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Early Warning System to Predict Energy Prices: The Role of Artificial 
Intelligence and Machine Learning  

Abstract  

The COVID-19 pandemic has inflicted the global economy and caused substantial financial losses. 

The energy sector was heavily affected and resulted in energy prices massively tumbling. The 

Russian invasion of Ukraine has fueled the energy maker more volatile. In such uncertain contexts, 

an Early Warning System (EWS) would efficiently contribute to stabilizing market swings. It will 

leverage the ability to control operating costs and pave the way for smooth economic recovery. 

Within this framework, we deploy Machine Learning (ML) models to forecast energy equity prices 

by employing uncertainty indices as a proxy for predicting energy market volatility. We 

empirically examine the comparative effectiveness of prevalent ML models and conventional 

approaches (regression) to forecast the energy equity prices by utilizing the daily data from 

1/6/2011 to 18/1/2022 for four US uncertainty and eight energy equity indices. Results show that 

the Nonlinear Autoregressive with External (Exogenous) parameters (NARX) of Neural Networks 

(NN) scored significantly better accuracy than all other (25) ML models and conventional 

approaches. The study outcomes are beneficial for policymakers, governments, market regulators, 

investors, hedge and mutual funds, and corporations. They improve stakeholders' resilience to 

exogenous shocks, blaze the recovery path, and provide evidence-based for assets allocation 

strategies.  

JEL: Q47, C53, E17, C32, H12  

Keywords: Energy equity prices; Machine Learning; Early Warning Systems; Forecasting; 

COVID-19; United States.  

1. Introduction  

In late 2019, the outbreak of the COVID-19 pandemic caused major disruptions with 

heightened uncertainty and lockdowns that led to increased unemployment rates and severe 

economic slowdown. Estimated as one of the most painful economic crises since the Great 

Depression (1929–1933), it resulted in massive financial and economic damages worldwide with 

far-reaching consequences on most industries (Alshater et al., 2021; Banna et al., 2022; Gupta et 
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al., 2020). The global energy system witnessed a significant drop in energy consumption with 

rising uncertainty about energy supply (Soava et al., 2021; Shamsudheen et al., 2022) and 

consumption patterns (Hallack & Weiss, 2020; Olubusoye et al., 2021). Compulsory lockdowns 

significantly constrained human mobility, and manufacturing lockdown damaged economic 

activities leading to a shrink in energy demand. This unprecedented shock caused a dramatic drop 

in energy equities prices and severe market instability. Remarkably, the US energy market, one of 

the largest global energy consumers, was dramatically hit. For the first time in history, the West 

Texas Intermediate (WTI) crude oil future prices crashed from USD 85 per barrel on January 15, 

2020, to a negative price of USD 40.32 per barrel on April 20, 2020. The volatility of crude oil and 

other energy commodities resulted in devastating effects. They are considered the main production 

factors and lead strategic energy sources for the global economy (Ben Jabeur et al., 2021; Tien & 

Hung, 2022). While the market slowly recovered, the Russian invasion of Ukraine changed the 

market dramatically and resulted in a more volatile energy sector.  

This economic turmoil raised investors’ concerns worldwide, and an approach to mitigate 

its harmful consequences became crucial. The present paper aims to examine three essential 

aspects of the US energy equity markets. First, we predict energy prices through uncertainty 

indices. Several studies were among the first to examine the connectedness effects between 

uncertainty indices and market volatility; they found that uncertainty indices can strongly predict 

oil prices (Bekiros et al., 2016; Balcilar et al. 2017; Chen et al., 2021). Second, we compare 

conventional methods with machine learning methods as many studies found that the latter group 

outperforms the former group (Ghoddusi et al., 2019). Finally, we determine the most effective 

method for an Early Warning System (EWS) for the energy sector during uncertain economic 

conditions; for instance, Okur et al. (2021) stated that few studies conducted a comparative 

examination of superior Machine learning (ML) models during uncertain and extraordinary 

economic conditions.  

We employ ML and conventional approaches to achieve the objective of this study. The 

ML is especially effective for issues that cannot be addressed directly by an analytical solution, 

model matching, or complex regression and classification tasks. ML models have gained 

popularity in many aspects of the energy business, inter alia energy prices. This is due to better 

data processing, categorization, proactive use of large-scale complex information and a large pool 

of complex data, as well as overlapping dynamics associated with a high level of uncertainty. In 
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this context, predicting energy prices requires more sophisticated models than conventional 

approaches (Castelli et al., 2020). ML is the most reliable approach as it allows to focus on 

nonlinear dependencies and exchanges between forecasters (Naumzik & Feuerriegel, 2021). It also 

improves forecasting accuracy using all possible input variables (Ghoddusi et al., 2019). 

Effectively, accurate prediction of the highly volatile energy prices constitutes a reliable reference 

for controlling the costs, grasping market trends and opportunities, and providing a scientific tool 

and evidence-based data for policymakers and market regulators (Lu et al., 2021). Accordingly, 

the integration of EWS in energy economics and finance becomes indispensable to achieve major 

goals like lowering operational expenses, securing energy sectors, and contemplating economic 

revival.  

The contributions of this paper to the extant literature manifold are as follows. First, this 

study, to the best of our knowledge, tests the power of EWS to predict the energy prices during the 

pandemic. Second, it contributes to evaluate the risk of uncertainty during the COVID-19 period 

in the USA by using uncertainty indices as independent variables (predictors) and energy equity 

indices as dependent variables (responses). The analysis was performed in the context of USA 

since they are the largest global energy consumers, and related data is available. Third, it performs 

the predictability simulation by relying on conventional approaches (like regression analysis) and 

ML models during the pandemic to highlight ML superiority and provide accurate energy price 

forecasts. Fourth, it extends the ML literature by incorporating around 26 Artificial Intelligence 

(AI) predictive approaches and highlighting its effectiveness in uncovering key determinants for 

energy price predictability. Our results find that the Nonlinear Autoregressive with External 

(Exogenous) parameters (NARX) of Neural Networks (NN) scored significantly better accuracy 

than all other ML models and conventional approaches.  

The remainder of the paper is structured as follows. Section 2 synthesizes the related 

literature review. Section 3 describes the data and methodology, while the empirical results are 

presented in Section 4. Section 5 highlights our discussions and Section 6 concludes the analysis.   

2. Literature Review:  

In the United States, the energy system is built from a massive interconnected network that 

produces and distributes energy from a wide range of energy sources to keep pace with the 

increasing demand. Industry dynamics are driven by a variety of complex, uncertain and diverse 

factors beyond supply and demand frameworks. Exogenous shocks such as the Middle East crises, 
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subprime mortgage financial crises, natural disasters, economic uncertainty, and other extreme 

events such as coronavirus pandemic influence energy stock prices and aggravate their volatilities 

( Ftiti et al., 2020; Ren et al., 2021; Scarcioffolo & Etienne, 2021). Understanding the complex 

linkages and dependencies between energy prices and external factors is therefore crucial for 

investors and policy makers to develop and evaluate appropriate strategies and alternatives in times 

of crisis. A growing literature strand paid attention to finding accurate predicting mechanisms for 

stock price volatility which has a significant impact on energy consumption. In doing so, many 

researchers employed conventional methods (regression, e.g., ARIMA, GARCH) to predict 

volatility. Yet, in the past decade, another approach emerged based on machine learning (ML) and 

Artificial Intelligence (AI).  

ML is a data science-driven model that can identify existing data patterns and enhance 

temporal effectiveness. The beginning of ML dates back to the 1950s and 1960s, when researchers' 

curiosity led them to mimic human learning through computers. Accordingly, insightful 

information can be extracted, which can subsequently be utilized for the projection and generation 

of new knowledge. Initially, ML implementation started to flourish in the economics and finance 

fields (Ahmed et al., 2022). One of its earliest uses in energy economics was to forecast electricity 

prices. In the 2000s, ample publications attempted to estimate power costs using traditional 

Artificial Neural Network (ANN) methodologies. For instance, Khosravi et al. (2013) employed 

the delta and bootstrap methodologies to generate power price prediction intervals (PIs) for 

parameter uncertainty. Papadimitriou et al. (2014) evaluated the predictive power of Support 

Vector Machines (SVM)-based forecast models to assess the next-day direction shift in power 

prices. Their findings indicate that SVM is a solid strategy for forecasting short-term power prices 

with a predictive efficiency of 76.12% across a 200-day timeframe.  

Another literature strand invigorated the use of ML and econometric models. This trendy 

combination gained popularity and attracted scholars’ attention. Godarzi et al. (2014) created a 

dynamic Non-Linear Autoregressive model incorporating Exogenous inputs (NARX), similar to 

the Levenberg-Marquardt approach, using the Ensemble Empirical Mode Decomposition (EEMD) 

approach. Zhang et al. (2015) decomposed global crude oil prices into a variety of separate Intrinsic 

Mode Functions (IMFs) and residual terms. They also created the Least Square Support Vector 

Machines (LSSVM) - Particle Swarm Optimization (PSO) approach. They applied the Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) model to anticipate the time-varying and 
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non-linear components of crude oil prices. The former models frequently relied on an 

autoregressive framework. In contrast, the latest studies employed a hybrid strategy capable of 

managing a diverse collection of input factors such as need, supply, and equity market indices 

(Chai et al., 2018). Dogah and Premaratne (2018) investigated the susceptibility of BRICS stock 

returns to changes in oil risk indicators. They integrated the Vector Autoregressive (VAR) model 

with a random forest approach to address some VAR shortcomings and tackle oil-risk issues.   

In this regard, it is essential to expose the benefits of ML sophisticated approaches and the 

attributes of its superiority over traditional economic models. The scientific community reported a 

marginally significant increase in predicting out-of-sample forecast accuracy and performance 

assessment measures. To illustrate the disparities between actual and anticipated values, a standard 

key metric, the Root Mean Square Error (RMSE), was used. A low RMSE implicates better 

predicting power. In the same vein, Collado and Creamer (2016) anticipated natural gas prices 

using an approximation dynamic programming technique that combines "a time series method 

(ARIMA) with two machine learning algorithms (Support Vector Machine and Random Forests). 

This technique surpasses logistic regression, which was treated as a baseline. Debnath and 

Mourshed (2018) explored the prediction model for Energy Planning Models (EPMs) and 

discovered that Artificial Neural Network (ANN) is the most used approach. Athey (2017) and 

Mullainathan and Spiess (2017) presented a non-technical concise summary and evaluation of 

machine learning's economic applicability. The economic sector recently allocated great 

importance to exploring ML capabilities and limits in testing hypotheses and causation, especially 

in the wake of the COVID-19 pandemic.  

However, a more sophisticated variant of ANNs, the Deep Learning (DL) models, is still 

rarely used in predicting crude oil prices. Zhao et al. (2017) exceptionally applied the DL algorithm 

"Stacked Denoising Autoencoders (SDAE) with bootstrap aggregation in the research (bagging). 

The bagging process created a large number of data sets for training a series of SDAE base models. 

Tang et al. (2015a) presented an ensemble paradigm that combined Extended Extreme Learning 

Machine (EELM) and Complementary Ensemble Empirical Mode Decomposition (CEEMD) to 

improve petroleum prices’ predictive accuracy. The findings revealed that the model is a potential 

prediction tool for complex time series data with significant instability and irregularities. Zhu et 

al. (2016) proposed an Adaptive Multiscale Ensemble Learning (AMEL) paradigm that integrated 

LSSVM, PSO, and EEMD with a kernel function prototype.  
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Other studies include Dudek (2016) who proposed a probabilistic power price forecasting 

strategy based on a Feed-Forward Neural Network (FFNN) precluding the pre-processing of extra 

data. Panapakidis and Dagoumas (2016) studied predicting models that include ANN-based prices 

for the day ahead. To anticipate energy prices, Wang et al. (2017) proposed a two-layer 

decomposition strategy before building a hybrid model built on Fast Ensemble Empirical Mode 

Decomposition (FEEMD), Variational Mode Decomposition (VMD), and BPNN and enhanced 

with a swarm intelligence-based approach. The model outperformed the one-step and multi-step 

power price estimates. To address the limitations of the classic ANN model, Singh et al. (2017) 

used a modified neuron model to anticipate the short-term power pricing of the energy market in 

Australia.  

Table 1 presents the previous studies in the field and reports their contextual 

methodological use.  

Table 1: Machine Learning use in energy economics and finance  
Article info  Title  

Jia et al. (2007)  
SVM model with multiple inputs and single output for China's coal 
needs.  

Xuemian and Guohao (2008); 
Yang et al. (2014); Yun-cai 

(2003)  
Simple ML models to forecast coal usage.  

Khosravi et al. (2013)  
Create power prices Prediction Intervals (PIs) for uncertainty 
quantification through delta and bootstrap approaches.  

Fang et al. (2013)  
Artificial neural networks (ANN) to derive the quantitative 
coefficients of the underlying system for predicting carbon prices 
on fuel efficiency.  

 

Perera et al. (2014)  ML applications for renewable energy integration.  

Weron (2014)  ML for forecasting power prices.  

Godarzi et al. (2014)  
Develop a dynamic Non-Linear Autoregressive model with 
Exogenous inputs (NARX).  

Papadimitriou et al. (2014)  
Investigate the efficacy of SVM-based forecasting models for 
predicting the next-day directional changes in electricity prices.  

Zhang et al. (2015)  
Ensemble Empirical Mode Decomposition (EEMD) approach for 
forecasting global crude oil prices.  
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Tang et al. (2015a)  
Combine Extended Extreme Learning Machine (EELM) and 
Complementary Ensemble Empirical Mode Decomposition 
(CEEMD) to improve petroleum prices predictive accuracy.  

Collado and Creamer (2016)  

The approximation dynamic programming technique combines a 
time series method (ARIMA) with two machine learning 
algorithms (Support Vector Machine and Random Forests) for 
forecasting natural gas prices.  

Panapakidis and Dagoumas  
(2016)  ANN-based for forecasting the price for the day ahead.  

Dudek (2016)  
Probabilistic power price forecasting based on a Feed-Forward 
Neural Network (FFNN).  

Zhu et al. (2016)  
Adaptive Multiscale Ensemble Learning (AMEL) paradigm that 
integrates Least Square Support Vector Machines (LSSVM), PSO, 
and EEMD with a kernel function prototype.  

Singh et al. (2017)  
Generalized neuron model to forecast the short-term power price of 
the Australian energy market.  

Wang et al. (2017)  

Develop a hybrid model centered on Fast Ensemble Empirical 
Mode Decomposition (FEEMD), Variational Mode 
Decomposition (VMD), and BPNN improved using a swarm 
intelligence-based algorithm for energy prices.  

Zhao et al. (2017)  
Stacked Denoising Autoencoders (SDAE) — a DL approach for 
predictions related to crude oil prices.  

Athey (2017); Mullainathan and 
Spiess (2017)  

Non-technical overview and assessment of ML's 
economic/econometric applications.  

Zemene and Khedkar (2017)  ML algorithms for calculating client-electric power use.  

Voyant et al. (2017)  ML techniques for predicting solar radiation.  

Debnath and Mourshed (2018)  
Forecasting model for Energy Planning Models (EPMs) using 
Artificial Neural Network (ANN).  

Dogah and Premaratne (2018)  
Combine the VAR model with the Random Forest technique to 
forecast the sensitivity of stock returns in BRICS.  

Farajzadeh and Nematollahi  
(2018)  

WNNs to explore the performance of regression models in 
predicting energy intensity and its components.  
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3. Data and Methodology  

3.1 Data  

This study uses daily data between January 1, 2011 and January 18, 2022.  The sample 

contains 2677 observations, and the data was collected from Thomson Reuters DataStream and the 

policy uncertainty website. To assess the predictive capability of ML models, we split the sample 

into two periods: the pre-pandemic period from 1/6/2011 to 31/12/2019 and the COVID19 

pandemic period from 1/1/2020 to 18/1/20221. We spot three critical dates related to COVID19 

events. The first date was January 27, 2020, when the World Health Organization (WHO) 

described the COVID -19 as a global threat based on assessed risk worldwide. The second date 

was February 24, 2020, marking two critical events: (1) a significant increase in COVID-19 cases 

outside mainland China and (2) the collapse of the global market. The third date was September 3, 

2020, when a complete global lockdown was put in place. The indices are presented in Table 2, 

along with the study descriptive statistics. The data is separated into Panels A and B. Panel A 

includes the energy equity indices, the dependent variables (responses). Panel B contains the 

economic uncertainty indices, the independent variables (predictors). Precisely, Panel A consists 

of the US Renewable Energy Equity index, US Oil, Gas, and Coal Equity index, US Pipelines 

Equity index, US Oil Equity & Services index, US Oil & Gas Refining & Marketing Equity index, 

US Oil: Crude Production Equity index, US International Oil & Gas index, and the main US 

Energy index. In the same framework, Panel B consists of the Twitter Economic Uncertainty 

(TEU-USA) index, the EMV Infections Uncertainty (EMV) index, the Economic Policy  

Uncertainty (EPU) index, and the Chicago Board Options Exchange (CBOE) Market Volatility  

Index (VIX), respectively. The description and sources of the variables are illustrated in Appendix  

1.    

 In Panel A, almost all indices are left- or right-skewed since means are less than their respective 

medians and vice versa. Based on standard deviation, US Oil & Gas Refining &  

Marketing Equity index has the highest volatility while the US Renewable Energy Equity index  

 1 The first cases of COVID-19 were recorded in the first half of January 2020 in the mainland of 
China. Thus, we consider the beginning of the pandemic period the date 1/1/2020.  
and US pipelines have the lowest. In almost all cases, the kurtosis is less than 3, which means the 

indices have lighter tails than in a normal distribution. Furthermore, most indices are negatively 

skewed, which implies that extreme changes occur more frequently. In Panel B, TEU-USA and 
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the EPU index are the most volatile, while the VIX is the least. All indices are right-skewed and 

have kurtosis higher than three. On the other hand, skewness is positive for all variables. 

Furthermore, the Augmented Dickey-Fuller (ADF) tests for unit roots are accepted for all indices; 

the more negative it is, the stronger the rejection of the hypothesis that there is a unit root at some 

level of confidence. However, after computing the differences between consecutive observations, 

the dataset becomes stationary. This method is known as differencing (1-lag).  The Phillips–Perron 

(PP) test confirms the ADF unit roots results.   



 

Panel A: Energy Equity Indices        

US Renew 
Energy Eq  

US Oil, Gas, 
Coal US Pipelines 

US Oil Eq & Svs US Oil Ref, 
Mkting 

US Oil: Crude 
Prod. US Int. Oil & Gas US Energy 

Mean 
Standard Error 
Median 
Standard Deviation 
Sample Variance 
Kurtosis 
Skewness 
Range 
Minimum 
Maximum 
Sum 
Count 

273.40 2009.06 764.44 1194.59 49142.62 1024.45 2298.52 1843.81 
3.654 7.555 3.820 9.178 290.242 5.396 6.637 7.994 

217.05 2036.41 741.10 1273.23 50427.66 1034.22 2340.49 1863.30 
189.08 390.88 197.63 474.88 15017.03 279.21 343.40 413.59 

35749.9 152789.8 39057.6 225507.7 225511155.1 77958.0 117922.0 171059.3 
3.61 0.64 -0.29 -0.83 -0.14 0.04 1.09 0.16 
2.00 -0.60 0.21 -0.25 -0.07 -0.28 -0.91 -0.35 

1001.50 2188.03 979.03 2011.73 70396.29 1433.48 1989.20 2166.93 
47.55 740.97 249.13 210.79 16161.59 267.26 1052.46 630.83 

1049.05 2929.00 1228.16 2222.52 86557.88 1700.74 3041.66 2797.76 
731882.9 5378244.4 2046413.9 3197927.5 131554784.8 2742463.8 6153127.8 4935872.6 

2677 2677 2677 2677 2677 2677 2677 2677 

 
Panel B: Uncertainty Indices 

 
US Economic  

 EMV  policy  
 Infections  uncertainty  CBOE VIX  
 TEU - USA Uncertainty index Index 

 

Mean 
Standard Error 
Median 
Standard Deviation 
Sample Variance 
Kurtosis 
Skewness 
Range 
Minimum 
Maximum 

101.90 3.36 119.46 17.73 
2.064 0.152 1.744 0.142 
71.34 0.34 92.88 15.7 

106.80 7.88 90.25 7.35 
11405.2 62.1 8144.3 54.0 

26.05 14.48 8.60 13.09 
3.94 3.44 2.48 2.80 

1557.63 68.37 804.34 73.55 
2.63 0 3.32 9.14 

1560.26 68.37 807.66 82.69 



 

Sum 
Count 

272795.0 8983.8 319794.1 47464.8 
2677 2677 2677 2677 

Table 2. Descriptive Statistics  

10  
  



 

3.2 Methodology  

 This study uses ML and traditional approaches (i.e., regression) to forecast the prices of energy 

equity indices. The Root Mean Square Error (RMSE) is deployed to examine models' 

implementation alongside the accuracy of the predictability. In Table 1 above, we gathered 

previous studies and pinpointed respective methodologies in chronological order. Notably, 

previous studies have used one- or two-ML approach(es) in combination with conventional models 

(such as regression) to predict the results. In the present paper, we combine almost all available  

ML models in the literature with conventional models including Multiple Linear Regression model 

(MLR) to predict the energy prices pre-and during the COVID-19 pandemic. The last period is 

characterized by the high level of uncertainty. It thus serves to assess whether economic uncertainty 

indices can be helpful in measuring the impact of energy economics and finance during the 

pandemic. As previously mentioned, the demand for energy has dramatically fluctuated during the 

pandemic, making it difficult to predict the actual needs of supplies. Following the framework of 

this approach, the MLR is most suitable method to proceed with predictors and responses, as it 

dramatically fits our model structure and the set of dependent and independent variables (Aertsen, 

2010; Naumzik & Feuerriegel, 2021; Raju & Laxmi, 2020).  

  The present study employed the following approach to predict the prices of the energy 

sectors:  

0 

+ 

23%+ OP&  

For sectors of energy prices, we use the energy equity sector indices as indicated in Panel A of 

Table 2. First, we estimate the energy sectors using a simple Multiple Linear Regression model 

(MLR) and check the performance. Second, we evaluate the results of Supervised Regressionbased 

Machine Learning models and compare them to MLR to determine which strategy is more effective 

in forecasting energy prices. We run both models for both periods with the same features to cross-

check models’ performance (in-sample) and during the uncertain period of COVID-19 (out-of-

sample).  
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We follow an exhaustive application of ML methods previously used in the literature (ML 

Generalized Linear Model (GLM), Support Vector Regression (SVR), Gaussian Process 

Regression (GPR), Regression Trees, Ensemble Methods, and Neural Networks)."The last method 

was gauged following the Deep Learning family and specifically the Levenberg-Marquardt 

algorithm for non-linear least squares modes to train networks with dynamic time series2. The 

accuracy of the model is calculated with Root Mean Square Error (RMSE):  

 
( 

QR!) = S  U(,' − ,P')#  
')" 

4. Empirical Results  

This paper extends the literature by combining various ML models to propose the most 

suitable technique for predicting volatility in times of crisis by comparing its efficiency with 

conventional methods.  Table 3 presents the results of the Multiple Linear Regression analysis 

preand during COVID-19. In the pre-pandemic period, R-Squared is significantly low in all cases. 

However, during COVID-19 most of the variables are statistically significant, which means that 

the uncertainty indices are suitable and can be used to predict the energy equity prices. F–Statistic 

is significant in all cases, while R-Squared varies from 0.44 to 0.67. Not surprisingly, the variables 

of the indices are negatively correlated with energy prices3. Lastly, the RMSE looks satisfactory 

in all cases except the US Oil & Gas Refining & Marketing Equity index. The RSME looks high 

in pre-and during COVID-19 periods at a 13,798 and 6,534, respectively. Finally, RSME is lower 

in the COVID-19 pandemic as increased uncertainty explains the co-movements of energy prices 

and uncertainty indices.   

The intercept parameter is positive and statistically significant in all cases. The mean of 

intercept is the value of the dependent variable when the independent variable equals zero. As the 

values of the parameters are relatively high for estimations, it can be considered that there are 

significant factors that affect the energy prices not related to the uncertainty indices. Moreover, the 

VIX index is negatively correlated in all estimations but not statistically significant in the case  

  
2 More information about methodological and technical parts of the machine learning models applied in the study can be found in the online 

appendix.   



 

3 This is something that makes sense, since an increase in uncertainty would have a negative impact on investment activities, and as a result, this 
will lead to a decrease in energy prices.   
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of US Oil Equity & Services and US Oil & Gas Refining & Marketing in the pre-pandemic. At the 

same time, during the pandemic, it’s not statistically significant in the case of US Renewable 

Energy index4. The EMV Infections Uncertainty index is not statistically significant except with 

US Pipelines Equity index (pre-pandemic) and US Renewable Energy index (during a pandemic). 

The US Economic Policy Uncertainty and US Twitter Economic Uncertainty indices are 

statistically significant in almost all cases with remarkably small values. Both indices have the 

highest impact on predicting the energy prices in our model.   

In Figures 4 and 5, we illustrate the actual and predicted prices along with residuals based 

on MLR analysis1. During the COVID-19 pandemic, the prices become very volatile compared to 

the previous period, especially after the WHO announcement about the spread of COVID-19 

globally; prices have become very unstable with dramatic decreases and extreme volatility till 

today. Also, there is no doubt that the MLR model struggles to effectively capture the predictions 

of the prices over that period (from January 2020 and beyond). In addition, as we mentioned above 

in Table 3, the residuals are less volatile during the COVID-19 pandemic. This makes sense since 

increased uncertainty during the pandemic explains the co-movements of energy prices and 

 
1 For the visual illustration, we present only the actual and the predicted prices with non-stationary data for comparison with the applied machine 
learning models in this study.  
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uncertainty indices. Lastly, the residuals of the US Oil & Gas Refining & Marketing Equity index 

are highly volatile, indicated by high RMSE value. 

  
4 We consider it statistically significant if at 5% level.  



 

 
Multiple Linear Regression analysis results - Pre pandemic period 
 USRenewEnergy USOilGasCoal USPipelines USOilEqSvs USOilRefMkting USOilCrudeProd USIntOilGas USEnergy 

(Intercept) 177.64 2413.81 960.93 1391.80 72577.23 1.81E-41 2783.31 2204.31 
  (0.0000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000) 

CBOEVolatilityIndex 2.6477 -13.6102 -5.4559 1.4636 1.20E-74 -3.0975 -20.6384 -9.8061 
  (0.0000)  (0.000)  (0.000) (0.3108) (0.28943) (0.00031)  (0.000)  (0.000) 

EMVInfectionsUncertainty 0.15 1.9752 18.6784 -11.5794 553.76 -4.0685 9.566 6.680 
  (0.9353) (0.73446)  (0.000) (0.1621) (0.1090) (0.4087) (0.0298) (0.3161) 

EconomicPolicyUncertaintyIndex -0.1847 0.3020 0.007 1.1515 -80.6889 0.4273 -0.0656 0.4799 
  (0.0000)  (0.0022) (0.9105)  (0.000)  (0.000)  (0.000) (0.3796)  (0.000) 

TwitterEconomicUncertainty 0.0283 -0.9437 -0.6781 -2.0206 34.8046 -1.0045 -0.3294 -1.3166 
 (0.3046)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000) 

RMSE 73.83 232.63 146.41 330.82 13798.96 196.72 175.85 266.20 
R-squared 0.04 0.17 0.16 0.11 0.25 0.10 0.33 0.14 
Adjusted R-Squared 0.04 0.17 0.16 0.11 0.25 0.10 0.33 0.14 
F-statistic  22.1 111 104 70 183 61.6 261 87.2 
  (6.38e-18)  (6.46e-86) (7.53e-81) (8.77e-56) (3.18e-135) (2.37e-49) (2.72e-183) (9.64e-69) 

     

Multiple Linear Regression analysis results - COVID-19 pandemic period     

 USRenewEnergy USOilGasCoal USPipelines USOilEqSvs USOilRefMkting USOilCrudeProd USIntOilGas USEnergy 

(Intercept) 687.99 1847.08 645.62 660.72 65135.47 8.89E+02 2210.74 1586.73 
 (3.543e-89) (1.137e-246) (1.154e-

284) 
(7.075e-
241) 

(3.698e-249) (4.149e-180) (3.590e-
254) 

(1.527e-255) 

CBOEVolatilityIndex 3.0297 -8.8758 -3.3041 -3.3967 -3.96E+02 -3.5913 -10.1306 -7.3012 
 (0.0932) (2.422e-06) (1.714e-09) (9.911e-07) (2.013e-09) (0.0050) (3.009e-06) (2.349e-06) 

EMVInfectionsUncertainty 3.4512 -0.4063 -0.1775 0.0859 53.09 -0.6453 -0.3476 -0.1149 



 

 (0.0034) (0.7377) (0.6130) (0.8476) (0.2092) (0.4380) (0.8036) (0.9082) 

EconomicPolicyUncertaintyIndex -0.026 -0.6946 -0.2553 -0.3216 -22.0812 -0.4353 -0.6192 -0.5787 
 (0.8103) (1.158e-09) (2.029e-14) (3.695e-14) (2.517e-08) (2.4105e-08) (2.125e-06) (6.8915e-10) 

TwitterEconomicUncertainty -1.2359 -0.3177 -0.0532 -0.1771 -11.9079 -0.3225 -0.2317 -0.3323 
 (2.216e-22) (0.0113) (0.1418) (0.0001) (0.0064) (0.0001) (0.1086) (0.0013) 

RMSE 181.66 187.65 54.30 69.13 6534.58 128.65 216.26 154.15 
R-squared 0.44 0.58 0.64 0.67 0.59 0.59 0.49 0.61 
Adjusted R-Squared 0.44 0.58 0.64 0.67 0.59 0.56 0.48 0.61 
F-statistic  101 180 227 261 185 162 122 201 
  (1.53e-63)  (4.7e-96)  (7.16e-122)  (4.55e-

122) 
 (6.29e-98)  (2.79e-89)  (7.05e-73)  (1.69e-103) 

Notes: P-Values are in parenthesis.  

Table 3. Multiple Linear Regression analysis results 

14  
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Notes: The blue line presents the actual prices while the orange the predictions from the MLR model. In the upper 
right corner of every subfigure, we provide the name of each category of the energy sector. The depicted data is 
nonstationary.   

Figure 4. Actual and Predicted prices with Residuals from the MLR model – Pre pandemic period  
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Figure 5. Actual and Predicted prices with Residuals from the MLR model – COVID-19 pandemic period  



20  
  

 In Tables 4 and 5, we outline the training outcomes obtained out of ML models before and after 

the pandemic. Notably, ML models ultimately outperform the MLR approach. RMSE of most ML 

models is less than MLR, and R-Squared is higher under ML models. Figures 6 and 7 show the 

rankings of the predictions based on RMSE for all the employed models in this study. The Neural 

Network (NN) with the Levenberg-Marquardt algorithm clearly has the greatest result of all 

designs. The Gaussian Process Regression Models come second, while Regression Trees and 

SVMs come third and fourth. The Multiple Linear Regression model is always in the last position. 

In summary, ML models outperform conventional econometric approaches such as MLR.   

However, it is worth mentioning the outstanding performance of forecasting of NN with 

the Levenberg-Marquardt algorithm. As shown in Figures 6 and 7, the NN has far less RMSE than 

any other model (machine learning and MLR). The key to this routine is hidden away in the NN 

structure. Figure 8 explains the structure of the NN with the Levenberg-Marquardt algorithm. The 

NN works as Nonlinear Autoregressive with Exogenous parameters. Specifically, y(t) input is the 

actual price of the equity index, while the four exogenous input parameters are the uncertainty 

indices. In the model, we use ten hidden neurons and two delays (after optimization). The input 

summary includes an (observations) x (4 uncertainty indices) matrix, demonstrating complex data: 

(observations) timesteps of four elements (the uncertainty indices) while the output Targets an 

(observations) x 1matrix, representing dynamic data: (observations) timesteps of one element 

(which is the predictions).  

The network is formed and taught in open-loop mode, as illustrated in Figure 8. Closedloop 

training is less efficient than open-loop learning (multi-step). The open-loop allows us to supply 

correct historical results to the system while educating it to give accurate and current outcomes. 

Following training, the system may be turned into a closed-loop or really any design required by 

the app. There are three types of Timesteps: training, validation, and testing. During training, the 

network is supplied with timesteps, which is altered based on its inaccuracy. Validation timesteps 

are employed to evaluate network generalization and stop educating if adaptation is no longer 

improving. Because testing timesteps have no impact on learning, they give an objective audit of 

network quality both during and after learning. Prediction using these NN models is a type of 

dynamic filtering in which previous values with one or many time series are deployed to forecast 

subsequent values. Non-linear filtering and prediction are performed using dynamic neural 
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networks with tapped delay lines. Figures 9 and 10 present the time series response of the trained 

NN with the Levenberg-Marquardt algorithm. The residuals (verified through RMSE) are the least 

volatile of any other model employed in this study. The model looks pretty accurate during the 

pandemic in holding good persistence while predicting the actual prices. Lastly, regarding the 

validity of the models, Figure 8 presents the Mean Square Errors (MSE) of the most accurate model 

in the study, the Levenberg-Marquardt algorithm approach. The literature (e.g., Abedin et al., 2021; 

D’Ecclesia & Clementi, 2021; Yazici et al., 2020) only considers a welltrained model when the 

training and test sets are very similar. If the RMSE of the test set is much higher than that of the 

training set, the data is likely overfitted. In our study, the LevenbergMarquardt algorithm approach 

produces the best validation between 11 to 20 epochs, which is generally very low, proving the 

high accuracy of the model.  

Overall, the Artificial Intelligence and Machine Learning models allow us to make more 

accurate predictions than the traditional Multiple Linear Regression models. The Neural Networks 

seem to be the most accurate from the Machine Learning models. This can be explained due to the 

flexibility to use autoregression simultaneously with exogenous input parameters, which makes 

the response outcome entirely accurate and minimizes RMSE relatively to the rest of ML models.   
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 USRenewEnergy USOilGasCoal USPipelines USOilEqSvs 

Model Type RMSE MSE R-Squared RMSE MSE R-Squared RMSE MSE R-Squared RMSE MSE R-Squared 
Linear Regression 

Terms 
Linear 74.1 5487 0.03 234.1 54812 0.16 148.1 21934 0.14 336.4 113178 0.08 

Interactions Linear 71.9 5167 0.09 227.5 51752 0.21 141.9 20136 0.21 314.5 98879 0.20 
Robust Linear 76.9 5912 -0.04 234.2 54836 0.16 148.1 21942 0.14 337.9 114163 0.08 

Stepwise Linear 71.8 5159 0.09 226.9 51493 0.21 141.7 20073 0.21 313.5 98289 0.2 
Regression Tree 

Terms 
Fine Tree 83.3 6943 -0.22 249.6 62285 0.04 151.5 22940 0.10 351.1 123285 0.00 

Medium Tree 75.7 5725 -0.01 224.1 50221 0.23 138.0 19050 0.25 319.4 102016 0.17 
Coarse Tree 73.7 5429 0.04 215.8 46561 0.28 130.6 17064 0.33 307.8 94765 0.23 

Support Vector Machines 
Terms 

Linear SVM 75.7 5734 -0.01 236.8 56074 0.14 153.1 23446 0.08 337.2 113711 0.08 
Quadratic SVM 74.4 5529 0.03 255.6 65336 0.00 248.6 61807 -1.42 357.9 128064 -0.04 

Cubic SVM 823.8 678663 -
118.6 

577.6 333576 -4.12 1370.0 1876900 -72.5 734.0 538712 -3.36 

Fine Gaussian SVM 73.5 5395 0.05 216.7 46968 0.28 135.0 18217 0.29 307.8 94735 0.23 
Medium Gaussian SVM 71.5 5119 0.10 213.3 45488 0.30 128.9 16602 0.35 301.8 91095 0.26 
Coarse Gaussian SVM 71.9 5176 0.09 225.5 50832 0.22 141.9 20141 0.21 313.9 98514 0.20 

GPR Models 
Terms 

Squared Exponential GPR 70.5 4970 0.12 210.4 44277 0.32 127.7 16305 0.36 296.6 87966 0.29 
Matern 5/2 GPR 70.0 4901 0.14 208.5 43460 0.33 126.7 16043 0.37 293.1 85902 0.30 
Exponential GPR 69.3 4807 0.15 206.5 42651 0.34 125.6 15778 0.38 289.4 83735 0.32 

Rational Quadratic GPR 69.4 4813 0.15 206.6 42688 0.34 126.0 15863 0.38 289.8 83961 0.32 
Ensemble of Trees 

Terms 
Boosted Trees 71.2 5064 0.11 228.4 52157 0.20 130.7 17072 0.33 298.3 89001 0.28 
Bagged Trees 70.3 4937 0.13 208.7 43535 0.33 125.6 15768 0.38 293.9 86389 0.30 

Neural Networks 
Terms 

Narrow Neural Network 72.1 5202 0.08 232.1 53870 0.17 134.5 18085 0.29 309.9 96050 0.22 
Medium Neural Network 72.3 5233 0.08 223.4 49916 0.23 133.6 17836 0.30 306.4 93863 0.24 

Wide Neural Network 75.3 5666 0.00 220.5 48625 0.25 131.1 17190 0.33 325.2 105723 0.14 
Bilayered Neural Network 72.2 5216 0.08 224.9 50580 0.22 131.8 17369 0.32 311.7 97138 0.21 
Trilayered Neural Network 74.3 5515 0.03 213.1 45420 0.30 133.4 17785 0.30 298.7 89216 0.28 
Levenberg-Marquardt alg. 24.4 593 0.96 31.1 969 0.99 26.3 691 0.99 30.0 901 0.99 

Notes: We considered the Principal Components Analysis to transform features and remove redundant dimensions. Subsequent to training, a total of four 
components were retained. The explained variance noted for each component was as follows: 88.0%, 11.6%, 0.3%, 0.1%, respectively, for all ML models. For the 
Stepwise Linear Regression, the Maximum number of steps is one thousand. For the Fine, Medium, Coarse Trees, the Minimum leaf size was noted as (in order) 
4, 12, and 36. For the Fine, Medium, and Coarse Gaussian SVM, the Kernel scale is 0.5, 2, and 8, respectively. For the Boosted and Bagged Trees, the Number of 
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learners is thirty and the Minimum leaf size eight. For the Narrow, Medium, Wide NN, the First layer size is 10, 25, and 100. For the Bilayered and Trilayered NN, 
the First- and Second-layer size is ten, and for the Trilayered NN, the Third layer size is ten. The iteration limit for all NN is one thousand. For the 
LevenbergMarquardt NN, we use ten hidden neurons and two delays.  

Table 4. Machine Learning Training Results – Pre pandemic period (1/2)  
 USOilRefMkting USOilCrudeProd USIntOilGas  USEnergy 

Model Type RMSE MSE R-Squared RMSE MSE R-Squared RMSE MSE R-Squared RMSE  MSE R-Squared 
Linear Regression 

Terms 
Linear 13826 1.91E+08 0.25 198.6 39442 0.08 176.2 31036 0.32 268.4 72017 0.12 

Interactions Linear 13796 1.90E+08 0.25 190.5 36298 0.16 173.7 30186 0.34 256.8 65957 0.20 
Robust Linear 13874 1.92E+08 0.24 198.9 39569 0.08 176.1 31015 0.32 268.9 72329 0.12 

Stepwise Linear 13810 1.91E+08 0.25 190.5 36298 0.16 174.4 30412 0.34 257.0 66059 0.20 
Regression Tree 

Terms 
Fine Tree 15482 2.40E+08 0.06 211.0 44538 -0.03 195.2 38087 0.17 282.8 79948 0.03 

Medium Tree 14095 1.99E+08 0.22 186.3 34693 0.19 180.3 32508 0.29 252.4 63681 0.23 
Coarse Tree 13722 1.88E+08 0.26 180.8 32703 0.24 170.3 29009 0.37 244.3 59697 0.27 

Support Vector Machines 
Terms 

Linear SVM 13976 1.95E+08 0.23 200.3 40120 0.07 177.6 31552 0.31 272.7 74343 0.10 
Quadratic SVM 15502 2.40E+08 0.06 244.5 59780 -0.39 180.0 32404 0.29 330.0 108900 -0.32 

Cubic SVM 92897 8.63E+09 -32.9 723.3 523148 -11.1 296.4 87841 -0.92 1451.3 2106272 -24.6 
Fine Gaussian SVM 14095 1.99E+08 0.22 177.8 31627 0.27 174.4 30405 0.34 243.5 59287 0.28 

Medium Gaussian SVM 13419 1.80E+08 0.29 178.0 31698 0.26 167.5 28060 0.39 240.2 57715 0.30 
Coarse Gaussian SVM 13723 1.88E+08 0.26 187.7 35243 0.18 174.0 30283 0.34 256.0 65510 0.20 

GPR Models 
Terms 

Squared Exponential GPR 13156 1.73E+08 0.32 173.6 30120 0.30 165.7 27453 0.40 234.4 54948 0.33 
Matern 5/2 GPR 13096 1.72E+08 0.33 172.3 29677 0.31 164.2 26971 0.41 232.1 53856 0.34 
Exponential GPR 13037 1.70E+08 0.33 171.0 29255 0.32 161.7 26147 0.43 229.9 52840 0.36 

Rational Quadratic GPR 13052 1.70E+08 0.33 171.0 29255 0.32 162.2 26319 0.43 230.1 52946 0.36 
Ensemble of Trees 

Terms 
Boosted Trees 13332 1.78E+08 0.30 179.7 32278 0.25 193.8 37539 0.18 248.7 61832 0.25 
Bagged Trees 13125 1.72E+08 0.32 172.2 29656 0.31 165.6 27413 0.40 233.4 54480 0.34 

Neural Networks 
Terms 

Narrow Neural Network 13830 1.91E+08 0.25 187.6 35201 0.18 171.7 29491 0.36 245.8 60393 0.27 
Medium Neural Network 13573 1.84E+08 0.28 185.1 34277 0.20 172.3 29698 0.35 250.2 62590 0.24 

Wide Neural Network 14443 2.09E+08 0.18 192.3 36995 0.14 166.8 27809 0.39 244.4 59741 0.27 
Bilayered Neural Network 13580 1.84E+08 0.28 184.8 34133 0.21 167.5 28040 0.39 249.1 62026 0.25 
Trilayered Neural Network 13483 1.82E+08 0.29 182.0 33120 0.23 171.8 29526 0.36 243.1 59083 0.28 
Levenberg-Marquardt alg. 385 148235 0.99 29.0 840 0.99 43.5 1890 0.99 36.3 1319 0.99 
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Table 4. Machine Learning Training Results – Pre pandemic period (continued - 2/2)  
 USRenewEnergy USOilGasCoal USPipelines USOilEqSvs 

Model Type RMSE MSE R-Squared  RMSE MSE R-Squared RMSE MSE R-Squared  RMSE MSE R-Squared 
Linear Regression 

Terms 
Linear 

183.2 33577 0.43  187.6 35183 0.58 54.6 2976 0.63  69.6 4843 0.66 
Interactions Linear 183.1 33522 0.43  157.1 24665 0.71 45.3 2053 0.75  56.3 3172 0.78 

Robust Linear 182.6 33357 0.43  188.0 35333 0.58 54.6 2980 0.63  69.7 4859 0.66 
Stepwise Linear 182.5 33299 0.43  159.3 25367 0.7 45.6 2075 0.74  57.7 3328 0.77 
Regression Tree 

Terms 
Fine Tree 182.8 33423 0.43  144.6 20895 0.75 43.4 1886 0.77  56.8 3225 0.78 

Medium Tree 165.8 27473 0.53  138.3 19130 0.77 40.8 1663 0.8  54.3 2943 0.8 
Coarse Tree 165.0 27222 0.54  151.0 22792 0.73 43.7 1910 0.76  55.8 3112 0.78 

Support Vector Machines 
Terms 

Linear SVM 182.0 33131 0.44  191.6 36718 0.56 55.1 3033 0.63  69.9 4893 0.66 
Quadratic SVM 175.5 30804 0.48  151.6 22980 0.73 44.8 2005 0.75  52.4 2745 0.81 

Cubic SVM 210.8 44420 0.25  148.3 21999 0.74 41.6 1728 0.8  55.5 3081 0.79 
Fine Gaussian SVM 166.0 27546 0.53  162.2 26322 0.69 47.6 2266 0.72  61.8 3817 0.74 

Medium Gaussian SVM 152.5 23256 0.60  128.5 16517 0.80 37.3 1388 0.83  47.2 2224 0.85 
Coarse Gaussian SVM 178.1 31709 0.46  156.1 24367 0.71 45.6 2075 0.74  56.4 3186 0.78 

GPR Models 
Terms 

Squared Exponential GPR 149.6 22383 0.62  127.0 16132 0.81 36.3 1319 0.84  46.1 2124 0.85 
Matern 5/2 GPR 145.6 21194 0.64  124.5 15508 0.82 35.5 1262 0.84  44.9 2016 0.86 
Exponential GPR 141.7 20087 0.66  123.4 15220 0.82 35.1 1229 0.85  44.4 1970 0.86 

Rational Quadratic GPR 142.8 20389 0.65  123.6 15277 0.82 35.4 1252 0.85  44.4 1972 0.86 
Ensemble of Trees 

Terms 
Boosted Trees 153.2 23467 0.60  136.8 18703 0.78 41.7 1739 0.79  52.6 2766 0.81 
Bagged Trees 147.8 21836 0.63  125.9 15861 0.81 36.2 1311 0.84  46.5 2164 0.85 

Neural Networks 
Terms 

Narrow Neural Network 167.5 28050 0.52  136.3 18564 0.78 39.5 1560 0.81  49.7 2467 0.83 
Medium Neural Network 154.1 23744 0.60  137.1 18802 0.78 42.1 1770 0.78  49.5 2450 0.83 

Wide Neural Network 212.1 44982 0.24  168.2 28281 0.66 57.7 3334 0.59  55.2 3043 0.79 
Bilayered Neural Network 159.3 25383 0.57  136.2 18556 0.78 37.0 1372 0.83  47.4 2247 0.84 
Trilayered Neural Network 154.9 23994 0.59  130.1 16923 0.80 38.5 1486 0.82  47.2 2230 0.85 
Levenberg-Marquardt alg. 43.3 1872 0.98 43.6 1901 0.99 34.7 1201 0.94 39.8 1583 0.97 

Table 5. Machine Learning Training Results – COVID-19 pandemic period (1/2)  
 USOilRefMkting USOilCrudeProd USIntOilGas  USEnergy 
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Model Type RMSE MSE R-Squared RMSE MSE R-Squared RMSE MSE R-Squared RMSE MSE R-Squared 
Linear Regression 

Terms 
Linear 

6583.8 4.33E+07 0.58 129.9 16879 0.55 217.2 47185 0.48 155.8 24271 0.60 
Interactions Linear 5658.6 3.20E+07 0.69 108.3 11738 0.69 185.8 34533 0.62 129.0 16641 0.73 

Robust Linear 6587.4 4.34E+07 0.58 130.1 16929 0.55 217.7 47406 0.48 156.0 24330 0.60 
Stepwise Linear 5806.3 3.37E+07 0.67 109.8 12058 0.68 186.8 34902 0.61 131.0 17171 0.72 
Regression Tree 

Terms 
Fine Tree 5451.4 2.97E+07 0.71 102.1 10418 0.72 173.0 29919 0.67 118.9 14132 0.77 

Medium Tree 5177.1 2.68E+07 0.74 98.8 9767 0.74 161.7 26134 0.71 110.0 12107 0.80 
Coarse Tree 5309.2 2.82E+07 0.73 103.4 10681 0.71 172.8 29843 0.67 125.9 15848 0.74 

Support Vector Machines 
Terms 

Linear SVM 6653.6 4.43E+07 0.57 129.7 16809 0.55 222.2 49391 0.46 157.7 24876 0.59 
Quadratic SVM 5629.6 3.17E+07 0.69 105.6 11147 0.7 184.7 34110 0.62 120.0 14398 0.76 

Cubic SVM 6374.8 4.06E+07 0.6 115.8 13405 0.6 192.4 37010 0.59 123.6 15284 0.75 
Fine Gaussian SVM 5877.6 3.45E+07 0.67 112.7 12706 0.66 176.3 31089 0.66 139.4 19421 0.68 

Medium Gaussian SVM 4791.4 2.30E+07 0.78 94.5 8922 0.76 155.1 24065 0.73 107.5 11554 0.81 
Coarse Gaussian SVM 5748.0 3.30E+07 0.68 108.1 11690 0.69 186.6 34816 0.62 128.2 16440 0.73 

GPR Models 
Terms 

Squared Exponential GPR 4749.8 2.26E+07 0.78 92.5 8553 0.77 153.3 23501 0.74 105.5 11132 0.82 
Matern 5/2 GPR 4631.0 2.14E+07 0.79 90.2 8128 0.78 149.8 22443 0.75 103.6 10725 0.82 
Exponential GPR 4527.6 2.05E+07 0.8 89.1 7935 0.79 147.0 21600 0.76 103.7 10752 0.82 

Rational Quadratic GPR 4567.9 2.09E+07 0.8 89.1 7938 0.79 148.0 21904 0.76 103.1 10636 0.83 
Ensemble of Trees 

Terms 
Boosted Trees 5091.8 2.59E+07 0.75 94.1 8851 0.76 169.0 28571 0.68 113.6 12898 0.79 
Bagged Trees 4703.2 2.21E+07 0.79 90.3 8157 0.78 149.8 22443 0.75 103.1 10628 0.83 

Neural Networks 
Terms 

Narrow Neural Network 4848.5 2.35E+07 0.77 94.8 8983 0.76 160.6 25796 0.72 109.9 12085 0.80 
Medium Neural Network 5153.0 2.66E+07 0.74 108.9 11853 0.68 165.6 27413 0.7 111.4 12419 0.80 

Wide Neural Network 7480.1 5.60E+07 0.46 143.6 20627 0.45 204.3 41738 0.54 141.8 20093 0.67 
Bilayered Neural Network 4810.0 2.31E+07 0.78 118.9 14142 0.62 158.3 25062 0.72 111.6 12455 0.80 
Trilayered Neural Network 5080.2 2.58E+07 0.75 96.7 9342 0.75 149.5 22359 0.75 120.9 14619 0.76 
Levenberg-Marquardt alg. 679.0 461018 0.99 40.3 1624 0.98 51.6 2660 0.99 40.3 1624 0.99 
Table 5. Machine Learning Training Results – COVID-19 pandemic period (continued - 2/2)  
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5. Discussions:  

ML models have grown in popularity in many aspects of the energy industry due to their 

superior performance in processing, categorizing, as well as projecting complex and large-scale 

data. Comparing ML's features with classic econometric models (e.g., MLR) validates ML's rising 

appeal in energy economics analyses. The advantage of ML approaches stands in the ability of 

algorithms to handle massive volumes of structured and unstructured information while making 

quick decisions or forecasts. In this context, many studies relied on ML techniques, and some of 

them concluded to conflicting results. Some scholars have particularly applied ML in predicting 

solar radiation (Voyant et al., 2017), renewable energy integration (Perera et al., 2014), and 

calculating client-electric power use (Zemene and Khedkar, 2017). Weron (2014) explored ways 

for forecasting power prices and devoted a significant amount of the text to ML methodologies 

under the title Computational Intelligence (CI). Debnath and Mourshed (2018) investigated 

forecasting model for Energy Planning Models (EPMs) and found that Artificial Neural Network 

(ANN) is the most often utilized forecasting technique. Athey (2017) and Mullainathan and Spiess 

(2017) provided a non-technical overview and assessment of ML's economic/econometric 

applications.   

Moreover, a methodology required a combination of ML and econometric models. For 

instance, Godarzi et al. (2014) developed a dynamic Non-Linear Autoregressive model with 

Exogenous inputs (NARX), similar to what we achieved using the Levenberg-Marquardt approach. 

Remarkably, most previous models have frequently employed a regressive framework, while 

recent studies used a hybrid strategy capable of managing a diverse collection of input factors such 

as need, supply, and equity market indices (Chai et al., 2018). Khosravi et al. (2013) created power 

prices Prediction Intervals (PIs) for uncertainty quantification through the use of the delta and 

bootstrap approaches, while Papadimitriou et al. (2014) investigated the efficacy of SVM-based 

forecasting models for predicting the next-day directional change in electricity prices. The 

literature has reported a marginally significant increase in predicting out-of-sample ability. 

Previous studies have relied on common performance indicators such as Root Mean Square Error 

(RMSE) to illustrate the disparities between actual and anticipated values. However, no study has 

conducted a thorough comparison and ranking of ML accuracy models as done in the present paper.   
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ML models have several advantages in dealing with data, processing, and analysis. First, 

ML can manage a diverse and vast number of inputs where the model's designer has little burden, 

particularly DL models, to select a minimal number of appropriate input variables. Secondly, the 

ML technique can accept dozens of potential input variables and choose the right components (or 

features) for prediction without respect to co-linearity problems. Third, ML algorithms are 

frequently capable of handling a wide range of theoretical and accurate data. This feature is 

particularly useful in the energy industry since it can combine text from articles or publications 

with time-series data to enhance projections. Fourth, ML models can also uncover complicated 

linkages and investigate various topologies for potential links across input and output data. 

Bayesian Model Averaging (BMA) methods make it possible to run a model with a specific data 

set in the space of classical models. Yet, this latter technique needs the modeler to specify each 

model's structure while ML models do not need a predefined structure. Fifth, they surpassed linear 

correlations to discover complicated, non-linear, and high-dimensional interactions among many 

input factors and intended outputs. Sixth, ML models are less sensitive to data quality. Traditional 

economic models have long been grappled with data scarcity difficulties (e.g., data sets that include 

outliers). Some methods (for example, Fuzzy and GNN models) were successfully developed 

within the ML field to provide the system with less worthy input. For instance, Alobaidi et al. 

(2018) provided guidance on ensemble models' capacity to deliver enhanced forecast performance 

with limited inputs. Seventh, ML models can function with little data pre-processing. Seasonal 

fluctuations, structure break, regime shifting, unit-root, and heteroskedasticity are all recognized 

properties of energy time-series data that should be tackled prior to implementing the econometric 

model. ML models do not require extensive data pre-processing since they may incorporate extra 

data features. Naturally, when features are customized to the demands of each projection via 

suitable ratios or kernel tweaks, ML algorithm performance would improve. In a nutshell, most 

ML approaches include advanced features to collect critical traits for the eventual prediction 

models.  

Moreover, ML’s primary focus is related to forecasting market values. Many noneconomic 

ML experts fail to recognize the core ML difference related to traded assets and physical events 

predictions. Predicting the temperature does not affect climate behavior, yet predicting crude oil 

and equity prices could immediately impact current prices and stimulate trade activities. In this 

regard, each ML algorithm that attempts to forecast prices using other algorithms creates an 
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externality. Each effective forecasting model makes the following algorithm more difficult and 

increases the chances of re-using underused approaches. A broad ML research topic is theorydriven 

which combines both theory and technique. For example, Gu et al. (2020) investigated several 

methods and discovered their superiority to depict commodity price changes, especially risk 

premia evaluation. The recent advances in Deep Learning approaches effectively transform the 

whole ML domain. Due to the multi-layer structure, DL techniques allow the algorithms to handle 

a substantially greater proportion of inputs in a very consistent manner without necessitating any 

prior feature specification. On the opposing hand, ML approaches often require a high volume of 

input data that requires additional effort and time.  

The organizational and financial implications of machine learning and artificial intelligence 

in the energy business and other economic areas are constantly affected by ML innovations. The 

protracted impact on the energy industry's architecture has to be observed and analyzed and might 

replace or supplement human talents. In the replacement scenario, the automation will increase 

and replace human interventions, while ML is supposed to improve personnel’ abilities in the 

supplementary role. As a result, an industry reorganization and new industry structures and actors 

are expected. Accordingly, future research should investigate and assess ML influence on critical 

aspects such as energy efficiency and cost, smart networks, the effectiveness of energy markets 

and exchanges, and the workforce in business during the pandemic. As such, the environmental 

disruption, pervasiveness of sustainable power, and spread of smart grids, machine learning, and 

artificial intelligence (ML/AI) could be utilized to augment forecasting abilities and integrate 

volatile renewable energy resources. This will contribute to balancing energy grids and 

understanding trends related to needs and demands.  

Finally, though large energy commodities markets are very efficient, the advantages of 

price projection following advanced methodologies are still modest. Such benefits may become 

lower when giant firms adopt the technology to persuade the industry about its effectiveness while 

using latent data to reach the equilibrium prices, which is a serious hurdle effectively. Hence, ML 

becomes more useful in forecasting and anticipating market dangers by depicting the dispersion of 

shocks on equilibrium variables paired with network models and ML optimizing risk management 

strategies.  
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Figure 6. Rankings of RMSE for all forecasting models – Pre pandemic period  
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Figure 7. Rankings of RMSE for all forecasting models – COVID-19 pandemic period  
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Notes: We use ten hidden neurons and two delays. Also, in the upper left corner, we can see 4 exogenous parameters  
(the uncertainty indices), while in the bottom left, the energy prices as a Nonlinear Autoregressive with External 
(Exogenous) parameters (NARX) model.  

Figure 8. Structure of Neural Network with Levenberg-Marquardt   
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Figure 9. Time series Response of the trained N.N. with Levenberg-Marquardt algorithm – Pre pandemic period  
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Figure 10. Time series Response of the trained N.N. with Levenberg-Marquardt algorithm – COVID-19 pandemic 

period  

6. Conclusions  

In the present study, we attempted to introduce an Early Warning System (EWS) to forecast 

energy equity prices and performed a comparative analysis based on ML and conventional 

regression models. We relied on equity indices since the valuation of such assets is tied up to 

expected corporate profits, assumed to positively affect investors demand. We gathered daily data 

from 1/6/2011 till 18/1/2022 to assess the predictability of the models before and during the 

COVID-19 pandemic. We used indices from renewable energy, oil, gas, coal, pipelines, and gas 

refining to proxy energy prices. We investigated the impact of economic uncertainty indices 

(Twitter Economic Uncertainty (TEU-USA); Infections Uncertainty (EMV); Economic Policy 

Uncertainty (EPU) index; and CBOE Market Volatility Index (VIX)) on the prediction of energy 

prices using RMSE as a measure of performance and accuracy.  

We applied 25 ML approaches, including NN SVRs, Regression Trees, and GPR models. 

We found that ML models outperformed the MLR approach in all cases. The Nonlinear 

Autoregressive with External (Exogenous) parameters (NARX) was superior as it significantly 

improved accuracy. The simultaneous use of the Levenberg-Marquardt algorithm and 

autoregression with exogenous input parameters made the response outcome entirely accurate and 

minimized RMSE relatively to other NN machine learning models. In conclusion, the Artificial 

Intelligence (AI)" and Machine Learning (ML) models allowed more accurate predictions than 

traditional Multiple Linear Regression models. The Neural Networks appeared the superior model.  

Although the study contributed to important findings, it suffered from some limitations. 

First, the study was limited to the US context though it would be beneficial to perform it on global 

echelons. This is due to the availability of US data regarding the energy equity prices and 

uncertainty indices. Second, the high-frequency data cannot be easily accessed. In this regard, 

realtime data analysis might conclude valuable insights and important conclusions. Most databases 

provide high-frequency data for 3-month only, which restrict the analysis to daily frequency while 

forgoing the option to account for more extended period (two years or more), which can lead to 

valuable results.   

We recommend expanding our suggested framework and the Early Warning Systems 

(EWS) and incorporating other sectors. While large energy commodities markets are exceptionally 
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efficient, price projection models based on advanced methodologies might conclude to undesirable 

outcomes as some powerful companies might benefit from this innovation and induce more 

effectiveness through improved latent data integration in the equilibrium prices. This can be 

considered a genuine jump based on sophisticated ML forecasts in the spectrum of energy 

economics. Machine learning appears valuable in determining and anticipating market threats 

when integrated with network architectures. It might improve the efficacy of risk management 

systems by accurately capturing the dispersion of disturbances on equilibrium parameters.  
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Appendix 1: Variable’s description and sources   

  
Variable name  Description  Source  

Energy Equity Indices   

US Renewable Energy  
Equity (USRenewEnergy) 
Index  

United States Renewable Energy Equity 
Index  

Thomson  
Reuters  
DataStream  

US Oil, Gas, and Coal  
Equity (USOilGasCoal) Index  

United States Oil, Gas, and Coal Equity 
Index  

Thomson  
Reuters  
DataStream  

US Pipelines Equity 
(USPipelines) Index  

United States Pipelines Equity Index  Thomson  
Reuters  
DataStream  

US Oil Equity & Services 
(USOilEqSvs) Index  

United States Oil Equity & Services Index  Thomson  
Reuters  
DataStream  

US Oil & Gas Refining &  
Marketing Equity  
(USOilRefMkting) Index  

United States Oil & Gas Refining & 
Marketing Equity Index  

Thomson  
Reuters  
DataStream  

US Oil: Crude Production  
Equity (USOilCrudeProd) 
Index  

United States Oil: Crude Production Equity 
Index  

Thomson  
Reuters  
DataStream  

US International Oil & Gas 
(USIntOilGas) Index   

United States International Oil & Gas Index    

US Energy (USEnergy) Index  Overall United States Energy Index  Thomson  
Reuters  
DataStream  

Uncertainty Indices   
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Twitter Economic  
Uncertainty (TEU-USA)  
Index  

The Twitter-based Economic Uncertainty  
Index exists since June 2011. Developed by 
Thomas Renault (University of Pantheon  
Sorbon, Paris 1) in collaboration with Scott R.  
Baker (Northwest), Nicholas Bloom  
(Stanford), and Steve Davis (University of 
Chicago). The method is as follows. Extracts 
all messages (tweets) sent on Twitter since 
June 2011 that contain keywords related to 
uncertainty and keywords related to business.  
The terms of uncertainty are: "' 'economists',  
'economic', 'economy', economics', 
'economically', 'economies', 'economist', ' 
economical.' "   

www.policyunc 
ertainty.com  

EMV Infections Uncertainty 

(EMV) Index  
EMV Infections Uncertainty is a daily 
newspaper-based infectious disease stock 
market volatility tracker. The index is daily 
and available from January 1985. To build an 
infectious disease EMV tracker, the author  

www.policyunc 
ertainty.com  

 proceeds in four sentences: E: {financial, 
economy, economics}, "V: {uncertainty, risk, 
volatility, volatile}, M: {'Standard and Poors', 
'equities', 'equity, 'stock market'}, "ID: {H1N1, 
epidemic, EBOLA, pandemic, MERS, virus, 
flu, SARS disease, coronavirus, H5N1}. Then, 
in about 3,000 US newspapers, get the number 
of daily newspaper articles that contain at least 
one term in E, M, V, and ID. Third, they scale 
the raw EMVID count by the number of items 
on the same day. The final step contains the 
rescaling of the resulting series. This reflects 
the approach of scaling the category's EMC 
series with the category's EMC tracker.   

 

Economic Policy  
Uncertainty (EPU) index  

The Daily news-based Economic Policy 
Uncertainty Index includes newspaper archives 
from Access World New's NewsBank service. 
The NewsBank Access World News database 
is based on an archive of newspapers and other 
news sources around the world. NewsBank has 
a wide range of news sources, from 
newspapers to magazines to news agencies, 
but the analysis is done using only newspaper 
sources. The index is limited to US 
newspapers, and NewsBank has well over 
1,000 newspapers. These newspapers range 
from large national newspapers such as USA  
Today to small local newspapers nationwide.   

www.policyunc 
ertainty.com  
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CBOE Market Volatility 
Index (VIX)  

Chicago Board Options Exchange (CBOE) 
Market Volatility Index (VIX) VIX is the 
ticker symbol and the popular name for the 
Chicago Board Options Exchange's CBOE 
Volatility Index, a popular measure of the 
stock market's expectation of volatility based 
on S&P 500 index options.  

Thomson  
Reuters  
DataStream  
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