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Abstract: The classical multidimensional version of Fatou’s lemma (Schmeidler
[20]) originally obtained for unconditional expectations and the standard non-
negative cone in a finite-dimensional linear space is extended to conditional ex-
pectations and general closed pointed cones.
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1. Fatou’s lemma in several dimensions, the first version of which was
obtained by Schmeidler [20], is a powerful measure-theoretic tool initially
developed in Mathematical Economics in connection with models of ”large”
economies with atomless measure spaces of agents; see Aumann [3] and
Hildenbrand [16]. In this note we provide two new versions of this lemma:
one for unconditional and the other for conditional expectations. Both deal
with cones in an n-dimensional linear space R™ more general than the non-
negative orthant R} as considered in [20]. Our results are motivated by the
applications of the theory of von Neumann-Gale [21], [14] dynamical systems
to the modeling of financial markets with frictions—transaction costs and
portfolio constraints [9, [1T], 13 [6] [5].

2. Let (2, F, P) be a probability space and C' a pointed closed coneﬂ in
R"™. We write a <¢ bif b—a € C. Let |- | be a norm in R". The distance
measured in terms of the norm | - | between a point a and a set A in R™ is
denoted by p(a, A). We will use the standard notation Ls(zy) for the set of
limit points of the sequence (xy).

Recall that a sequence of random variables fSi(w) is called uniformly
integrable if

f}flegPEWk‘l{\ﬂkle} =0. (1)

Property holds if and only if the following two conditions are satisfied:
a) sup E|fBk| < oo; b) lim E|Bk|1r, = 0 for any sequence of events I'y, with
P(T'%) — 0 (see, e.g., Neveu [18]).

Theorem 1. Let zp(w), k = 1,2,..., be a sequence of random vectors
in R™ such that E|xp(w)| < oo and Exg(w) — y, where y is some vector
in R™. If the sequence p(zi(w),C) is uniformly integrable, then there exist
integer-valued random variables

1 <ki(w) < ko(w) < ... (2)
and a random vector x(w) such that E|z| < oo,

lim xp () (W) = z(w) (a.s.) (3)

m—r0o0
and
Ex(w) <cy.

Theorem 1 is a version of the multidimensional Fatou lemma in [20]
where it is assumed that C' = R”} and x,(w) € C, so that p(zi(w),C) = 0.

'A set C in a linear space is called a cone if it contains with any its elements x,y any
non-negative linear combination Az + py (A, > 0) of these elements. The cone C is called
pointed if the inclusions z € C' and —z € C imply z = 0.



It also extends a result in the paper by Cornet et al. [§], Theorem B, p. 194,
in which the function p(zj(w), C) is required to be integrably bounded.

3. Proof of Theorem 1. 1st step. We have zi(w) = cx(w) + bi(w),
where cx(w) € C and |bg(w)| = p(zi(w),C) (a.s.). By assumption, the
sequence |bg| is uniformly integrable, and so H := sup F |bx| < oo. Since
¢k = ) — b, we have E|ci| < E|zi| + H < oo, and so the random vectors
¢, are integrable. Furthermore, the sequence Fcp = Fxi — Eby is bounded
because sup |Ebg| < sup E|b;| = H and the sequence Fxj is bounded since
it converges.

Note that the boundedness of Fcp implies the boundedness of FE|cg|
because the random vectors ci(w) take on their values in the closed pointed
cone C. Indeed, consider a strictly positive linear functional g on C' (gc > 0,
0 # ¢ € C); it exists for each closed pointed cone. For such a functional
g, there exists v > 0 such that gc > ~|c| for all ¢ € C. Consequently,
gEcy, = Egcr, > vE|ck|, which proves the boundedness of E|ck|. This, in
turn, implies that E|z| is bounded because sup F|z| < sup(E|ck|+Eb|) <
sup Flci| + H < 0.

2nd step. Since sup E|zi| < oo, we can use the ”biting lemma” (e.g.
Saadoune and Valadier [19], p. 349) and find a subsequence (zy,) of (z)
and measurable sets I'y 2 I'p O ... such that "I} = () and the sequence
), = Tp 1o\, is uniformly integrable. Put xj := xy,1r,. Clearly xy, =
zy, + T

For each w the sequence zj, (w) coincides with z, (w) from some /(w) on
because every w belongs to Q\I'; from some [(w) on. Consequently, for all
w we have Ls(z}, ) = Ls(zy,) C Ls(zy).

The sequences E|z} | and Elzy | are bounded because |z}, | < |z,| and
\x’k’l] < |zg,|. By passing to a subsequence, we can assume without loss of
generality that Ez) — y' and Exj, — y" for some y',y" € R". Clearly,
y' +y" =y because Ex) + Exy = Exy, — y.

Srd step. Since the sequence (7 ) is uniformly integrable and Exj, — v/,
by Artstein’s theorem [2], Theorem A, there exists an integrable random
vector x(w) such that z(w) €Ls(z), (w)) CLs(zx(w)) (as.) and Ex(w) = y'.
We have

E.%"k/l = El’kllpl = Ecklez + Ebklll“l — y”,

where Eby,1r, — 0 because P(I';) — 0 and the sequence by, is uniformly
integrable. Thus Ecg, 1, — y”. We have ¢, (w)1r, (w) € C because ¢y, (w) €
C and 0 € C. Consequently, Ecy,1r, € C as the set C' is convex (see, e.g.,
[1], Appendix II, Lemma 1). Therefore y" € C since Ecy, 1r, — " and C is
closed.



4th step. We obtained that y — 3y =y’ € C, i.e., ¥ <¢ y. Furthermore,
Ez(w) =14/, so that Fx(w) <¢ y, where z(w) €Ls(xk(w)) (a.s.). It remains
to observe that the inclusion z(w) €Ls(zi(w)) (a.s.) implies the existence
of a sequence (kp,(w))>_; of integer-valued random variables such that
holds. Indeed, since z(w) €Ls(xg(w)) (a.s.), for almost all w there exists a
sequence £ = (k)72 of natural numbers k,, for which

1<k <ky<..and limzg, = z(w). (4)

Denote by A the set of (w, k) satisfying . This set is measurable with
respect to F x B(N°°), where N*° := N x N x ... is the product of a countable
number of copies of the discrete space N := {1, 2, ...} and B(-) stands for the
Borel o-algebra. Since (N*°, B(N*°)) is a standard measurable spaceﬂ we
can apply Aumann’s measurable selection theorem (see e.g. [I], Appendix
I, Corollary 3) and construct a measurable mapping x(w) of £ into N> for
which (w,v(w)) € A for almost all w. The sequence k(w) = (kn(w))oo_; of
measurable integer-valued random variables satisfies and . O

4. Let G be a sub-c-algebra of F and let C(w) be a pointed closed
convex cone in R"” depending Q—measurablyﬂ on w. A random vector z(w)
is said to be conditionally integrable (with respect to the o-algebra G) if
Ef|lz(w)||G] < oo (a.s.). A sequence of random variables i (w), k = 1,2, ...,
is said to be uniformly conditionally integrable if

Jim sup E[150/115,151m)10] = 0 (a5 (5)

The following result is a version of Theorem 1 for conditional expecta-
tions.

Theorem 2. Let zi(w), k = 1,2,..., be conditionally integrable random
vectors in R™ and y(w) a random vector in R™ such that
Elzi(w)|G] = y(w) (a.s.). (6)

If the sequence p(xi(w),C(w)) is uniformly conditionally integrable, then
there exists a sequence of integer-valued random variables 1 < kij(w) <
ka(w) < ... and a conditionally integrable random vector x(w) such that

Jim 7y, ) (W) = 2(w) (a.s.)

2 A measurable space is called standard if it is isomorphic to a Borel subset of a complete
separable metric space with the Borel measurable structure.

3A set C(w) C R™ is said to depend G-measurably on w if its graph {(w,c) : ¢ € C(w)}
belongs to G x B(R"™).



and
Elz(w)|9] <o) y(w) (as.).

In the case when C(w) = R’} Theorem 2 was proved in [7], Appendix A,
Proposition A.2. For reviews of various results related to multidimensional
Fatou lemmas, see Balder and Hess [4] and Hess [15].

Some comments regarding the assumptions of Theorem 2 are in order.
Clearly a sequence of random variables fi(w) is uniformly conditionally
integrable if it is conditionally integrably bounded, i.e. |Bip(w)] < a(w),
where El|a(w)||G] < oo (a.s.). The last condition holds, in particular, if
Br(w) is (unconditionally) integrably bounded: |Sx(w)| < a(w) (a.s.) where
Ela(w)|< oco. It should be noted that uniform integrability does not neces-
sarily imply uniform conditional integrability.

5. Proof of Theorem 2. 1st step. Let us regard the sequence of random
vectors 2°(w) = (z1(w),x2(w),...) as a random element of the standard
measurable space (X, B*) := (X,B) x (X,B) x ..., where X := R" and
B = B(X) is the Borel o-algebra on X. Let m(w,dz>) be the regular condi-
tional distribution of x°°(w) given the o-algebra G (see, e.g., [1], Appendix I,
Theorem 1). Denote by 2¢° the kth element of the sequence 2°° = (x1, x2, ...)
regarded as a function of x*°. By virtue of @ and in view of the uniform
conditional integrability of fi(w) := p(zr(w), C(w)), we have

/ (@, dz™)af® = ElaxlG)(w) > y(w) [ax = 2x(w)], (7)

Jim_sup [ (0, 5ol C@)Lpige ooz

= lim_ Sup BBk, >my|G)(w) =0 (8)

for all w belonging to some G-measurable set €2y C Q of measure one. It
follows from and that the assumptions of Theorem 1 are satisfied, and
so for each w € € there exists a B>-measurable vector function w®(z*)
integrable with respect to 7(w, ) and such that

/W(w,dxoo)ww(xoo) <o) ¥(W)

and
w”(x™) € Ls (™) for m(w, -)-almost all x>

where Ls (2°°) is the set of the limit points of the sequence x> = (z1, x2, ...).



2nd step. We will use the following fact. There exists a function ¢ :
[0,1] x X>° — R" jointly measurable with respect to B[0,1] x B> (where
B[0,1] is the Borel o-algebra on [0,1]) and possessing the following prop-
erty. For each finite measure p on B> and each B°°-measurable function
[+ X — R", there exists r € [0,1] such that (r,z>) = f(z*°) for u-
almost all £°° € X°°. This result establishes the existence of a ”"universal”
jointly measurable function parametrizing all equivalence classes of measur-
able functions X*° — R™ with respect to all finite measures: any such class
contains a representative of the form (r,-), where r is some number in
[0,1]. The result (extending Natanson [I7], Chapter 15, Section 3, Theorem
4) follows from Theorem AI.3 in [I2] using the fact that all uncountable
standard measurable spaces are isomorphic to the segment [0, 1] with the
Borel o-algebra (see e.g. Dynkin and Yushkevich [10], Appendix 2).

3rd step. For each w € (1, consider the set U(w) of those r € [0, 1] for
which the function v (r, -) satisfies

/ﬂ-(wvdxoo)w(rv :COO) SC(w) y(w)a

P(r,z>°) € Ls (z°°) for m(w,-)-almost all . 9)

Observe that for w € Q the set U(w) is not empty because it contains an el-
ement r € [0, 1] such that (r, x*°) = w*(z>°) for 7(w, -)-almost all x>°. Fur-
ther, the set of pairs (w, ) satisfying r € U(w) is G x B[0, 1]-measurable be-
cause m(w,dx>) is a conditional distribution given G, the function ¥ (r, )
is B[0, 1] x B*°-measurable, C'(w) and y(w) are G-measurable, and the con-
straint in @ can be written as

/ﬂ'(w,dxoo)F(r, ) =1, (10)
where F'(r,z°°) is the indicator function of the set
{(r,z>) : Y(r,x>) € Ls (z™)} € B[0,1] x B*=.

The last inclusion follows from the fact that z €Ls (2*°) if and only if for
each M =1,2,...and [ = 1,2, ... there exists k > [ such that |z —z3°| < 1/M.

4th step. By virtue of Aumann’s measurable selection theorem (see
above), there exists a G-measurable function r(w) such that r(w) € U(w)
(a.s.). Define



Since m(w, dz*>°) is the conditional distribution of *°(w) given G and r(w)
is G-measurable, we have

Elz(w)|9] = El¢(r(w), 2 (w))|G] = /W(%dﬁo)@b(?“(@,m“) <y(w) (as.).

Furthermore, x(w) €Ls (z*°(w)) (a s.) because this inclusion is equivalent
to the equality F'(r(w),z*(w)) =1 (a.s.) and
)

EF(r(w), 2™ (w)) = E{E[F(r(w), 2> (w))|9]} =

E/W(w,dxoo)F(r(w),xoo) 1

by virtue of (9) and (L0). Since z(w) €Ls(z*(w)) (a.s.), by Aumann’s
theorem, there exist integer-valued random variables 1 < k1 (w) < ko(w) <

such that lim x, () (w) = z(w) a.s.; this was shown at the end of the proof
of Theorem 1. O
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