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A Multidimensional Fatou Lemma for

Conditional Expectations

E. Babaei∗, I. V. Evstigneev∗∗ and K. R. Schenk-Hoppé∗∗∗

Abstract: The classical multidimensional version of Fatou’s lemma (Schmeidler

[20]) originally obtained for unconditional expectations and the standard non-

negative cone in a finite-dimensional linear space is extended to conditional ex-

pectations and general closed pointed cones.

Key words and Phrases: Cones in linear spaces; Induced partial orderings;

Sequences of random vectors, Fatou’s lemma; Conditional expectations

2010 Mathematics Subject Classifications: 49J53, 28A20, 49J45, 46G10,

91B02, 60A10

∗Department of Economics, University of Manchester, Oxford Road, Manch-

ester M13 9PL, UK. E-mail: esmaeil.babaeikhezerloo@manchester.ac.uk.
∗∗Department of Economics, University of Manchester, Oxford Road, Manch-

ester M13 9PL, UK. E-mail: igor.evstigneev@manchester.ac.uk. (Corresponding

author.)
∗∗∗Department of Economics, University of Manchester, Oxford Road, Manch-

ester M13 9PL, UK, and Department of Finance, NHH – Norwegian School of Eco-

nomics, Helleveien 30, 5045 Bergen, Norway. E-mail: klaus.schenk-hoppe@manchester.ac.uk.

1



1. Fatou’s lemma in several dimensions, the first version of which was
obtained by Schmeidler [20], is a powerful measure-theoretic tool initially
developed in Mathematical Economics in connection with models of ”large”
economies with atomless measure spaces of agents; see Aumann [3] and
Hildenbrand [16]. In this note we provide two new versions of this lemma:
one for unconditional and the other for conditional expectations. Both deal
with cones in an n-dimensional linear space Rn more general than the non-
negative orthant Rn+ as considered in [20]. Our results are motivated by the
applications of the theory of von Neumann-Gale [21, 14] dynamical systems
to the modeling of financial markets with frictions—transaction costs and
portfolio constraints [9, 11, 13, 6, 5].

2. Let (Ω,F , P ) be a probability space and C a pointed closed cone1 in
Rn. We write a ≤C b if b − a ∈ C. Let | · | be a norm in Rn. The distance
measured in terms of the norm | · | between a point a and a set A in Rn is
denoted by ρ(a,A). We will use the standard notation Ls(xk) for the set of
limit points of the sequence (xk).

Recall that a sequence of random variables βk(ω) is called uniformly
integrable if

lim
H→∞

sup
k
E|βk|1{|βk|≥H} = 0. (1)

Property (1) holds if and only if the following two conditions are satisfied:
a) supE|βk| < ∞; b) limE|βk|1Γk

= 0 for any sequence of events Γk with
P (Γk)→ 0 (see, e.g., Neveu [18]).

Theorem 1. Let xk(ω), k = 1, 2, ..., be a sequence of random vectors
in Rn such that E|xk(ω)| < ∞ and Exk(ω) → y, where y is some vector
in Rn. If the sequence ρ(xk(ω), C) is uniformly integrable, then there exist
integer-valued random variables

1 < k1(ω) < k2(ω) < ... (2)

and a random vector x(ω) such that E|x| <∞,

lim
m→∞

xkm(ω)(ω) = x(ω) (a.s.) (3)

and
Ex(ω) ≤C y.

Theorem 1 is a version of the multidimensional Fatou lemma in [20]
where it is assumed that C = Rn+ and xk(ω) ∈ C, so that ρ(xk(ω), C) = 0.

1A set C in a linear space is called a cone if it contains with any its elements x, y any
non-negative linear combination λx+µy (λ, µ ≥ 0) of these elements. The cone C is called
pointed if the inclusions x ∈ C and −x ∈ C imply x = 0.
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It also extends a result in the paper by Cornet et al. [8], Theorem B, p. 194,
in which the function ρ(xk(ω), C) is required to be integrably bounded.

3. Proof of Theorem 1. 1st step. We have xk(ω) = ck(ω) + bk(ω),
where ck(ω) ∈ C and |bk(ω)| = ρ(xk(ω), C) (a.s.). By assumption, the
sequence |bk| is uniformly integrable, and so H := supE |bk| < ∞. Since
ck = xk − bk, we have E|ck| ≤ E|xk| + H < ∞, and so the random vectors
ck are integrable. Furthermore, the sequence Eck = Exk − Ebk is bounded
because sup |Ebk| ≤ supE|bk| = H and the sequence Exk is bounded since
it converges.

Note that the boundedness of Eck implies the boundedness of E|ck|
because the random vectors ck(ω) take on their values in the closed pointed
cone C. Indeed, consider a strictly positive linear functional g on C (gc > 0,
0 6= c ∈ C); it exists for each closed pointed cone. For such a functional
g, there exists γ > 0 such that gc ≥ γ|c| for all c ∈ C. Consequently,
gEck = Egck ≥ γE|ck|, which proves the boundedness of E|ck|. This, in
turn, implies that E|xk| is bounded because supE|xk| ≤ sup(E|ck|+E|bk|) ≤
supE|ck|+H <∞.

2nd step. Since supE|xk| < ∞, we can use the ”biting lemma” (e.g.
Saadoune and Valadier [19], p. 349) and find a subsequence (xkl) of (xk)
and measurable sets Γ1 ⊇ Γ2 ⊇ ... such that

⋂
lΓl = ∅ and the sequence

x′kl := xkl1Ω\Γl
is uniformly integrable. Put x′′kl := xkl1Γl

. Clearly xkl =
x′kl + x′′kl .

For each ω the sequence x′kl(ω) coincides with xkl(ω) from some l(ω) on
because every ω belongs to Ω\Γl from some l(ω) on. Consequently, for all
ω we have Ls(x′kl) = Ls(xkl) ⊆ Ls(xk).

The sequences E|x′kl | and E|x′′kl | are bounded because |x′kl | ≤ |xkl | and
|x′′kl | ≤ |xkl |. By passing to a subsequence, we can assume without loss of
generality that Ex′kl → y′ and Ex′′kl → y′′ for some y′, y′′ ∈ Rn. Clearly,
y′ + y′′ = y because Ex′kl + Ex′′kl = Exkl → y.

3rd step. Since the sequence (x′kl) is uniformly integrable and Ex′kl → y′,
by Artstein’s theorem [2], Theorem A, there exists an integrable random
vector x(ω) such that x(ω) ∈Ls(x′kl(ω)) ⊆Ls(xk(ω)) (a.s.) and Ex(ω) = y′.
We have

Ex′′kl = Exkl1Γl
= Eckl1Γl

+ Ebkl1Γl
→ y′′,

where Ebkl1Γl
→ 0 because P (Γl) → 0 and the sequence bkl is uniformly

integrable. Thus Eckl1Γl
→ y′′. We have ckl(ω)1Γl

(ω) ∈ C because ckl(ω) ∈
C and 0 ∈ C. Consequently, Eckl1Γl

∈ C as the set C is convex (see, e.g.,
[1], Appendix II, Lemma 1). Therefore y′′ ∈ C since Eckl1Γl

→ y′′ and C is
closed.
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4th step. We obtained that y − y′ = y′′ ∈ C, i.e., y′ ≤C y. Furthermore,
Ex(ω) = y′, so that Ex(ω) ≤C y, where x(ω) ∈Ls(xk(ω)) (a.s.). It remains
to observe that the inclusion x(ω) ∈Ls(xk(ω)) (a.s.) implies the existence
of a sequence (km(ω))∞m=1 of integer-valued random variables such that (3)
holds. Indeed, since x(ω) ∈Ls(xk(ω)) (a.s.), for almost all ω there exists a
sequence κ = (km)∞k=1 of natural numbers km for which

1 < k1 < k2 < ... and limxkm = x(ω). (4)

Denote by A the set of (ω, κ) satisfying (4). This set is measurable with
respect to F×B(N∞), where N∞ := N×N× ... is the product of a countable
number of copies of the discrete space N := {1, 2, ...} and B(·) stands for the
Borel σ-algebra. Since (N∞,B(N∞)) is a standard measurable space2, we
can apply Aumann’s measurable selection theorem (see e.g. [1], Appendix
I, Corollary 3) and construct a measurable mapping κ(ω) of Ω into N∞ for
which (ω, ν(ω)) ∈ A for almost all ω. The sequence κ(ω) = (km(ω))∞m=1 of
measurable integer-valued random variables satisfies (4) and (3). �

4. Let G be a sub-σ-algebra of F and let C(ω) be a pointed closed
convex cone in Rn depending G-measurably3 on ω. A random vector x(ω)
is said to be conditionally integrable (with respect to the σ-algebra G) if
E[|x(ω)| |G] <∞ (a.s.). A sequence of random variables βk(ω), k = 1, 2, ...,
is said to be uniformly conditionally integrable if

lim
H→∞

sup
k
E[|βk|1{|βk|≥H}|G] = 0 (a.s.). (5)

The following result is a version of Theorem 1 for conditional expecta-
tions.

Theorem 2. Let xk(ω), k = 1, 2, ..., be conditionally integrable random
vectors in Rn and y(ω) a random vector in Rn such that

E[xk(ω)|G]→ y(ω) (a.s.). (6)

If the sequence ρ(xk(ω), C(ω)) is uniformly conditionally integrable, then
there exists a sequence of integer-valued random variables 1 < k1(ω) <
k2(ω) < ... and a conditionally integrable random vector x(ω) such that

lim
m→∞

xkm(ω)(ω) = x(ω) (a.s.)

2A measurable space is called standard if it is isomorphic to a Borel subset of a complete
separable metric space with the Borel measurable structure.

3A set C(ω) ⊆ Rn is said to depend G-measurably on ω if its graph {(ω, c) : c ∈ C(ω)}
belongs to G × B(Rn).

4



and
E[x(ω)|G] ≤C(ω) y(ω) (a.s.).

In the case when C(ω) = Rn+ Theorem 2 was proved in [7], Appendix A,
Proposition A.2. For reviews of various results related to multidimensional
Fatou lemmas, see Balder and Hess [4] and Hess [15].

Some comments regarding the assumptions of Theorem 2 are in order.
Clearly a sequence of random variables βk(ω) is uniformly conditionally
integrable if it is conditionally integrably bounded, i.e. |βk(ω)| ≤ α(ω),
where E[|α(ω)||G] <∞ (a.s.). The last condition holds, in particular, if
βk(ω) is (unconditionally) integrably bounded: |βk(ω)| ≤ α(ω) (a.s.) where
E|α(ω)|<∞. It should be noted that uniform integrability does not neces-
sarily imply uniform conditional integrability.

5. Proof of Theorem 2. 1st step. Let us regard the sequence of random
vectors x∞(ω) := (x1(ω), x2(ω), ...) as a random element of the standard
measurable space (X∞,B∞) := (X,B) × (X,B) × ..., where X := Rn and
B = B(X) is the Borel σ-algebra on X. Let π(ω, dx∞) be the regular condi-
tional distribution of x∞(ω) given the σ-algebra G (see, e.g., [1], Appendix I,
Theorem 1). Denote by x∞k the kth element of the sequence x∞ = (x1, x2, ...)
regarded as a function of x∞. By virtue of (6) and in view of the uniform
conditional integrability of βk(ω) := ρ(xk(ω), C(ω)), we have∫

π(ω, dx∞)x∞k = E[xk|G](ω)→ y(ω) [xk = xk(ω)], (7)

lim
H→∞

sup
k

∫
π(ω, dx∞)ρ(x∞k , C(ω))1{ρ(x∞k ,C(ω))≥H}

= lim
H→∞

sup
k
E[βk1{βk≥H}|G](ω) = 0 (8)

for all ω belonging to some G-measurable set Ω1 ⊆ Ω of measure one. It
follows from (7) and (8) that the assumptions of Theorem 1 are satisfied, and
so for each ω ∈ Ω1 there exists a B∞-measurable vector function wω(x∞)
integrable with respect to π(ω, ·) and such that∫

π(ω, dx∞)wω(x∞) ≤C(ω) y(ω)

and
wω(x∞) ∈ Ls (x∞) for π(ω, ·)-almost all x∞

where Ls (x∞) is the set of the limit points of the sequence x∞ = (x1, x2, ...).
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2nd step. We will use the following fact. There exists a function ψ :
[0, 1] × X∞ → Rn jointly measurable with respect to B[0, 1] × B∞ (where
B[0, 1] is the Borel σ-algebra on [0, 1]) and possessing the following prop-
erty. For each finite measure µ on B∞ and each B∞-measurable function
f : X∞ → Rn, there exists r ∈ [0, 1] such that ψ(r, x∞) = f(x∞) for µ-
almost all x∞ ∈ X∞. This result establishes the existence of a ”universal”
jointly measurable function parametrizing all equivalence classes of measur-
able functions X∞ → Rn with respect to all finite measures: any such class
contains a representative of the form ψ(r, ·), where r is some number in
[0, 1]. The result (extending Natanson [17], Chapter 15, Section 3, Theorem
4) follows from Theorem AI.3 in [12] using the fact that all uncountable
standard measurable spaces are isomorphic to the segment [0, 1] with the
Borel σ-algebra (see e.g. Dynkin and Yushkevich [10], Appendix 2).

3rd step. For each ω ∈ Ω, consider the set U(ω) of those r ∈ [0, 1] for
which the function ψ(r, ·) satisfies∫

π(ω, dx∞)ψ(r, x∞) ≤C(ω) y(ω),

ψ(r, x∞) ∈ Ls (x∞) for π(ω, ·)-almost all x∞. (9)

Observe that for ω ∈ Ω1 the set U(ω) is not empty because it contains an el-
ement r ∈ [0, 1] such that ψ(r, x∞) = wω(x∞) for π(ω, ·)-almost all x∞. Fur-
ther, the set of pairs (ω, r) satisfying r ∈ U(ω) is G ×B[0, 1]-measurable be-
cause π(ω, dx∞) is a conditional distribution given G, the function ψ(r, x∞)
is B[0, 1]× B∞-measurable, C(ω) and y(ω) are G-measurable, and the con-
straint in (9) can be written as∫

π(ω, dx∞)F (r, x∞) = 1, (10)

where F (r, x∞) is the indicator function of the set

{(r, x∞) : ψ(r, x∞) ∈ Ls (x∞)} ∈ B[0, 1]× B∞.

The last inclusion follows from the fact that z ∈Ls (x∞) if and only if for
each M = 1, 2, ... and l = 1, 2, ... there exists k ≥ l such that |z−x∞k | < 1/M .

4th step. By virtue of Aumann’s measurable selection theorem (see
above), there exists a G-measurable function r(ω) such that r(ω) ∈ U(ω)
(a.s.). Define

x(ω) := ψ(r(ω), x∞(ω)) [x∞(ω) = (x1(ω), x2(ω), ...)].
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Since π(ω, dx∞) is the conditional distribution of x∞(ω) given G and r(ω)
is G-measurable, we have

E[x(ω)|G] = E[ψ(r(ω), x∞(ω))|G] =

∫
π(ω, dx∞)ψ(r(ω), x∞) ≤ y(ω) (a.s.).

Furthermore, x(ω) ∈Ls (x∞(ω)) (a.s.) because this inclusion is equivalent
to the equality F (r(ω), x∞(ω)) = 1 (a.s.) and

EF (r(ω), x∞(ω)) = E {E[F (r(ω), x∞(ω))|G]} =

E

∫
π(ω, dx∞)F (r(ω), x∞) = 1

by virtue of (9) and (10). Since x(ω) ∈Ls (x∞(ω)) (a.s.), by Aumann’s
theorem, there exist integer-valued random variables 1 < k1(ω) < k2(ω) < ...
such that limxkm(ω)(ω) = x(ω) a.s.; this was shown at the end of the proof
of Theorem 1. �
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