-dimension position set, where
posi denotes the centre coordinates of the bounding box in the i-th
frame.

After obtaining the trajectory representations of the person pair,
the discrete Fréchet distance can be measured. As shown in Fig. 9,
the trajectory pair can be first expressed as follows,

PA ¼ fA0;A1;A2; . . . ;An�1;Ang ð8Þ

PB ¼ fB0;B1;B2; . . . ;Bn�1; Bng ð9Þ
where PA and PB are the instances of trajectory P in Eq. 7, and Ai and
Bi are the instances of position posi in Eq. 6 simultaneously.

Then, define the distance between PA and PB as the maximum of
the pairs of positions,

kLk ¼ max
i¼0;1;...;n

d Ai; Bið Þ ð10Þ

where dð�Þ denotes the Euclidean distance.
Finally, the discrete Fréchet distance can be defined as the min-

imum kLk with the trajectory change,

DF PA; PBð Þ ¼ min jjLjj ð11Þ
Denoting that the discrete Fréchet distance is the kLk when the

trajectory pair is fixed.
After the discrete Fréchet distance of all person pairs is calcu-

lated, their corresponding relationship existence can be recognised
by setting the threshold s.

4.3. Complementary fusion

Through the visual and non-visual cues, we can obtain the two
adjacent matrixes, i.e., Mvc and Mnvc , which stand for the results of
relationship existence recognition, mapping the social groups as
described in Section 3. To fuse them, we calculate the correspond-
ing elements by AND operation,

M ¼ Mvc �Mnvc ð12Þ
where � denotes the element-wise product operation and M
denotes the final result of social group detection, consisting of 0
and 1. The former means that the person pair does not belong to
the same group; otherwise, the latter suggests that the two individ-
uals are in the same group.

4.4. Relation Classification andModel optimisation

The framework comprises two components, i.e., the visual cue-
based component and the non-visual cue-based component, corre-
sponding to the supervised deep learning module and the unsuper-
vised unlearned module. Next, we will present their optimisation
processes, separately.

As a binary classification model, the output of the visual cue-
based component can be expressed as follows,

y ¼ fy1; y2g ¼ FCðMÞ ð13Þ
where FC denotes the fully-connected layer.

Then we calculate the probability of each social relationship
existence by the SoftMax function as follows,

pi ¼
eyi

ey1 þ ey2
; i ¼ 1;2 ð14Þ

Fig. 8. Visualised trajectories in urban public spaces.



where p1 and p2 denote the probabilities of ‘‘no relation” and ‘‘has
relation”. The larger probability represents the final classification
result.

Finally, according to the ground truth, i.e., Y ¼ ðy1; y2; . . . ; ynÞ,
the weighted cross-entropy loss can be calculated to optimise the
model,

l ¼ 1
n
�
Xn

i¼1

� w2 � yi � log p2ð Þ þw1 � 1� yið Þ � log p1ð Þ½ � ð15Þ

where n denotes the number of person pairs. w1 and w2 denote the
balanced weights of the two results of relationship existence. Sup-
pose that there are n samples consisting of q1 samples with yi ¼ 0
and q2 samples with y2 ¼ 1, then wi ¼ 2� 1� qi

n

� �
. That balances

the model learning for the imbalanced data because the person
pairs with ‘‘no relation” are much more.

The non-visual cue-based component determines whether the
two individuals belong to the same social group by setting the dis-
tance threshold s. When the similarity of the trajectory pair is less
than s, it indicates that they are likely to be in the same social
group. We set different values to find the optimal s.

5. Experiment

5.1. Dataset

PLPS (Public Life in Public Space) Dataset: To comprehen-
sively sense the attributes of citizens, Qing et al. [6] collected 71
videos from real urban public spaces. In this dataset, the individual
bounding boxes of each frame are labelled so that it is easy to
obtain the trajectories of all individuals by linking boxes. Besides,
some other annotated attributes include social group, social rela-
tionships, human activities, etc. As for the task of social group
detection, it is integrated into the baseline framework of multi-
group activity recognition, so the videos are split into training/test-
ing sets for the balanced distribution of group activities. To

highlight the nature of social groups, we re-divide the data to bal-
ance the distribution of social relationships, which is also benefi-
cial for the joint research of social group detection and social
relationship recognition. After the division, 19 videos are used for
testing, and the rest are for training. Due to privacy protection,
the facial blur is made before release. To conduct the positional
structure-based method, we followed Yoo et al. [11] to annotate
individual positions and head orientations on a top view. The
top-view positions are automatically computed by using depth
and focal length. In this paper, the depth is estimated by the pre-
trained model provided by Godard et al. [63] and the focal length
is set as 7.9608. Same as [13,14], the four head orientations are
annotated manually, including front, back, left and right.

Social-CAD (Social Collective Activity Dataset): To jointly
learn the social groups, individual actions, and sub-group activ-
ities in videos, Ehsanpour et al. [5] annotated different social
groups to extend the original CAD [28] for the study of the
social group activities. The dataset is also acquired from the
unconstrained real-world scenes, consisting of 44 videos. We
follow [5] to use 31 videos for training and 11 videos for test-
ing. Unlike the PLPS dataset, this dataset only annotated the
bounding boxes of the keyframe, i.e., each 10th frame of all
videos; hence the trajectories are relatively coarse. In the origi-
nal CAD [28], individual poses, i.e., body orientations, are anno-
tated, which can be used to conduct F-formation based
methods. As for the top-view positions, we adopt the same
way to obtain these above labels.

As shown in Fig. 10, we represent the classical scenarios on the
PLPS dataset and Social-CAD. It can be seen that the complexity of
the PLPS dataset is slightly higher because the scene scale is more
significant, which can be seen from the resolution of two images,
i.e., 1920� 1080 on the PLPS dataset and 720� 480 on Social-
CAD. Besides the difference, there is a remarkable resemblance that
the individuals’ appearances are fuzzy. No doubt that it puts for-
ward the challenge of feature extraction and increases the diffi-
culty of social group detection.

Fig. 9. Trajectory pair for the calculation of the discrete Fréchet distance.



5.2. Evaluation metrics

Same as [5], we follow the unsupervised clustering accuracy
[64] as the evaluation metric of our problem. This metric intro-
duces the Hungarian algorithm [65] to determine the optimum
assignment between the detective groups and the ground truth,
then sums the individuals divided into the correct social groups.
Finally, the ratio of the sum to the total number of individuals is
the accuracy for social group detection. It can be formulated as
follows,

GC � Acc ¼ max
m

Xn

i¼1

1 li ¼ m cið Þf g

n
ð16Þ

where n is the total number of individuals, li and ci denote the
ground truth and the detection results, mð�Þ denotes all possible
assignments, and 1f�g is the indicator function.

5.3. Implementation details

The experiments in this paper are implemented in a deep learn-
ing framework (i.e., PyTorch) on an Nvidia GeForce RTX 2080Ti
GPU. We choose the Adam algorithm [66] to optimise our model.
The initial learning rate, batch size, and epochs are set as 0.01,
24, and 200. We also decay the learning rate by one-tenth of the
previous per 10 epochs. In the non-visual component, the thresh-
old s is a hyper-parameter. Its optimal value is the six-tenths of
the width of the frame.

To promote the robustness of our algorithm, we implement to
augment the input data. At the stage of training, all patches were
first resized into 256� 256, followed by random horizontal flip-
ping and cropping. The probability of flip is 0.5, and the cropped
size is 224� 224. At the testing stage, the random operations
(i.e., flipping and cropping) were removed, and the input patches
were resized into 224� 224 directly. Image normalisation was also
performed like some other tasks [67,68] for image recognition.
Besides, we utilised the long sequence to extract the temporal
information. Specifically, we make the keyframe the centre and
find the nearest 300 frames (the PLPS dataset) and 200 frames
(the Social-CAD) as one sample. We then uniformly selected three
frames as inputs of the model. As for the thresholds of the similar-
ity, both are the six-tenth width of the frame on the PLPS dataset
and Social-CAD.

5.4. Results and analysis

To evaluate the performance of our algorithm, we compared it
with the state-of-the-art (SOTA) methods on PLPS [6] dataset and
Social-CAD [5]. Meanwhile, we also implemented the ablation
study to prove the effectiveness of the sub-modules in our algo-
rithm. Besides, the interpersonal distance is discussed to analyse

the distance threshold, and the visualisation of results is repre-
sented to dissect our algorithm.

5.4.1. Introduction of SOTA methods and ablation methods
As mentioned in Section 1, few approaches are implemented in

urban public spaces and most works detect F-formations for find-
ing social groups. Therefore, besides MGAR [6] and SARF [5], we
also introduce the classical methods for F-formation detection
based on Hough voting scheme [13,16,17], game theory [23] and
graph cuts [18]. Their details are given as follows,

HVFF [13,16,17]:Given individual positions and head orienta-
tions, these methods build accumulation spaces and find local
maxima to detect F-formations based a Hough Voting scheme.
They differ from accumulation strategies. In HVFF lin [13], Cristani
et al. linearly accumulated the votes while Setti et al. aggregated
the votes by the weighted Boltzmann entropy function in HVFF
ent [16]. On top of HVFF ent, Setti et al. extended to develop a
multi-scale version in HVFF ms [17].

GCFF [18]:It is an iterative method and initialises multiple F-
formations. Next, a graph-cut based optimisation is used to group
individuals and update the centres of the F-formations until
convergence.

GTCG [23]:The authors developed a game-theoretic framework,
supported by statistical modelling of the uncertainty associated
with the position and orientation of people. In terms of the position
and orientation, they first generate the frustum of social attention.
Then, an affinity matrix is calculated by modelling the overlaps of
their social attention frustums. Besides, they exploit the inter-
frame smoothness between consecutive frames to face cases of
noisy data.

MGAR [6]: This method proposed two indices to detect social
groups, i.e., the semantic similarity of behaviour features and the
spatial distance between individuals. The behaviour features are
extracted by the Inception-ResNet-V2 [69], and ROI-Align [70]
module and the similarities are the Cosine distance. The spatial dis-
tance is the Euclidean distance between individual bounding
boxes. It should be noted that this experiment was re-conducted
due to the re-division and the facial blur, mentioned in Section 5.1.

SARF [5]: This method first utilised the Inflated 3D ConvNet
[71] and ROI-Align [70] module to extract the individual features.
Then, the self-attention mechanism [72,73] and Graph Attention
Networks [74] were introduced to refine the extracted features.
Finally, the graph partition [75,76] was implemented to obtain
the clusters.

Union: That is the spatial social interaction extraction in the
visual cue-based component, as shown in Fig. 5. The union patch
of person pair is fed into the multilevel ResNet-101 for recognising
the existence of their social relationship.

Union + Seq: That is the entire visual cue-based component,
including the spatial social interaction and temporal information
extraction. As shown in Fig. 5, the combination of ‘‘CNN + LSTM”

Fig. 10. Scenarios on PLPS dataset (left) and Social-CAD (right).



show the high superiority of the proposed paradigm. Furthermore,
introducing the discrete Fréchet distance boosts the final accuracy
to 87.03% and 87.08%.

Overall, the experimental results on Social-CAD are higher than
those on the PLPS dataset. It is caused by the larger scale and more
complex scenarios, as shown in Fig. 10. Through comparing the
algorithms with/without the MFE mechanism, we draw the same
conclusion: the MFE can promote the feature representations for
the blurred individuals’ appearances, especially without the tem-
poral information.

5.4.3. Interpersonal distance analysis
In the non-visual cue-based component, our algorithm calcu-

lates the discrete Fréchet distance of the trajectory pair. It sets
the threshold s for recognising the existence of a social relation-
ship. As shown in Fig. 11, we represent the accuracy of the final
algorithms using the multilevel ResNet-101 on the PLPS dataset
and Social-CAD. We find that the accuracy is up to the maximum
when s is the six-tenths of the width of the frame while the widths
of the two datasets are different.

There are two possible reasons, i.e., the scene types and the cus-
toms. On the PLPS dataset, the videos are all from outdoor scenar-
ios in urban public spaces; hence people tend to stay within further
interpersonal distance. However, there are partial indoor scenarios
on Social-CAD where the space is narrower, so the interpersonal
distance may correspondingly close. On the other hand, the video
data on the two datasets are collected from different countries or
regions, so people’s cultural backgrounds and customs are diverse,
which also causes the different interpersonal distances. These align
with the proxemic findings [77,78] that interpersonal distance
changes with physical constraints, culture, etc.

5.4.4. Visualisation results of positive and negative samples
To intuitively show the capacity of our algorithm, we visualise

the detection results with bounding boxes in different colours in
Fig. 12 (a-f). Each bounding box includes one social group or
single-body individual. Our algorithm can detect the single-body
individual, two-individual group, and multi-individual group even
when the individuals’ appearances are fuzzy and the sizes of indi-
viduals’ bounding boxes are small. It proves the robustness in
urban public spaces.

We also emphasise situations that are difficult to distinguish
the existence of social relationships. In scenario (b), the two chil-
dren in the green and blue bounding boxes appear to be the same
social group from the perspective of F-formation (i.e., position and
orientation) in one frame. However, they are just unfocused
encounters [8,10], which can be observed from the temporal
sequence in Fig. 13 (row 1). In scenario (f), the three people in
the green, red, and blue bounding box are walking in the same

Method GC-Acc (%)

MGAR [6] 63.67
HVFF ent [16] 65.37
GCFF [18] 67.15

HVFF ms [17] 67.35
HVFF lin [13] 68.15
GTCG [23] 70.98

– Without MFE With MFE
Union 73.33 75.43

Union + Seq 77.87 77.96
Union + Seq + Fréchet 78.73 79.05

Table 2
Experiment results on Social-CAD, including comparison with SOTA methods and
ablation study with/without MFE mechanism.

Method GC-Acc (%)

HVFF ent [16] 66.78
HVFF ms [17] 69.41
HVFF lin [13] 69.83
GCFF [18] 71.60
GTCG [23] 74.67
SARF [5] 83.0

– Without MFE With MFE
Union 80.63 82.46

Union + Seq 86.64 86.72
Union + Seq + Fréchet 87.03 87.08

is added to exploit the temporal information for relationship exis-
tence recognition.

Union + Seq + Fréchet: Our final algorithm includes the visual 
cue-based and non-visual cue-based components. The latter intro-
duces the discrete Fréchet distance to measure the similarities of 
trajectory pairs for recognising their existence. The final results 
are obtained by complementarily fusing the outputs of the two 
components.

MFE: That is the multilevel feature extraction mechanism. To 
comprehensively verify its effectiveness, we conducted the com-
pare the results with/without MFE mechanism in each ablation 
experiment.

5.4.2. Comparison with SOTA methods and ablation study
The experimental results on the PLPS dataset are shown in 

Table 1. In the table, we report the SOTA methods, the ablation 
experiments and our final algorithms with/without MFE mecha-
nism. We compare the positional structure-based methods (i.e., 
HVFF [13,16,17], GTCG [23] and GCFF [18]) with our algorithm. It 
can be observed that these methods are worse than our final 
results, which demonstrates that those methods are not suitable 
for urban public spaces. That is because they only focus on posi-
tions and orientations on a top view and ignore the social context. 
As for the human behaviour-based method (i.e., MGAR [6]),we first 
compare it with our ablation algorithms, which only use the union 
patch of the keyframe as the input-noting that both algorithms do 
not involve temporal information. It can be observed that ours out-
performs the baseline on PLPS by 9.66% and 11.76%, respectively. It 
proves that the proposed paradigm performs well in urban public 
spaces and hits the nature of social groups. After introducing the 
temporal information, the results were further improved by 
4.54% and 2.53%, showing the importance of the temporal informa-
tion. Finally, the visual cues are fused with the non-visual cues (the 
discrete Fréchet distance), and the final algorithm scores better 
accuracy, i.e., 78.73% and 79.05%. Besides, compared the data in 
columns 2 and 3, the accuracy is promoted by 2.10%, 0.09% and 
0.32%. It demonstrates that the MFE mechanism can enhance the 
feature representations, especially without temporal information.

As shown in Table 2, additional experiments were also carried 
out on Social-CAD to validate our algorithm’s effectiveness further. 
Like the experimental results on PLPS, our algorithm outperforms 
the positional structure-based methods, proving that ours is more 
robust in urban public spaces.The human behaviour-based 
method, i.e., SARF [5], achieves 83.0%, roughly equivalent to the 
accuracy of our ablation algorithm ‘‘Union” with the MFE mecha-
nism. It is worth noting that the former introduces the temporal 
information with the Inflated 3D ConvNet while the latter does 
not. When our algorithm also adds the temporal information to 
promote the recognition of the social relationship existence, it out-
performs the baseline on Social-CAD by 3.64% and 3.72%. These

Table 1
Experiment results on PLPS dataset, including comparison with SOTA methods and 
ablation study with/without MFE mechanism.



direction and are likely to be divided into the same social group
only from the current frame. But as shown in Fig. 13 (row 2), in
the temporal sequence, the individual in the red bounding box
walks across the middle of the other individuals. They are also
unfocused encounters, not the members of the same social group.
In our opinion, the correct detection for the above scenarios is up
to exploiting the spatial–temporal information. In fact, besides
the spatial, social interactions and temporal information in the
visual cue-based component, the discrete Fréchet distance also
contains rich spatial–temporal positional information for the sim-

ilarity measurement of the trajectory pairs. Besides the above pos-
itive results, we also present the negative detection to analyse the
algorithm more comprehensively. As shown in Fig. 14, there are
two sets of negative samples on PLPS dataset. In the blue ellipse,
they are a father and daughter, while the algorithm recognises
them as ‘‘no relation”. It may be caused by their age gap and
appearance difference, which are noise for the interaction reason-
ing. In addition, minor family-related samples are another impor-
tant reason. For the yellow circle, the visual closeness leads to
misclassification, which can be observed on Social-CAD dataset.

Fig. 11. Accuracy varies from the distance threshold.

Fig. 12. Result visualisation on PLPS dataset (row 1) and Social-CAD (row 2).

Fig. 13. Visualisation of the unfocused encounters on the PLPS dataset (row 1) and Social-CAD (row 2).



They are strangers and one individual only crosses by the other
one. The possible reason is that our algorithm is not sensitive to
the positional change in the depth direction. These limitations
partly confine the application of the algorithm, but the current ver-
sion is simple and achieves a good performance compared with the
SOTA methods.

6. Conclusion

This paper summarised the existing algorithms and the inher-
ent problem for social group detection. We proposed a new para-
digm, namely relationship existence recognition-based social 
group detection, which can hit the nature of social groups. We also 
designed the corresponding algorithm, incorporating the visual 
and non-visual cue-based components. The former can learn spa-
tial–temporal information through supervised deep learning, while 
the latter utilises the similarity of trajectory pairs to aid the exis-
tence recognition of social relationships using unsupervised index 
measurement. Extensive experiments were conducted to prove the 
proposed paradigm’s superiority and the effectiveness of visual 
and non-visual cues. Based on the proxemics, we also discussed 
the differences in the interpersonal distances under the different 
cultural backgrounds and customs, which cannot be avoided by 
setting thresholds. In the future, we plan to explore the multilevel 
semantic context of the trajectory using the temporal networks.

Declaration of Competing Interest

The authors declare the following financial interests/personal 
relationships which may be considered as potential competing 
interests: Linbo Qing reports financial support was provided by 
National Natural Science Foundation of China.

Acknowledgement

This work was supported by the National Nature Science Foun-
dation of China under Grant 61871278.

References

[1] J. Gehl, B. Svarre, How to Study Public Life, Island Press, 2013.
[2] J. Gehl, Life between Buildings, The Danish Architectural Press, 1971.
[3] S. Inaba, Y. Aoki, Conversational group detection based on social context using

graph clustering algorithm, in: International Conference on Signal-Image
Technology & Internet-Based Systems (SITIS), 2016, pp. 526–531.

[4] H.B. Barua, P. Pramanick, C. Sarkar, T.H. Mg, Let me join you! real-time f-
formation recognition by a socially aware robot, in: IEEE International
Conference on Robot and Human Interactive Communication (RO-MAN),
2020, pp. 371–377.

[5] M. Ehsanpour, A. Abedin, F. Saleh, J. Shi, I. Reid, H. Rezatofighi, Joint learning of
social groups, individuals action and sub-group activities in videos, in:
European Conference on Computer Vision (ECCV), 2020, pp. 177–195.

[6] L. Qing, L. Li, S. Xu, Y. Huang, M. Liu, R. Jin, B. Liu, T. Niu, H. Wen, Y. Wang, X.
Jiang, Y. Peng, Public life in public space (plps): A multi-task, multi-group video
dataset for public life research, in: IEEE International Conference on Computer
Vision Workshops (ICCVW), 2021, pp. 3611–3620.

[7] E. Goffman, Behavior in Public Places: Notes on the Social Organization of
Gatherings, Free Press, 1966.

Fig. 14. Visualisation of negative detection (row 1 & row 3) and ground truth (row 2 & row 4) on PLPS and Social-CAD datasets. Individuals in the same group are labelled by
bounding boxes in the same colour.

http://refhub.elsevier.com/S0925-2312(22)01318-2/h0005
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0005
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0010
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0010
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0035
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0035
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0035


[38] X. Chen, X. Zhu, S. Zheng, T. Zheng, F. Zhang, Semi-coupled synthesis and
analysis dictionary pair learning for kinship verification, IEEE Trans. Circuits
Syst. Video Technol. 31 (5) (2021) 1939–1952.

[39] L. Li, L. Qing, Y. Wang, J. Su, Y. Cheng, Y. Peng, Hf-srgr: A new hybrid feature-
driven social relation graph reasoning model, Visual Comput.

[40] X. Yang, F. Xu, K. Wu, Z. Xie, Y. Sun, Gaze-aware graph convolutional network
for social relation recognition, IEEE Access 9 (2021) 99398–99408.

[41] J. Gao, L. Qing, L. Li, Y. Cheng, Y. Peng, Multi-scale features based interpersonal
relation recognition using higher-order graph neural network,
Neurocomputing 456 (C) (2021) 243–252.

[42] S. Wu, J. Chen, T. Xu, L. Chen, L. Wu, Y. Hu, E. Chen, Linking the Characters:
Video-Oriented Social Graph Generation via Hierarchical-Cumulative GCN
(2021) 4716–4724.

[43] L. Zhou, J. Lv, B. Wu, Social network construction of the role relation in
unstructured data based on multi-view, in: International Conference on Data
Science in Cyberspace (DSC), 2017, pp. 382–388.

[44] J. Lv, B. Wu, L. Zhou, H. Wang, Storyrolenet: Social network construction of role
relationship in video, IEEE Access 6 (2018) 25958–25969.

[45] L. Fan, Y. Chen, P. Wei, W. Wang, S.-C. Zhu, Inferring shared attention in social
scene videos, IEEE/CVF Conference on Computer Vision and Pattern
Recognition 2018 (2018) 6460–6468.

[46] L. Fan, W. Wang, S.-C. Zhu, X. Tang, S. Huang, Understanding human gaze
communication by spatio-temporal graph reasoning, IEEE/CVF International
Conference on Computer Vision (ICCV) 2019 (2019) 5723–5732.

[47] J. Lu, X. Zhou, Y.-P. Tan, Y. Shang, J. Zhou, Neighborhood repulsed metric
learning for kinship verification, IEEE Trans. Pattern Anal. Mach. Intell. 36 (2)
(2014) 331–345.

[48] Z. Zhang, C.C.L. Ping Luo, X. Tang, From facial expression recognition to
interpersonal relation prediction, Int. J. Comput. Vision 126 (2018) 550–569.

[49] Q. Sun, B. Schiele, M. Fritz, A domain based approach to social relation
recognition, in: International Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 435–444.

[50] X. Liu, W. Liu, M. Zhang, J. Chen, L. Gao, C. Yan, T. Mei, Social relation
recognition from videos via multi-scale spatial-temporal reasoning, in:
International Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 3561–3569.

[51] J. Li, Y. Wong, Q. Zhao, M.S. Kankanhalli, Dual-glance model for deciphering
social relationships, in: International Conference on Computer Vision (ICCV),
2017, pp. 2669–2678.

[52] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale
hierarchical image database, in: International Conference on Computer Vision
and Pattern Recognition (CVPR), 2009, pp. 248–255.

[53] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, A. Torralba, Places: A 10 million
image database for scene recognition, IEEE Trans. Pattern Anal. Mach. Intell. 40
(6) (2018) 1452–1464.

[54] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F.
Viola, T. Green, T. Back, P. Natsev, M. Suleyman, A. Zisserman, The kinetics
human action video dataset, arXiv.

[55] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
International Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778.

[56] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An
image is worth 16�16 words: Transformers for image recognition at scale, in:
International Conference on Learning Representations, 2021.

[57] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep
bidirectional transformers for language understanding, in: Proceedings of the
2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, vol. 1 (Long and
Short Papers), 2019, pp. 4171–4186.

[58] Y. Huang, L. Qing, S. Xu, L. Wang, Y. Peng, Hybnet: A hybrid network structure
for pain intensity estimation, Visual Comput.

[59] T. Liu, R. Zhao, K.-M. Lam, J. Kong, Visual-semantic graph neural network with
pose-position attentive learning for group activity recognition,
Neurocomputing 491 (2022) 217–231.

[60] Y. Gou, Y. Lei, L. Liu, Y. Dai, C. Shen, Y. Tong, Pretrained language encoders are
natural tagging frameworks for aspect sentiment triplet extraction, arXiv.

[61] W. Li, Y. Duan, J. Lu, J. Feng, J. Zhou, Graph-based social relation reasoning, in:
A. Vedaldi, H. Bischof, T. Brox, J.-M. Frahm (Eds.), Computer Vision – ECCV
2020, 2020, pp. 18–34.

[62] S. Hochreiter, J. Chimidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780.

[63] C. Godard, O.M. Aodha, M. Firman, G. Brostow, Digging into self-supervised
monocular depth estimation, IEEE/CVF International Conference on Computer
Vision (ICCV) 2019 (2019) 3827–3837.

[64] J. Xie, R. Girshick, A. Fahadi, Unsupervised deep embedding for clustering
analysis, in: International Conference on Machine Learning (ICML), vol. 48,
2016, pp. 478–487.

[65] H.W. Kuhn, The hungarian method for the assignment problem, Naval
Research Logistics Quarterly 2 (1–2) (1955) 83–97.

[66] J. Ba, D. Kingma, Adam: A method for stochastic optimisation, in: International
Conference on Learning Representations (ICLR), 2015.

[67] M. Zhou, Y. Bai, W. Zhang, T. Zhao, T. Mei, Look-into-object: Self-supervised
structure modeling for object recognition, in: International Conference on
Computer Vision and Pattern Recognition (CVPR), 2020, pp. 11771–11780.

[8] T.M. Ciolek, A. Kendon, Environment and the spatial arrangement of 
conversational encounters, Sociol. Inquiry 50 (3–4) (1980) 237–271.

[9] S.K. Pathi, A. Kiselev, A. Loutfi, Detecting groups and estimating f-formations for 
social human-robot interactions, Multimodal Technol. Interact. 6 (3).

[10] H. Hung, B. Kröse, Detecting f-formations as dominant sets, in: International 
Conference on Multimodal Interfaces (ICMI), 2011, p. 231–238.

[11] H. Yoo, T. Eom, J. Seo, S.-I. Choi, Detection of interacting groups based on 
geometric and social relations between individuals in an image, Pattern 
Recogn. 93 (2019) 498–506.

[12] T. Yu, S.-N. Lim, K. Patwardhan, N. Krahnstoever, Monitoring, recognizing and 
discovering social networks, IEEE Conference on Computer Vision and Pattern 
Recognition 2009 (2009) 1462–1469.

[13] M. Cristani, L. Bazzani, G. Paggetti, A. Fossati, D. Tosato, A.D. Bue, G. Menegaz,
V. Murno, Social interaction discovery by statistical analysis of f-formations, 
in: British Machine Vision Conference, 2011, pp. 23.1–23.12.

[14] L. Bazzani, M. Cristani, D. Tosato, M. Farenzena, G. Paggetti, G. Menegaz, V. 
Murino, Social interactions by visual focus of attention in a three-dimensional 
environment, Expert Syst. 30 (2) (2013) 115–127.

[15] K.N. Tran, A. Gla, I.A. Kakadiaris, S. Shah, Activity analysis in crowded 
environments using social cues for group discovery and human interaction 
modeling, Pattern Recogn. Lett. 44 (2014) 49–57.

[16] F. Setti, H. Hung, M. Cristani, Group detection in still images by f-formation 
modeling: A comparative study, in: 2013 14th International Workshop on 
Image Analysis for Multimedia Interactive Services (WIAMIS), 2013, pp. 1–4.

[17] F. Setti, O. Lanz, R. Ferrario, V. Murino, M. Cristani, Multi-scale f-formation 
discovery for group detection, IEEE International Conference on Image 
Processing 2013 (2013) 3547–3551.

[18] F. Setti, C. Russell, C. Bassetti, M. Cristani, F-formation detection: Individuating 
free-standing conversational groups in images, PLoS ONE 10 (9) (2015).

[19] N. Yasuda, K. Kakusho, T. Okadome, T. Funatomi, M. Iiyama, Recognizing 
conversation groups in an open space by estimating placement of lower 
bodies, in: 2014 IEEE International Conference on Systems, Man, and 
Cybernetics (SMC), 2014, pp. 544–550.

[20] L. Zhang, H. Hung, On social involvement in mingling scenarios: Detecting 
associates of f-formations in still images, IEEE Trans. Affective Comput. 12 (1)
(2021) 165–176.

[21] A. Kendon, Conducting Interaction: Patterns of Behavior in Focused 
Encounters, vol. 7, Cambridge University Press, 1990.

[22] T. Gan, Y. Wong, D. Zhang, M.S. Kankanhalli, Temporal encoded f-formation 
system for social interaction detection, in: Proceedings of the 21st ACM 
International Conference on Multimedia, 2013, p. 937–946.

[23] S. Vascon, E.Z. Mequanint, M. Cristani, H. Hung, M. Pelillo, V. Murino, A game-
theoretic probabilistic approach for detecting conversational groups, in: Asian 
Conference on Computer Vision, 2015, pp. 658–675.

[24] S. Vascon, E.Z. Mequanint, M. Cristani, H. Hung, M. Pelillo, V. Murino, Detecting 
conversational groups in images and sequences: A robust game-theoretic 
approach, Comput. Vis. Image Underst. 143 (2016) 11–24.

[25] L. Cabrera-Quiros, A. Demetriou, E. Gedik, L. van der Meij, H. Hung, The 
matchnmingle dataset: A novel multi-sensor resource for the analysis of social 
interactions and group dynamics in-the-wild during free-standing 
conversations and speed dates, IEEE Trans. Affective Comput. 12 (1) (2021) 
113–130.

[26] S.K. Pathi, A. Kiselev, A. Loutfi, Estimating f-formations for mobile robotic 
telepresence, in: International Conference on Human-Robot Interaction, 2017,
p. 255–256.

[27] S.K. Pathi, A. Kristofferson, A. Kiselev, A. Loutfi, Estimating optimal placement 
for a robot in social group interaction, in: International Conference on Robot 
and Human Interactive Communication (RO-MAN), 2019, pp. 1–8.

[28] W. Choi, K. Shahid, S. Savarese, What are they doing?: Collective activity 
classification using spatio-temporal relationship among people, in: 
International Conference on Computer Vision Workshops (ICCV Workshops), 
2009, pp. 1282–1289.

[29] X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, A.G. Hauptmann, A comprehensive survey 
of scene graphs: Generation and application, IEEE Trans. Pattern Anal. Mach. 
Intell. (2021) 1.

[30] G. Ren, L. Ren, Y. Liao, S. Liu, B. Li, J. Han, S. Yan, Scene graph generation with 
hierarchical context, IEEE Trans. Neural Networks Learn. Syst. 32 (2) (2021) 
909–915.

[31] T. Zhou, S. Qi, W. Wang, J. Shen, S.-C. Zhu, Cascaded parsing of human-object 
interaction recognition, IEEE Trans. Pattern Anal. Mach. Intell. 44 (6) (2022) 
2827–2840.

[32] Y. Cheng, H. Duan, C. Wang, Z. Wang, Human-object interaction detection with 
depth-augmented clues, Neurocomputing 500 (2022) 978–988.

[33] S. Qi, W. Wang, B. Jia, J. Shen, S.-C. Zhu, Learning human-object interactions by 
graph parsing neural networks, in: European Conference on Computer Vision 
(ECCV), 2018, pp. 407–423.

[34] J. Li, X. Xie, Y. Cao, Q. Pan, Z. Zhao, G. Shi, Knowledge embedded gcn for 
skeleton-based two-person interaction recognition, Neurocomputing 444 
(2021) 338–348.

[35] Y. Li, T. Guo, X. Liu, W. Luo, W. Xie, Action status based novel relative feature 
representations for interaction recognition, Chinese J. Electron. 31 (1) (2022) 
338–348.

[36] D.B. Bugental, Acquisition of the algorithms of social life: A domain-based 
approach, Psychol. Bull. 126 (2) (2000) 187–219.

[37] A.P. Fiske, The four elementary forms of sociality: Framework for a unified 
theory of social relations, Psychol. Rev. 99 (4) (1992) 689–723.

http://refhub.elsevier.com/S0925-2312(22)01318-2/h0040
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0040
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0055
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0055
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0055
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0060
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0060
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0060
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0070
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0070
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0070
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0075
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0075
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0075
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0085
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0085
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0085
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0090
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0090
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0100
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0100
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0100
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0105
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0105
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0105
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0120
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0120
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0120
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0125
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0125
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0125
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0125
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0125
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0145
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0145
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0145
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0150
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0150
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0150
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0155
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0155
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0155
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0160
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0160
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0170
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0170
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0170
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0175
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0175
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0175
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0180
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0180
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0185
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0185
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0190
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0190
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0190
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0200
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0200
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0205
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0205
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0205
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0210
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0210
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0210
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0220
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0220
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0225
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0225
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0225
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0230
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0230
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0230
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0235
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0235
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0235
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0240
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0240
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0265
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0265
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0265
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0295
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0295
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0295
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0310
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0310
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0315
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0315
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0315
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0325
http://refhub.elsevier.com/S0925-2312(22)01318-2/h0325


[68] J. She, Y. Hu, H. Shi, J. Wang, Q. Shen, T. Mei, Dive into ambiguity: Latent
distribution mining and pairwise uncertainty estimation for facial expression
recognition, in: International Conference on Computer Vision and Pattern
Recognition (CVPR), 2021, pp. 6244–6253.

[69] C. Szegedy, S. Ioffe, V. Vanhoucke, A.A. Alemi, Inception-v4, inception-resnet
and the impact of residual connections on learning, in: AAAI Conference on
Artificial Intelligence, 2017, p. 4278–4284.

[70] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask r-cnn, in: International
Conference on Computer Vision (ICCV), 2017, pp. 2980–2988.

[71] J. Carreira, A. Zisserman, Quo vadis, action recognition? a new model and the
kinetics dataset, in: International Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 4724–4733.

[72] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I.
Polosukhin, Attention is all you need, in: International Conference on Neural
Information Processing Systems, 2017, p. 6000–6010.

[73] X. Wang, R. Girshick, A. Gupta, K. He, Non-local neural networks, in:
International Conference on Computer Vision and Pattern Recognition, 2018,
pp. 7794–7803.
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