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Abstract

An artistic concert system called BioCombat devised by the
co-authors puts two performers’ physiological states head to
head, making their attempt to feel particular emotions the
object of a live competition. Each performer provides sonic
materials for each of eight emotional states; generative
visuals are projected in concert, reactive to audio and physi-
ological features, alongside an emotional scoring system
also visible to the audience. This article describes the physi-
ological sensing and emotion classification machinery
required to support such a challenging real-time task, with
both quantitative and qualitative evaluation results.
The system draws upon recent research in the field. The
designers offer solutions to the problems, and discuss the
potential, of such current generation technology for artists.

Keywords: emotion classification, physiological sensing,
interactive music system, live concerts, audio-visuals

1. Introduction

This article describes a live interactive performance system
that uses physiological sensing technology and machine
learning to attempt realtime emotion classification; it is a
digital art projects that productively engages with the cutting
edge of scientific research. The live concert setting in which
this system was deployed supplied a strong challenge in
building a real-world application outside the laboratory.
Artistic practice here provided an alternative way of evaluat-
ing technology’s current abilities, parallel to more typical
engineering led studies. We reveal practical implementation
details we hope of great benefit to future projects from
artists and researchers building related systems. A primary
artistic goal was to interrogate the inner world of human

emotion, whilst acknowledging the limitations of current
scientific knowledge and of the technologies available
for detecting emotion, especially in live contexts. The cross-
disciplinary placement of this research is at the nexus of
new musical interfaces informed by physiological sensing
and emotion recognition, and fine arts practice. In some
places, artistic and pragmatic requirements won out over tra-
ditional laboratory-based scientific evaluation, hopefully to
the good of the artistic experience, though effort was put into
contributing back to the field of emotion research as well.

The heritage of artistic and musical applications of
interactive biosensing systems is well covered (van ’t
Klooster, 2011; Miranda & Wanderley, 2006; Wilson,
2002), and a roll call of artists would stretch from Alvin
Lucier (with his famous Music for Solo Performer (1965)
where amplified neurosignals perturb a network of percus-
sion) to such notaries as David Rosenboom, Atau Tanaka,
Tina Gonsalves, Brigitta Zics and George Khut. A tendency
in recent systems has been to engage with developments in
machine learning to cope with interpretation of the complex
data from biosensors (Thorogood & Pasquier, 2013;
Vermeulen, 2014), a trend we follow here.

BioCombat is a work by the co-authors for two
performers, each of whose emotional state is tracked via
physiological sensing, and who compete to better feel
certain emotions on demand and thus take command of
electroacoustic output. A game setting for the emotion
detection machinery provides a play on the functioning and
evaluation of physiologically aware systems.

The research backdrop for the emotion recognition is that
of affective computing (Picard, 1997), especially emotion
modelling and recognition within music information retrieval
and music psychology (Kim et al., 2010; Eerola, 2012), and
realtime interactive music systems (Collins, 2007; Rowe,
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2001). Research on reading emotional state from physiologi-
cal signals has been maturing; some authors report high per-
centage success rates on classification tasks distinguishing
four, or even eight separate emotional states (van den Broek,
Lisy, Westerink, Schut, & Tuinenbreijer, 2009; Kim &
André, 2008; Picard, Vyzas, & Healey, 2001). Nonetheless,
these references utilise 1-min windows of feature data per
calculation in feature extraction and subsequent classifica-
tion; the concert task reported here requires much more fre-
quent decisions, on the order of once every second based on
the previous 5 s. Janssen, van den Broek, and Westerink
(2012) introduced a personalised music player driven by
physiological state, though they use slowly varying skin
temperature to detect longer-term mood rather than more
short-term emotion. Affective sensing technology has been
brought to concert systems with limited success both in
terms of classifier performance and aesthetic experience
(Thorogood & Pasquier, 2013; Vermeulen, 2014); live emo-
tion classification for a music system tests the cutting edge of
computational emotion recognition. Beyond session data for
training, parameter tuning and testing of machine learning
classification algorithms within a conventional evaluation
framework, generalisation performance is also qualified by a
potential for performance nerves to impact on physiological
state. Concert conditions here lead to a novel evaluation set-
ting, away from the domain of conventional laboratory study.

We proceed by describing BioCombat in more detail as
an artwork, before examining the underlying engineering
challenge of emotion recognition from physiological sig-
nals. We finish the article with discussion of the system as
delivered in concert, and some advice for future artists who
can gain from the work herein.

2. BioCombat as live interactive system

BioCombat is a live interactive system which juxtaposes
biofeedback art with performative video gaming. A contin-
uous two-dimensional model of emotion (Russell, 1980) is
used in combination with a discrete model, by placing eight
distinct emotions in Russell’s arousal-valence space. Affec-
tive physiological sensing and machine learning are com-
bined to create a ‘judging agent’ for a contest between two
performers. Live scoring is seen on the left projection in
Fig. 1; the visuals on the right projection are driven by live
physiological input and electro acoustic sound via anima-
tions for each of eight emotions: happiness, sadness, anger,
calmness, excitement, annoyance, tenderness and fear. The
eight emotions were selected to provide a broad cross sec-
tion of emotional life, across all quadrants of the arousal-
valence plane. All eight were seen as achievable states
within human experience for the attempt to reproduce
feeling them in concert. Two performers take part, and their
heart rate, galvanic skin response (GSR) and (single chan-
nel) EEG data are tracked live.

As Fig. 1 shows, the screen on the left provides the
game status, with instructions and scores visible to the

audience. Every minute, the computer demands a new emo-
tion to be felt by the performers, and the music changes.
Within the available 60 s, after a 20 s climatisation period
for the performers, scoring begins based on who is best at
feeling the requested emotion, as indicated by trained clas-
sifier models for emotional state; live updates on the score
continue every second. Points are gained when the correct
arousal (high or low) and valence (positive or negative) are
measured, according to quadrants in the standard circum-
plex two-dimensional model of emotion (Juslin & Sloboda,
2001; Russell, 1980). The status is continually updated
until the next emotion is requested, with points accumulat-
ing. Each participant provides electroacoustic sound mate-
rial for each of the eight emotion classes; the current
winner is rewarded by their own compositional contribution
playing louder than that of their opponents’.

The right screen in Fig. 1 is the visual output of the sys-
tem, with abstract animations designed for each target emo-
tion; ‘scared’ is depicted here. The visuals can provide a
stimulus to help a performer reach a requested emotional
state, though are probably more useful for the audience, who
face the screen rather than the performers (who often have
their eyes closed to maximise being able to feel the emo-
tions, and minimise muscle side effects in reading EEG
data). There are two animated shapes within the right projec-
tion: the left one is mapped to the left performer’s biosignals,
and the right one to the right performer’s data. Live features
in the sound, such as loudness, rhythm, dissonance and fre-
quency distribution in the energy spectrum, also influence
the animations. The graphics are based on drawings by the
artist Adinda van ’t Klooster. She evaluated the emotional
expressiveness of the graphics through an online survey
(https://www.affectformations.net/research/visualaffects) and
in the concert system used predominantly those graphics that
people could most unambiguously map to the target emo-
tions. For this survey, she created four abstract graphics for
each of the eight emotions: fifty online participants rated
each graphic in terms of its emotional expression using a sli-
der interface and the eight emotion labels. Happy, calm and
sad images were most accurately rated in line with their
intended expression, whilst tender, annoyed and scary
images received much less agreement (van ’t Klooster,
2016). The animations generated from these images used
motion paths, speed, rotation and size changes to add further
dynamism to the graphics. Input from the biosignals also
influenced the animations; for example, the tender animation
used heart rate and size to let the graphics pulse in time with
the participants’ heartbeats.

Each target emotion in concert has its own associated
pair of soundscapes, one provided by each performer.
Adinda van ’t Klooster created electronic sound composi-
tions between 1 and 3 mins duration, for each emotion. The
tracks were created from recorded sound and manipulated to
varying degrees. The main rule used in the composition pro-
cess was that the emotions had to be expressed via modula-
tions in timbre rather than pitch or rhythm although pitch
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and rhythm still played a subsidiary part in terms of the
source material. The individual files can be listened to via
the Affect Formations website: https://www.affectforma
tions.net/projects/sound-affects. Some sound files use
associative meaning (such as the happy track that
combined a contented babbling baby with a street organ)
and others, such as for example the sadness track, are very
abstract.

Nick Collins created generative SuperCollider patches
for each emotion, where frequently used sound synthesis

elements include an auditory hair cell model as filter, and
feedback loops (the auditory system modelling of these
UGens was a coincidence and not meant to reflect the
physiological sensing theme, except for a general biological
connection). As an example of the generative work, the fol-
lowing is an ‘annoyed’ synthesis patch. Two auditory hair
cell models (HairCell and Meddis) are used alternately and
serially as filters, and the patch includes various other dis-
torting components including feedback, to make a very rich
and time varying sound:

Fig. 1. BioCombat: an audiovisual physiological sensor battle to feel emotions competitively; the co-authors compete, image © Adinda
van ’t Klooster and Nick Collins, 2015, photograph by Simone Tarsitani.

SynthDef(\BioCombatannoyed,{|out = 0 amp = 0.0|
var a, strength, sound;
a =

Saw.ar(LFNoise0.kr(LFNoise0.kr(2.0).exprange(0.2,12.7)).exprange(1.0,3.0).round(0.125))*0.2 + (LFNoise0.kr(LFNoise0.kr
([0.1,0.15]).exprange(0.7,10.0)).range(0,0.5)*0.99*LocalIn.ar(2));

//rich modulated sound source including feedback (LocalIn)
//serial alternation of hair cell models as compressor/filters
6.do{|i|
if(i%2==0) {
a = HairCell.ar(a,0,5000,5000,LFNoise0.kr([0.07,0.04]).range(0.7,0.9));

} {
a = Meddis.ar(a)*3.0;

};
};
//distortion
a = tanh(LeakDC.ar(LPF.ar(a,LFNoise0.kr([4,7]).exprange(100,10000).lag(0.1))));
//send feedback
LocalOut.ar(a);
//reverberation and further slight distortion
sound = FreeVerb.ar(a.distort,0.4,0.9,0.1);
strength = amp.lag(0.05);
//amplitude controlled low pass filter cutoff
Out.ar(out,LPF.ar(sound,100 + (20000*strength.squared))*strength)

}).add;
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The relative amplitude of sounds associated with each
emotional class depends upon how much better their cre-
ator is at feeling a specific target emotion than their game
rival. No performers’ sounds can disappear entirely, though
they can drop by up to 8 dB.

Fig. 2 provides an overview of the technical stages of
the BioCombat system. The physiological sensors were
I-CubeX (http://infusionsystems.com) BioVolt (single chan-
nel electroencephalogram (EEG) and electrocardiogram
(ECG)) and BioEmo (GSR) sensors plugged into a
Wi-microSystem, sampled at 500 Hz via Max/MSP. Subse-
quent feature extraction and machine learning utilised the
SCMIR library in SuperCollider (Collins, 2011), and visu-
als were created with Processing, with data sent internally
between the multiple applications via Open Sound Control
messaging (Wright, 2005). Using SCMIR (http://composer
programmer.com/code.html) had the benefit that it works
well for preparing machine listening and learning tasks like
signal classification, and once trained up the classifiers are
easily deployed in concert live (SuperCollider is an inher-
ently realtime performance-oriented system). The live
setting demands calculation upon features aggregated
within short-term windows of 5 s, and is substantively
different to many previous research investigations utilising
minute long windows; fast reaction time is sought here
rather than a highly delayed if more stable decision.

The use of multiple programmes and the delicate sen-
sors themselves makes running the piece non-trivial, but
not so demanding that it couldn’t be organised within the
running of a longer concert with other pieces. The perform-
ers donned the sensors during a 5-min gap allowed by a
different piece from another performer, and the onstage set-
up of the programmes took around a minute. Execution
order of the various processes was critical, and could possi-
bly be automated via a timed applescript, but was safest
run one by one on the day to confirm loading.

3. Live emotion classification

At the core of BioCombat are emotion classifiers driven by
physiological signals, one classifier trained for each per-
former, recognising the disparity between human partici-
pants of their physiological data and the need for
personalisation. In trialling systems for the concert, we
investigated classification based on eight emotions (‘calm’,
‘sad’, ‘annoyed’, ‘scared’, ‘angry’, ‘excited’, ‘happy’ and

‘tender’), on the four quadrants within arousal-valence
space (thus grouping sad, anger-annoyed-scared, excited-
happy, tender-calm), and binary classification for arousal
(high versus low, as for example excited against calm) and
valence (positive versus negative, e.g. happy as opposed to
sad). The specific positions taken for each emotion class in
the valence-arousal plane are plotted in Fig. 3.

The system’s ‘emotional intelligence’ was developed
through machine learning, with algorithms trained from
example sessions with the participants. Machine learning
classification attempted to identify a performer’s emotional
state, first explicitly to one of the eight emotion labels, but
with more success less specifically to one of the four quad-
rants of the arousal-valence space. In creating the training
data, initially the performers listened to specific music for
each of the eight emotions, that they judged made them
feel the particular emotion, but later (and for the evaluation
scores reported here) musical cues were taken as the exact
music created for particular emotional states for the concert
by each of the two performers. In addition the performers
could attempt to feel specific emotions by accessing rele-
vant personal memories.

Fig. 2. Physiological sensing input, analysis and output.

Fig. 3. Mapping of the emotions used in BioCombat in the
arousal-valence space.
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EEG, GSR and heart rate were recorded during listen-
ing. Five times, at different points throughout various days,
two-minute recordings were created for each emotion. This
data, or rather, features derived from the raw physiological
signals, was then used to train classifiers for each of the
performers. We compared the following machine learning
algorithms: neural net, naive Bayes and nearest neighbour.
The machine learning inputs could use up to fifteen derived
features from the three channels of physiological data.
Features were extracted at 43 Hz, max–min normalised
with respect to extrema within the whole data-set, then
mean aggregated within five-second windows with a step
size of a tenth of a second. The full list of 15 features is in
Table 1.

Bottom-up feature selection (Guyon & Elisseeff, 2003)
was used to find through exhaustive search the best
performing subset of features for a given algorithm and
participant; one classifier was trained for each candidate
feature subset. The feature data was split into training,
parameter tuning and final test set for these purposes in the
proportions 50/25/25. Classes had an equal number of rep-
resentatives for the eight emotions in each split, and
unequal for the quadrant learning across quadrants due to
the unequal distribution of emotional labels to quadrants
(though consistently distributed within each split). The data
consisted of 5490 feature windows (training examples) for
each of the eight emotion classes.

Table 2 compares the performance for the two partici-
pants across different classification tasks. For the eight-
class problem of predicting the emotional state, results are
provided including and excluding the GSR feature, since
GSR was so critical to effective performance. The disparate
ability of the two participants to evoke target emotions (or
in other words, to reproduce physiological signals consis-
tently) is apparent. Algorithms perform well above chance,
but always with some misclassifications; participant 1 is
harder to model, and likely finds the act of physiological
reproduction underlying this task more challenging.

Generalisation performance, as measured on the unseen test
set, is encouraging, and often comparable with the training
and tuning sets. Though different algorithms were investi-
gated, in almost all cases, neural nets achieved much better
scores. All neural nets were trained over 1000 epochs. Out-
puts were encoded with one output per class; class activa-
tion was a 1 in the respective output (the nth output for the
nth class), and zeroes in other outputs. The near equivalent
performance for participant 2 on the four-class versus
eight-class problems is notable, and may be due to the
unequal aggregation of examples between quadrants. The
performance percentages, whilst hardly perfect, hold up
well to existing studies in the literature, particularly consid-
ering the short-time window decisions. Previous research
suggests that arousal is more straightforward to discrimi-
nate than valence, though participant 2 performed relatively
equivalently between the two dimensions.

To provide a comparison, Table 3 shows performance
of a naive Bayes classifier across the two- and four-class
tasks; the greater challenge of modelling participant 1
remains clear. Naive Bayes was normally worse than a neu-
ral net; the latter was the predominant best performing
algorithm as shown in Table 2. The nearest neighbour algo-
rithm typically achieved around chance performance, and
its results are not reported further here.

To refine the sense of accuracy per emotion class,
Table 4 breaks down success and failure of prediction
within an overall confusion matrix for participant 1’s
valence, and Table 5 for participant 2; Table 6 shows a per
emotion count of accuracy for the same scenario, compar-
ing both participant 1 and participant 2. For participant 1,
negative valence emotions are harder to predict, and scared
is the most confused (operating around chance) whilst ten-
der is most accurately discerned. For participant 1, there
was a qualitative sense that fear was the hardest emotion to
feel on demand; conversely, the evaluation here also sug-
gests, and experience confirmed, that they could feel ten-
derness on demand with relative ease. Participant 2 is

Table 1. Features extracted from the three physiological signals.

Feature
number

Source
signal Feature

0 GSR Root mean square amplitude
1 GSR Running sum of sample by sample absolute amplitude difference
2 GSR Running sum of 1/23 s absolute amplitude difference
3–5 ECG Onset detection statistics (heartbeat onset analysis); heartbeats per second, mean and standard deviation of

inter-heartbeat interval
6–9 ECG Beat detection statistics. Measures on the metrical beat histogram: entropy, ratio of the largest to the second

largest entries, diversity (Simpson’s D measure), metricity (consistency of high energy histogram entries to
integer multiples or divisors of strongest entry)

10 EEG Spectral centroid
11 EEG Spectral entropy
12–14 EEG Band-wise energy around centre frequencies 5, 20 and 40 Hz, with half octave bandwidth



generally much superior, including substantially so for
scared, though marginally less for tender, and finds happi-
ness and annoyance toughest to achieve. Across both par-
ticipants the overall spread is by no means aberrant, and
the system makes a generally good attempt across emo-
tions. Similar profiles were observed for other conditions.

The most critical feature, consistently appearing in fea-
ture selection experiments, was feature 0, the GSR ampli-
tude. If feature 0 was excluded from feature selection for

participant 2’s classifier, the best performing subset
achieved 61% accuracy on the final test set for eight emo-
tion classes, rather than 75% gained including feature 0;
for participant 1 this was 34% versus 47%, respectively. If
data was aggregated between participants to make a single
classifier, the different baseline GSR levels of the two per-
formers derailed effective classifier performance to around
chance: this was a situation where individualised models
were absolutely essential to success.

Table 3. Training/parameter tuning/test scores across different participants and tasks, with feature subsets selected; comparative perfor-
mance of Naïve Bayes algorithm on arousal, valence and quadrant classification tasks.

Participant Task Algorithm Scores (training/tuning/test) Features selected

1 Arousal left/right quadrant correct (2 classes) Naive Bayes 62.7/62.9/63.3 [0, 4, 7, 9]
1 Valence top/bottom quadrant correct (2) Naive Bayes 55.5/55.4/56.0 [0, 3, 5, 9, 10]
1 Quadrant correct (4) Naive Bayes 32.1/32.6/32.1 [6,7,9,10, 12]
2 Arousal left/right quadrant correct (2 classes) Naive Bayes 72.2/72.6/72.6 [2, 3, 4, 5, 6, 12]
2 Valence top/bottom quadrant correct (2) Naive Bayes 70.4/71.0/71.5 [0, 1, 2, 6, 13]
2 Quadrant correct (4) Naive Bayes 53.5/54.3/53.9 [0, 1, 5, 6, 9, 12, 13]

Table 4. Confusion matrix for modelling participant 1: positive/negative valence discrimination, broken down in terms of overall success.

Valence Predicted negative Predicted positive

True label: negative valence 3684 2044
True label: positive valence 1542 4186

Table 2. Training/parameter tuning/test scores across different participants, conditions and machine learning algorithms, with the best
scores discovered and associated selected feature subsets.

Participant Task Algorithm
Scores (over

training/tuning/test sets) Features selected

1 Arousal left/right quadrant
correct (2 classes)

Neural Net (15/15/2 input/
hidden/output units)

70.1/69.8/70.2 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14 ]

1 Valence top/bottom quadrant
correct (2)

Neural Net (11/11/2) 69.4/69.5/68.7 [0, 1, 2, 3, 5, 6, 7, 8, 9, 12, 14]

1 Quadrant correct (4) Neural Net (13/13/4) 53.9/53.9/54.1 [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 12,
13, 14]

1 Emotion class correct (8),
GSR excluded

Naive Bayes 33.9/33.5/34.0 [3, 4, 5, 9, 12, 13, 14]

1 Emotion class correct (8) Neural Net (12/12/8) 50.1/43.9/46.8 [0, 2, 3, 4, 5, 6, 9, 10, 11, 12,
13, 14];

2 Arousal left/right quadrant
correct (2 classes)

Neural Net (13/13/2) 83.0/82.9/83.1 [0, 1, 2, 3, 5, 6, 7, 9, 10, 11,
12, 13, 14]

2 Valence top/bottom quadrant
correct (2)

Neural Net (11/11/2) 85.8/85.0/85.9 [0, 2, 3, 4, 5, 7, 8, 11, 12, 13,
14]

2 Quadrant correct (4) Neural Net (14/14/2) 74.6/73.9/74.2 [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14]

2 Emotion class correct (8),
GSR excluded

Neural Net (11/11/8) 61.3/62.2/61.2 [3, 4, 5, 6, 7, 9, 10, 11, 12, 13,
14]

2 Emotion class correct (8) Neural Net (15/15/8) 75.0/75.2/75.2 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14]



Training was initially carried out with eight pieces of
music chosen by each participant, which they felt would
help them evoke well the particular emotional states. How-
ever, despite strong training and generalisation test scores,
the qualitative performance in practice runs of BioCombat
left much to be desired; a performer would be convinced
they were doing well at feeling a particular emotion, only
to discover no points were being scored! After extensive
checking of the code, no problems were found in the signal
analysis; the only conclusion was that the task of feeling
emotional states on cue in the concert situation did not suf-
ficiently match the preparatory circumstances, with the con-
cert audio itself a confound.

The solution was to train the networks with the emo-
tion-specific audio compositions used in the BioCombat
performance itself, created by each artist/composer to be
played for each of the emotions if they were winning. By
recording training data against these sounds, which would
be present in the concert conditions (albeit to varying
degrees), a more quantitatively and qualitatively robust sys-
tem was established. One might argue that rather than dis-
tinguishing between feeling eight different emotions the
system is actually distinguishing the patterns in the biosig-
nals triggered by listening to the chosen eight soundscapes.
This is unlikely to be the case, however. The difference
between listening to the soundscapes versus listening to the
soundscape and inducing the emotions through remember-
ing life events was tested; it was concluded that accessing
personal memories was essential in gaining usable data-
sets. Potential for muscle memory and EEG to skew the
data was minimised; eyes were kept closed most of the
time, and this condition led to the most successful system,
where performers felt the system judged them fairly in

terms of their ability to feel each particular emotion on
demand.

In trial rehearsal sessions, the most successful machine
learning algorithms for the live situation were selected. It
was found after various testing sessions that the discrimina-
tion amongst eight emotion classes felt problematic, despite
attempts to stabilize results. For the concert performance,
the task of distinguishing the four quadrants of arousal-
valence space was more robust, and separate algorithms for
arousal and for valence worked best. The eight target
emotions were placed in Russell’s arousal-valence circle
(Russell, 1980), as depicted in Fig. 3, and when both arou-
sal and valence were in the right quadrant, the performer
gained a point. If only arousal or valence was in the right
quadrant, half a point could be scored.

The ultimate system deployed in concert was robust
enough to feel ‘honest’ to the performers, and as far as
could be introspected, performance nerves did not skew the
final competition situation (no formal evaluation of nerves
was carried out). It is interesting to note how different the
qualitative performance of the classifier was from the pre-
dicted (generalised) success rates suggested by the quantita-
tive machine learning analysis. The situation necessarily
demanded personalisation to the two participants, running
their own individualised classifiers in concert.

4. BioCombat in concert

BioCombat has been performed twice so far: it was trialled
at Durham University in February 2015 and thereafter pre-
sented in final shape at the Sage Gateshead in March 2015.
It was made as part of a larger body of work produced

Table 5. Confusion matrix for modelling participant 2: positive/negative valence discrimination, broken down in terms of overall success.

Valence Predicted negative Predicted positive

True label: negative valence 5026 718
True label: positive valence 903 4841

Table 6. Correct prediction and confusion matrix information for modelling participant 1 and 2 on positive/negative valence discrimination,
broken down per emotion.

Emotion
Negative or positive
valence?

Participant 1 predicted
negative/positive

Participant 1
percentage Correct

Participant 2 predicted
negative/positive

Participant 2
percentage correct

Calm Positive 419/1013 70.7 72/1364 95
Sad Negative 1063/369 74.2 1358/78 94.6
Annoyed Negative 1001/431 69.9 1042/394 72.6
Scared Negative 703/729 49.1 1267/169 88.2
Angry Negative 917/515 64.0 1359/77 94.6
Excited Positive 479/953 66.6 153/1283 89.3
Happy Positive 422/1010 70.5 411/1025 71.3
Tender Positive 222/1210 84.5 267/1169 81.4



during a residency of Adinda van ’t Klooster at the
Durham University Music Department. She worked with
various members of staff on a variety of projects that can
all be found on the project website <https://www.affectfor
mations.net>. A video of the BioCombat performance
can be found here <https://www.youtube.com/watch?v=
qZmdpDISdUQ&feature=youtu.be> at 34 mins and 18 s in.

Both performers reported finding it hard but not impos-
sible to feel the emotions on demand in concert set-up (per-
haps some theatre actors would find this a more familiar
task, though the situation is rather different to a conven-
tional theatre production). The time span of one minute per
emotion was about right but the first 20 s were not counted
in scoring to allow the performers some time to get into
the requested emotion. The graphics and audio were only
sporadically used by the performers to help feel the emo-
tions, as the use of personal memories was a more power-
ful way to access emotional states, especially in the concert
set-up where the audio was out of a performer’s control
and depended on the score total. The competitive nature of
the performance made it naturally harder to feel the emo-
tions, as keeping an eye on the score would often be coun-
terproductive to feeling the emotions. Preparing the data
for the classifiers, especially feeling the negative emotions
repetitively, was fairly taxing.

There were some interesting comments from the
audience: one person reported wanting to perform the piece
herself and another reported finding the performance
‘intriguing’, and ‘making impressive use of the technology’
whilst a third person said: ‘For BioCombat, I felt that when
the performers were told what to feel I also started to expe-
rience those feelings by wondering how they were forcing
themselves to’. Naturally, the only people who can assess
the effectiveness of the system are the two performers and
they can only assess their own model; they have no access
to the true feelings of the other performer. With the success
rates of detection of the performers being unequal, there
always remains a possibility of the system being unfair, in
the sense of biased to score more for one competitor than
the other. However, when the system was less robust this
level of unfairness was clearly perceived by both perform-
ers. The more limited classification task of detecting the
four quadrants rather than the eight emotions was required
to make it fit for performance and the perceived fairness of
the system was thus much increased as well as the joy of
performing with it.

We finish this section with a list of advice for future
artists exploring this field who might wish to build related
interactive systems.

(1) The training examples should reflect as much as pos-
sible the final concert situation (time was lost in this
project pursuing an earlier alternative physiological
data collection set-up based on ‘music that the partici-
pants thought cued different emotional states’ rather
than the final concert audio itself).

(2) It is possible to create short-term time window-based
sensing with relatively good quantitative performance.
Nonetheless, the final arbiter is qualitative, and
robustness of an algorithm to concert nerves may
override evaluation metrics prepared outside of con-
cert conditions.

(3) The GSR sensors used in this system were found to
be unreliable, with both of them breaking and needing
to be re-soldered just before the concert. The authors
recommend the use of a more robust GSR sensor,
though the EEG sensor and heart rate sensor were
found to be reasonably stable.

(4) There is no easy technological solution at present, and
the coupling of multiple applications may be required.
Extremely careful programming and awkward multi-
stage concert set-up is necessary.

(5) There is a real excitement, however, for artists to
work with such technologies, essential as they are to
gain better access to the interior world of human emo-
tional state.

5. Conclusions

Artistic projects provide strong opportunities to test
research work in physiological emotion recognition, in an
ecologically valid setting. Artistic endeavour away from
lab-based study remains exacting, with artists demanding
users of such technology. Although medical grade sensors
are not necessarily required, the physiological sensing work
at the core of the artwork must be shown to work honestly
and accurately for artistic integrity. Concert conditions
establish an immensely challenging scenario for realtime
sensor data acquisition and processing, far beyond offline
situations in a requirement for fast reaction to user state.

This article has described a realtime concert system,
BioCombat, innately requiring participant-specific machine
learning following causal short-term window signal pro-
cessing (such a set-up is different to the luxury of one min-
ute data windows deployed in much previous research).
The final system was more trustworthy when set up with a
more limited classification task, distinguishing the four
quadrants of arousal-valence space, rather than eight dis-
tinct emotional states. We described tensions between quali-
tative and quantitative success less often reported in
engineering literature; the gamification of the emotion clas-
sification task highlighted the qualitative performance of
algorithms as much as their quantitative accuracy over
training/tuning/test materials. It is likely that performance
nerves and excitement played a powerful part in taking the
system outside of its trained circumstances. Future work
might prepare a test database with concert data recordings,
though the premiere of BioCombat could not utilise such
data; instead, future systems might boot strap from
personalised data collected in concert as the ultimate
ecologically valid stimulus (much validation work would
remain to be done in order to achieve this convincingly).

https://www.affectformations.net
https://www.affectformations.net
https://www.youtube.com/watch?v=qZmdpDISdUQ&amp;feature=youtu.be
https://www.youtube.com/watch?v=qZmdpDISdUQ&amp;feature=youtu.be
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