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Abstract
1.	 Passive acoustic monitoring can be an effective method for monitoring species, 

allowing the assembly of large audio datasets, removing logistical constraints in 
data collection and reducing anthropogenic monitoring disturbances. However, 
the analysis of large acoustic datasets is challenging and fully automated ma-
chine learning processes are rarely developed or implemented in ecological field 
studies. One of the greatest uncertainties hindering the development of these 
methods is spatial generalisability—can an algorithm trained on data from one 
place be used elsewhere?

2.	 We demonstrate that heterogeneity of error across space is a problem that could 
go undetected using common classification accuracy metrics. Second, we develop 
a method to assess the extent of heterogeneity of error in a random forest clas-
sification model for six Amazonian bird species. Finally, we propose two com-
plementary ways to reduce heterogeneity of error, by (i) accounting for it in the 
thresholding process and (ii) using a secondary classifier that uses contextual data.

3.	 We found that using a thresholding approach that accounted for heterogene-
ity of precision error reduced the coefficient of variation of the precision score 
from a mean of 0.61 ± 0.17 (SD) to 0.41 ± 0.25 in comparison to the initial clas-
sification with threshold selection based on F-score. The use of a secondary, 
contextual classification with thresholding selection accounting for heteroge-
neity of precision reduced it further still, to 0.16 ± 0.13, and was significantly 
lower than the initial classification in all but one species. Mean average precision 
scores increased, from 0.66 ± 0.4 for the initial classification, to 0.95 ± 0.19, a 
significant improvement for all species.
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1  |  INTRODUC TION

Passive acoustic monitoring (PAM) is an increasingly common ecolog-
ical survey tool. PAM has many advantages over traditional survey 
methods, facilitating sampling across larger spatiotemporal scales, and 
in places where access is logistically challenging, thus increasing cost-
efficiency (Darras et al., 2018; Gibb et al., 2019). Given this capacity to 
record audio data autonomously, PAM can accrue very large datasets, 
often too large to analyse manually. Automated classification presents 
a solution to this challenge. A variety of approaches have been tri-
alled including template matching, machine learning techniques such 
as clustering and random forests along with deep-learning algorithms 
such as convolutional neural networks (Priyadarshani et al.,  2018). 
However, outside of chiropterology, few studies have used fully au-
tomated classification to answer applied ecological questions in ter-
restrial landscapes, and especially for the challenge of multi-species 
classification across large audio datasets from tropical forests.

One of the issues facing the applied use of automated classifica-
tion methods is how readily algorithms can be generalised—how well 
they can be applied to new data across time and space (Priyadarshani 
et al., 2018; Stowell, Petrusková, et al., 2019). The accuracy and gen-
eralisability of supervised machine learning techniques—those using 
labels generated by humans as training data—are heavily dependent 
on the nature of the labelled training data used (Knight et al., 2019, 
2020; Towsey et al., 2012). Achieving high classification performance 
generalised across a range of conditions requires training data that is 
representative of the variation in the data on which the classifier is 
to be used, while also achieving a balance between classes (Towsey 
et al., 2012; Zhong et al., 2020).

Classification performance is impacted by variation in the un-
derlying audio data which may be intrinsic or extrinsic to the target 
species. Intrinsic sources include variation in an individual animal's 
vocalisations—between individuals, populations, geographically and 
temporally. For classifiers to perform well considering these forms 
of intrinsic variation, a representative sample of vocal variation for 
each species as training data is needed. Although potentially chal-
lenging for many species, obtaining such representative data is fa-
cilitated when ecological knowledge can be used to anticipate when 
and where training data can be obtained.

Sources of potential extrinsic variation include; other sounds 
that overlap with target signals in time and/or frequency such as 
vocalisations from other species, the prevalence of which depends 

on variation in co-occurrence and abundance of species with sim-
ilar vocalisations (Tobias et al., 2014), plus other sources of bioph-
ony, geophony or anthropophony; and environmental factors that 
can impact sound propagation, such as weather conditions and 
the density of surrounding vegetation (Yip et al., 2017). There are 
also potential sources of audio variation that fit between the two 
categories—for example when a source extrinsic to the target animal 
causes an intrinsic change to the vocalisation of the target species. 
Responses to predators or competitors, such as duetting or lekking 
birds can fit in this category (Mennill & Vehrencamp, 2008), as do 
broadband sources of noise such as cicadas or vehicle engines that 
may cause a change in the frequency at which calls are made.

In comparison to intrinsic variation, these sources may be more 
challenging to represent well in a training dataset, as they are 
likely to be both more variable and less predictable. In particular, 
the use of online libraries such as Macaulay Library (https://www.
macau​layli​brary.org), xeno-canto (https://www.xeno-canto.org) 
or AmphibiaWeb (https://amphi​biaweb.org) could cause training 
datasets to be less representative, as recordings made with direc-
tional microphones of single species have high signal-to-noise ratios 
(Priyadarshani et al., 2018, Towsey et al., 2012), and are unrepresen-
tative of external sources of acoustic variation.

Errors associated with variation in noise could be resolved by ap-
plying noise reduction techniques (e.g. Priyadarshani et al., 2020). 
While this approach is undoubtedly effective in some or even many, 
cases, it is a difficult approach when dealing with a multi-species 
classifier. Here, one target species call is ‘signal’ when considering its 
own classification, but can also be considered as ‘noise’, and impact 
classification accuracy, for all the other species included in the clas-
sifier. Therefore, even removing all of the sound that could be con-
sidered ‘noise’ in all circumstances still leaves a considerable amount 
of variable sonotypes in the training data. Furthermore, noise reduc-
tion is not a universally agreed approach to improve classification ac-
curacy, for instance the Open Soundscape package (Lapp et al., 2022) 
offers many approaches to augment and increase noise in training 
data—for instance overlaying training samples on top of each other.

Intrinsic and extrinsic variation in audio data make obtaining 
truly representative datasets extremely difficult if the classifier is 
intended to operate across large spatial extents, long periods of time 
or across heterogeneous habitats (Zhong et al., 2020). In these cases, 
providing representative data labels at local scales would require 
huge increases in labelling effort (LeBien et al., 2020). The inevitable 

4.	 We recommend assessing—and if necessary correcting for—heterogeneity of 
precision error when using automated classification on acoustic data to quantify 
species presence as a function of an environmental, spatial or temporal predic-
tor variable.

K E Y W O R D S
automated signal recognition, autonomous recording unit, bioacoustics, ecoacoustics, 
machine-learning
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shortfalls in obtaining representative datasets mean that classifica-
tion accuracies obtained on test datasets may not translate to field 
conditions (Stowell, Wood, et al., 2019)—a common problem in su-
pervised learning fields termed covariate shift (Shimodaira, 2000). 
Many classification algorithms may exhibit biases that will lead to 
heterogeneous error structure when exposed to these variations. 
Heterogeneity of error could be especially problematic if the covari-
ate responsible for shifting classification accuracy is the same as that 
being studied for ecological purposes. This may occur, for example, 
when error varies; spatially in a space-for-time swap experimental 
design, temporally in a phenological study or at ecotones where re-
placement species with similar vocalisations may overlap when ex-
amining habitat preference.

Automated classification models are typically assessed by deriv-
ing a range of accuracy metrics from a manually labelled test dataset 
that has been randomly subsampled from the training data, or inde-
pendently subsampled from the dataset on which the algorithm is to 
be applied (Knight et al., 2017; Priyadarshani et al., 2018). Following 
Knight et al. (2017), precision, recall, F-score and area under the 
curve (AUC) have been widely adopted to determine classification 
algorithm performance (Table  1). However, these methods fail to 
explicitly test the generalisability of the algorithm across the gradi-
ent of a shifting covariate. Consequently, using only these metrics 
to assess classification performance risks masking high variability in 
false-positive error and subsequent confounding of results if error 
covaries with a variable of ecological interest.

Although both heterogeneity in false-positive and false-negative 
errors can be detrimental, we focus here on false-positive errors, 
and consequently the precision metric, in keeping with other stud-
ies highlighting precision as important for acoustic surveys (e.g. 
Juodakis et al., 2021). Unlike false negatives, false positives cannot 
be mitigated by summarising presence across longer time periods 
or spatial extents (Metcalf et al., 2019), violate the assumptions of 
many standard methods for modelling detection probability and can 
lead to poor model inference (Royle & Link, 2006). While research 
has been conducted into the overall reduction in false-positive 
error in ecoacoustic datasets (e.g. Balantic & Donovan, 2020; Clare 
et al., 2021; Knight et al., 2020), and in reducing the variation in error 
when analysing the ecological variables through the use of occu-
pancy models (e.g. Chambert et al., 2018; Rempel et al., 2019), there 
has been limited research into methods to reduce variability of false-
positive error at the classification stage.

We present a case study using automated classification of an 
Amazonian PAM dataset to highlight the challenges in detecting 
heterogeneity of precision error. First, by incorporating a measure 
of heterogeneity into the metric used to set a threshold for classi-
fication confidence score, so that thresholding goes beyond a two-
way trade-off between precision and recall, and instead becomes 
a three-way trade-off between precision, recall and heterogeneity 
of (precision) error. Second, by incorporating a secondary classifica-
tion that accounts for the context in which the classification is made, 
through the use of neighbouring classification scores for the target 
and other species, environmental and temporal data.

2  |  MATERIAL S AND METHODS

2.1  |  Data collection

We used PAM to collect data from 29 survey points from a 10,000 km2 
study area in eastern Amazonia encompassing parts of the munici-
palities of Santarém, Belterra and Mojuí dos Campos (≈3°2′45.6″S, 
54°56′49.2″W) in the Brazilian state of Pará. Survey points located 
in upland terra firme rainforest had a minimum separation of 2 km to 
minimise spatial dependence. The experimental design was intended 
to investigate differences in socioecological responses to forest dis-
turbance (see Metcalf et al.,  2021 for full details), and the survey 
points are thus distributed across an anthropogenic disturbance 
gradient. Consequently, we address spatial heterogeneity of error in 
this study across the 29 points.

TA B L E  1  A glossary of key terms relating to classification 
accuracy

Metric Definition Formula

True Positive 
(TP)

One of four potential outcomes 
of classification. True 
positives are a correct 
positive prediction (i.e. a 
species is actually present, 
and predicted to be present)

False Positive 
(FP)

An incorrect positive prediction 
(i.e. a species is predicted to 
be present, but is actually 
absent)

True Negative 
(TN)

A correct negative prediction (i.e. 
a species is predicted to be 
absent and is actually absent)

False Negative 
(FN)

An incorrect negative prediction 
(i.e. a species is predicted 
to be absent, but is actually 
present)

Precision The percentage of correct 
positive predictions in all 
positive predictions

TP

(TP+ FP)

Recall The percentage of all possible 
positive events that are 
correctly predicted

TP

(TP+ FN)

Precision-Recall 
Area-Under-
the-Curve 
(PR-AUC)

Precision-Recall curves 
summarise the trade-off 
between precision and recall 
at different classification 
confidence score thresholds. 
The area-under-the-curve 
is therefore a good metric 
for comparing classification 
accuracy independent of 
threshold selection

F-Score The harmonic mean of precision 
and recall

� = 1
(�2 + 1) × Precision ×Recall

�2 × Precision+Recall

F0.5-Score The harmonic mean of precision 
and recall, weighting 
precision as twice as 
important as recall

� = 0.5
(�2 + 1) × Precision ×Recall

�2 × Precision+Recall
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We collected two sets of acoustic data. The first was used exclu-
sively for the purpose of training the classification algorithm (here-
after ‘Acoustic Dataset 1’) between 20 November and 30 December 
2017 from two of our survey points, each with three recorders 150 m 
apart. The second set of acoustic data (hereafter ‘Study Dataset’) was 
collected from a single recording location at each of the 29 survey 
points between 12 June and 16 August 2018. Recordings for the 
Study Dataset were made over 1–2 recording periods at each point, 
with recording period varying in length between 3 and 22 days. This 
gave as optimal a coverage of nocturnal species as logistical limitations 
would allow (nocturnal species vocalisation rate may be impacted by 
the lunar cycle). A minimum of 13 days were surveyed at each loca-
tion. Both datasets were collected using Frontier Labs Bioacoustic 
Recorders (Frontier Labs, 2015). Recordings were continuous across 
the diel cycle, and were filtered afterwards to only include astro-
nomical night, measured using the suncalc package in R (Thieurmel & 
Elmarhraoui, 2019) using the location of our field station (coordinates 
given above). Full details of recording periods, equipment and proto-
cols for each location are given in SOM Appendix 1. This work was 
conducted under SISBIO permit number 53271–13.

2.2  |  Automated classification and 
verification datasets

Tadarida is an open-source toolbox for detecting, labelling and classi-
fying sounds (Bas et al., 2017) and shown to be effective at classifying 
various European species of insects and mammals (Barré et al., 2019; 
Newson et al., 2017). We used Tadarida to build a classifier in R (R 
Core Team, 2020) for seven nocturnal bird species—four owl species; 
Southern Tawny-bellied Screech-owl Megascops usta, Crested Owl 
Lophostrix cristata, Spectacled Owl Pulsatrix perspicillata, Amazonian 
Pygmy-owl Glaucidium hardyi and three nightjar species; Ocellated 
Poorwill Nyctiphrynus ocellatus, Silky-tailed Nightjar Antrostomus ser-
icocaudatus and Common Pauraque Nyctidromus albicollis. Tadarida 
first identifies sound events using a hysteresis function; the sound 
event starts when a high amplitude threshold is passed and ends 
when the signal-to-noise ratio drops below a second lower thresh-
old. The program extracts 269 acoustic features (e.g. minimum and 
maximum frequency, peak frequency, duration) from each detected 
sound event and facilitates feature labelling for use as training data in 
a random forest classifier (see Bas et al., 2017 for full details). As mul-
tiple detected sound events may be identified from a single animal 
vocalisation, Tadarida uses simple rules to group events and makes 
classification predictions. Consequently, Tadarida works best over 
short-duration sound files, so we split all the recordings into 15 s files 
for all further processes. We limited all detections to those with the 
point of highest amplitude between 0.2 and 4.2 kHz which includes 
most terrestrial nocturnal vertebrates in the region.

To create training data for the classification algorithm, we un-
dertook manual labelling of sound events detected by Tadarida 
(this labelled dataset hereafter referred to as ‘Training Dataset 1’) 
(Figure 1). Tadarida classifies every detected sound event, potentially 

comprising tens of millions of sound events of which only a fraction 
are made by target species. Consequently, we chose to label addi-
tional classes beyond those of the target species so that common 
non-target sounds would be classified into those groups. We were 
unconcerned about classification accuracy for these non-target 
classes. During the labelling process, in addition to vocalisations 
of the seven target species, we identified 293 potential non-target 
classes by grouping similar sounds together, which included a range 
of biophony, geophony and rarely anthropophony. These sound 
types were simplified to a final set of sonotypes, either by merger 
or removal to give a final set of 59 sound types, including the seven 
classes for target species, as the classes the Tadarida algorithm clas-
sified detected sound events into. We identified each sonotype to 
species level where appropriate and possible. Where identification 
was not apparent, online resources such as the Macaulay Library, 
xeno-canto and AmphibiaWeb were consulted, and some call types 
were shared with relevant regional experts. If identification was still 
not possible, the sound type was left unidentified.

To obtain training data, we systematically searched for discrete 
sound types in our recording datasets. First, we labelled data from a 
subset of Acoustic Dataset 1. This subset consisted of 3 hr of recording 
per night—1 hr up to 30 min before sunrise, 1 hr commencing 30 min 
after sunset and 00:00–01:00, every 3rd night from each of the three 
recording units deployed, totalling 96 hr of data. While each sound file 
was searched systematically, training data were added based on the la-
beller's discretion so that not all calls in an extended vocalisation bout 
were necessarily included, especially for common sound types. As this 
data only came from three survey points, we additionally labelled data 
from eight other survey points in the Study Dataset, to increase spatial 
coverage and representation of forest disturbance, which can impact 
species abundance and composition. As the systematic search method 
adopted for Acoustic Dataset 1 was extremely time-consuming, we 
adopted a more targeted approach to labelling the additional data 
from the Study Dataset, choosing data from periods of time and places 
which we knew were most likely to contain vocalisations of species 
that were known to be present in the region (Lees et al., 2013), but 
were thus far under-represented in Training Set 1.

Finally, we supplemented labels generated from our own audio 
data using recordings from online archives (Macaulay Library, xeno-
canto), also split into 15 s .wav files. We augmented all recordings by 
adding noise at six amplitude levels by combining each labelled file 
with three files identified in our own recordings as containing only 
heavy rainfall, and manipulating each by increasing the amplitude, 
giving six ‘rain’ files. Each rain file was then combined with each la-
belled file, increasing six-fold the number of labels in the training 
dataset. For full details of the Tadarida labelling and data augmenta-
tion process, see SOM Appendix 2.

2.3  |  Assessing classifier performance

To assess classifier performance, we followed Knight et al. (2017) 
in using precision, recall, F-score and the area under the precision/
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recall curve (hereafter ‘PR-AUC’). We calculated these scores from 
two test subsets of the Study Dataset by comparing Tadarida pre-
dictions against manual assessment of the same audio files. We 
detect the presence or absence of a species at 15 s resolution. 
Tadarida gives a confidence score for each class included in the 
classification algorithm (n = 59) for each group of detected sound 
events (Tadarida made classification predictions on n = 28,030,710 
grouped sound events in the Study Dataset), and we considered 
the species with the highest score in each grouped sound event 
to be the species predicted as present by Tadarida. We then sum-
marised the predictions to the 15-s file level, taking the maximum 
score for each predicted species per file so that a species only 
had one score per file. All predictions for non-target species were 
discounted. Manual assessment of target species present within 
15 s files was conducted using Raven Pro (Center for Conservation 
Bioacoustics, 2019).

When creating a test dataset for manual labelling, it is vital to use 
a sample large enough to be representative of the original dataset 
to accurately assess classification performance (Knight et al., 2017). 
However, test sets of 10% or even 1% may not be practical for very 
large datasets, as the subsample would take too long for manual as-
sessment, as is the case here (n = 1,081,780 fifteen second files in 

the Study Dataset). Instead, we made a subjective decision on test 
set sample size based on the trade-off between manual labelling ef-
fort and representativeness. Consequently, the first test set (Test 
Set 1) consisted of 2900 15 s files stratified such that 100 files were 
taken from each survey point, just under 0.3% of the total number of 
unique 15 s files in the study dataset.

Test Set 1 was randomly subsampled from the study dataset 
prior to classification following Knight et al. (2017), ensuring in-
dependence from the training dataset. A 15 s file was considered 
to be a true positive when Tadarida predicted a species pres-
ence within that file and the species was also detected in the file 
during manual assessment. A 15 s file was considered a false pos-
itive when Tadarida predicted a species presence within that file, 
but the species could not be detected in the file during manual 
assessment, and so on, respectively, for true negative and false 
negatives. A confusion matrix of true positives, true negatives, 
false positives and false negatives was created, from which we 
calculated precision, recall, F-Score and PR-AUC, following Knight 
et al. (2017). F-Scores can be weighted between Precision and 
Recall. We weighted precision as being twice as important as re-
call. This is because false positives are likely to have more severe 
consequences in spatial analysis of species occurrence (Balantic 

F I G U R E  1  A flowchart showing the proposed processes required to assess and reduce heterogeneity of error in automated ecoacoustic 
classification.
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& Donovan, 2020; Royle & Link, 2006), and as we used short files 
likely to be summarised over larger time-scales to avoid temporal 
autocorrelation in a later analysis, thus mitigating the impact of 
false negatives. Calculation of mean accuracy metrics was done by 
first calculating the scores for each target species across all sites, 
as opposed to at each survey site, and taking the unweighted mean 
from the seven values generated.

Knight et al. (2017) highlight the importance of score thresholds 
in assessing classifier performance, so we calculated F0.5-score at 
each possible threshold between 0 and 100 with intervals of 0.001. 
We used the maximum F0.5-score to determine the optimal thresh-
old for each target species, and recalculated precision, recall and 
F0.5-score with that threshold applied.

2.4  |  Detecting heterogeneous error

To look for heterogeneity in precision across our survey points, we 
calculated precision values for each target species at each survey 
point and computed the sample coefficient of variation (CV) using 
the EnvStats R package (Millard,  2013). However, we were con-
cerned that the random subsampling approach used to select Test 
Set 1 may result in a non-representative subsample. In particular, 
selecting too few true-positive data points (e.g. instances in which 
rarer species were present) at intervals across the gradient of the 
predictor variable to be sensitive to variance in error. Consequently, 
the second test set (Test Set 2) was subsampled from the study data-
set after classification, and consisted of 50 15 s files from each sur-
vey point per target species, with sampling based on the probability 
distribution of the classification score of the target species, using the 
createDataPartition function in the caret R package (Kuhn, 2021). All 
files were manually assessed for the presence or the absence of the 
predicted target species. Optimal thresholds were determined in the 
same manner, and Precision, Recall and F0.5-Score were calculated. 
However, while this approach allows a more accurate assessment of 
the number of true and false positives, it comes at the expense of 
precise estimation of true and false negatives, which are necessarily 
excluded from the test dataset. To compensate, the recall scores for 
each species generated for Test Set 2 were multiplied by the recall 
score for Test Set 1 prior to the application of a threshold (hereafter 
‘corrected recall’).

To see if heterogeneity of precision error detected by Test Set 
2 varied from Test Set 1, we used Levene's test with Benjamini–
Hochberg correction to compare the variance in precision score of 
each survey point for each species.

2.5  |  Reducing heterogeneity of error

We used two methods to reduce both the absolute number of 
false positives and for comparability across study treatments—
heterogeneity of precision error. First, we incorporated a meas-
ure of variance—CV, in the threshold selection process (hereafter 

‘CV-optimised threshold’). We normalised both the F0.5-score and 
CV values from each threshold interval to within the range zero to 
one. Instead of using the maximum possible F0.5-score, we included 
a term to favour threshold intervals with lower CVs, using the maxi-
mum of (F0.5-Score 2) + (1 - CV), but weighted in favour of F0.5 score. 
We recalculated accuracy metrics for Test Sets 1 and 2, comparing 
the CV scores for the two thresholding approaches.

Second, we built a second random forest model—a ‘contex-
tual classifier’, trained on predictions from the Tadarida algorithm, 
time, date and acoustically derived environmental data. This sec-
ondary classification process was explicitly designed to reflect the 
contextual and environmental information used by experienced 
field observers to support identifications. This includes the en-
vironmental conditions, such as background noise levels (Simons 
et al., 2007), the presence of certain indicative species or groups 
which increases or decreases the likelihood of other species being 
present, and the observer's own capacity to overlook or ignore 
certain species (Kepler & Scott, 1981). We argue that an experi-
enced observer uses an awareness of all these factors and adjusts 
identification confidence accordingly (Robinson et al., 2018). We 
have attempted to artificially replicate this process by providing a 
random forest both with the initial confidence scores made by the 
first classifier, and a wide array of contextual data which can be 
used to modify that initial prediction.

As we were primarily concerned with rectifying problems with 
precision, we designed the contextual classifier to operate only on 
those 15 s files already classified by Tadarida as having a target spe-
cies present, similar to the secondary classification method used by 
Balantic and Donovan (2020) to reduce overall false-positive rates 
for template-matching. We took a random, stratified sample of files 
(n = 2,900, henceforth ‘Training Set 2’) in which Tadarida had classi-
fied the target species as present. We stratified the sample, taking 
100 sound files from each location, further stratified into uneven 
quintiles of confidence score: 0–0.29, 0.3–0.49, 0.5–0.69, 0.7–0.84 
and 0.85–1. These ranges were chosen to include a full range of 
confidence scores, while taking most samples from scores that were 
most likely to have a mix of true and false positives. When there 
were not enough samples within a quintile, which occurred mostly 
at high confidence ranges, additional samples were taken randomly. 
We manually checked for vocalisations of the target species in each 
sampled file and calculated the specificity of the classifier for each 
species at each survey location.

We built individual contextual classifiers for each of our seven 
target species using the stratified sample as training data. From 
each manually checked 15 s file, we calculated a series of variables 
to be used to train a new random forest. This included environ-
mental data about each 15 s file; time, date, root mean square 
of the sound envelope calculated utilising the seewave package 
(Sueur et al., 2008) as a measure of background noise levels and 
the ‘rainQ2’ and ‘rain_min’ prediction of rainfall from the hardRain 
package (Metcalf et al., 2020). We also used Tadarida confidence 
scores for each 15 s file as predictors. These included the maximum 
Tadarida confidence score of the target species, and for every class 
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in the Tadarida classifier (n = 59), the minimum, maximum, mean, 
90th and 95th quantiles of the confidence scores. We also included 
the summed confidence score of each class per 15 s file, the ratio 
of classified sound events to the target species, and the three spe-
cies most commonly detected in the file. In addition, we calculated 
the same confidence score variables across both 10 min and 1-hr 
periods, with the time centred around the file being classified. For 
the latter, we also calculated the 98th percentile of the classifier 
score for each class. This gave us a feature set of 716 predictors 
for each target species.

We used this feature set to build a distributed random forest 
classifier in the H2O package (LeDell et al., 2020), splitting the 
data into training (70%) and test (30%) datasets. Although random 
forests can handle a large number of predictor variables (Ross & 
Allen, 2014), we used the H2O variable importance function to as-
certain relative variable importance, and rebuilt a final model with 
variables of an importance greater than 0.05, to avoid overtraining 
on unimportant predictors. Final models used a mean of 214 ± 140 
variables (range 51–399)—see SOM Appendix 3 for more details of 
selected variables. Every 15  s file in which the Tadarida classifier 
had predicted the presence of a target species was then reclassified 
with a contextual classifier. We used a CV-optimised thresholding 
approach and calculated precision, corrected recall and F-score at 
the optimal threshold for each species.

We used pairwise Wilcoxon Signed-Rank tests with Benjamini–
Hochberg correction to compare precision scores for each of the 
29 points by species for the Tadarida classification with F-score op-
timised threshold, the Tadarida classification with a CV-optimised 
threshold and contextual classification with a CV-optimised thresh-
old. We used Levene's test with Benjamini–Hochberg correction 
to compare the variance of precision between the three methods, 
to test if they had resulted in a significant reduction in the spatial 
heterogeneity of precision. Finally, we used Wilcoxon Signed-Rank 
tests with Benjamini–Hochberg corrections to compare the pre-
cision, adjusted recall, F-score and CV across all species for the 
Tadarida classification with CV-optimised thresholds and the con-
textual classification.

3  |  RESULTS

3.1  |  Classification performance

In general, the Tadarida classifier performed poorly prior to thresh-
olding (Table 2). For most species, precision was low (0.27 ± 0.16 
[Mean ±  SD])—as expected in a process that is classifying every 
sound event. Recall fared better (0.65 ± 0.2), with a minimum 0.42 
for P. perspicillata. PR-AUC scores should better account for a 
large number of false positives at low threshold scores, but these 
were also low (0.54 ± 0.23). We found the classifier performed 
well on two species, L. cristata and A. sericocaudatus (PR-AUC 
scores  =  0.78 and 0.84, respectively), while P. perspicillata had a 
PR-AUC of just 0.17. However, PR-AUC scores weight precision and 

recall equally, and as here we prioritised precision over recall, it can 
still be possible to find thresholds that allow for high precision at 
the expense of recall. We found a dramatic increase in the preci-
sion and the F0.5-score of the classifier once an F0.5-score based 
threshold has been applied (Figure 2a in blue). Precision increases 
from 0.27 ± 0.16 to 0.83 ± 0.13, while recall decreases to a mean of 
0.38 ± 0.16. F0.5-Score, reflecting the weighting of precision over 
recall, also increases substantially to 0.64 ± 0.17 from 0.54 ± 0.23. 
However, some of the recall scores are particularly low—for exam-
ple, just 0.12 for P. perspicillata.

3.2  |  Detecting heterogeneity of error

We found considerable heterogeneity in precision when applying op-
timised F0.5-score thresholds to classification metrics derived from 
both test sets. Precision ranged from zero to one between survey 
sites for every species except G. hardyi with Test Set 2, which had a 
maximum precision of 0.95 (Figure 2b). Both test sets had high coef-
ficients of variation in precision for many species, 0.57 ± 0.42 for Test 
Set 1 and 0.61 ± 0.17 for Test Set 2 (Figure 2c). High precision scores 
still masked much variation, for instance in the case of A. sericocauda-
tus which has precision scores of 0.96 and 0.89 for Test Sets 1 and 2, 
respectively, but precision CV of 0.43 and 0.50, respectively.

Levene's tests revealed a significantly higher estimate of pre-
cision variance with Test Set 2 compared to Test Set 1 for P. per-
spicillata (F = 12.54, p = 0.006). No significant difference was found 
between the precision variance in the other six target species, al-
though Test Set 2 showed higher standard deviation of precision for 
four of the remaining six species, the exceptions being M. usta and 
G. hardyi (Figure 2b). Additionally, precision CV was higher with Test 
Set 2 than Test Set 1 for five species, the exceptions being M. usta 
and N. albicollis (Figure 2c). In addition, Test Set 1 produced the high-
est and lowest CV estimates, 0.28 for P. perspicillata and 1.50 for N. 
albicollis, perhaps indicative of low sample sizes causing relatively 
extreme estimations. A comparison of the other estimated accuracy 
metrics from Test Set 1 and Test Set 2 can be found in Figure 2a. 
Results hereafter refer to metrics derived from Test Set 2.

TA B L E  2  Tadarida classification accuracy metrics without 
thresholds. F0.5-score is weighted twice as heavily in favour of 
precision than recall. These accuracy metrics are based on a 
randomly sampled test set of n = 2,900 15 s files stratified to 
sample 100 files per survey point

Species Precision Recall F-score PR-AUC

M. usta 0.25 0.47 0.28 0.46

L. cristata 0.52 0.79 0.56 0.78

P. perspicillata 0.04 0.42 0.05 0.17

G. hardyi 0.40 0.45 0.41 0.52

N. ocellatus 0.29 0.75 0.33 0.61

A. sericocaudatus 0.26 0.92 0.30 0.84

N. albicollis 0.16 0.72 0.19 0.42
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3.3  |  Reducing heterogeneity of error

The use of CV-optimised thresholds resulted in the selection of 
higher thresholds by a mean of 0.08 ± 0.05, with no thresholds de-
creasing, the threshold for N. albicollis stayed the same and a maxi-
mum increase of 0.13 for A. sericocaudatus (Figure 3). Importantly, 
CV-optimised thresholds reduced estimations of precision CV con-
siderably, by an average of 0.2 ± 0.16 per species, with a maximum 
decrease of 0.43 for A. sericocaudatus, 0.39 for N. ocellatus and 0.2 
for M. usta. A Levene's test showed a significant reduction in the 
variance of precision at the 29 survey points for A. sericocauda-
tus (F = 9.58, p = 0.01; Figure 4). The application of CV-optimised 
thresholds also resulted in increases in average precision to a mean 
of 0.86 ± 0.09 from 0.83 ± 0.13, with a precision estimate of 0.97 
for A. sericocaudatus, up from 0.88. This did come at some consid-
erable cost to recall, with the mean decreasing from 0.34 ± 0.13 to 
0.27 ± 0.09.

The contextual classification reduced heterogeneity in precision 
across the 29 survey points (Figure  4). The variance in precision 
was less than the variance for the Tadarida classifier with F0.5-score 
optimised thresholds for all species, and significantly so (adjusted 
p-values ≤0.05) for all species except L. cristata. Variance in preci-
sion also reduced in comparison to the Tadarida classification with 

CV-optimised thresholds for all species except L. cristata, which had 
a higher variance with the contextual classification by 0.001. Both 
G. hardyi and N. albicollis had significantly lower variances with the 
contextual classification than the Tadarida classification with CV-
optimised thresholds. We found a significant decrease in the CV of 
precision scores, decreasing from a mean of 0.41 ± 0.25 (SD) with 
Tadarida classification and CV-optimised thresholds to 0.16 ± 0.11 
(SD) with contextual classification (Wilcoxon Signed-Rank test with 
Benjamini–Hochberg correction, F  =  7, adjusted p-value  =  0.04; 
Figure 4).

The contextual classification also improved the overall precision 
of classification from a mean of 0.86 ± 0.09 (SD) with the Tadarida 
classifier and CV-optimised thresholds to 0.91 ± 0.05 (SD) (Figure 5). 
Although mean precision values across species did not differ sig-
nificantly, contextual classification resulted in significantly higher 
precision scores than Tadarida with F-score optimised thresholds 
for all species (adjusted p-values ≤ 0.05) when precision scores are 
calculated at each site (Figure 4), and Tadarida with CV-optimised 
thresholds for L. cristata, G. hardy and N. albicollis.

Additionally, we found significant improvements in corrected 
recall and F0.5-score with the contextual classifier compared to the 
Tadarida classifier with CV-optimised thresholds (Figure  5). F0.5-
score also significantly improved, from 0.59 ± 0.11 to 0.75 ± 0.09 

F I G U R E  2  (a) A comparison of 
classification accuracy metrics for the 
Tadarida classifier, derived from Test Set 1 
(randomly sampled prior to classification) 
and Test Set 2 (sampled post-classification 
based on the probability distribution of 
positive classifications), respectively, 
with F0.5-score optimised thresholds 
applied. Recall scores for Test Set 2 were 
multiplied by the recall score for Test Set 
1 prior to the application of a threshold to 
compensate for Test Set 2 being sampled 
from Tadarida positive predictions. (b): 
Variation in precision scores by survey 
point, p-values (significance set at 
p = 0.05) show the result of Levene's test 
of homogeneity of variance between the 
two test sets. (c) Coefficient of variation 
(CV) in precision score calculated per 
species for each of the two test sets.
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(F  =  43, adjusted p-value  =  0.04). Another benefit of the contex-
tual classifier was a considerable increase in corrected recall, from 
0.27 ± 0.09 to 0.46 ± 0.13 (F  =  44, adjusted p-value p  =  0.04). All 
species showed higher corrected recall with contextual classifica-
tion than Tadarida with CV-optimised thresholds, with a maximum 
increase of 0.28 observed for N. ocellatus.

4  |  DISCUSSION

Heterogeneity of error is rarely tested for in ecoacoustic stud-
ies using automated classification (Wright et al., 2020) and could 
potentially confound ecological interpretation. We found strong 
evidence that classification of sound events with a random forest-
based Tadarida algorithm exhibited strong indications of het-
erogeneous false-positive error. Six of seven target species had 
precision ranging from zero to one across 29 survey sites, and 
mean CV across all species was greater than 0.5 regardless of the 
test set used to estimate accuracy metrics. This highlights the 
need for accuracy metrics that better reflect the performance of 
machine learning classification under field conditions, and that do 

not rely solely on those metrics optimised for machine learning 
use in ‘laboratory conditions’ (Wearn et al.,  2019). In particular, 
we emphasise the need to include metrics to detect error variance 
across prediction variables, here successfully undertaken using 
precision CV.

Additionally, we found that using post-classification sampling of 
files from only positive classifications can provide a more reliable 
estimate of precision error heterogeneity, while providing better 
estimations of standard accuracy metrics. In comparison, standard 
approaches to drawing test sets (Knight et al., 2017) using strati-
fied pre-classification sampling, resulted in both the largest and 
smallest estimates for each of Precision, Recall and F0.5-score. This 
is probably due to a low sample size of positive predictions when 
species have low call density, resulting in a less representative test 
set. However, the additional subsampling required for creating a 
post-classification test set may only be appropriate if classification 
is being conducted on large datasets, for species with very low call 
densities, or if those conducting the study have strong a priori rea-
sons for expecting a high level of heterogeneity within error rates. 
In other circumstances, ensuring a large enough pre-classification 
sample to obtain a good number of positive predictions may suffice.

F I G U R E  3  Threshold selection approaches with (red circles) and without (black circles) including the coefficient of variation (CV) of 
precision. Scores shown within each plot are precision (PREC) and recall (REC) for the CV-optimised threshold selection based on Test Set 
2. Nyctidromus albicollis is not shown, but both threshold approaches selected the same threshold score giving a precision score of 0.7 and 
recall of 0.25.
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We also demonstrate two methods of reducing precision error 
heterogeneity. First, by incorporating a measure of heterogeneity 
of error in the thresholding process. This is straightforward to im-
plement and resulted in substantial reductions of CV by 0.2 ± 0.16 

per species. However, Levene's tests only found A. sericocaudatus 
to have a significantly lower precision variance than scores derived 
with a threshold optimised for F0.5-score alone. In addition, this 
method reduces error heterogeneity by increasing the confidence 

F I G U R E  4  A comparison of the variance in precision at 29 survey points by classification method and threshold optimisation approach. 
Blue brackets and stars show the significant results of pairwise Levene's tests with Benjamini–Hochberg correction on the homogeneity of 
variance. Black brackets and stars show the significant results of pairwise Wilcoxon signed-rank tests with Benjamini–Hochberg correction 
on precision values. *p < 0.05 and >0.01, **p < 0.01 and >0.001, ***p < 0.001 and >0.0001, ****p < 0.0001. Yellow boxplots show results 
for the contextual classifier with a CV-optimised threshold, green for the Tadarida classifier alone with a CV-optimised threshold and blue 
results for the Tadarida classifier with an F0.5-score optimised threshold.

F I G U R E  5  A comparison of accuracy 
metrics for Tadarida classification with 
CV-optimised thresholds applied, and 
contextual classification with CV-
optimised thresholds applied. F0.5-score 
is weighted twice as heavily in favour of 
precision and recall is corrected based on 
the recall values from Test Set 1.
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score threshold, thus also requiring a greater reduction in recall. This 
suggests that incorporating heterogeneity of error in the threshold-
ing process should only be used on its own for classifiers that al-
ready have high traditional performance metrics, in particular a high 
F-score and PR-AUC, requiring a limited reduction in precision error 
heterogeneity. This is further emphasised by the incorporation of CV 
into threshold selection not resulting in an increase in threshold for 
N. albicollis despite this species showing the highest precision error 
heterogeneity, because the classifier performed poorly enough in 
general that it did not justify the decrease in F0.5-scores.

The second method to reduce precision error heterogeneity was 
a secondary contextual classifier. In contrast, this required consid-
erably more effort to incorporate into a classification workflow, but 
substantially reduced CV of precision for all species, and signifi-
cantly reduced the variance of precision scores for all species except 
L. cristata. In keeping with previous studies that also used a second-
ary classifier (Balantic & Donovan,  2020), it also improved overall 
classification performance, significantly improving precision for all 
target species and simultaneously increasing recall in comparison to 
only using a CV-optimised threshold. This suggests that users of all 
but the best performing classification models, and those with par-
ticular concerns about error heterogeneity confounding ecological 
results, should consider using an additional contextual classification 
to redress variance in precision.

Concern around precision error heterogeneity led us to train 
the contextual classifier on positive predictions. This is because we 
believe variance in precision is more likely to confound ecological 
findings and be harder to mitigate against in other ways, such as 
summarising results over longer time periods, or the use of occu-
pancy models, than heterogeneity of recall. However, for some uses 
of audio classification, homogeneity of recall may be as, or more, 
important—and previous research has suggested that a minimum 
level of recall is required for studies to be reliable (Knight et al., 2020), 
for instance recall can impact detectability in occupancy models, 
which could bias occupancy estimates (MacKenzie et al., 2017). In 
these cases, the use of a contextual classifier that allows for a lower 
threshold and increased recall is clearly beneficial but may be im-
proved further by also training it on negative predictions. However, 
this does entail a higher degree of effort to implement, especially 
in cases of low call density due to the class imbalances inherent in 
detecting bird calls. In such cases, there are always likely to be many 
more true negatives than either false negatives or true positives, so 
finding sufficient instances of false negatives to train a secondary 
classifier may prove challenging without a priori knowledge of when 
and where positive instances are likely to occur.

There is no reason to think heterogeneity of error is unique to this 
dataset, or even to random forest classifications. It is likely to occur 
broadly in supervised learning classification methods, with parallels 
to image classification in camera-trapping (Wearn et al., 2019), in-
cluding convolutional neural networks currently producing the best 
classification accuracy. Covariate shift from training datasets can be 
caused by underlying ecological factors impacting the soundscape 
varying across a range of gradients including space, time, light and 

temperature (Royle, 2018; Yip et al., 2017). We therefore strongly 
recommend that future studies explicitly test for, and take measures 
to reduce variance in error.

The methods proposed here are just two possibilities, and are not 
necessarily optimal. Consideration should be afforded to study objec-
tives and the ecology of the target species—for example the use of con-
textual classification here could bias against rarer species or events, so 
may only be appropriate for species with regular calling bouts, and for 
occupancy or abundance estimations rather than presence/absence 
of extremely rare species. Other approaches could instead be used 
to reduce heterogeneity of error, for instance with a suitably large ini-
tial training set, a naive classifier could be trained at short time-scales 
and then the naive classification scores used as features in a contex-
tual classifier at longer time-scales with boot-strapping to maintain 
independence. This approach would remove the need to generate a 
second training dataset, although would probably make the collection 
of a suitable initial dataset more challenging. Other machine learning 
methods, or even ensembles, could outperform Distributed Random 
Forest algorithms, and other useful contextual variables could be 
used—for instance acoustic indices to better characterise and con-
textualise the soundscape. For those wishing to work within an oc-
cupancy model framework, it would be useful to undertake further 
research to compare the efficacy of methods to resolve precision and 
recall error within the occupancy model (e.g. Rempel et al., 2019) to 
reduce error heterogeneity during the classification process itself. 
Nonetheless, by revealing for the first time the potential importance 
and a solution for dealing with error heterogeneity we hope to stimu-
late further research, and to encourage those who use machine learn-
ing classification in ecoacoustics to carefully consider the implications 
of classification error on ecological inference.
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