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Abstract: Diabetes is a chronic disease that continues to be a primary and worldwide health concern 

since the health of the entire population has been affected by it. Over the years, many academics 

have attempted to develop a reliable diabetes prediction model using machine learning (ML) algo-

rithms. However, these research investigations have had a minimal impact on clinical practice as 

the current studies focus mainly on improving the performance of complicated ML models while 

ignoring their explainability to clinical situations. Therefore, the physicians find it difficult to un-

derstand these models and rarely trust them for clinical use. In this study, a carefully constructed, 

efficient, and interpretable diabetes detection method using an explainable AI has been proposed. 

The Pima Indian diabetes dataset was used, containing a total of 768 instances where 268 are dia-

betic, and 500 cases are non-diabetic with several diabetic attributes. Here, six machine learning 

algorithms (artificial neural network (ANN), random forest (RF), support vector machine (SVM), 

logistic regression (LR), AdaBoost, XGBoost) have been used along with an ensemble classifier to 

diagnose the diabetes disease. For each machine learning model, global and local explanations have 

been produced using the Shapley additive explanations (SHAP), which are represented in different 

types of graphs to help physicians in understanding the model predictions. The balanced accuracy 

of the developed weighted ensemble model was 90% with a F1 score of 89% using a five-fold cross-

validation (CV). The median values were used for the imputation of the missing values and the 

synthetic minority oversampling technique (SMOTETomek) was used to balance the classes of the 

dataset. The proposed approach can improve the clinical understanding of a diabetes diagnosis and 

help in taking necessary action at the very early stages of the disease. 

Keywords: diabetes mellitus; artificial intelligence (AI); machine learning (ML); explainable AI;  

ensemble classifier; soft voting 

 

1. Introduction 

1.1. Diabetes-Facts and Figures 

Diabetes related diseases have recently become one of the top ten causes of death in 

developing countries. The government and individuals are funding research projects to 

find an easier and faster way to detect the disease at an early stage. There are two types 

of diabetes: type-1 and type-2. Type 2 diabetes is characterized by high blood sugar, insu-

lin resistance, and a relative lack of insulin. Insulin resistance occurs due to excessive fat 

in the abdomen and around the organs, which is called visceral fat. The majority of obese 

individuals have elevated plasma levels of free fatty acids (FFA) which are known to 

cause peripheral (muscle) insulin resistance [1]. Type-1 diabetes is a condition in which 

blood sugar levels rise due to a shortage of insulin, causing problems with the blood sugar 

metabolism. Most food people eat is broken down into sugar (glucose) and released into 
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the bloodstream. When blood sugar levels rise, the pancreas cell releases insulin, which 

provides energy for everyday tasks [2]. Excessive blood sugar stays in the bloodstream 

when there is not enough insulin or if the cells stop responding to the insulin. This can 

cause serious health problems such as heart disease, vision loss, and kidney disease in the 

long run. The symptoms of diabetes generally are physical weakness, itching, delayed 

healing, muscle stiffness, polydipsia, and visual burring [3]. Diabetes is a metabolic con-

dition that results in millions of deaths each year throughout the world due to a variety 

of health complications. By 2030, the number of people with diabetes in developing coun-

tries is expected to rise from 84 million to 228 million [4] imposing a significant load on 

every healthcare system around the world [5]. 

1.2. Problem Statement 

Diabetes is the reason for the change in glucose levels in the body. Some preventive 

measures, such as a balanced diet and a healthy lifestyle, can be considered [6] to reduce 

the risks of diabetes. Diagnosing diabetes is easier with a regular medical checkup. Labor-

atory tests are also performed to detect the disease. Patients with the type 1 diabetes re-

quire life-saving insulin for as long as they stay alive, though, for the type 2, most of them 

do not need insulin. This unhealthy situation depletes individuals, families, and national 

resources if left untreated. An early identification and palliative treatment are essential 

for prediabetic patients’ health and well-being. An intelligent system based on disease 

symptoms and laboratory tests will be helpful in the diabetes diagnosis and prevention. 

1.3. Artificial Intelligence (AI) Research Challenges in a Diabetes Diagnosis 

AI has been used for disease diagnosis for several years. It offers excellent outcomes 

for detecting different types of diseases [7,8], forecasting the pandemic outbreak in any 

country or region [9], and for many other applications. An intelligent ML-based diagnostic 

method can correctly detect diabetes at an early stage. For identifying the presence and 

absence of diabetes with a ML-based system, an appropriate dataset with relevant features 

for training is essential. There has been much research carried out on the diagnosis of 

diabetes. Some research has obtained poor accuracy [2,10,11] because of an inappropriate 

model selection and a lack of data preprocessing. Although, some research has provided 

a better performance in terms of accuracy, the explanations behind the decision have not 

been described adequately [12,13]. Therefore, both reliable and explainable AI models are 

required in the medical area for a better interpretation of the model output and easily 

comprehensible by the medical and health professionals. 

1.4. Research Motivation 

Pima is a very well-known diabetes dataset and recent work based on this have 

shown good results. Since the dataset has a high variance, it is easy to achieve an inflated 

accuracy using a train test split approach. However, it still remains a challenge to achieve 

a reliably high accuracy using the cross-validation (CV) technique. Furthermore, the class 

of the dataset is imbalanced, and this requires applying a proper class balancing technique 

to avoid any overfitting or underfitting problems. Finally, the lack of explainability of the 

existing ML methods, diabetes detection, and progression prediction still remain a chal-

lenging area despite the significant current research efforts. 

Although diagnosing diabetes has notably improvement in recent studies, unfortu-

nately, all of the earlier research was concentrated on enhancing the model’s performance 

while ignoring the interpretability challenges. As a result, despite this research making 

significant breakthroughs in the disease prediction, they are unlikely to be accepted by 

the medical community. The necessity of explaining the black box model and making it 

understandable to everyone motivated the authors to develop efficient and interpretable 

models for the diagnosis of diabetes. 
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1.5. Aim, Contribution, and Paper Organization 

This research intends to provide an interpretability of the ML models and enhance 

the prediction performance with data pre-processing in order to diagnose diabetes. For 

the preprocessing, the data was scaled for some algorithms, the missing values were re-

placed using median and class imbalance, and were handled using the SMOTETomek. 

Thus, the used models would offer an effective, reliable, and explainable diabetes predic-

tion. 

The major contributions of this work are listed in the following bullet points. 

• Several machine learning algorithms were applied and using the two best classifica-

tion methods, an ensemble method was developed to diagnose diabetes. 

• The model’s inside explainability was provided to make the model more reliable and 

to produce a good balance between the accuracy and interpretability, which will be 

convenient for doctors or clinicians to understand and apply the model. 

• SHAP plots were created to provide physicians with some insights into the main 

driving factors affecting the disease prediction from various perspectives, including 

visualization, feature importance, and each attribute’s contribution to making a de-

cision. 

The rest of the paper is arranged as follows. The current literature is reviewed in 

Section 2. The proposed approach along with the description of the datasets and algo-

rithms is presented in Section 3. The model’s performance with a brief explanation behind 

the decision are presented in Section 4. Finally, Section 5 concludes the key findings of the 

work and outlines the important directions for future work. 

2. Literature Review 

Researchers have been experimenting with various ML approaches to predict dis-

eases as early as possible. Various ML algorithms, particularly hybrid techniques, have 

been developed to improve the model outcomes. Several researchers have used the Pima 

Indian diabetes dataset (PIDD). Some of the related works are discussed here. 

Different types of ML algorithms have been used in [6,12–17] for the diagnosis of 

diabetes. Since the PIDD has imbalanced classes, the preprocessing classes need to be bal-

anced. In these studies, they did not balance the class of the PIDD except for [17]. That’s 

why the models were biased toward the majority class. In [14], for the PIDD, missing val-

ues were replaced by the mean values. Then, the incorrectly classified data was removed 

using the k means clustering algorithm. A decision tree classifier was used for the classi-

fication using the reduced dataset. For the same dataset, other researchers [15] used sev-

eral machine learning algorithms and the support vector machine (SVM) performed better 

than the others, with an accuracy of 78.20% (using 70% of the data for the training). Here, 

accuracy is the number of correctly predicted diabetic and non-diabetic patients from the 

records of all of the patients. This accuracy is comparatively poor comparing others’ ac-

curacy using the train test split ratio. The models were built using three machine learning 

algorithms with the PIDD dataset [16], where the SVM provided the highest accuracy of 

80% with 70% of the data used for the training. The same dataset was also used by Tiwari 

and Singh [12] and a decent accuracy of 78.9% was obtained by the XGBoost classifier. In 

another study [13], researchers proposed a ML-based e-diagnosis system and investigated 

the algorithm’s performance using a variety of fine-tuned features. For the binary classi-

fication, the naive Bayes model appeared to perform well with a fine-tuned selection of 

features, whereas the random forest (RF) model did better with additional features. A vast 

difference was observed between sensitivity and specificity because of the imbalanced 

class. Kibria et al. [6] found an accuracy of 83% in diabetes detection using the logistic 

regression (LR) where the KNN algorithm was employed for the imputation of the miss-

ing values. By using the appropriate process to replace the missing values and balance the 

data distribution, opportunities can be created to improve the prediction performance. 
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There is room for improvement in the preprocessing steps of these studies. The ap-

propriate approach to handle a lot of the missing values and imbalanced classes resulted 

in a poor accuracy. In these works, the authors did not use any hybrid method or ensemble 

learning for further improvement in the performance metrics. A dataset with imbalanced 

classes could be the cause of the poor outcomes. Balancing the dataset, taking the neces-

sary steps to replace the missing values and select suitable algorithms will help the model 

to predict more accurately. The drawback of the class imbalance was solved by Ramesh 

et al. [17] by applying the SVM-RBF kernel for the classification, the SMOTE technique for 

balancing the dataset, and some feature selection techniques for extracting the character-

istic features. Using a ten-fold stratified cross-validation approach, this study attained an 

accuracy of 83.20%, a sensitivity of 87.20%, and a specificity of 79%. 

The ensemble models used in [10,18–20], showed a better performance than any sin-

gle ML algorithm, that is why the usage of ensemble models to diagnose disease has in-

creased. In [21], the researchers built a decision-level fusion model to predict heart disease, 

which was further improved by applying the weighted score fusion [7]. The ensemble 

method was used in the diabetes detection and found promising results. The ensemble 

technique was also applied by Kumari et al. [10], who obtained an accuracy of 79.04% by 

applying a soft voting classifier for diagnosing diabetes mellitus. The efficiency of the en-

semble soft voting classifier was tested using a breast cancer dataset, where an accuracy 

of 97% was obtained. For preprocessing, they used a min-max normalization, and for the 

missing values, the median of the attribute was used. Fuzzy logic with the fusion model 

was utilized in [18]. Two types of models, the SVM and the ANN, were combined for the 

classification. The results of these models became the fuzzy model’s input membership 

function, and the fuzzy logic determined whether a patient had diabetes or not. 94.87% 

accuracy was obtained using 70% of the data for training which proved to be better than 

the earlier studies. However, the interpretability of the ML models was not shown. Abdol-

lahi and Nouri-Moghaddam [19] introduced the stacked generalization and they used an 

ensemble approach with a genetic algorithm to diagnose the disease with a promising 

outcome. An accuracy of 98% was achieved using 70% of the data for training. 

The lack of preprocessing and imbalanced classes in the dataset resulted in a poor 

accuracy in these studies [10,18,19]. These limitations were overcome by Fitriyani et al. 

[20] who developed an ensemble model to predict the diabetes disease. The outliers were 

removed using the isolation forest, and the class of the data was balanced using the SMO-

TETomek. The model built using four datasets provided an accuracy of 96.74%, 85.73%, 

75.78%, and 100% for diagnosing diabetes (dataset-1, 17 features) and hypertension (da-

taset-2,3) though the interpretability of the model was missing. The last dataset was used 

to find the relation between diabetes and hypertension. They did not use the Pima dataset. 

Finally, they created a smartphone application for real-world use. 

The above-mentioned works achieved a better output in terms of accuracy, but the 

explanation behind the decision was not discussed. The contribution level of each feature 

behind the prediction of a decision was not explained, hence making it difficult to under-

stand how a decision was made by the model. Most of the works [6,10,12,16,19,22] used 

the train test split for diagnosing the diabetes disease, which resulted in a high accuracy. 

For example in [19], the accuracy was 98% for an imbalanced class of dataset where train-

ing, validation, and testing the amount of data was 70%, 15%, and 15% respectively. Fur-

thermore, an accuracy of 83% was obtained using 70% of the data for training with an 

imbalanced class in [6]. The variance of the Pima dataset is very high and using a train test 

split ratio will never return a true accuracy, rather it will give a biased accuracy which is 

possible that the model is only giving this high accuracy for only a particular set of the 

training data. Moreover, the training accuracy also was not reported, therefore no option 

is available to verify whether the model was under-fitting or not. 

Unfortunately, all of the earlier research concentrated on improving the model’s per-

formance while ignoring the interpretability challenges. As a result, despite these studies 



Sensors 2022, 22, 7268 5 of 38 
 

 

making significant breakthroughs in the disease prediction, they are unlikely to be ac-

cepted by the medical community. Therefore, a notable gap exists between the academic 

research findings and their effective application in medical practice due to multiple rea-

sons [23]. Furthermore, despite their great accuracy, physicians frequently do not rely on 

the most up-to-date techniques and methodologies [24]. Most of these approaches and 

methods are fundamentally non-transparent, difficult to understand, and unable to an-

swer simple questions such as: Why is this conclusion drawn? Why it is essential from a 

medical standpoint [25]? Patterns discovered from the datasets using complicated ML al-

gorithms are not always accurate or easily understandable. Therefore, the medical spe-

cialists do not accept the black-box models that do not provide a thorough and simple 

explanation [26]. For these reasons, the clinical ML approaches typically avoid complex 

models in favor of simpler and more interpretable models with the sacrifice of a higher 

accuracy [27]. Many researchers have attempted to open the black box of sophisticated 

models and explain their decisions by understanding how they function or by demon-

strating their decisions [28]. This emerging approach is known as XAI, which stands for 

“accountable, transparent, actionable, or explainable artificial intelligence.” The ability of 

the ML algorithms to explain (mathematically) or predict their outcomes in terms human 

comprehension is explainability. 

Due to the biased accuracy and lack of explainability [2,12,13] of the existing ML 

methods, diabetes detection and progression prediction still remain a challenging area, 

despite the significant current research efforts. This research intends to provide an inter-

pretability of the ML models and enhance the prediction performance using the cross-

validation with the data pre-processing to diagnose diabetes. Thus, the used models 

would offer an effective, reliable, and explainable disease prediction. 

3. Methodology 

3.1. Proposed Approach 

The whole workflow of the proposed approach is demonstrated in Figure 1. The data 

was downloaded from Kaggle (https://www.kaggle.com/datasets/uciml/pima-indians-di-

abetes-database, Accessed 10 September 2022) then it was cleaned and pre-processed 

(missing values imputation, class balance, etc.). Following the preprocessing, the stratified 

data was five-fold cross-validated. The class of the data was highly imbalanced. The SMO-

TETomek algorithm was used to balance the classes after CV for each fold.. It should be 

noted that the SMOTETomek was only applied to the training dataset. The class of the test 

set was not balanced. The class imbalance with the CV should be handled after the train 

test split, since if the class balancing was produced before the cross-validation, it will affect 

the test set. Therefore, the appropriate way to use the CV with a balanced class of dataset 

is to balance the class after the CV. Five isolated folds were generated from the training 

set using the CV and then the SMOTETomek was applied to each isolated fold. Conse-

quently, each training fold produced a balanced class of the training fold, but the test fold 

remained the same. This CV method has also been discussed in [22]. Following the bal-

ancing of the class of the data, six ML algorithms were applied: artificial neural network 

(ANN), random forest (RF), AdaBoost classifier (ADA), XGBoost classifier (XGB), support 

vector machine (SVM), and logistic regression (LR) were used for training. Based on the 

performance of the algorithms, the two best-performing algorithms were selected from 

the six ML algorithms and a weighted ensemble model was developed for the diagnosis 

of diabetes. Different weights have been selected for every fold with XGB, and the Ada-

Boost order, respectively. A soft voting classifier was used to develop the ensemble model. 

Following the training, all trained models were used to predict the test data. Here, the 

LIME package and the SHAP tool were used for the model explanation. The trained ML 

algorithms and the ensemble model are explainable supervised algorithms. Both the 

global and local explanations were described using those algorithms. 

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
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Figure 1. Overall workflow of the proposed diabetes detection model. 

3.2. Dataset Description 

The Pima Indian dataset (https://www.kaggle.com/datasets/uciml/pima-indians-di-

abetes-database, Accessed 10 September 2022), used in this work consisted of a total of 

768 instances with nine attributes of diabetes detection to formulate a binary classification 

problem. This dataset contains information about female patients only. Table 1 displays 

the description of the attributes, and Table 2 presents the statistical values of the dataset. 

This dataset was selected because this is a very common publicly available dataset to pre-

dict diabetes, and most researchers employed this dataset to develop models. Therefore, 

it would be convenient to compare the proposed model with others and identify the space 

for improvement. 

Table 1. Description of the attributes available in the Pima Indian Diabetes dataset. 

Attribute 
Attribute 

Type 
Attribute Description 

Pregnancies Numeric Number of times pregnant 

Glucose Numeric Plasma glucose concentration (mmol/L) a 2 h in an oral glucose tolerance test 

Blood Pres-

sure 
Numeric Diastolic blood pressure (mm Hg) 

Skin Thick-

ness 
Numeric Triceps skin fold thickness (mm) 

Insulin Numeric 

2 h serum insulin (mu U/mL): Insulin-resistant (IR) cells lead to prediabetes and type-2 diabe-

tes. ”2 h post glucose insulin level” is a cost-effective, convenient, and efficient indicator to di-

agnose IR [29,30] 

BMI Numeric Body mass index weight in kg/(height in m) 

Diabetes PF Numeric 
Diabetes pedigree function: indicates the function which measures the chance of diabetes 

based on family history. 

Age Numeric Age (years) 

Table 2. Statistical description of the Pima Indian Diabetes dataset. 

 
Pregnan-

cies 
Glucose Blood Pressure 

Skin Thick-

ness 
Insulin BMI 

Diabetes- 

Pedigree Func-

tion 

Age Outcome 

count 768 768 768 768 768 768 768 768 768 
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mean 3.84 121.59 72.37 29.11 153.18 32.42 0.47 33.24 0.34 

std 3.36 30.49 12.2 9.42 98.38 6.88 0.33 11.76 0.47 

min 0 44 24 7 14 18.2 0.07 21 0 

25% 1 99 64 23 87.9 27.5 0.24 24 0 

50% 3 117 72 29 133.7 32.09 0.37 29 0 

75% 6 140.25 80 35 190.15 36.6 0.62 41 1 

max 17 199 122 99 846 67.1 2.42 81 1 

Every feature’s seaborn plot is displayed in Figure 2. The relationship between one 

feature with respect to the other eight features, including itself, has been plotted. This plot 

is helpful in identifying the relationships of the features. If the points are scattered, there 

is no absolute relationship, while if the points are approximately placed in a straight line, 

they show a linear relationship between them. While referring to the seaborn plot, insulin 

vs. glucose and skin thickness vs. BMI are the most positively correlated features. 

The Pearson correlation heatmap between all of the features is displayed in Figure 3. 

It is calculated based on the value of two features and measures the linear relationship 

between them. The correlation between the two features was measured using the Pearson 

correlation. The correlation coefficient values ranged from −1 to +1. A value closer to 0 

implies a weaker correlation. 0 means no correlation. A value closer to 1 or −1 indicates a 

stronger positive or negative correlation, respectively. The strongest positive correlation 

was found between the BMI and skin thickness. While age vs. pregnancies and glucose, 

vs. insulin also showed a positive correlation. There is no noticeably strong negative cor-

relation between the features. The Pearson correlation coefficient was calculated after the 

missing value imputation. 
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Figure 2. Visualization of all of the attributes present in the Pima Indian Diabetes dataset (outcome 

0: non-diabetic and outcome 1: diabetic). 
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Figure 3. Heatmap of Pearson’s correlation coefficients for all diabetes features. 

3.3. Preprocessing 

The first work for any data mining technique is data preprocessing. It plays a vital 

role in model performance [31]. The dataset contained a lot of missing values and the class 

of the data was imbalanced.  

3.3.1. Missing Value Imputation 

The missing values in the dataset are visible in Figure 4 where insulin had the most 

missing data compared to any of the other features. Other features, including skin thick-

ness and pregnancy, were also lacking. Here, some features had zero values which do not 

make any sense. These values were treated as missing values in the dataset. The features 

where zero was treated as missing values were glucose, blood pressure, skin thickness, 

insulin, and the BMI. These zero values were replaced by “NaN” in the dataset. To replace 

the missing values of the features, the median was taken corresponding to the target 

value. Since this was a binary classification, each feature had two medians for two classes. 

For instance, the median for glucose was 107 and 140 for the two classes (Normal and 

diabetic patients), respectively. The missing values of glucose were replaced by 140 for 

the diabetic patients and for the normal patients, it was replaced by 107. 
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Figure 4. Representation of the missing values before the imputation. 

3.3.2. Data Partitioning 

The entire dataset was stratified, and then a five-fold cross-validation was applied to 

the dataset. 

3.3.3. Handling Imbalanced Classes of a Dataset 

There are several methods to make a dataset balanced. In this work, the SMO-

TETomek, a combination of the SMOTE and the Tomek algorithms, was applied. The 

SMOTE is an acronym for synthetic minority oversampling technique. Tomek is an un-

dersampling technique. First, the SMOTE was applied to create new synthetic minority 

samples to obtain a balanced distribution of the classes. Furthermore, the Tomek link was 

used to remove the samples close to the boundary of the two classes in order to increase 

the separation between the two classes [32]. It was applied only to the training dataset and 

the test set remained the same. Table 3 represents the data distribution of each class before 

and after using the SMOTETomek on the training dataset. 

Table 3. Number of classes before and after using the SMOTETomek on the training dataset. 

 Before the SMOTETomek After the SMOTETomek 

Numbers in class 0 (non-diabetic) 400 393 

Numbers in class 1 (diabetic) 214 393 

3.3.4. Feature Scaling 

A min-max normalization was used on the dataset except for the tree-based algo-

rithms such as the random forest, the AdaBoost, and XGBoost classifiers. The SVM, lo-

gistic regression, and the ANN algorithms need normalization. The min-max scaler is de-

fined by Equation (1). 

ℎ′ =
ℎ −min(ℎ)

max(ℎ) − min(ℎ)
 (1) 

where h is the original value, and h’ is the normalized value. 

3.3.5. Weighted Score Approach for the Ensemble Method 

For the ensemble classification, a weighted model was developed. Two weights were 

assigned to the two algorithms used in the ensemble approach. For every fold, a loop was 
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used to check a combination of weights producing the highest accuracy, which was se-

lected for every fold. Since it was a five-fold cross-validation, the weights were updated 

in each fold. 

3.4. Models and Algorithms 

3.4.1. Ensemble Learning 

The individual models were combined in the ensemble approach to improve the 

model’s stability and predictive power [33]. This approach permits a higher predictive 

performance compared to a single model. The ensemble finds ways to combine multiple 

machine learning models into one predictive model. Bagging is used to reduce variance, 

boosting reduces bias, and stacking improves performance. Specific models do well in 

modeling one aspect of the data while others do well with another aspect. Instead of learn-

ing a single complex model, the ensemble model learns several simple models and com-

bines their outputs to produce the final decision. The combined strength of the models 

offsets the individual model variances and biases. The ensemble learning will provide a 

composite prediction where the final accuracy is better than the accuracy of the individual 

classifiers. The weighted soft voting approach has been used in the proposed method and 

the equation is given below: 

�̂� = arg⁡𝑚𝑎𝑥
𝑖

 ∑  

𝑚

𝑗=1

𝑤𝑗𝑝𝑖𝑗 (2) 

Here, p is the predicted probability for each classifier, and wj is the weight given to 

the jth classifier. 

3.4.2. AdaBoost 

The ensemble method is divided into two groups, the sequential or bagging tech-

nique, and the parallel or boosting technique. In sequential ensemble methods, base learn-

ers are generated consecutively. AdaBoost is a sequential ensemble method. The basic 

motivation of the sequential methods is to use the dependence between the base learners 

by weighing the previously mislabeled examples with a higher weight. Therefore, the 

overall performance of a model can be boosted. Bagging combines the results of multiple 

models to obtain a generalized result from a single model. Bagging reduces the variants 

of an estimate by taking the mean of various estimates [34]. 

3.4.3. Random Forest 

The RF is a boosting technique. The parallel ensemble methods are applied wherever 

the base learners are generated, in parallel. Each base learner model is provided with a 

sample of data; these base learners give the output individually. At last, based on the base 

learners’ predictions, the final prediction is made based on the voting classifier. The RF 

builds multiple decision trees and merges them to obtain a more accurate and stable pre-

diction. In the RF, the base learner models are decision trees. Since the errors are often 

reduced dramatically by averaging, the basic motivation of the parallel methods is to use 

independence among the base learners. 

3.4.4. XGBoost 

XGBoost repeatedly builds new models and combines them into an ensemble model. 

First, from one developed model, the error of the residuals for each observation is calcu-

lated. Based on the prior errors, a new model is created to anticipate those residuals. Then 

predictions from this model are added to the ensemble models. Compared to gradient 

boosting algorithms, XGBoost is preferable because it achieves a fair balance of bias and 

variance. 
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3.4.5. Logistic Regression 

The LR is a linear regression transformation algorithm that allows for describing bi-

nary variables in a probabilistic manner. It is a classification algorithm that is used to find 

a relation between attributed and a particular outcome’s probability. The logit function is 

utilized in this classification method, hence the word “Logistic.” It is highly useful in med-

ical diagnoses, given some particular symptoms and characteristics. Like other regression 

analyses, the LR is a type of predictive analysis. It calculates the outcome’s predicted prob-

ability. It is a particular case of linear regression with a categorical target variable. In a 

logistic regression, the effect of the outlier is removed by adding the logit function [34]. 

3.4.6. Support Vector Machine 

A support vector machine (SVM) is a linear model for classification and regression 

problems. Both linear and nonlinear problems can be solved using it. It works in a similar 

way as a linear regression. In the SVM, the algorithm classifies new data by generating a 

hyperplane with a maximum marginal distance. 

3.4.7. Artificial Neural Network 

The ANN has three main layers- the input, hidden, and output layers. The input is 

given in the input layer, and the output is received from the output layer. The middle 

layers are for adjusting the weight and reducing the error between the true value and the 

target value. This process is known as backpropagation [35]. In the proposed ANN, the 

number of nodes in the input layer was eight, and there are two middle layers containing 

nodes ten and eight, respectively. Since it is a binary classification, there is only one node 

at the output layer. Twenty epochs were used for each cross-validation. For the first two 

layers, the ReLu was used as an activation function, and the sigmoid was used for the last 

layer. 

The hyperparameters of any algorithm must be tuned to obtain the best result for any 

dataset. The hyperparameters of the algorithms were also tuned to achieve the desired 

outcome. To select the best performing weights for the ensemble model, the model with 

some weights were evaluated and then the weights selected were those that produced the 

best accuracy. Furthermore, not all of the algorithms for the ensemble model were consid-

ered. The best two performers were used for the ensemble method among the six algo-

rithms. All of the tuned parameters have been shown in Table 4. 

Table 4. Optimal hyperparameters used in the algorithms. 

Algorithms Optimal Parameters 

Artificial neural network Batch size = 5, epochs = 20 

Support vector machine default 

Logistic regression C = 10 

Random forest default 

XGBoost number of estimators = 20 

AdaBoost number of estimators = 300, learning rate = 0.01 

3.4.8. Reproducible Models 

During the development of any CV method, it is useful to be able to obtain the repro-

ducible results from run to run and to determine if a change in the performance has hap-

pened due to an actual model or data modification, or is merely a result of a new random 

seed. 

Since some algorithms are irreproducible, such as the RF and the ANN, the only way 

to ensure that the results of these models are reproducible is to set a quantity known as 

the random seed, which controls how random numbers are generated. Thus the models 

become reproducible. Therefore, the random seed was set for every algorithm used in this 
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study. For the ANN, the random seed was set to a specific value. For other ML models, in 

sklearn, a parameter named “random state” was used to control the randomness. By set-

ting the parameters, the ML algorithms took the defined combination of the seeds in every 

fold. Therefore, the proposed ensemble approach produced reproducible results. 

3.4.9. Shapley Additive Explanations (SHAP) 

It can be challenging to justify the model’s reliability when creating complex models. 

While the global performance matrix such as accuracy is helpful, they cannot be used to 

describe why a model correctly predicted a particular outcome. The LIME package and 

the SHAP tool were mainly used to explain and visualize the model. A python package: 

LIME is a method that is fitted to a local model around the area in question to explain the 

result of black-box models. It is a game-theoretic method [36] for explaining how machine 

learning algorithms reached their decision [37]. SHAP is a visualization tool that explains 

any machine learning algorithm by visualizing its outcome. SHAP computes the contri-

bution of each feature in a dataset to the prediction. Thus, the explanation of any model 

can be described by SHAP. It combines some other tools, such as LIME and many more 

[38]. The SHAP values have become very popular in explainable AI and are also used in 

feature selection [39], and model explanation [40]. In this study, LIME and SHAP were 

used to explain the proposed approach. 

However, extensive computational time is a challenge for SHAP and this time de-

pends on the SHAP explainer. There are different types of SHAP explainers available. 

Kernel and tree explainers were used in this work. Among them, the tree explainer works 

with all tree-based algorithms and is much faster compared to the kernel explainer. To 

calculate the SHAP values of the ANN, the kernel explainer was used and it was a very 

time-consuming method. Though the kernel explainer is a universal explainer (it works 

with any algorithms), because of its high computational time, the tree explainer was used 

in the proposed work, for the tree-based algorithms. 

A common way to understand the influence of each feature of the ML models is to 

examine the coefficients learned for each feature. From those coefficients, it can be under-

stood how the model output changes with a change in the input feature. However, it is 

not a reliable method to measure the overall importance of a feature as the coefficients 

depend on the scales/units of each feature. If the scale of the feature changes, the coeffi-

cient also changes. Therefore, the magnitude of the coefficient is not a good choice to un-

derstand the importance of the feature of a model [41]. In this case, SHAP is a perfect 

choice to see the individual as well as the overall influence of the features. Furthermore, 

using this coefficient method, local explanations cannot be observed but this can be easily 

achieved using SHAP. 

4. Performance Analysis and Experimental Results 

Six machine learning algorithms have been applied to the Pima Indian dataset. Some 

prepossessing was carried out on the dataset before applying the algorithm. Following 

the application of the six ML algorithms to the preprocessed dataset, an explainable 

weighted ensemble method was developed, based on a voting classifier. The proposed 

approach used soft voting, and the weights were selected for the ensemble method. 

4.1. Performance Parameter 

For the classification of the diabetes disease, five quality parameters have been cal-

culated. The performance parameters are given below: 

Accuracy =
𝑇𝑃 + 𝑇𝑛

𝑇𝑃 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
 (3) 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑝
 (4) 
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Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑛
 (5) 

F1-score =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (6) 

where Tp is true positive, Tn is true negative, Fp is false positive, and Fn is false negative. 

The accuracy is defined as the fraction of all of the correctly predicted diabetic and non-

diabetic patients out of the records of all of the patients. The precision is the fraction of the 

correctly predicted diabetic patients out of all of the correctly and incorrectly predicted 

diabetic patients. The recall calculates the fraction of correctly predicted diabetic patients 

out of the records of all of the true diabetic patients only. The F1 score measures the 

weighted score of the precision and the recall. 

4.2. Performance Results 

This section shows the performance of all of the algorithms considered here. The five-

fold stratified cross-validation was used for the algorithms, and at last, an ensemble model 

was developed using the best two algorithms. The soft voting technique was used for the 

ensemble method. 

The ANN produced an accuracy of 79%, as displayed in Table 5. In addition to han-

dling big data sets, the ANN can implicitly discover the complicated nonlinear correla-

tions between the dependent and independent variables and the possible interactions be-

tween the predictor variables. The dataset had a lot of nonlinear relationships shown in 

Figure 2. However, the ANN did not perform very well for this dataset. In fact, the tree-

based algorithms did better than the ANN. The ANN is a complex algorithm and gener-

ally works well on large datasets with lots of features. Since the used dataset was not large 

enough and only had eight input features, the tree-based algorithms outperformed on the 

dataset. 

Table 5. All models’ performance for the five-fold cross-validation of the dataset with the balanced 

classes. 

Algorithms Precision Recall F1-Score AUC Score 
Accuracy 

Train Test 

ANN 0.77 0.78 0.78 0.87 0.81 0.79 

SVM 0.79 0.81 0.80 0.88 0.87 0.79 

LR 0.78 0.79 0.78 0.86 0.80 0.78 

RF 0.87 0.88 0.87 0.94 1.00 0.88 

XGB 0.88 0.89 0.88 0.92 0.99 0.88 

Ada 0.82 0.85 0.83 0.95 0.86 0.83 

Voting Classifier 

(XGB + RF) 
0.88 0.89 0.89 0.95 0.99 0.90 

The SVM provided an accuracy of 79% and an F1 score of 80%, as shown in Table 5. 

The SVM is also one of the best classifiers for the binary classification problems with the 

balanced class of datasets, free or with little noise. Since the dataset used here was not 

outlier-free, that is why the SVM did not perform well with this dataset. The LR provided 

an accuracy of 78%, with an F1 score of 78%. Other than the ensemble, the XGB showed 

the most promising results among the six ML algorithms. Both the XGB and the RF faced 

the overfitting problem. The XGB is a greedy algorithm that can over fit a training data 

quickly. Regarding the RF, if the hyperparameters were tuned to the maximum depth, 

then the accuracy also decreased. Therefore, the sklearn default parameters were used for 

the RF. The performance metrics of all of the algorithms for every fold can be found in 

Appendix A. 
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From Table 5, it could be observed that the tree-based algorithms such as the RF and 

the XGB produced the same accuracy of 88%. In the case of diabetes, it cannot be ruled 

out that if a particular situation is present, then that patient must have diabetes, many 

other relevant issues could cause diabetes. Of course, there are some patterns, such as in 

many cases, if there are high glucose levels or insulin, there is a good probability that the 

patient may have diabetes. However, these conditions are not always relevant to the out-

put. And the tree-based algorithms performed better when not every condition was rele-

vant to the action. For this reason, the RF and the XGB performed well. AdaBoost is also 

a tree based algorithm and it performed better than the ANN, SVM and the LR, by provid-

ing an accuracy of 83% for the test data. 

The Is also a tree based algorithm The voting classifier was combined with the RF 

and XGBoost. Since the performance of these two algorithms was better compared to the 

others, they were selected for the voting classifier. The weighted voting technique and 

performance are also shown. Here, the voting classifier provided an accuracy and F1 score 

of 90% and 89%, respectively, and these outperformed all of the algorithms. 

Figure 5 presents the ROC curves of each fold for all of the algorithms used. The AUC 

scores of the XGB and the voting classifier was the highest (95%), while the AUC score of 

the ANN and the LR were comparatively lower (87% and 86%, respectively) than the oth-

ers. 

  
(a) (b) 

  
(c) (d) 
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Figure 5. ROC curves of (a) ANN (b) SVM (c) LR (d) RF (e) ADA (f) XGB and (g) Voting classifier. 

4.3. Comparison with Previous Research 

Other authors used various methods to classify the same PIMA dataset used in this 

study and achieved a decent accuracy. Table 6 presents the latest work with the PIMA 

dataset only. Most of them carried out basic preprocessing such as scaling, and label en-

coding. An important drawback of these studies was that they did not balance the class of 

the dataset. The class of the Pima dataset was highly imbalanced, which might result in a 

biased accuracy. To check the performance of the algorithms, other performance metrics 

are necessary. To solve the problem, the SMOTETomek was used in the proposed ap-

proach to avoid any overfitting. Six ML algorithms were applied on the dataset and the 

soft weighted ensemble approach outperformed all of the algorithms. The proposed 

model provided an accuracy of 90% where both recall and F1-score were 89%. 

Table 6. Comparison of the diabetes detection model outcomes with the previous 

studies. 

Approach 
Train Test 

Split 
Result (%) Ref. 

Decision tree 

Random forest 

Naive Bayes 

70:30 train test 

ratio 

 DT RF NB 

[13] 

Accuracy 

Precision 

Sensitivity 

Specificity 

F1 score 

AUC 

74.78 

70.86 

88.43 

59.63 

78.68 

78.55 

79.57 

89.40 

81.33 

75.00 

85.17 

86.24 

78.67 

81.88 

86.75 

63.29 

84.24 

84.63 

RF 

AdaBoost 

70:30 

train test 

 RF Ada Voting classifier 
[10] 

Accuracy 77.48 75.32 79.08 
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Soft voting classifier ratio Precision 

F1 score 

Recall 

AUC 

71.21 

64.38 

58.75 

78.10 

68.25 

60.13 

53.75 

74.98 

73.13 

71.56 

70.00 

80.98 

RF Not mentioned 

 RF ANN 
K mean 

clustering 
[2] 

Accuracy 

AUC 

74.70 

80.60 

75.70 

81.60 

73.60 

- 

ANN 

XGB 
Not mentioned 

 ANN XGB 

[12] 

Accuracy 

Sensitivity 

Specificity 

AUC 

71.35 

45.22 

85.20 

65.00 

78.91 

59.33 

89.40 

88.00 

Naive Bayes 

SVM 

DT 

10-fold 

Cross-valida-

tion 

 NB SVM DT 

[11] 

Precision 

Recall 

F1 score 

Accuracy 

75.9 

76.3 

76 

76.3 

42.4 

65.1 

51.3 

65.1 

73.50 

73.80 

73.60 

73.82 

Proposed soft voting 

classifier (XgBoost + 

RF) 

5 fold 

Cross-valida-

tion 

Accuracy 

Precision 

Recall 

F1 score 

AUC 

90 

88 

89 

95 

95 

- 

A comparatively better accuracy was achieved by Chang et al. [13] than the other 

studies with a 70:30 split ratio where the features were selected using PCA, k means clus-

tering, and the importance ranking to remove the noise of the dataset. The performance 

was measured using all of the features of the dataset, then a comparison was carried out 

using the selected three and five features. The decision tree, the random forest, and the 

naive Bayes algorithms were used for the classification. Using only three and five selected 

features did not improve the output performance much. Without the feature selection, the 

RF provided an accuracy of 79.57% with a very poor specificity of 75%. The imbalance of 

the samples of class 0 and class 1 is most likely responsible for the significant difference 

between the sensitivity and the specificity. Without using any feature selection method, 

the proposed model in this paper provided an accuracy of 90%. 

Now, for the output performance (where all of the features were used), from the RF, 

the highest precision and the F1 score were 89.40% and 85.13%. Two reasons could be 

factored for this higher outcome. First, the class of the dataset was not balanced, therefore, 

the precision was not a proper performance measure as it was prone to give a higher 

value, drastically decreasing the specificity. Secondly, the train test split was used for the 

classification. In a train test split, the performance score depends on how the data is split 

and the outcome varies significantly for every split. Multiple train test splits could be car-

ried out to reduce the biased result, which was not considered. Furthermore, the cross-

validation assures an unbiased result. Since the PIMA dataset’s variance is high, the train 

test split produced a significantly biased result. That is why the F1 score was much higher 

than the other approaches. The highest F1 score was 85.17% from the RF. 

A soft voting ensemble classifier was used by Kumari et al. [10] and achieved an ac-

curacy of 79%. Since the class of the dataset was not balanced, the models produced a poor 

performance in terms of the precision, the recall, and the F1 score. The missing values 

were also replaced by using the median of the specific attribute. This could also decrease 

the performance. When using a median, it must be different for the target classes. Further-

more, for the PIMA dataset, not all of the zeros should not be treated as missing values. 
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These issues needs to be taken care for in order to achieve a better outcome. Other than 

the ensemble method, other machine learning algorithms did not perform well. 

In [2], the ANN, the RF, and the K-Means clustering were used to examine the dia-

betes dataset. The highest accuracy was 75.70% from the ANN. A dataset of the imbal-

anced classes was used for the classification. The same drawback was also found in the 

work proposed by Tiwary and Singh [12], where the result of the dataset (imbalanced 

class) affected the prediction performance with a good accuracy (78%), but a very low 

sensitivity (59%). The recursive feature elimination was selected, which might cause over-

fitting and result in poor outcomes. 

In [11], there is a scope for further improvement in the data preprocessing. A 10-fold 

cross-validation was used, which provided an unbiased result, and the performance was 

very poor because of the class imbalance in the dataset. The accuracy can be improved by 

reducing balancing the dataset and applying preprocessing techniques. 

4.4. Model’s Explainability 

No other previous research on Pima diabetes explains the decision of the model pre-

dictions. In this work, the importance of every feature has been determined, and the im-

pact of the features behind a particular decision has been explained. Here, both global and 

local representations have been shown. The local explanation demonstrates which fea-

tures contribute the most to a particular test set. The LIME explanation and the SHAP 

force plot of a test set are the local explanations. In the global explanation, the contribution 

of the features for a group of data (such as all test data) has been shown. They are the 

permutation importance of the features, the summary plot of the violin distribution, the 

SHAP dependence pot and the SHAP force plot with all of the test data. 

A test sample with contradictory symptoms was selected for the local explanation. 

Since this sample was confusing to predict, some algorithms failed to provide the correct 

result because of the contradictory symptoms. Here, most models said that the patient had 

diabetes, and the proposed ensemble model’s decision was also predicted the same, cor-

rectly. That is why an ensemble model is better performing than the others. The voting 

classifier favors the right decision in such cases, since the majority generally tells the right. 

Using the explainable AI, made it convenient for physicians to decide whether the models 

were performing accurately or not. 

4.4.1. Explainability of the Outcome using LIME (Local) 

Figure 6 presents the LIME plots for every feature’s positive and negative impacts on 

making that decision, and physicians can easily understand if the model is not making the 

right decision. Even if the impact of some features was confusing for the physicians to 

reach a decision, they could rely on the ensemble method. The positive effect of not having 

diabetes has been shown in blue, and the features in orange mean that the patient might 

have diabetes. Here in Figure 6, a single sample was taken to show every feature’s influ-

ence. This particular sample was used for all of the algorithms. Since in the ANN, SVM, 

and the LR scaled data needed to be used, the representations had been shown using the 

scaled data. If a natural unit was shown, then the LIME explainer needed to be trained on 

the non-scaled data which would return a different trained model than the used one. 

Therefore, for better understanding the graphs in Figure 6, the values with natural units 

of the corresponding features have been shown in Table 7. To understand the values, cli-

nicians need to check the actual feature values of patients (for the algorithms where data 

scaling is a must). However, the proposed approach showed a natural unit of data in Fig-

ure 6g, which can be easily understood by clinicians without confusing with the normal-

ized data. 
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Figure 6. LIME tabular explainer of (a) ANN, (b) SVM, (c) LR, (d) RF, (e) ADA, (f) XGB, and (g) 

Voting classifier. 

Table 7. Values (Natural unit) of every feature of a selected test sample corresponding to Figure 6. 

Features Values (Natural Unit) 

Glucose 109.00 

Blood pressure 88.00 

Insulin  142.80 

Skin thickness 30.00 

Pregnancies  6.40 

BMI 32.50 

Diabetes pedigree function 0.85 

Age 38.00 

For the RF algorithm, the glucose value is between 101 to 119, which leads to the 

decision that the patient may not have diabetes as the glucose level is moderate [42]. The 

most influential feature in the RF is insulin, which is 142, indicating that the patient has 

diabetes. Their age is below 40, which leads to the positive decision (orange color), which 

means that according to the value of the age, there is a higher probability that the patient 

has diabetes. The RF also predicts that the patient has diabetes. 

For different test data, SHAP uses different intervals. Since the BMI was 32.50, it took 

the interval values close to the given value (32.50). If the BMI were 33, then it would take 

approximately 30 to 35 for the interval. There is no standard to select the intervals. SHAP 

observed how the value of a particular feature influenced the decision, and according to 

the observation, final decision is made. It does not follow any particular standard for any 

feature to decide whether the patient has diabetes or not. 

According to the RF, insulin, age, the BMI, and the diabetes prediction function are 

the most influential features, and glucose, blood pressure, and pregnancies are the most 

insignificant features. The insignificant parts indicate that the model did not obtain 

enough information to firmly identify whether the patient has diabetes or not. When the 

influence of the features is not that significant, the bars representing them are shorter. 

Only by seeing this figure, physicians can guess if the model is performing correctly since 

the impact of the prediction will match the facts of medical science. It is a very informative 

graph to represent the decision of a single test sample. 

The output probability of the decision has also been shown in Figure 6. The ensemble 

model’s feature contribution and the two individual algorithms (RF, XGB) used for the 

voting classifier, have also been represented here. A particular test set was used for all of 
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the algorithms to demonstrate the importance of the features. Since the data for the algo-

rithms SVM, ANN, and LR are normalized, the figure shows the normalized data. There-

fore, to understand the actual value of the features of that test set, the value of the RF or 

the XGB can be observed where the data normalization was not necessary. Among the 

ANN, the RF, and AdaBoost, the ANN predicted that the patient did not have diabetes, 

whereas the other two algorithms suggested that the patient had diabetes. None of the 

algorithms gave much confidence for that particular sample. Here, the value of insulin, 

age, and glucose played a significant role in that prediction for the RF and the Ada. 

Though for the RF and the Ada, the value of glucose, blood pressure, and pregnancies 

indicate that the patient might have diabetes, the influence of this decision was very little. 

Both of them predicted that the particular patient had diabetes, based on the impact of the 

same features, though none of them gave a strong probability. 

Moreover, the ANN predicted that there was a 54% probability that the patient did 

not have diabetes, and the significant features behind the decision were glucose and blood 

pressure. Here, the value of glucose, blood pressure, and the BMI implied the conclusion 

that the patient did not have diabetes, but the impact was little. The glucose was 109, 

which was not very high. Based on the value, the model predicted that there was a good 

possibility that the patient did not have diabetes. However, in this case, the patient did 

have diabetes, which the ANN model failed to identify. 

In medical cases, it is hard to conclude any decision to see specific symptoms because 

that can happen due to other effects. Therefore, it is not unusual to make a wrong decision. 

Why the model is predicting an incorrect decision, or which value of any feature is differ-

ent, can be visible using explainable AI. 

When these models were combined into an ensemble, it gave a 52% probability that 

the test data belonged to a diabetic patient. Though the probability score decreased com-

pared to the RF and AdaBoost, still the ensemble model gave the correct prediction. The 

prediction probability is the probability of the prediction for a particular test data pro-

duced from the trained algorithm. To obtain the probability, predict_proba in sklearn was 

used, which returned the probability score for any algorithm. 

4.4.2. SHAP Force Plot of a Particular Test Set (Local) 

The base value is the average model output for all of the test data if any feature is not 

known for the current prediction. For example, if 60% of the data from a test set contains 

the data of diabetic patients, then the base value will be more than 0.50, implying that 

there is higher possibility for any random test data belonging to a diabetic person. There-

fore, the base value is the mean prediction of the test data. The base value and the pre-

dicted value are given in Figure 7, which shows that every algorithm’s predicted value 

and base value differs. For a particular algorithm, the base value will be the same for all 

of the test data. The horizontal axis indicates the probability of diabetes. For a given test 

sample, ANN predicted a 54% probability that the patient had no diabetes (Figure 7a). 

 
(a) 

 
(b) 
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Figure 7. SHAP force plot of (a) ANN, (b) SVM, (c) LR, (d) RF, (e) ADA, (f) XGB, and (g) Voting 

classifier using the five-fold. 

The influence on the current prediction can be understood by the force plot. The red-

colored features positively influence the prediction (tends to increase the predicted value), 

whereas the blue-colored features have a negative influence (tends to decrease the pre-

dicted value). The red-colored features shift the prediction towards the right side (close to 

1) from the base value, and the blue-colored features try to shift the prediction towards 

the left side from the base value (close to 0). For AdaBoost, the base value was 0.47 where, 

the influence of the blue-colored features (age, BMI, insulin, skin thickness, and pregnan-

cies) is stronger; therefore, the final predicted value shifts towards the left side from the 

base, concluding the decision that there is a 47% probability that the patient does not have 

diabetes. Since the probability score is lower than 50%, hence for this test set, AdaBoost 

predicted that the patient had diabetes. The more the predicted value shifts towards the 

left side from the base value, the greater the possibility of having diabetes. In Figure 7a, 

the ANN provided a false negative for this particular test sample, and the glucose and 

blood pressure features were responsible for that. 

To find the numerical influence of each attribute, waterfall plots were used. One ran-

dom sample was selected to show the force plot and the corresponding water plot to rep-

resent the numerical influence (Figure 8). The red color influences the prediction to be 

positive (approaching towards 1) and blue influences the prediction to be negative (ap-

proaching towards 0: the absence of diabetes). In Figure 8b, the most influential feature 

was insulin with a value of +0.16. It was also found that the numerical influence of age 

and the BMI was the same but in the opposite direction. 
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Figure 8. (a) SHAP force plot and (b) water plot for a test sample of the voting classifier using the 

five-fold. 

4.4.3. SHAP Force Plot of the Test Set (SHAP Supervised Clustering) 

Figure 9 illustrates the supervised clustering of all cases according to their similari-

ties, output values, and features. The hierarchical clustering was used for measuring the 

similarities. Only the clustering for the ensemble model is shown here for all of the folds 

and the last fold. They represent the output probability versus the test sample graphs for 

the 768 test samples (considering every fold) and the 153 test samples (for the last fold). 

Here, the x-axis denotes the test set number, and the y-axis is the output probability. The 

force plot of each test sample was vertically clustered to generate the force plot displayed 

in the figure for the global explanation. This force plot is clustered based on the similarity 

of the features. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 9. Output probability based on the sample order by the similarity of the voting classifier 

using (a) all folds (b) last fold and the sample order by the output value of the voting classifier using 

(c) all folds (d) last fold. 

The output probability with respect to the features (glucose and insulin) and the rel-

ative contribution of the individual features considering all folds and the last fold have 

been presented in Figure 10. The x-axis denotes the feature, and the y-axis is the output 
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probability. This cluster is based on the output value. The value of glucose ranged from 

60 to 180. It is noticeable that with an increase of the glucose value, the quantity of the 

blue color increased (blue = presence of diabetes, red=non diabetes), both for all folds and 

the last fold. Not only glucose, but the risk of diabetes also increased with an increase in 

the insulin level. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 10. Output probability of glucose by the voting classifier using (a) all folds and (b) last fold 

and output probability of insulin by the voting classifier using (c) all folds (d) last fold. 

4.4.4. Permutation Importance of the Features (Global) 

Based on the permutation importance, the importance of a feature can be understood. 

If a single column of the data is randomly shuffled while the target and all of the other 

columns remain unchanged, in that case, the change in the accuracy of the model will 

provide the permutation importance of the shuffled column. A great change in accuracy 

after the shuffling indicates that the feature is important. If shuffling one column does not 

have a significant change in the model’s accuracy, then the permutation score of the fea-

ture is less. Each model’s permutation importance of the features is represented in Figure 

11. According to the algorithms used, glucose was found to be the most influential feature. 

Other most influential features were pregnancy, age, and BMI, whereas blood pressure 

and skin thickness were the least influential. This permutation score was calculated using 

the training sample of the algorithms. Since the five-fold cross-validation was used, the 

feature importance of every fold was combined to display the final permutation im-

portance. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
(g) 

Figure 11. Permutation feature importance of (a) ANN, (b) SVM, (c) LR, (d) RF, (e) ADA, (f) XGB, 

and (g) Voting classifier. 
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The summary plot for every algorithm is shown in Figure 12. The impact on a specific 

class of a specific feature for a given instance is represented by each dot on the plot. The 

color of the dot represents the magnitude of the contribution to the model impact. The 

color red denotes a high value, whereas the color blue denotes a low value. Almost all of 

the glucose red dots were on the left side, indicating that patients with a high glucose 

value tend to have diabetes. The greater the distance of the dot from the zero position, the 

greater the impact. The distance of the glucose red dot was the longest on the left side 

compared to the other features, indicating that it made the greatest impact on the presence 

of diabetes. The same logic could be applied to the remaining features. It is also medically 

confirmed that people with a higher glucose level have a higher risk of developing diabe-

tes. Therefore, from this summary plot, it will be convenient for physicians to see whether 

the model is working correctly. It is also worth noting that age, pregnancy, insulin, skin 

thickness, and BMI all impacted on the presence of diabetes. If their values are high (red 

color), the patients might have diabetes. 

  

(a) (b) 

  
(c) (d) 

 
 

(e) (f) 
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(g) 

Figure 12. Summary plot of (a) ANN, (b) SVM, (c) LR, (d) RF, (e) ADA, (f) XGB, and (g) Voting 

classifier. 

Another point to notice in Figure 12, is that some red dots are also present on the 

right side. The XGB predicts some cases where the patient has no diabetes though the 

blood sugar, glucose, and skin thickness are high. High blood sugar can result from vari-

ous causes, not just diabetes. Having high blood sugar might increase the risk of develop-

ing diabetes. Similarly, people with a high BMI and high blood pressure may or may not 

have diabetes. Although these are causes of diabetes, it cannot be completely ruled out, if 

a person exhibits these particular symptoms but is not diabetic. Every symptom is related 

to other symptoms in order to reach a final decision. 

4.4.5. SHAP Summary Plot of the Violin Distribution 

The violin plot in Figure 13 provides each feature’s impact and density. It is a global 

representation of the test set. The color represents the feature value. The red regions mean 

the feature’s value is high, whereas the blue regions mean a low value. Considering the 

first feature concerning glucose levels, in Figure 13a, the density becomes narrower to-

wards the left side of the plot, indicating that the patients with higher glucose levels might 

have diabetes. The number of patients who did not have diabetes, represented by the blue 

area on the right side, was much denser than left side. Therefore, the high value of glucose 

on the far edge of the left side of the y-axis means they were more prone to having diabe-

tes. Furthermore, for the feature concerning age, the number of patients were high with 

moderate and low age values, represented by the violet and blue colors, respectively. If 

the position is on the left side of the y-axis, then the patients tend to have diabetes and 

vice versa. Here, the longer the distance between the vertical line and the position of the 

feature value, the higher the confidence is in making a positive prediction. As the position 

of the medium valued age was closer to the y-axis, a confident decision could not be made. 

Therefore, the output probability would not be high, based on the age values that are 

closer to the y-axis. For the feature concerning blood pressure, since the position of the 

violet color is on both sides, the patients might or might not have diabetes. This feature 

was the least influential feature in the decision making for the five-fold voting classifier. 

It should be mentioned that this violin plot was drawn using all of the folds’ test values, 

as the five-fold cross-validation was used for all of the algorithms. 
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(a) (b) 

  
(c) (d) 

 
 

(e) (f) 

 
(g) 

Figure 13. Violin distribution of (a) ANN, (b) SVM, (c) LR, (d) RF, (e) ADA, (f) XGB, and (g) Voting 

classifier. 
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4.4.6. SHAP Dependence Plot (Global) 

Figure 14 presents the SHAP dependence plots based on the ensemble model’s SHAP 

values with the three most important features (glucose, BMI, and age), according to the 

permutation importance for all folds. Glucose mostly interacted with the BMI, considering 

all folds. Furthermore, the BMI interacted with insulin and age interacted with insulin the 

most. 

  
(a) (b) 

 
 

(c) (d) 

  
(e) (f) 
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(g) (h) 

Figure 14. SHAP dependence plot by voting classifier for (a) glucose, (b) BMI, (c) age, (d) blood 

pressure, (e) diabetes degree function, (f) insulin, (g) pregnancies, and (h) skin thickness using all 

folds. 

In Figure 14, red denotes a higher value, whereas blue denotes a lower value. When 

the value of the BMI increases, insulin also increases, and the probability decreases (y-

axis). This is the likelihood of a patient not having diabetes. So, for a patient with a high 

glucose level and a high BMI, that patient has a significantly lower chance of being non-

diabetic, thereby leading to the conclusion that the patient has a high risk of having the 

disease. From this plot, physicians could quickly get the idea of how a patient’s symptoms 

vary from one to another and how far the patient is from developing diabetes. 

5. Conclusions 

Based on several ML methods, this study provided an accurate and highly explaina-

ble ensemble model with the usage of the cross validation approach and by combining 

two ML algorithms (RF, XGB), using a weighted soft voting classifier to successfully pre-

dict the risk of diabetes. It was demonstrated that the predictions based on the weighted 

ensemble are significantly better than the individual algorithms. The system achieved the 

highest accuracies by selecting appropriate weights. An accuracy of 90% and a F1 score of 

89% was achieved by the ensemble model and was highly competitive with the other 

models proposed in the literature. The missing value imputation by median values, and 

the data balancing by the SMOTETomek also contributed to the improved performance. 

Moreover, the proposed ensemble model produced a favorable accuracy-interpretability 

trade-off because it achieved accurate results and a high level of interpretability using the 

permutation importance and SHAP plots. The ensemble model provided logical, medi-

cally trustworthy, and practical judgment that can boost a physician’s confidence in real-

life implementation. 

Even with encouraging findings from an academic perspective, the model is still 

much farther away from being utilized in a real-world medical scenario, which is intended 

to be carried out in future. Further studies are needed to assess the performance charac-

teristics of the proposed approach in other relevant datasets. Further improvement in the 

model’s performance and explainability will be attempted using different ML algorithms 

to develop different types of ensemble models. 
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Appendix A 

Tables A1–A7 present performance metrics of all the algorithms for every fold. 

Table A1. ANN model’s performance for the five-fold cross-validation. 

 
Target 

Class 
Precision Recall F1-Score AUC Score 

Accuracy Confusion 

Matrix Train Test 

F
o

ld
 1

 Class 0 0.83 0.79 0.81 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.64 0.70 0.67 - - - 79 21 

Average  0.74 0.75 0.74 0.84 0.80 0.75 16 38 

F
o

ld
 2

 Class 0 0.84 0.74 0.79 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.61 0.74 0.67 - - - 74 26 

Average  0.72 0.74 0.74 0.83 0.81 0.74 14 40 

F
o

ld
 3

 Class 0 0.85 0.85 0.85 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.72 0.72 0.72 - - - 85 15 

Average  0.79 0.79 0.79 0.88 0.80 0.80 15 39 

F
o

ld
 4

 Class 0 0.88 0.87 0.87 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.76 0.77 0.77 - - - 87 13 

Average  0.82 0.82 0.82 0.91 0.81 0.83 12 41 

F
o

ld
 5

 Class 0 0.91 0.81 0.86 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.70 0.85 0.77 - - - 81 19 

Average  0.81 0.83 0.81 0.89 0.84 0.82 8 45 

 
All folds’ 

average 
0.77 0.78 0.78 0.87 0.81 0.79   

Table A2. SVM model’s performance for the five-fold cross-validation. 

 
Target 

Class 
Precision Recall F1-Score AUC Score 

Accuracy Confusion 

Matrix Train Test 

F
o

ld
 1

 Class 0 0.88 0.77 0.82 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.65 0.80 0.72 - - - 77 23 

Average  0.76 0.78 0.77 0.85 0.88 0.78 11 43 

F
o

ld
 2

 Class 0 0.91 0.72 0.80 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.63 0.87 0.73 - - - 72 28 

Average  0.77 0.80 0.77 0.87 0.87 0.72 7 47 

F
o

ld
 3

 Class 0 0.88 0.83 0.86 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.72 0.80 0.75 - - - 83 17 

Average  0.80 0.81 0.81 0.90 0.87 0.81 11 43 

F
o

ld
 4

 Class 0 0.91 0.86 0.88 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.76 0.83 0.79 - - - 86 14 

Average  0.83 0.85 0.85 0.89 0.86 0.85 9 44 

F
o ld
 

5 Class 0 0.92 0.81 0.86 - - - T
r

u
e 

la
-

b
el

 

Predicted label 
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Class 1 0.71 0.87 0.78 - - - 81 19 

Average  0.81 0.84 0.82 0.90 0.86 0.83 7 46 

 
All folds’ 

average 
0.79 0.81 0.80 0.88 0.87 0.79   

Table A3. Logistic regression’s performance for the five-fold cross-validation. 

 
Target 

Class 
Precision Recall F1-Score AUC Score 

Accuracy Confusion 

Matrix Train Test 

F
o

ld
 1

 Class 0 0.86 0.77 0.81 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.64 0.76 0.69 - - - 77 23 

Average  0.75 0.76 0.77 0.84 0.81 0.76 13 41 

F
o

ld
 2

 Class 0 0.88 0.76 0.82 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.65 0.81 0.72 - - - 76 24 

Average  0.77 0.79 0.77 0.83 0.80 0.77 10 44 

F
o

ld
 3

 Class 0 0.86 0.83 0.85 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.71 0.76 0.73 - - - 83 17 

Average  0.79 0.79 0.79 0.88 0.79 0.80 13 41 

F
o

ld
 4

 Class 0 0.91 0.84 0.87 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.74 0.85 0.79 - - - 84 16 

Average  0.83 0.84 0.83 0.89 0.80 0.84 8 45 

F
o

ld
 5

 Class 0 0.87 0.77 0.81 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.64 0.77 0.70 - - - 77 23 

Average  0.75 0.77 0.76 0.86 0.81 0.77 12 41 

 
All folds’ 

average 
0.78 0.79 0.78 0.86 0.80 0.78   

Table A4. Random forest model’s performance for the five-fold cross-validation. 

 
Target 

Class 
Precision Recall F1-Score AUC Score 

Accuracy Confusion 

Matrix Train Test 

F
o

ld
 1

 Class 0 0.94 0.88 0.91 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.80 0.89 0.84 - - - 88 12 

Average  0.87 0.88 0.87 0.94 1.00 0.88 6 48 

F
o

ld
 2

 Class 0 0.92 0.86 0.89 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.77 0.87 0.82 - - - 86 14 

Average  0.85 0.87 0.85 0.93  1.00 0.86 7 47 

F
o

ld
 3

 Class 0 0.91 0.90 0.90 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.82 0.83 0.83 - - - 90 10 

Average  0.86 0.87 0.87 0.94 1.00 0.87 9 45 

F
o

ld
 4

 Class 0 0.94 0.92 0.93 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.85 0.89 0.87 - - - 92 8 

Average  0.90 0.90 0.90 0.95 1.00 0.91 6 47 

F
o

ld
 5

 Class 0 0.94 0.88 0.91 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.80 0.89 0.84 - - - 88 12 

Average  0.87 0.88 0.87 0.95 1.00 0.88 6 47 

 
All folds’ 

average 
0.87 0.88 0.87 0.94 1.00 0.88   
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Table A5. XGBoost classifier’s performance for the five-fold cross-validation. 

 
Target 

Class 
Precision Recall F1-Score AUC Score 

Accuracy Confusion 

Matrix Train Test 

F
o

ld
 1

 Class 0 0.92 0.90 0.91 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.82 0.85 0.84 - - - 90 10 

Average  0.87 0.88 0.87 0.91 0.99 0.88 8 46 

F
o

ld
 2

 Class 0 0.93 0.86 0.90 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.77 0.89 0.83 - - - 86 14 

Average  0.85 0.87 0.86 0.91 1.00 87 6 48 

F
o

ld
 3

 Class 0 0.94 0.90 0.92 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.83 0.89 0.86 - - - 90 10 

Average  0.88 0.89 0.89 0.94 0.99 0.89 6 48 

F
o

ld
 4

 Class 0 0.94 0.91 0.92 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.84 0.89 0.86 - - - 91 9 

Average  0.89 0.90 0.89 0.93 0.99 0.90 6 47 

F
o

ld
 5

 Class 0 0.93 0.93 0.93 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.87 0.87 0.87 - - - 93 7 

Average  0.90 0.90 0.90 0.92 0.99 0.90 7 46 

 
All folds’ 

average 
0.88 0.89 0.88 0.92 0.99 0.88   

Table A6. AdaBoost classifier’s performance for the five-fold cross-validation. 

 
Target 

Class 
Precision Recall F1-Score AUC Score 

Accuracy Confusion 

Matrix Train Test 

F
o

ld
 1

 Class 0 0.92 0.80 0.86 - - - 
T

ru
e 

la
-

b
el

 Predicted label 

Class 1 0.70 0.87 0.78 - - - 80 20 

Average  0.81 0.84 0.82 0.95 0.86 0.82 7 47 

F
o

ld
 2

 Class 0 0.94 0.80 0.86 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.71 0.91 0.80 - - - 80 20 

Average  0.83  0.85 0.83 0.95 0.87 0.83 5 49 

F
o

ld
 3

 Class 0 0.93 0.85 0.89 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.76 0.89 0.82 - - - 85 15 

Average  0.85 0.87 0.86 0.95 0.87 0.86 6 48 

F
o

ld
 4

 Class 0 0.94 0.82 0.88 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.73 0.91 0.81 - - - 82 18 

Average  0.83 0.86 0.84 0.95 0.88 0.85 5 48 

F
o

ld
 5

 Class 0 0.94 0.76 0.84 - - - 

T
ru

e 
la

-

b
el

 Predicted label 

Class 1 0.67 0.91 0.77 - - - 76 24 

Average  0.80 0.83 0.80 0.96 0.86 0.81 5 48 

 
All folds’ 

average 
0.82 0.85 0.83 0.95 0.86 0.83   

Table A7. Ensemble model’s performance for the five-fold cross-validation. 

 
Target 

Class 
Precision Recall F1-Score 

AUC  

Score 

Taken 

Weight 

Accuracy Confusion 

Matrix Train Test  

F
o

ld
 1

 Class 0 0.93 0.91 0.92 
- 

 4 (Xgb)  

3 (RF)  

- - 

T
ru

e 
la

b
el

 

Predicted 

label 

Class 1 0.84 0.87 0.85 - - - 91 9 

Average  0.88 0.89 0.89 0.94 .99 0.90 7 47 
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F
o

ld
 2

 Class 0 0.93 0.87 0.90 - 

1 2 

- - 

T
ru

e 
la

b
el

 

Predicted 

label 

Class 1 0.78 0.87 0.82 - - - 87 13 

Average  0.85 0.87 0.86 0.94 1.00 0.87 7 47 

F
o

ld
 3

 Class 0 0.91 0.91 0.91 - 

1 1 

- - 

T
ru

e 
la

b
el

 

Predicted 

label 

Class 1 0.83 0.83 0.83 - - - 91 9 

Average  0.87 0.87 0.87 0.95 1.00 0.88 9 45 

F
o

ld
 4

 Class 0 0.96 0.91 0.93 - 

1 4  

- - 

T
ru

e 
la

b
el

 

Predicted 

label 

Class 1 0.84 0.92 0.88 - - - 91 9 

Average  0.90 0.92 0.91 0.96 1.00 0.91 4 49 

F
o

ld
 5

 Class 0 0.95 0.94 0.94 - 

2 2 

- - 

T
ru

e 
la

b
el

 

Predicted 

label 

Class 1 0.89 0.91 0.90 - - - 94 6 

Average  0.92 0.92 0.92 0.96 1.00 0.92 5 48 

 
All folds’ 

average 
0.88 0.89 0.89 0.95  0.99 0.90   
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