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A Latent Encoder Coupled Generative Adversarial
Network (LE-GAN) for Efficient Hyperspectral

Image Super-resolution
Yue Shi, Liangxiu Han*, Lianghao Han, Sheng Chang, Tongle Hu, Darren Dancey

Abstract—Realistic hyperspectral image (HSI) super-resolution1

(SR) techniques aim to generate a high-resolution (HR) HSI2

with higher spectral and spatial fidelity from its low-resolution3

(LR) counterpart. The generative adversarial network (GAN)4

has proven to be an effective deep learning framework for5

image super-resolution. However, the optimisation process of6

existing GAN-based models frequently suffers from the problem7

of mode collapse, leading to the limited capacity of spectral-8

spatial invariant reconstruction. This may cause the spectral-9

spatial distortion on the generated HSI, especially with a large10

upscaling factor. To alleviate the problem of mode collapse, this11

work has proposed a novel GAN model coupled with a latent12

encoder (LE-GAN), which can map the generated spectral-spatial13

features from the image space to the latent space and produce14

a coupling component to regularise the generated samples.15

Essentially, we treat an HSI as a high-dimensional manifold16

embedded in a latent space. Thus, the optimisation of GAN17

models is converted to the problem of learning the distributions18

of high-resolution HSI samples in the latent space, making the19

distributions of the generated super-resolution HSIs closer to20

those of their original high-resolution counterparts. We have21

conducted experimental evaluations on the model performance of22

super-resolution and its capability in alleviating mode collapse.23

The proposed approach has been tested and validated based on24

two real HSI datasets with different sensors (i.e. AVIRIS and25

UHD-185) for various upscaling factors (i.e. ×2, ×4, ×8) and26

added noise levels (i.e. ∞ db, 40 db, 80 db), and compared with27

the state-of-the-art super-resolution models (i.e. HyCoNet, LTTR,28

BAGAN, SR- GAN, WGAN). Experimental results show that29

the proposed model outperforms the competitors on the super-30

resolution quality, robustness, and alleviation of mode collapse.31

The proposed approach is able to capture spectral and spatial32

details and generate more faithful samples than its competitors.33

It has also been found that the proposed model is more robust to34

noise and less sensitive to the upscaling factor and has been35

proven to be effective in improving the convergence of the36

generator and the spectral-spatial fidelity of the super-resolution37

HSIs.38

Index Terms—Hyperspectral image super-resolution, Genera-39

tive adversarial network, Deep learning.40
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THE hyperspectral image (HSI) has been widely used in 42

extensive earth observation applications because of the 43

rich information in its abundant spectral bands. However, due 44

to the cost and hardware limitations of imaging systems, the 45

spatial resolution of HSI decreases when the numerous spec- 46

tral signals are collected simultaneously [1]–[3]. Due to this 47

drawback, the HSI does not always meet the demands for high- 48

accurate earth observation tasks. The HSI super-resolution 49

aiming to estimate a high-resolution (HR) image from a single 50

low-resolution (LR) counterpart is one of promising solutions. 51

Currently, there are mainly two different approaches for HSI 52

super-resolution: 1) the HSI fusion with the HR auxiliary 53

image (e.g. panchromatic image) and 2) the single HSI super- 54

resolution without any auxiliary information. Generally, the 55

image fusion approach implements the super-resolution using 56

filter-based approaches through integrating the high-frequency 57

details of HR auxiliary image into the target LR HSI [4], [5], 58

such as component substitution [6], [7], spectral unmixing 59

[8], [9], and Bayesian probability [10], [11]. However, this 60

method highly relies on the high-quality auxiliary image with 61

high imaging cost, which limits its practical applications. In 62

contrast, single HSI super-resolution does not need any other 63

prior or auxiliary information, which has greater practical 64

feasibility. 65

In recent years, the single HSI super-resolution technologies 66

have attracted increasing attention in remotely sensed data 67

enhancement [12]. Particularly, Deep Learning (DL)-based 68

single image super-resolution (SISR) methods have achieved 69

significant performance improvement [13]. The first DL-based 70

method for single image super-resolution was proposed by 71

Dong et al. [14], named as the super-resolution convolutional 72

neural network (SRCNN). To recover the finer texture details 73

from low-resolution HSIs with large upscaling factors, Ledig 74

et al. [15] proposed a super-resolution generative adversarial 75

network (SRGAN) by introducing a generative adversarial 76

network (GAN). After that, various GAN-based deep learning 77

models have been developed and proven to be effective in 78

improving the quality of image super-resolution [16]–[19]. 79

However, existing GAN-based super-resolution approaches 80

mainly focused on RGB images, in which the reflectance 81

radiance characteristics between the neighbouring spectral 82

channels were not considered in the model training processes. 83

Therefore, using these models for HSI super-resolution di- 84

rectly will lead to the absence of spectral-spatial details in 85

the generated images. For example, Fig.1 shows a compar- 86

ison between an original high-resolution HSI and its super- 87
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resolution HSI counterpart generated from the SRGAN model88

[13]. Obvious spectral-spatial distortions can be observed on89

the generated super-resolution HSI (see the red and yellow90

frames in Fig.1). Mathematically, recovering spectral-spatial91

details in super-resolution HSI is an under-determined in-92

verse problem in which a large number of plausible details93

in the high-resolution image need to be characterised from94

low-resolution information. The complexity of this under-95

determined issue will exponentially increase with the increased96

upscaling factor. With high upscaling factors (e.g. higher than97

8 × ), the spectral-spatial details of generated super-resolution98

HSIs could be distorted.99

SRGAN-based super-resolved  HSI Raw high-resolution HSI

Fig. 1. A comparison between a raw high-resolution (right) HSI and its (8 ×)
super-resolution HSI (left) counterpart generated by the SRGAN model [15].
The red frames show the spectral distortion occurs in the learning process,
and the yellow frames reveal the loss of spatial details in the super-resolution
HSI.

The potential reason behind the spectral-spatial distortion100

is due to mode collapse in the optimisation process of GANs101

[20], [21], in which GAN models get stuck in a local minimum102

and only learn limited modes of data distributions. Some103

studies have attempted to address mode collapse in GAN104

models. For instance, Hou et al. [22] improved the diversity105

of the generator in GAN models and attempted to avoid the106

mode collapse by adding a reverse generating module and an107

adaptive domain distance measurement module into the GAN108

framework. Their findings illustrated that these approaches109

facilitated solving the insufficient diversity of GAN models110

in remote sensing image super-resolution. Ma et al. [23]111

introduced a memory mechanism into GAN models to save112

feedforward features and extract local dense features between113

convolutional layers, which showed some effectiveness in114

increasing spatial details during the reconstruction procedure.115

To benefit the remarkable super-resolution performance116

from GAN-based models and address the spectral-spatial dis-117

tortions in HSI super-resolution, in this study, we proposed118

a novel latent encoder coupled GAN architecture. We treated119

an HSI as a high-dimensional manifold embedded in a higher120

dimensional ambient latent space. The optimisation of GAN121

models was converted to a problem of learning the feature dis-122

tributions of high-resolution HSIs in the latent space, making123

the spectral-spatial feature distributions of generated super-124

resolution HSIs close to those of their original high-resolution125

counterparts. Our contributions included:126

1) A novel GAN-based framework has been proposed to 127

improve HSI super-resolution quality. The improvement was 128

achieved from two aspects. Firstly, for improving the spectral- 129

spatial fidelity, a short-term spectral-spatial relationship win- 130

dow (STSSRW) mechanism has been introduced to the gener- 131

ator in order to facilitate spectral-spatial consistency between 132

the generated super-resolution and real high-resolution HSIs 133

in the training process. Secondly, for alleviating the spectral- 134

spatial distortion, a latent encoder has been introduced into the 135

GAN framework as an extra module to make the generator do 136

a better estimation on local spectral-spatial invariance in the 137

latent space. 138

2) A spectral-spatial realistic perceptual (SSRP) loss has 139

been proposed to guide the optimisation of the under- 140

determined inverse problem and alleviate spectral-spatial mode 141

collapse issues occurred in the HSI super-resolution process, 142

and benefit on retrieving high-quality spectral-spatial details 143

in the super-resolution HSI, especially for high upscaling 144

factors (e.g. 8×). The loss function, SSRP, was able to enforce 145

spectral-spatial invariance in the end-to-end learning process 146

and made the generated super-resolution features closer to the 147

manifold neighbourhood of the targeted high-resolution HSI. 148

The rest of this work is organised as follows: Section 2 149

introduces related works on existing GANs-based methods 150

for HSI super resolution tasks; Section 3 details the proposed 151

approach; Section 4 presents experimental evaluation results; 152

Section 5 concludes the work. 153

II. RELATED WORK 154

A traditional GAN-based super-resolution model contains 155

two neural networks, a generator producing sample images 156

from low-resolution images and a discriminator distinguishing 157

real and generated images [24]. The generator and discrimi- 158

nator are trained in an adversarial fashion to reach a Nash 159

equilibrium in which the generated super-resolution samples 160

become indistinguishable from real high-resolution samples. 161

Focusing on the spectral and spatial characteristics of HSI 162

data, various adversarial strategies were proposed to improve 163

the GAN performance on HSI super-resolution tasks [25]. For 164

example, Zhu et al [26] proposed a 3D-GAN to improve the 165

generalisation capability of the discriminator in spectral and 166

spatial feature classification with limited ground truth HSI 167

data. Jiang et al [27] designed a spectral and spatial block 168

inserted before the GAN generator in order to extract high- 169

frequency spectral-spatial details for reconstructing super- 170

resolution HSI data. 171

Some methods for improving the overall visual quality of 172

generated HSIs were also proposed through constructing a 173

reliable mapping function between LR and HR HSI pairs. 174

For example, Li et al [28] proposed a GAN-based model 175

for multi-temporal HSI data enhancement. In their model, 176

a 3DCNN based upscaling block was used to collect more 177

texture information in the upscaling process. Huang et al 178

[29] integrated the residual learning based gradient features 179

between an LR and HR HSI pair with a mapping function in 180

the GAN model, and achieved the HSI super-resolution with 181

an improved spectral and spatial fidelity. 182
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The performance of a GAN-based model mainly depends on183

its generator, its discriminator and loss functions. Therefore,184

existing studies in improving GAN-based models for HSI185

resolution focused on their design and optimisation.186

A. Design of the generator and the discriminator187

In the generator where LR data are upscaled to a desired188

size, upscaling filters are the most important components that189

influence the performance of the generator in term of accuracy190

and speed [30], [31]. Ledig et al. [15] employed a deep191

ResNet with a skip-connection in the generator to produce192

super-resolution images with ×4 upscaling factor. Jiang et al.193

[16] proposed an edge-enhancement GAN generator in which194

a group of dense layers were introduced into the generator195

in order to capture intermediate high-frequency features and196

recover the high-frequency edge details of HSI data.197

In regard to the discriminator, it was found that a deeper net-198

work architecture had greater potential in discriminating real199

images from generated ones [15], [32]. For example, Rangneka200

et al. [33] proposed a GAN-based deep convolutional neural201

network with seven convolutional layers in the discriminator202

for aerial spectral super-resolution. Arun et al. [34] used six203

3D convolutional filters and three deconvolution filters in the204

discriminator to discriminate the spectral-spatial features of205

real HR HSIs from the generated counterparts.206

In the design of the generator and the discriminator, the207

computational cost needs to be considered. The upscaling208

process in the generator can significantly increase the compu-209

tational cost at the scale of n2 times for an the upscaling factor210

of n. Meanwhile, the deep learning-based discriminator always211

requires a large amount of computational time and memory for212

extracting and discriminating the high-dimensional non-linear213

mapping features of input data. More efficient generator and214

discriminator are required for fast and accurate HSI super-215

resolution.216

B. Design of loss functions217

The loss function plays a very important role in optimising218

the performance of GAN models [35], [36]. In the traditional219

GAN model, the generator and the discriminator are trained220

simultaneously to find a Nash equilibrium to a two-player221

non-cooperative game. A min-max loss function is used, it222

is equivalent to minimising Jensen-Shannon (JS) divergence223

between the distributions of generative data and real samples224

when the discriminator is optimal. However, the GAN training225

is hard, and can be slow and unstable. There are some issues226

in the original GAN model, such as hard to achieve Nash227

Equilibrium, the problem of low dimensional supports of228

sample distributions and mode collapse [37], [38]. To facilitate229

the training stability and address mode collapse problems in230

the original GAN model, several improved adversarial loss231

functions were developed, which can be divided into three232

categories: 1) the pixel-wised loss, 2) the perceptual loss, and233

3) the probabilistic latent space loss.234

In the first category, the pixel-wised mean squared error235

(MSE) loss is commonly used for measuring the discriminative236

difference between real and generated data in GAN models237

[15]. However, the MSE has some issues, such as the loss of 238

high-frequency details, the over-smoothing problem, and the 239

sparsity of weights [39]–[41]. Some studies have attempted to 240

solve these issues. Chen et al. [42] introduced a sparse MSE 241

function into the GAN model in order to measure the high- 242

frequency information in the spatial attention maps of images, 243

their results showed that the GAN with the sparse MSE loss 244

was able to provide more viable segmentation annotations 245

of images. Zhang et al. [43] emphasised that the MSE-loss 246

always led to an over-smoothing issue in the GAN optimisa- 247

tion process. Therefore, they introduced a supervised identity- 248

based loss functions to measure the semantic differences 249

between pixels in the GAN model. Lei et al. [44] attempted 250

to solve the issue of sparsity of the pixel-wised weights in the 251

GAN model, and proposed two additional metrics, the edge- 252

wise KL-divergence and the mismatch rate, for measuring 253

the sparsity of pixel-wised weights and the wide-value-range 254

property of edge weights. 255

In the second category, existing studies used different 256

perceptual losses to balance the perceptual similarity, based 257

on high-level features and pixel similarity. Cha et al. [45] 258

proposed three perceptual loss functions in order to enforce the 259

perceptual similarity between real and generated images, these 260

functions achieved improved performance on generating high- 261

resolution image with GAN models. Luo et al. [46] introduced 262

a novel perceptual loss into the GAN based SR model, named 263

as Bi-branch GANs with soft-thresholding (Bi-GANs-ST), to 264

improve the objective performance. Blau et al. [47] proposed 265

a perceptual-distortion loss function in which the generative 266

and perceptual quality of GAN models were jointly quantified. 267

Rad et al. [48] proposed a pixel-wise segmentation annotation 268

to optimise the perceptual loss in a more objective way. 269

Their model achieved a great performance in finding targeted 270

perceptual features. 271

In the third category, Bojanowski et al. [49] investigated the 272

effectiveness of the latent optimisation for GAN models, and 273

proposed a Generative Latent Optimisation (GLO) strategy for 274

mapping the learnable noise vector to the generated images 275

by minimising a simple reconstruction loss. Compared to 276

a classical GAN, the GLO obtained competitive results but 277

without using the adversarial optimisation scheme which was 278

sensitive to random initialisation, model architectures, and the 279

choice of hyper-parameter settings. Training a stable GAN 280

model is challenging. Therefore, Wasserstein GAN [50] was 281

proposed to improve the stability of learning and reduce mode 282

collapse. The WGAN replaced the discriminator model with 283

a critic which scored the realness of a given image in the 284

probabilistic latent space and was trained using Wasserstein 285

loss. Rather than discriminating between real and generated 286

images (i.e. the probability of a generated image being real), 287

the critic maximises the difference between its prediction for 288

real images and generated images (i.e. predict a ”realness” 289

score of a generative image). Gulrajani et al. [51] further 290

improved the WGAN training by adding a regularisation term 291

penalising the deviation of the critic’s gradient norm with 292

regard to the input, and the model was named as (WGAN- 293

GP). 294
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Low-resolution 

HSI data I 

High-resolution 

HSI data I

lr

hr

Generator G Latent encoder 

Discriminator D Loss

G(I )
lr

D(G(I ))
lr

D(I )
hr

Super-resolution 

HSI data 

Fig. 2. The architecture of the proposed model: the output from the encoder
is used to regularise the loss function

III. THE PROPOSED LE-GAN FOR SINGLE HSI295

SUPER-RESOLUTION296

To address the challenge of spectral-spatial distortions297

caused by mode collapse during the optimisation process, we298

proposed a novel GAN model coupled with a latent encoder,299

named as LE-GAN. In the proposed framework, the optimised300

generator and discriminator were designed to improve the301

super-resolution performance and reduce the computational302

complexity. Inspired by the encoder coupled GAN [52], [53],303

we developed a latent encoder embedded into our GAN304

framework to facilitate the generator to achieve a better305

approximation on feature maps, in order to generate ideal306

super-resolution results. In addition, we designed a spectral-307

spatial realistic perceptual (SSRP) loss function in order to308

optimise the under-determined inverse problem by providing a309

trade-off between aligning the distributions of generated super-310

resolution and targeted high-resolution HSIs and increasing the311

spectral-spatial consistency between them.312

A. Model architecture313

We have made two major changes to the traditional GAN314

framework: 1) proposed an improved generator, denoted as315

G, with a simplified ResNet structure, and 2) introduced a316

latent encoder, denoted as LE , into the GAN framework.317

The network architecture is shown in Fig.2. It consists of a318

generator, a discriminator and an encoder.319

1) The architecture of the generator model G: To improve320

the spectral-spatial reconstruction quality with low distor-321

tion and reduce the computational complexity, a short-term322

spectral-spatial relationship window (STSSRW) derived gener-323

ator was proposed, denoted as G in our GAN framework. The324

architecture of the proposed generator G is shown in Fig.3. It325

serves three functions: low-resolution spectral-spatial feature326

extraction, STSSRW, and super-resolution HSI reconstruction.327

Firstly, for the low-resolution spectral-spatial feature extrac-328

tion, a 3D convolutional filter is introduced. Unlike traditional329

RGB image super-resolution approaches that use 2D convo-330

lutional filters for spatial feature extraction, the HSI super-331

resolution requires processing continuous spectral channels332

and capturing spectral-spatial joint features from a data cube.333

Therefore, a 3D convolutional filter is a better choice for334

modelling both the spectral correlation characteristics and 335

spatial non-local self-similarity. In this study, the convolutional 336

kernel is set to 16 × 16 × b for a b band HSI input. Nah et 337

al. [54] found that the batch normalisation (BN) layer would 338

normalise the features and get rid of the range flexibility for 339

upscaling features. Therefore, no BN layer is used here to 340

avoid blurring the spectral-spatial information hidden in the 341

convolutional features. 342

Secondly, an STSSRW block is designed to exploit the 343

hierarchical spatial-spectral correlation-state denoted as, H , 344

and further to create the local-global features, F , with low 345

spectral-spatial distortion. It aims to learn the local-global 346

relationship between spectral bands in order to selectively en- 347

hance informative band features and spectral-spatial diversity, 348

and achieve low image distortion through modelling the inter- 349

dependencies between high-level features. 350

More specifically, as shown in Fig. 4a, the low-resolution
spectral-spatial data will first be sliced with a sliding window,
and then fed into the block. For each data slice Bw, a short-
term correlation-state Hw−1 is introduced through the feed-
back connect to correct the local-global relationship between
the current data slice w and the previous data slice w−1. Dif-
fering from the existing residual connection models that treat
the HSI as a whole data cube, the proposed STSSRW approach
further divides the data slice Bw into G chunks based on
their spectral similarity, that is, Bw = [BGw1 , BG

w
2 , ..., BG

w
G].

Then, the short-term correlation-state Hw−1 in the SRSSRW
block are concatenated with each chunk, Bwg (g = 1, G) ,
with a 1D convolutional operator to update the local-global
correlation between the chunks, and a local feature extractor
consisting of two ResBlocks (see Fig. 4b) is used to extract the
local spectral characteristics in each chunk. The local feature
map of the g-th chunk, FGwg , can be calculated by:

FGwg = fRes(fRes(f1DConv(BG
w
g , H

w−1))) (1)

After that, the local feature maps FGwg (g = 1, G) from 351

all of the chunks are concatenated and reconstructed as the 352

global spectral features with an upscaling deconvolutional 353

operator, and then another high-level feature extractor with 354

two ResBlocks is employed to create the local-global features, 355

Fw. In the end, a correlation-state update operator including 356

two 1D convolutional filters and one sigmoid activation layer 357

is used to aggregate the band-wise information and update the 358

correlation-state, Hw, for the next iteration. Here, Fw and Hw
359

can be computed with: 360

Fw = fRes(fRes(fDeconv([FG
w
1 , FG

w
2 , ..., FG

w
G]))) (2)

(3)Hw = fSigmoid(f1DConv(f1DConv(

fDeconv([FG
w
1 , FG

w
2 , ..., FG

w
G]))))

where fSigmoid,fRes, fDeconv,f1DConv represent the opera- 361

tions of Sigmoid, Residual Blocks, Deconvolution and 1D 362

convolution, respectively. 363

Introducing the STSSRW block into the model can not 364

only reduce the spectral dimensionality and computational 365

complexity like normal residual blocks, but also can explore 366
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Input Conv UpscaleBlock Deconv Output

a. The architecture of the Generator G

Conv Shuffle

dbw64s1

d(k ×32 ×b)w16s1

dbw64s1

b. UpscaleBlock
2

STSSRW block

Fig. 3. The architectures of (a) the generator G, (b) the ResBlock component
and (c) the UpscaleBlock component. Note: d,w,s are the kernel depth, the
kernel width and the stride for a convolutional layer.

𝐵𝐺1
𝑤

.

.

.

d32w1s1

Conv ResBlock ResBlock

d32w1s1
Conv ResBlock ResBlock

d32w1s1
Conv ResBlock ResBlock

𝐹𝑤

HwHw−1

b. ResBlock

Conv ConvReLU

d32w16s1d32w16s1
a. STSSRW Block

𝐵w 𝐵𝐺2
𝑤

𝐵𝐺𝐺
𝑤

d32w1s1
Conv

d32w1s1
Conv

Deconv ResBlock ResBlock

Sigmoid

Fig. 4. The architectures of STSSRW block. Note: d,w,s are the kernel depth,
the kernel width and the stride for a convolutional layer.

the diversity between adjacent spectral bands within a data367

slice.368

Finally, a skip-connect between the input spectral-spatial369

feature maps and the output local-global feature maps is370

conducted to selectively enhance the informative spectral-371

spatial structure and suppress the distortion. The subsequent372

results are fed into an UpscaleBlock to generate the super-373

resolution spectral-spatial details. As shown in Fig.3b, the374

UpdscaleBlock is a combination of a 3D-convolutional filter375

and a shuffle layer, in which convolutional filters with a depth376

of 32 are used to exploit k2 · 32 · b features for an upscaling377

factor k. The shuffle layer is used to arrange all the features378

corresponding to each sub-pixel position in a pre-determined379

order and aggregate them into super-resolution areas. The size380

of each super-resolution area is k×k. After this operation, the381

final feature maps with a size of (k2 ·32 ·b)×(H/k)×(W/k)]382

will be arranged into the super-resolution feature maps with383

a size of 32 · b × H × W , where H and W are the height384

and width of the super-resolution HSI, respectively. At last,385

a deconvolution filter is used to decode the feature maps in386

each area, yielding the super-resolution HSI with enhanced387

spectral-spatial fidelity.388

2) The architecture of the discriminator D: The architec-389

ture of the proposed discriminator, D, as shown in Fig. 5a,390

adopts an architecture similar to that used in [15]. But, there391

Fig. 5. The architectures of (a) the discriminator, D, and (b) the Maxpool
block. Note: d,w and s denote the kernel depth, the kernel width and the stride
of a convolutional layer, respectively.

is no sigmoid layer in our model, because the latent space 392

optimisation requires the raw membership without compres- 393

sion. Thus, the proposed D mainly contains one convolutional 394

layer, n Maxpool blocks (n = 8 is chosen, following the 395

architectural guidelines summarized by [15]) and two dense 396

layers. The Maxpool block is a combination of a convolutional 397

layer, a BN layer, and a ReLU layer (see Fig. 5b). In this 398

study, eight Maxpool blocks are used to reduce the image 399

dimensionality each time and extract the high-level features, 400

and the resultant feature maps are input into two dense layers 401

to obtain a membership distribution of the feature maps for 402

real or generated HSIs. 403

3) The architecture of the latent encoder, LE: The latent 404

encoder, LE , is developed and introduced to the GAN architec- 405

ture for preventing mode collapse by mapping the generated 406

spectral-spatial features from the image space to the latent 407

space and produces the latent regularisation components in 408

the learning process. 409

Mathematically, the spectral-spatial features of HSI data, I ,
generated by the latent encoder, LE(I), can be decomposed
with the singular value decomposition as:

LE(I) = U × γ × V T (4)

where, U and V are the left and right singular vectors of
LE(I), respectively, and γ can be expressed as:

γ =

(
SSD 0

0 0

)
with SSD = diag{λ1, λ2, ..., λr} , the non-zero part of the 410

diagonal matrix after singular value decomposition of HSI data 411

which represents the spectral-spatial distribution (SSD) of the 412

input HSI in the latent space, in which (λ1 > λ2 > ... > λr) 413

are no-negative singular values, and r is the rank of the matrix. 414

Ideally, in the latent space, the SSD of the super-resolution 415

HSI should be close to that of real high-resolution HSI. 416

However, when the mode collapse occurs (e.g. the generated 417

spectral-spatial features distribution only matches part of the 418

real spectral-spatial feature distribution in the latent space), 419

SSD will concentrate on the top singular values and the rest 420

singular values would be close to zero. Thus, the rank of SSD 421

of the generated HSI will be lower than that of the real HSI. 422
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To alleviate the mode collapse, we introduce an extra reg-
ularisation term in the loss function to consider the similarity
measure of SSD of the spectral-spatial features between the
generated data and real data in the latent space. It is defined
as:

Llatent = EIhr∼Pr(Ihr)‖∆SSD‖2 (5)

where, ‖·‖2 denotes L2 norm, and the ∆SSD is defined as:

∆SSD = SV D(LE(Ihr))− SV D(LE(Isr))

= SV D(LE(Ihr))− SV D(LE(GθG(I lr))

= diag{λhr1 −λsr1 , ..., λhrg −λsrg , ..., λhrr −λsrr , 0, ..., 0}
(6)

where LE(Ihr) and LE(Isr = GθG(I lr)) are the423

outputs from the latent encoder for the real high res-424

olution image, Ihr, and the super-resolution image, Isr,425

generated from low resolution image, I lr, respectively;426

SVD denotes the singular value decomposition function;427

SV D(Ihr) = diag{λhr1 , λhr2 , ..., λhrg , λ
hr
g+1, ..., λ

hr
r , 0, ..., 0}428

are the singular values of LE(Ihr), and SV D(Isr) =429

diag{λsr1 , λsr2 , ..., λsrg , λsrg+1, ..., λ
sr
r , 0, ..., 0} are the singular430

values of LE(Isr = GθG(I lr)). This latent regularisation431

term is used to compensate the difference of singular values432

between real and generated data in the latent space during the433

optimisation process, which makes the spectral-spatial feature434

distribution (i.e. singular values) of the generated HSI more435

closer to the real feature distribution, and further facilitates436

the diversity of the generated image covers that of the real437

high-resolution HIS to prevent the singular value degrading438

and consequently mode collapse.439

The architecture of the latent encoder is shown in Fig. 6,440

which consists of eight convolutional layers with an increasing441

kernel depth by a factor 2 through different layers from 64 to442

512. The striding operation is used to transfer the spectral-443

spatial features (low-dimensionality) into the latent features444

(high-dimensionality) once the kernel depth is doubled. The445

resultant of 512 feature maps are input into two dense layers446

so that its outputs match the dimension of the latent space.447

As shown in Fig. 2, LE receives signals from the generator,448

G(I lr), and the targeted data, Ihr, and outputs their represen-449

tations in the latent space which then are used to generate the450

latent regularisation term, Llatent, for the loss function in the451

model optimisation as described in the section below. To make452

sure that the outputs of LE and the real high-resolution HSI in453

the latent space have the same dimension, LE is pre-trained by454

real HSI data. This pre-processing also speeds up the formal455

optimisation process.456

B. Model optimisation with spectral-spatial realistic percep-457

tual loss458

In this study, we treat a low-resolution image as a low-459

dimension manifold embedded in the latent space, thus the460

super-resolution HSI can be generated by the parametrised461

latent space learnt by the model. Theoretically, the generated462

super-resolution sample, GθG(I lr) , from a low-resolution463

sample, I lr, by the generator will be located in a neighbour-464

hood area of its target, Ihr, in the latent space.465

Input Conv ReLU
Dense

Output

Latent encoder LE

ReLU
Dense

Conv ReLU Conv ReLU Conv ReLU

d64w3s1
d64w3s2

d128w3s1
d128w3s2

d256w3s1
d256w3s2

d512w3s1
d512w3s2

G(Lr)

hr

Fig. 6. The architecture of the latent encoder LE . Note: d,w and s denote
the kernel depth, the kernel width and the stride of a convolutional layer,
respectively.

Previous studies [36], [42], [43] used the difference between
GθG(I lr) and Ihr as the generator loss function, described as:

|GθG(I lr)− Ihr|1 ≤ ε (7)

However, there are two drawbacks to use this loss func- 466

tion in the HSI super-resolution optimisation process. Firstly, 467

the activated features in the latent space are very sparse. 468

The distance based losses rarely consider the spectral-spatial 469

consistency between GθG(I lr) and Ihr, which leads to the 470

spectral-spatial distortion in the generated super-resolution 471

HSI results. Secondly, the direct bounding on the difference 472

between GθG(I lr) and Ihr makes it hard to converge because 473

I lr is usually disturbed by the network impairments or random 474

noise. 475

In order to overcome the aforementioned drawbacks, we
have designed a spectral-spatial realistic perceptual (SSRP)
loss to comprehensively measure the spectral-spatial consis-
tency between GθG(I lr) and Ihr in the latent space. The
formula of the SSRP loss is defined as the weighted sum of the
spectral contextual loss, the spatial texture loss, the adversarial
loss, and a latent regularisation component, and is shown as
follows:

LSSRPG = λ·Lspectral+η·Lspatial+σ·Ladversarial+µ·Llatent
(8)

where Lspectral is the spectral contextual loss, Lspatial is the 476

spatial texture loss, Ladversarial is the adversarial loss, and 477

Llatent is the latent regularisation component. 478

Based on the SSRP loss, the min-max problem in the GAN
model can be described as follows:

min
θG

max
θD

L(DθD , GθG) = min
θG

max
θD

(λ · Lspectral

+η · Lspatial + σ · Ladversarial + µ · Llatent)
(9)

The details of Lspectral, Lspatial, Ladversarial,are provided 479

below; The definition of Llatent can be found in Eq. 5. 480

1) Spectral contextual loss: Lspectral is designed to mea-
sure the spectral directional similarity between GθG(I lr) and
Ihr in the latent space, which is defined as follows:

Lspectral = Ez{−log(
1

N
·
∑
j

maxiAij)} (10)
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Aij =
e1−bij/nb∑
k e

1−bij/nb
(11)

where nb is the band number of an HSI, and bij is the481

normalized spectral directional difference defined as:482

bij =
cij

mincij
(12)

where cij is used to calculate the directional similarity for
both the high-level spectral features and the spectral context
between the generated HSI, GθG(I lr), and the real HSI, I lr,
which is defined as:

cij =
(Dµ(GθG(I lrij ))−Dµ(Ihrij )) · (GθG(I lrij )− Ihrij )

‖Dµ(GθG(I lrij ))−Dµ(Ihrij )‖2·‖GθG(I lrij )− Ihrij ‖2
(13)

where Dµ(·) denotes the feature maps obtained from the483

convolutional layer before the first Maxpooling layer of the484

discriminator, D.485

2) Spatial texture loss: In GAN models, if the loss function
only measures the spatial resemblance of the generated and
targeted samples, it usually leads to the blurry super-resolution
results. In this study, we introduce a spatial texture loss
Lspatial to measure the texture differences between the feature
maps of GθG(I lr) and Ihr in the latent space. In the Lspatial,
the feature maps of GθG(I lr) and Ihr before activation are
used because they contain more sharp details. Lspatial is
defined as:

Lspatial = Ez{
1

W ·H
·
W∑
i=1

H∑
j=1

‖Dφ(GθG(I lrij ))−Dφ(Ihrij )‖2}

(14)
where Dφ(·) denotes the feature maps obtained from the486

convolutional layer after the last Maxpooling layer of the487

discriminator D.488

3) Adversarial loss: Along with the spectral contextual loss
and the spatial texture loss, an adversarial loss is introduced
to facilitate the generator G in reconstructing the image in
the ambient manifold space, and fooling the discriminator
network. Ladversarial is defined based on the Wasserstein
distance [50] between the probability distributions of real data,
Pr(I

hr), and the generated data, Pg(GθG(I lr)). Theoretically,
Ladversarial is strong in alleviating the mode collapse during
the training process, because the Wasserstein distance evalu-
ating the similarity between Pr(I

hr) and Pg(GθG(I lr)) rely
on the whole samples distributions rather than the individual
sample. In other words, there is a penalty would be triggered
when the Pg(GθG(I lr)) only covers a fraction of Pr(Ihr),
which facilitates the diversity of the generated super-resolution
HSI. The goal of Ladversarial is to minimise the Wasserstein
distance, Wd(Pr, Pg), which is defined as:

Ladversarial = Wd(Pr, Pg) =
1

K
sup

‖f‖L<K
EIhr∼Pr(Ihr)[f(Ihr)]

−EIlr∼Pg(Ilr)[f(GθG(I lr)]
(15)

where f is the K-Lipschitz function. Suppose we have a
parametrised family of functions, {fwd

}wd∈Wd
, that are all

K-Lipschitz for some K, then the Ladversarial can be written
as:

LD(Pr, Pg) = max
w∈Wd

EIhr∼Pr(Ihr)[fwd
(Ihr)]

−EIlr∼Pg(Ilr)[fwd
(GθG(I lr))]

(16)

where Wd is chosen such that the Lipschitz constant of fwd
489

is smaller than a constant, K. If the probability densities of 490

Pr(I
hr) and Pg(I lr) satisfy the Lipschitz continuous condition 491

(LCC) [55], there is a solution fwd
. Thus, the discriminator 492

is trained to learn a K-Lipschitz continuous function to help 493

compute the Wasserstein distance. The LCC is a strong pre- 494

requisite for calculating Wd(Pr, Pg). Therefore, the parame- 495

ters, wd, should lie in a Wd-dimensional manifold in order to 496

meet this constraint. 497

4) The latent regularisation component: In our proposed 498

model, G is a ResNet with global Lipschitz continuity. As 499

described in Section III-A-c, we have introduced a latent 500

encoder, LE , to compensate the singular values of the spectral- 501

spatial features of I lr to the desired Ihr. In addition to the op- 502

timisation process, the Lipschitz Continuity Condition (LCC) 503

is employed to enforce the local spectral-spatial invariances of 504

G, and map the latent manifold space to a more regularised 505

latent space in case of mode collapse, described as: 506

|GθG(I lr)−Ihr|1 ≤ K×‖LE(GθG(I lr))−LE(Ihr)‖2 (17)

Thus, introducing the regularisation term in the latent space 507

into the loss function (i.e. Llatent, see Eq. 5) will make the 508

loss be penalised if the singular values of the spectral-spatial 509

features of a generated super-resolution HSI are updated in a 510

particular direction represented by singular values of SSD). In 511

other words, LLC-derived LE updating is able to prevent the 512

learning process of each layer from becoming sensitive to the 513

limited direction, which mathematically alleviates the mode 514

collapse, in turn stabilising the optimisation process. 515

IV. EXPERIMENTAL EVALUATION 516

In this section, we evaluate the effect of proposed LE- 517

GEN and determined whether it will improve the super- 518

resolution quality and facilitate manifold mapping for solving 519

the problem of mode collapse. Wherein, the developed SSRP 520

loss function plays a key role for both of these prospects. A 521

total of three experiments are designed. The first experiment 522

is to evaluate the optimal parameter combination for the SSRP 523

loss in our proposed model, the second experiment is proposed 524

to evaluate the super-resolution quality, and the last experiment 525

is to evaluate the mode collapse in the model training. 526

The proposed model was trained and tested on real HSI 527

datasets coming from different sensors. It was also compared 528

with five state-of-the-art super-resolution models, including 529

the hyperspectral coupled network (HyCoNet) [56], the low 530

tensor-train rank (LTTR) network [57], the band attention 531

GAN (BAGAN) [58], the super resolution generative ad- 532

versarial network (SRGAN) [15], and the Wasserstein GAN 533

(WGAN) [50]. Among them, HyCoNet, LTTR and BAGAN 534

are the state-of-the-art models for HSI super-resolution, while 535

SRGAN and WGAN are the most widely used GAN frame- 536

works for image super-resolution. In order to fit the HSI into 537
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the SRGAN and WGAN models, a band-wise strategy was538

employed [59].539

A. HSI data descriptions540

In our experiments, two types of datasets obtained from541

different sensors were used, one from the public AVIRIS542

archive, the other from the privately measured UHD-185 data543

of Guyuan Potato Field (GPF).544

1) AVIRIS datasets: Two publicly available HSIs from545

the AVIRIS data archive were chosen, including the HSIs546

of Indian Pines (IP) data and the Kennedy Space Center547

(KSC). Each of them contains 224 hyperspectral bands from548

400 ∼ 2500nm. The HSIs in the KSC dataset were collected549

by the Kennedy Space Center, Florida, on March 23, 1996.550

The spatial resolution was 18 m. The HSIs of IP covered551

the crop planting areas with the spatial resolution of 20 m in552

North-Western Indiana, USA. In this study, to keep the spectral553

consistency between different datasets, only the wavelength554

ranges from invisible to near-infrared (450 ∼ 950nm) were555

considered in our experiments.556

2) UHD-185 dataset: The UHD-185 dataset contained557

three privately measured HSIs, denoted as GPF−1, GPF−2,558

and GPF − 3, in Guyuan Potato Field, Hebei, China. Each559

of the HSIs was collected by the DJI S1000 UAV sys-560

tem (SZ DJI Technology Co Ltd., Gungdong, China) based561

UHD-185 Imaging spectrometer (Cubert GmbH, Ulm, Baden-562

Württemberg, Germany) in 2019. All the images were obtained563

at a flight height of 30 m, with 220 bands from visible to564

near-infrared bands between 450 and 950 nm and a spatial565

resolution close to 0.25m per pixel.566

B. Evaluation metrics567

The evaluation metrics include 1) the metrics for evaluating568

super-resolution quality and robustness and 2) the metrics for569

evaluating mode collapse of GANs.570

1) Evaluation metrics for super-resolution quality and ro-571

bustness assessment: In total, five spectral-spatial evaluation572

metrics were employed for the super-resolution quality assess-573

ment.574

These five metrics are 1) Information entropy associated575

peak signal-to-noise (PSNR), 2) Spatial texture associated576

structural similarity index (SSIM), 3) Perception-distortion577

associated perceptual index (PI), 4) spectral reality associated578

spectral angle mapper (SAM) and 5) Spectral consistency579

associated spectral relative error (SRE). Among them, the580

PSNR and SSIM were widely used in the evaluation of image581

quality [60], the larger the score of PSNR or SSIM the higher582

the image-quality.583

The PSNR is defined as:

PSNR(Ihr, Isr) = 10 · log10(2552/MSE(Ihr, Isr)) (18)

where MSE(Ihr, Isr) is the mean squared error between the584

real HR HSI, Ihr, and the generated HR HSI through super-585

resolution, Isr. The PSNR goes to infinity as the MSE goes586

to zero.587

The SSIM is defined as:

SSIM(Ihr, Isr) = l(Ihr, Isr) · c(Ihr, Isr) ·s(Ihr, Isr) (19)

where l(Ihr, Isr), c(Ihr, Isr), and s(Ihr, Isr) are the differ- 588

ence measures for luminance, contrast, and saturation between 589

real and generated HR HSI pairs, respectively. The details can 590

be found in [61]. 591

However, the numerical scores of PSNR and SSIM are
not always correlated well with the subjective image quality.
Therefore, Blau et al. [62] proposed an index, PI (Perception
Index), as a compensatory reference for the image quality
evaluation. The lower the PI value is, the higher the perceptual
quality of the image. The PI is defined by two non-referenced
image quality measurements, MA [63] and NIQE [64], de-
scribed as:

PI(Ihr, Isr) =
1

2
((10−MA(Ihr, Isr))) +NIQE(Ihr, Isr)

(20)
In order to measure the spectral distortion, the spectral

angle mapper(SAM), was used to calculate the average angle
between a super-resolution HSI and its targeted high-resolution
HSI. The SAM is defined as:

SAM(Ihr, Isr) =
1

n

∑
arccos(

Ihr · Isr

‖Ihr‖2·‖Isr‖2
) (21)

where n is the pixel number of the HSI. 592

To evaluate the pixel-wised spectral reconstruction quality,
the spectral relative error (SRE) was also used as a metric,
defined as:

SRE(Ihr, Isr) = [
1

nb

nb∑
i=1

‖(Ihri , Isri )‖2]
1
2 (22)

where the nb is the band number of an HSI. 593

2) Evaluation metrics for mode collapse of GANs : Three
metrics for GANs, Inception Score (IS), Frechet Inception
Distance (FID) and non-referenced spectral score (Non-ref
Score), are employed to measure the mode collapse through
monitoring the mode collapse and spectral-spatial distortion
in the model training process [65]–[67]. The IS measures
both the image quality of generated HSIs and their diversity,
reflecting the probability of mode collapse in the model
training process. In GANs, it is desirable for the conditional
probability, p(Ihr|G(I lr)) to be highly predictable (low en-
tropy), that is, the probability density function is less uniform.
The diversity of the generated image can be measured with
the marginal probability, p(Ihr) =

∫
p(Ihr|G(I lr))dI lr. The

less uniform (low entropy) the marginal probability is, the less
the diversity of the generated image is. Through computing the
KL-divergence between these two probability distributions, the
IS is computed with the equation below:

IS = exp[EIlr∼p(Ilr)[DKL(p(Ihr|G(I lr))||p(Ihr))]] (23)

The Frechet Inception Distance (FID) score is a metric
calculating the distance between the feature vectors extracted
from real and generated images. It was used to evaluate the
quality of GAN generated images, and a lower FID value
correlates with a higher image quality. More importantly, the
FID is sensitive to mode collapse. Through modelling the
distribution of the features extracted from an intermediate layer
with a multivariate Gaussian distribution, the FID between
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the real image and generated images is calculated using the
following equation,

FID = ||Mhr −Msr||22+Tr(Chr + Csr − 2(Chr × Csr)1/2)
(24)

where Mhr and Msr refer to the feature-wise means of the594

real high-resolution HSI and the generated super-resolution595

HSI in discriminator model, respectively, and Chr and Csr596

are the covariance matrix for the real and generated feature597

vectors, respectively.598

The non-referenced spectral score (Non-ref Score), which599

is firstly proposed by [67], is a no-reference assessment600

method for hyperspectral distortion. It was used to exploit the601

spectral distortion of GAN generated images. A lower score602

correlated with a lower reconstructed spectral distortion. The603

Non-ref Score is calculated by averaging the distances over all604

intermediate features. The detailed information about Non-ref605

Score can be referred to [67].606

C. Experimental configuration607

In our experiments, the raw HSIs were labelled as HR608

samples. The LR samples were generated by down-sampling609

the HR samples with three scaling factors, ×2, ×4 and ×8,610

based on the bi-cubic interpolation approach [68]. For the611

AVIRIS datasets, the KSC data was used for the model training612

and test, and the IP data was used for the independent test.613

For the UHD-185 dataset, the GPF − 1 and GPF − 2 were614

used for training and test, and the GPF − 3 was used for615

the independent test. More specifically, for the training/test616

datasets, the HR HSI was cropped into a series of sub-images617

with a spatial size of 384 × 384, and the corresponding LR618

data was respectively cropped to 192 × 192, 96 × 96, and619

48× 48. After this operation, a total of 896 HR and LR HSI620

pairs were generated from the AVIRIS dataset, and 952 HR621

and LR HSI pairs were generated from the UHD-185 dataset,622

in which 70% of image pairs were randomly selected as the623

training set and the rest 30% of image pairs were used as the624

test set.625

The training process was divided into two stages. In the first626

stage, the discriminator D and the latent encoder LE were pre-627

trained over 5,000 iterations on the raw HR HSI dataset to get628

initial weights. The Adam optimiser was used by setting the629

forgetting factors, β1 = 0.9 and β2 = 0.999, a small scalar630

constant ε = 10−7 and the learning rate = 10−4 [69]. In the631

second stage, the discriminator, the generator, and the latent632

encoder were jointly trained for over 10,000 times, until they633

converged. The Adam optimiser with the same parameters was634

used. All of the training were performed on NVIDIA 1080Ti635

GPUs.636

D. Experiment 1: the parameter selection for the SSRP loss637

function638

To achieve an optimal performance, an optimised combina-639

tion of the parameters in the SSRP loss function Eq.(8), λ, η,640

σ and µ, needs to be found. In this study, a traversal method641

was employed to search the optimal parameter combination.642

These parameters were traversed in the range of 0 to 100 with643

TABLE I
THE TOP FIVE COMBINATIONS OF THE PARAMETERS, λ, η, σ AND µ FOR

THE SUPER-RESOLUTION HSI GENERATION WITH THE SCALING FACTORS
OF ×2, ×4 AND ×8 BASED ON THE VALUES OF SPECTRAL-SPATIAL

EVALUATION METRICS AFTER 10,000 ITERATIONS.

Scaling factor No. (λ, η, σ, and µ) PSNR SSIM PI SAM SRE

1 (12.8, 12.9, 0.008, 0.015) 31.738 0.982 3.782 5.011 8.383
2 (12.8, 12.8, 0.009, 0.016) 31.716 0.945 3.884 5.155 8.461

×2 3 (12.7, 12.8, 0.007, 0.014) 31.712 0.963 3.87 5.115 8.469
4 (12.8, 12.8, 0.008, 0.014) 31.712 0.943 3.849 5.161 8.482
5 (12.6, 12.8, 0.006, 0.017) 31.708 0.926 3.876 5.174 8.499
1 (12.4, 12.4, 0.006, 0.015) 31.417 0.903 3.765 4.942 8.219
2 (12.4, 12.5, 0.009, 0.014) 31.395 0.901 3.764 5.075 8.267

×4 3 (12.4, 12.3, 0.007, 0.015) 31.375 0.893 3.765 5.013 8.279
4 (12.5, 12.8, 0.007, 0.014) 31.359 0.891 3.767 5.017 8.276
5 (12.5, 12.8, 0.006, 0.017) 31.322 0.898 3.819 5.065 8.331
1 (12.3, 12.3, 0.005, 0.015) 29.881 0.931 3.672 4.741 8.672
2 (12.4, 12.3, 0.006, 0.014) 29.851 0.902 3.663 4.828 8.726

×8 3 (12.4, 12.2, 0.004, 0.014) 29.816 0.885 3.583 4.797 8.753
4 (12.5, 12.5, 0.005, 0.014) 29.828 0.923 3.617 4.866 8.679
5 (12.4, 12.6, 0.005, 0.015) 29.791 0.885 3.634 4.817 8.733

a fixed step of 0.001 for the range of 0 to 1, and a fixed step 644

of 0.1 for the range of 1 to 100. The selection of parameter 645

combinations was based on the spectral-spatial quality of 646

generated super-resolution HSIs measured with five evaluation 647

metrics, PSNR, SSIM, PI, SAM, and SRE. Table. I lists the 648

top five parameter combinations and the corresponding values 649

of these metrics for generating the super-resolution HSI with 650

the scaling factors of ×2, ×4 and ×8. It can be observed that 651

all the parameters after optimisation are located in a relatively 652

small range, for example, 12.3−12.8 for λ and η, 0.004−0.009 653

for σ and 0.014− 0.017 for µ. In the following experiments, 654

we employed the average values of the best parameters for 655

various scaling factors, thus, λ = 12.5, η = 12.5, σ = 0.0063, 656

and µ = 0.015. 657

E. Experiment 2: model robustness and super-resolution qual- 658

ity assessment 659

To evaluate the robustness and generalizability of the pro- 660

posed model, we have evaluated our model on both testing 661

datasets and independent datasets. 662

1) Model assessment on the testing datasets: As described 663

in Section IV-C, we divided the dataset into the training 664

and testing datasets. The performance of the proposed model 665

for hyperspectral super-resolution with three upscaling factors 666

(×2, ×4 and ×8) was evaluated on testing datasets including 667

AVIRIS (KSC) and UHD-185(GPF-1 and GPF-2), and com- 668

pared with five state-of-the-art competition models. To assess 669

the model robustness to noise, the model was also evaluated 670

on the datasets with artificially added Gaussian white noise 671

at three different levels (∞, 40db and 80db) to each of the 672

spectral bands of low-resolution HSIs. To facilitate ranking 673

the models in terms of reconstruction quality, five most widely 674

used evaluation metrics, PSNR, SSIM, PI, SAM, and SRE, 675

were chosen. Specifically, PSNR, SSIM and PI were used 676

to measure the spatial reconstructed quality from the aspects 677

of information entropy, spatial similarity, and perception dis- 678

tortion, respectively. The higher PSNR and SSIM scores and 679

the lower PI scores indicate the higher spatial reconstruction 680

quality. In addition, the SAM and SRE scores were used for the 681

spectral distortion measurement from the aspects of spectral 682

angle offset and amplitude difference, respectively. The lower 683
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values of SAM and SRE scores indicate the higher spectral684

reconstruction quality.685

Table II and Table III provide the average scores of PSNR,686

SSIM, PI, SAM, and SRE of HSI super-resolution results from687

the proposed model and its five competitors using the AVIRIS688

and UHD-185 testing datasets, respectively. In general, the689

results on both datasets consistently show that the proposed690

LE-GAN model achieves the highest PSNR and SSIM values691

and the lowest PI, SAM and SRE values for all three dif-692

ferent upscaling factors and three added noise levels (see the693

highlighted values in Table II and Table III). This means that694

LE-GAN achieves the best spectral and spatial fidelity and695

super-resolution quality.696

A more detailed analysis of the results for the model697

performance evaluation was performed from two aspects: (1)698

Super-resolution performance under various upscaling factors699

(2) Model robustness against different noise levels. Since the700

results in Table II and Table III have the similar patterns for all701

the models, here we only present the analyses and assessment702

using the results on AVIRIS data (i.e. Table II):703

(1) Among three upscaling factors, the LE-GAN based704

super-resolution with the smallest upscaling factor ×2 and705

without added noise (i.e.∞ db) achieves the best spectral and706

spatial reconstruction quality. The best scores of PSNR, SSIM,707

PI, SAM, and SRE are 35.513, 0.898, 3.052, 4.207, and 8.379,708

respectively, which are closer to the real high-resolution HSI709

(i.e. 35.981 for PSNR, 0.912 for SSIM, 3.011 for PI, 4.142710

for SAM, and 8.019 for SRE), compared to its competitors.711

The similarities (i.e. the ratio between the super-resolution712

HSI and the real high-resolution HSI) reach 98.7%, 98.46%,713

98.66%, 98.45%, and 95.7%, respectively. In addition, for a714

given added noise level, the spectral and spatial quality of715

the LE-GAN generated super-resolution HSIs are more stable716

between the upscaling factors of ×2 and ×4. For example,717

under the added noise level of 80db, the PSNR, SSIM, PI,718

SAM and SRE scores are 35.225, 0.835, 3.171, 4.221, and719

8.839 for ×2 upscaling factor, and increasing the upscaling720

factor to ×4 only causes the slight changes to these scores721

which are 34.975, 0.804, 3.364, 4.362 and 9.062, respectively.722

The consistency ratios (i.e. the ratio between the ×2 and ×4723

super-resolution HSI) are 99.29%, 96.29%, 94.26%, 96.78%,724

and 97.54%, respectively. In contrast, a larger performance725

degradation occurs on the spectral and spatial reconstruction726

quality of the competitors. For example, with regard to the727

WGAN, the second best model in terms of PSNR and SSIM,728

the scores of PSNR, SSIM, PI, SAM, and SRE under non-729

added noise level are 33.729, 0.826, 3.867, 7.248, 14.152730

with ×2 upscaling, but change to 30.035, 0.807, 4.476, 7.922,731

14.361 with ×4 upscaling, showing the performance degrada-732

tions of 10.95%, 2.3%, 13.6%, 8.5%, and 1.5%, respectively.733

Although the degradations of PSNR, SSIM, PI, SAM, SRE734

scores can be observed on all the models for ×8 upscaling,735

the degradation rate of these scores from the proposed LE-736

GAN is the smallest. For example, under the non-added noise737

(∞ db), the SNR, SSIM, PI, SAM, SRE scores of LE-GAN738

based super-resolution HSIs for ×8 upscaling are 32.078,739

0.784, 3.988, 4.711 and 8.986, respectively, which are 21.03%,740

6.76%, 31.4%, 15.9% and 25.4% higher than those based on741

the second best models (i.e. the WGAN in terms of SSIM 742

(26.591) and the BAGAN in terms of PSNR (26.591), PI 743

(5.814), SAM (5.602), and SRE(12.048)). 744

(2) With regard to the model robustness to noise, the 745

proposed LE-GAN shows the best performance on the spectral 746

and spatial reconstruction for a given upscaling factor in 747

comparison with its competitors, although the degradation is 748

observed with increased noise levels. The smaller the upscaling 749

factor is, the more robust the model is. The most robust results 750

against noise are at the upscaling factor of ×2. Only 3.6%, 751

7.9%, 14.67%, 13.11%. and 7.33% degradations of the PSNR, 752

SSIM, PI, SAM, and SRE scores of LE-GAN-based super- 753

resolution results occur when the added noise level increases 754

from non-added (∞ db) to 40 db (see Table II). In contrast, 755

the added noise-induced degradations to the results from the 756

WGAN (the second best model for ×2 upscaling factor) 757

are much higher, reaching 20.29%, 8.35%, 26.65%, 20.23%, 758

and 21.61%, respectively. In addition, when the upscaling 759

factor increases from ×2 to ×8, the added noise-induced 760

degradations on the PSNR, SSIM, PI, SAM and SRE scores 761

of the LE-GAN super-resolution results are 9.58%, 11.86%, 762

19.42%, 14.02%, and 11.25%, which are acceptable for the 763

super-resolution with a high upscaling factor and high noises. 764

In contrast, a more serious deterioration can be observed in 765

the results from its competitors. For example, the added noise- 766

induced degradations on the PSNR, SSIM, PI, SAM, SRE of 767

the BAGAN-based super-resolution results, the second best 768

model, are 21.72%, 10.57%, 15.6%, 13.45% and 15.05%, 769

respectively, for an upscaling factor of ×2, but change to 770

24.07%, 23.12%, 13.23%, 15.55%, 19.84% for an upscaling 771

factor of ×8 . 772

2) Model assessment on the independent test datasets: The 773

proposed model has also been evaluated on two independent 774

test datasets, AVIRIS (IP) and UHD-185 (GPF-3), which 775

were not involved in the model training. Fig. 7 illustrates 776

a comparison of five evaluation metrics (PSNR, SSIM, PI, 777

SAM and SRE) between the proposed model and its five 778

competitors. The average value and standard deviation of 779

each metric were calculated based on the measures at three 780

noise levels, ∞, 80db and 40db. Compared to its competitors, 781

the proposed model achieves the highest average values and 782

lowest standard deviations for PSNR, SSIM, and the lowest 783

average values and the lowest standard deviation for PI, SAM 784

and SRE, across three upscaling factors on both AVIRIS test 785

dataset (see Fig. 7a) and UHD-185 test dataset (see Fig. 7b). 786

That is, the proposed model achieves the best performance on 787

super-resolution. Similar to the evaluation results in Subsection 788

IV-E1, overall the second best model on the independent test 789

datasets is WGAN for the spatial information reconstruction 790

measure (e.g. PSNR, SSIM), and BAGAN for the spectral 791

information reconstruction measure (e.g. SAM, SRE). 792

It can also be observed that the changes of these metrics are 793

relatively small with the increase of the upscaling factor. When 794

the upscaling factor increases from ×2 to ×4, the average 795

values of SSIM, PI, SAM, and SRE from the proposed model 796

almost stay the same; When the upsampling factor increases 797

from ×4 to ×8, the changes of these metrics are much smaller 798

compared to those from its competitors. 799
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TABLE II
A QUANTITATIVE COMPARISON OF HSIS SUPER-RESOLUTION SPECTRAL

AND SPATIAL QUALITY IN TERMS OF THE AVERAGE PSNR, SSIM, PI,
SAM, SRE SCORES USING THE PROPOSED MODEL AND FIVE

COMPETITION MODELS ON TEST DATASETS, AVIRIS (KSC DATA), WITH
VARIOUS UPSCALING FACTORS AND ADDED NOISE LEVELS. NOTE THAT
THE PSNR/SSIM/PI/SAM/SRE SCORES FOR THE KSC DATA (I.E. REAL

HIGH-RESOLUTION HSI) ARE 35.981, 0.912, 3.011, 4.142, AND 8.019
RESPECTIVELY. THE HIGHER PSNR, SSIM AND THE LOWER PI, SAM,

SRE, THE BETTER THE SPECTRAL AND SPATIAL FIDELITY.

SNR(db) HyCoNet LTTR BAGAN SRGAN WGAN LE-GAN

∞ PSNR 31.213 29.495 32.177 32.421 33.729 35.513
SSIM 0.792 0.729 0.766 0.809 0.826 0.898

PI 4.181 4.269 3.672 4.015 3.867 3.052
SAM 6.491 6.515 5.485 9.014 7.248 4.207
SRE 10.813 10.145 10.476 15.438 14.152 8.379

80 PSNR 28.751 24.981 29.121 30.106 32.945 35.225
SSIM 0.719 0.735 0.761 0.756 0.808 0.835

AVIRIS (×2) PI 4.178 4.819 3.766 3.991 4.196 3.171
SAM 6.622 7.164 5.961 10.961 7.297 4.221
SRE 12.447 11.913 11.216 19.301 17.914 8.839

40 PSNR 23.777 23.253 25.187 26.181 26.886 34.223
SSIM 0.571 0.634 0.685 0.715 0.757 0.827

PI 4.751 3.182 4.351 5.489 5.272 3.577
SAM 7.591 7.516 6.338 11.177 9.087 4.842
SRE 14.574 12.946 12.332 20.028 18.053 9.042

∞ PSNR 27.216 27.841 29.177 26.105 30.035 35.367
SSIM 0.774 0.725 0.762 0.799 0.807 0.835

PI 4.781 4.474 4.291 4.812 4.476 3.061
SAM 6.514 6.533 5.566 9.729 7.922 4.272
SRE 12.75 10.811 10.641 16.68 14.361 8.431

80 PSNR 24.816 25.896 27.048 22.777 28.183 34.975
SSIM 0.559 0.665 0.513 0.524 0.709 0.804

AVIRIS (×4) PI 4.514 5.889 4.356 5.037 5.101 3.364
SAM 6.571 7.031 5.685 11.582 8.926 4.362
SRE 13.551 11.562 11.406 17.799 18.321 9.062

40 PSNR 21.714 22.669 26.363 25.934 29.093 33.041
SSIM 0.315 0.651 0.479 0.668 0.604 0.786

PI 6.051 6.072 4.854 6.223 5.912 3.376
SAM 6.771 7.736 6.268 12.091 10.138 4.443
SRE 15.041 13.203 13.114 18.158 18.556 9.383

∞ PSNR 19.871 21.747 26.591 24.589 25.332 32.078
SSIM 0.622 0.638 0.718 0.668 0.731 0.784

PI 6.835 6.322 5.814 6.536 5.902 3.988
SAM 7.69 6.992 5.602 10.179 8.126 4.711
SRE 14.361 14.302 12.048 16.943 16.092 8.986

80 PSNR 17.821 20.402 24.073 20.603 24.369 30.291
SSIM 0.552 0.493 0.692 0.605 0.663 0.775

AVIRIS (×8) PI 7.421 7.094 6.411 6.942 6.116 4.326
SAM 7.72 7.667 6.283 11.499 9.321 4.732
SRE 16.361 15.534 13.194 18.213 18.101 9.768

40 PSNR 14.84 18.344 20.191 19.532 21.572 29.003
SSIM 0.316 0.418 0.552 0.511 0.547 0.691

PI 7.622 7.954 6.701 7.924 7.366 4.949
SAM 9.172 9.061 6.616 12.541 8.525 5.479
SRE 18.219 18.836 15.031 19.597 19.598 10.125

These findings suggest that the proposed model overcomes800

the drawback associated with spectral-spatial reconstruction801

under the noises interferences compared to its competitors.802

Moreover, the proposed model is less sensitive to the upscaling803

factor, and has a good performance even with a large upscaling804

factor (e.g. ×8).805

3) Visual Analysis of generated super-resolution HSIs with806

a large upsampling factor (×8): To demonstrate the per-807

formance improvement of the proposed model in spectral-808

spatial fidelity, visual analyses on generated super-resolution809

HSI samples have been performed. Fig. 8 displays the results810

from independent test datasets (IP and GPF-3). Although811

the visualisation results from the proposed method and its812

competitors are similar, the image edges from the LE-GAN813

are sharper than those from the competitors. For example,814

the internal textures of the bare-soil shown as grey in the815

false-colour images almost disappear in the generated super-816

resolution IP images by the HyCoNet, LTTR, and BAGAN817

(the second, third, and forth images in the first row of Fig. 8).818

These findings suggest that the LE-GAN provides improved819

spatial quality in general.820

To further visualise the super-resolution details on spatial821
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Fig. 7. A comparison of five evaluation metrics (PSNR, SSIM, PI, SAM,
and SRE) between the proposed model and its five competitors evaluated on
independent test datasets (a) AVIRIS (IP) and (b) UHD-186 (GPF-3). The
average values and standard deviations of each metrics are calculated across
three different noise levels(∞, 80db and 40db).
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data
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data
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Fig. 8. A sample of super-resolution results (×8) from our models and its
five competitors on independent test datasets
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TABLE III
A QUANTITATIVE COMPARISON OF HSIS SUPER-RESOLUTION SPECTRAL

AND SPATIAL QUALITY IN TERMS OF THE AVERAGE PSNR, SSIM, PI,
SAM, SRE SCORES USING THE PROPOSED MODEL AND FIVE

COMPETITION MODELS ON TEST DATASETS, UHD-185 (GPF-1 AND
GPF-2), WITH VARIOUS UPSCALING FACTORS AND ADDED NOISES. NOTE
THAT THE PSNR/SSIM/PI/SAM/SRE SCORES FOR THE KSC DATA (I.E.

REAL HIGH-RESOLUTION HSI) ARE 38.915, 0.992, 4.418, 6.942, AND
10.519 RESPECTIVELY. THE HIGHER PSNR AND SSIM AND THE LOWER
PI, SAM, AND SRE, THE BETTER THE SPECTRAL AND SPATIAL FIDELITY.

SNR(db) HyCoNet LTTR BAGAN SRGAN WGAN LE-GAN

∞ PSNR 33.238 32.689 34.642 36.009 37.697 38.575
SSIM 0.874 0.875 0.851 0.897 0.879 0.979

PI 5.11 5.454 4.799 5.185 5.207 4.323
SAM 9.174 8.124 7.266 11.848 9.904 6.893
SRE 15.755 14.711 12.677 17.341 15.43 10.295

80 PSNR 30.484 29.196 31.913 32.28 35.37 37.625
SSIM 0.796 0.831 0.841 0.846 0.873 0.922

UHD-185 (×2) PI 5.911 5.113 5.002 5.341 5.523 4.238
SAM 9.331 9.073 7.921 13.05 9.849 6.899
SRE 14.355 13.441 13.039 20.549 19.842 10.711

40 PSNR 28.834 27.137 28.904 29.296 33.752 36.976
SSIM 0.593 0.632 0.758 0.776 0.833 0.873

PI 5.905 6.223 5.636 6.536 6.574 4.592
SAM 10.53 10.311 10.172 13.597 11.328 6.508
SRE 16.029 14.603 14.523 21.425 19.695 10.823

∞ PSNR 29.855 30.341 34.111 33.285 34.863 38.303
SSIM 0.717 0.804 0.827 0.861 0.834 0.892

PI 6.161 5.755 5.309 6.194 5.944 4.391
SAM 9.408 9.187 7.311 12.652 9.937 6.563
SRE 13.81 12.442 12.208 18.622 15.776 10.005

80 PSNR 27.046 27.702 30.396 30.731 33.866 37.061
SSIM 0.661 0.717 0.666 0.813 0.814 0.816

UHD-185 (×4) PI 6.791 6.995 5.741 6.061 6.276 4.463
SAM 9.376 9.909 7.956 13.939 10.09 6.554
SRE 15.464 14.963 17.128 21.509 19.706 10.361

40 PSNR 26.948 26.891 27.917 25.844 32.217 36.556
SSIM 0.459 0.606 0.567 0.751 0.687 0.731

PI 7.521 7.197 6.136 7.621 7.311 4.751
SAM 12.679 10.262 9.028 13.99 12.912 6.661
SRE 16.518 14.396 14.385 22.221 20.411 10.939

∞ PSNR 22.675 25.375 27.831 27.367 29.012 35.397
SSIM 0.705 0.688 0.784 0.734 0.821 0.852

PI 7.908 7.557 6.835 7.863 7.153 5.046
SAM 9.487 9.668 7.827 13.942 10.251 7.104
SRE 16.378 16.287 13.64 19.011 17.271 10.145

80 PSNR 21.879 23.88 26.586 24.029 27.604 33.166
SSIM 0.677 0.549 0.564 0.679 0.755 0.801

UHD-185 (×8) PI 8.541 8.258 7.426 8.393 7.611 5.649
SAM 9.814 10.52 8.931 14.092 12.152 7.669
SRE 17.627 16.941 15.946 22.224 21.887 11.333

40 PSNR 17.819 21.166 23.199 22.251 24.132 31.519
SSIM 0.419 0.474 0.541 0.591 0.632 0.715

PI 8.674 9.154 7.872 9.058 8.755 6.229
SAM 13.694 11.175 8.559 15.236 14.212 7.945
SRE 20.042 20.604 16.103 25.159 22.086 11.162

and spectral fidelity, some representative false-colour compos-822

ite image patches and the spectral curves of the super-resolved823

HSI patches from independent test dataset (GPF-3) are shown824

in Fig. 9. It is obvious that the brightness, contrast, and internal825

structures of the false-colour images generated by the LE-826

GAN are more faithful to real HR data. For example, the land827

cover textures in the LE-GAN generated image (the second828

image from the right in the second row of images in Fig. 9) are829

clearer, compared to the images generated by the competitors830

(e.g. the HyCoNet and LTTR based images) in which the edges831

of streets are fuzzy. Moreover, the spectral curves from the LE-832

GAN generated images are more consistent with those from833

real HR HSI data. For example, the typical vegetation spectral834

curves in the images generated by the HyCoNet, SRGAN, and835

WGAN reveal distinct biases in the range of red-edge to near-836

infrared with real HR data (see the images of the first row837

in Fig. 9). In contrast, the vegetation spectral curves from the838

LE-GAN super-resolution are more consistent with those from839

real HR HSI. A detailed analysis of the spectral residual and840

standard deviation between the generated HSI and real HR841

HSI from the independent test dataset is shown in Fig. 10.842

It can be found that the residual error between the LE-GAN843

generated HSI and HR HSI is close to zero in the range of 450844

LR HyCoNet LTTR SRGANBAGAN WGAN LE-GAN HR

Fig. 9. Detailed spectral analysis on local patches of false colour super
resolution (×8) results generated by different models from the independent
test dataset, GPF-3. The results in each column from the left to right are
for real low resolution (LR) HSI patches, high resolution images generated
from models (SRCNN, SRResNet, VDSR, SRGAN, WGAN, and the pro-
posed LRE-GAN), and the corresponding High resolution (HR) HSI patches,
respectively.

to 780 nm and lower than 0.25 in the range of 780 to 950 nm, 845

and the deviation is lower than 0.02. All these results suggest 846

that the proposed model provides a better performance in HSI 847

super-resolution without losing the spectral details. The second 848

and third best spectral residuals are achieved by the BAGAN 849

and LTTR, respectively, and the spectral biases in the range 850

of 630 to 950 nm and the average deviations reach 0.029 and 851

0.041, respectively. 852

F. Experiment 3: Mode collapse evaluation 853

Generally, mode collapse mainly happens in the training 854

process when the super-resolution HSI produced by the gen- 855

erator only partially covers the target domain. When the 856

generator learns a type of spectral-spatial pattern that is able 857

to fool the discriminator, it may keep generating this kind 858

of pattern so that the learning process is over-learned. The 859

distance and distribution of the generated super-resolution HSI 860

provide the most direct evidence for determining whether the 861

mode collapse occurs in the generator. In this section, we 862

evaluated the effect of the proposed LE-GAN on alleviating 863

mode collapse from three aspects: 1) a quantitative evaluation 864

on the diversity of the generated super-resolution HSI, based 865

on the distance-derived IS and FID metrics, 2) a smoothness 866

monitoring on the generator iterations during the network 867

training process, and 3) a visualisation of the distributions of 868

the real high-resolution HSI samples and the generated super- 869

resolution samples. 870

Firstly, the quantitative evaluation for the diversity of the 871

generated super-resolution HSI was conducted on the testing 872

dataset and independent dataset mentioned in Section IV-C. 873

In addition, in order to assess the potential affects of different 874

upscaling factors and added-noise levels on the occurrence of 875

mode collapse, all of the experiments were conducted on three 876
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KSC data

GPF-3 data

a. HyCoNet vs HR  b. LTTR vs HR c. BAGAN vs HR 

d. SRGAN vs HR e. WGAN vs HR f. LE-GAN vs HR 

g. HyCoNet vs HR  h. LTTR vs HR i. BAGAN vs HR 

j. SRGAN vs HR k. WGAN vs HR l. LE-GAN vs HR 

Fig. 10. A spectral residual (the black line) and deviation (the grey shadow)
analysis between real HR HSI and the generated super-resolution HSI from
different models on the model test dataset (KSC data) and the independent
test dataset (GPF-3 data)

upscaling factors (×2, ×4 and ×8) with three Gaussian white877

noise levels (∞, 40db and 80db), and compared with five state-878

of-the-art competition models. The IS, FID, and Non-ref Score879

were used as the evaluation metrics for assessing the diversity880

of the super-resolution HSIs and determining the existence of a881

mode collapse. A higher IS and lower FID and Non-ref Score882

will show the better diversity of the generated super-resolution883

HSI and the sign of the alleviation of mode collapse.884

Table IV lists the IS, FID and Non-ref Score measurements885

on the proposed LE-GAN and five selected competitors using886

the testing datasets. The evaluation results on AVIRIS and887

UHD-185 testing datasets demonstrate that the proposed LE-888

GAN model outperforms its competitors in terms of the IS,889

FID, and Non-ref score measurements for all three upscaling890

factors and added noise combinations (see the highlighted891

values in Table IV). They also indicate that the proposed model892

has greater performance on alleviating mode collapse issue893

occurred in the generated spectral-spatial diversity. The dif-894

ferences of these measurements between the proposed model895

and its competitors are particularly significant for the cases of896

low added noise and low upscaling levels. For example, the897

proposed LE-GAN achieves the highest IS (13.46 for AVIRIS898

data and 14.69 for UHD-185 data), the lowest FID (13.7 for899

AVIRIS data and 37.95 for UHD-185 data), and lowest Non-900

ref Score (11.17 for AVIRIS data and 19.31 for UHD-185901

data) on the datasets with the ×2 upscaling factor and non-902

added noise of ∞ SNR.903

In addition, Table IV also reveals the IS, FID and Non-ref904

Score degradations with the increase of upscaling factor and905

TABLE IV
A COMPARISON OF INCEPTION SCORES (IS), FRECHET INCEPTION

DISTANCES (FID), AND NON-REFERENCED SPECTRAL SCORE (NON-REF
SCORE) OF SUPER-RESOLUTION HSIS GENERATED FROM THE PROPOSED

MODEL AND FIVE COMPETITION MODELS USING THE MODEL TEST
DATASETS.

AVIRIS UHD-185
Upscaling SNR IS FID Non-ref Score IS FID Non-ref Score

HyCoNet 11.63 57.37 21.42 9.64 80.15 36.65
LTTR 11 45.55 25.31 8.61 78.67 37.23

∞ BAGAN 12.26 48.81 18.12 12.01 70.34 31.25
SRGAN 10.62 53.88 23.25 11.06 74.05 35.52
WGAN 13.25 24.37 16.25 13.66 49.13 30.21

LE-GAN 13.46 13.7 11.17 14.69 37.95 19.31
HyCoNet 7.63 58.59 22.26 6.07 96.89 39.92

LTTR 6.79 50.23 23.14 7.99 77.26 31.58
2 80 BAGAN 7.95 49.87 21.02 7.21 83.95 29.92

SRGAN 6.77 54.59 25.24 6.09 92.06 30.32
WGAN 11.37 24.45 15.35 8.12 60.83 24.35

LE-GAN 11.56 15.86 15.21 12.16 40.34 20.82
HyCoNet 4.35 63.01 26.68 4.05 104.3 41.23

LTTR 5.02 52.42 27.24 4.9 80.12 40.56
40 BAGAN 6.32 49.59 25.64 4.79 87.1 36.64

SRGAN 5.04 60.55 28.66 4.61 94.97 34.25
WGAN 9.17 26.71 19.92 5.67 76.48 29.25

LE-GAN 10.16 18.94 17.81 10.13 49.53 25.56
HyCoNet 9.79 62.14 27.25 8.87 87.65 35.58

LTTR 9.82 49.46 22.45 7.1 86.22 34.45
∞ BAGAN 11.03 53.51 26.24 10.69 77.25 27.69

SRGAN 9.64 58.82 25.56 12.78 80.93 31.18
WGAN 11.14 26.25 19.62 11.87 75.45 25.45

LE-GAN 12.22 15.37 16.13 14.41 40.76 20.24
HyCoNet 6.19 63.88 27.98 5.35 105.44 50.2

LTTR 5.91 54.81 24.42 7.08 84.31 32.45
4 80 BAGAN 6.49 53.74 21.25 6.52 91.22 41.57

SRGAN 5.4 58.94 26.58 5.42 101.1 51.5
WGAN 9.89 26.71 20.62 7.35 77.32 29.8

LE-GAN 11.28 17.84 17.99 12.77 43.86 24.85
HyCoNet 3.83 68.34 35.9 2.91 113.66 55.97

LTTR 4.32 57.13 27.41 4.49 87 38.52
40 BAGAN 5.07 54.2 24.58 4.35 94.9 42.51

SRGAN 4.39 66.08 33.85 3.72 103.29 52.04
WGAN 7.55 28.64 20.14 5.22 83.75 32.24

LE-GAN 10.43 19.91 18.38 10.31 50.53 27.25
HyCoNet 8.44 64.71 34.12 8.04 91.34 48.82

LTTR 8.97 52.06 28.78 6.53 89.81 45.58
∞ BAGAN 9.33 55.47 25.54 9.31 81.3 38.88

SRGAN 8.85 61.81 31.15 10.92 84.82 39.98
WGAN 9.95 26.7 19.25 10.93 79.14 29.28

LE-GAN 11.67 16.42 18.88 12.11 42.4 24.58
HyCoNet 4.94 66.62 38.85 4.35 110.48 60.15

LTTR 4.57 57.24 29.82 5.71 88.31 39.94
8 80 BAGAN 5.96 55.75 26.57 5.3 95.53 46.25

SRGAN 4.54 61.99 33.42 4.1 106.1 52.24
WGAN 8.89 28 20.24 6.1 81.33 27.72

LE-GAN 10.21 19.76 19.98 11.84 45.92 25.58
HyCoNet 3.02 71.35 42.12 2.25 119.21 71.15

LTTR 3.92 59.84 32.42 3.91 91.52 48.82
40 BAGAN 4.32 56.21 31.14 3.12 98.9 53.35

SRGAN 3.18 69.28 39.92 2.69 108.21 59.94
WGAN 6.47 39.15 25.51 4.51 88.02 38.85

LE-GAN 9.6 20.31 20.12 9.03 55.42 27.75

added noise level for all of the models. The comparison of 906

these degradations can help to explore the model robustness 907

in preventing the mode collapse issue. Specifically, an average 908

of 33.6% IS drop, 32.03% FID increase, and 30.68% Non- 909

ref score increase, are observed from the LE-GAN-based 910

super-resolution results when increasing the upscalling factor 911

from ×2 to ×8 and decreasing SNR from from ∞ to 40db. 912

Meanwhile, the results from the WGAN, the second best 913

model in terms of super-resolution fidelity (see Section IV-E), 914

show an average of 59.08% IS drop, 40.97% FID increase, 915

and 38.78% Non-ref Score increase. These findings suggest 916

that the proposed LE-GAN achieves the best performance in 917

preventing mode collapse under the higher upscaling factor 918

and noise interferences. 919

Table V provides the scores of the IS, FID, and Non-ref 920

Score from the proposed LE-GAN and its five competitors 921

using the independent datasets. Similar to the results shown 922

in Table IV, the results highlighted in Table V illustrate 923

that the LE-GAN model achieves the best and most robust 924

performance in terms of IS and FID for all the upscaling 925

factor and added noise combinations. In the case of a ×2 926

upscaling factor and non-added noise, the LE-GAN achieves 927

the best IS, FID, and Non-ref Score measurements (IS of 928

12.91, FID of 14.95, and Non-ref Score of 9.12 for AVIRIS 929

and IS of 15.27, FID of 39.22, and Non-ref Score of 19.99 930
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TABLE V
A COMPARISONS OF INCEPTION SCORES (IS), FRECHET INCEPTION

DISTANCES (FID), AND NON-REFERENCED SPECTRAL SCORE (NON-REF
SCORE) FROM THE PROPOSED MODEL AND FIVE COMPETITION MODELS

USING THE INDEPENDENT TEST DATASETS.

AVIRIS UHD-185
Upscaling SNR IS FID Non-ref Score IS FID Non-ref Score

HyCoNet 11.31 59.85 28.81 11.72 81.51 35.52
LTTR 11.58 48.61 23.21 9.71 80.69 32.54

∞ BAGAN 11.28 52.14 25.52 12.58 72.74 28.84
SRGAN 10.91 57.35 28.15 13.25 76.32 26.62
WGAN 12.22 26.26 14.21 14.45 70.71 22.82

LE-GAN 12.91 14.95 9.12 15.27 39.22 19.99
HyCoNet 7.12 61.86 30.21 6.93 98.2 47.85

LTTR 6.97 53.77 27.82 9.09 79.18 38.45
2 80 BAGAN 8.32 52.03 27.41 8.48 85.1 39.99

SRGAN 6.72 58.12 29.92 6.7 94.95 46.52
WGAN 9.89 26.77 17.35 9.31 73.04 29.98

LE-GAN 10.91 16.51 10.21 13.47 41.66 21.42
HyCoNet 4.07 65.47 34.25 5.1 107.41 58.25

LTTR 5.34 55.72 28.81 7.38 82.46 36.65
40 BAGAN 5.34 52.91 26.65 5.56 88.16 39.94

SRGAN 5.13 63.8 33.51 4.76 97.11 49.95
WGAN 7.64 27.33 19.24 7.02 79.78 24.94

LE-GAN 9.18 19.79 12.17 11.4 50.11 22.84
HyCoNet 9.1 65.06 35.52 10.97 89.56 38.85

LTTR 9.62 52.16 28.84 8.53 88.38 40.24
∞ BAGAN 9.89 56.53 26.25 11.57 79.97 39.95

SRGAN 9.46 62.35 31.54 13.65 83.64 33.35
WGAN 10.41 27.73 18.82 14.56 77.62 27.74

LE-GAN 10.76 14.8 11.15 14.18 42.2 21.22
HyCoNet 5.49 67.05 38.88 6.27 107.44 59.94

LTTR 6.07 58.44 30.45 7.45 86.43 39.88
4 80 BAGAN 6.68 56.39 29.94 7.26 93.15 43.25

SRGAN 5.09 62.95 35.52 6.04 103.94 59.95
WGAN 8.74 28.27 19.94 8.3 79.41 29.99

LE-GAN 9.94 18.35 12.25 11.84 45.02 22.51
HyCoNet 3.85 71.67 45.25 4.26 116.89 69.94

LTTR 4.7 60.31 36.82 6.37 89.89 48.85
40 BAGAN 5.61 57.67 29.94 3.85 96.17 57.74

SRGAN 4.3 69.84 35.52 4.11 105.25 69.99
WGAN 6.57 29.18 22.15 6.86 86.78 32.24

LE-GAN 8.3 21.05 14.21 10.99 54.84 24.21
HyCoNet 8.4 68.3 38.84 9.06 93.81 45.52

LTTR 8.22 55.14 26.68 7.37 92.68 43.32
∞ BAGAN 9.27 58.74 29.94 10.25 83.57 33.35

SRGAN 8.31 65.12 36.65 11.83 87.25 39.94
WGAN 9.31 28.2 18.74 12.29 81.61 31.15

LE-GAN 9.8 15.84 12.29 12.82 43.43 23.01
HyCoNet 4.53 70 39.98 5.47 113.15 63.35

LTTR 4.61 60.32 28.84 6.73 90.34 40.41
8 80 BAGAN 5.58 58.78 27.74 5.78 97.65 51.15

SRGAN 4.51 65.9 35.58 5.13 108.75 57.74
WGAN 8.81 29.62 21.82 6.85 83.75 32.25

LE-GAN 9.17 18.05 13.35 10.16 47.84 24.61
HyCoNet 3.37 75.23 42.58 3.33 122.07 82.98

LTTR 4.44 63.42 35.58 4.23 94.2 49.85
40 BAGAN 3.98 59.71 31.99 3.96 101.72 55.24

SRGAN 3.03 73.26 46.65 3.54 110.76 68.95
WGAN 6.7 31.34 22.25 5.76 90.11 39.98

LE-GAN 8.77 22.03 15.05 8.2 56.81 26.97

for UHD-185 dataset), with the smallest IS drop (39.1%),931

FID increase (31.55%), and Non-ref Score increase (30.91%).932

These results are consistent with the mode collapse assessment933

reported in Table IV, suggesting that the LE-GAN derived934

super-resolution HSIs have the best spectral-spatial diversity935

with alleviated mode collapse.936

Secondly, a smoothness monitoring on the generator itera-937

tion was used to determine if mode collapse occurred during938

the training process. According to the results illustrated in939

Table IV and Table V, the high noise-levels and the large940

upscaling factors lead to more serious mode collapse. To941

demonstrate the performance difference between the proposed942

model and its competitors in alleviating model collapse, a943

comparison was conducted under a high added noise level944

(e.g. 40db) and a high upscaling factor (e.g. ×8). Fig. 11945

illustrates the IS and FID iterations of the generated HSIs946

from the proposed LE-GAN and the two best competitors,947

i.e. WGAN and BAGAN, during the training process. It is948

obvious that the IS and FID curves from the proposed model949

are smoother and more stable than those from WGAN or950

BGAN, along with the increase of iteration number. Unlike951

the curves from WGAN or BGAN, the curves of IS from the952

proposed mode, LE-GAN, steadily increase and the curves of953

FID steadily decrease for both AVIRIS and UHD-186 datasets.954

This indicates that there is no significant mode collapse occurs955
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Fig. 11. The changes of IS and FID scores during the training of the proposed
LE-GAN and its two best competitors (WGAN and BAGAN). The model
training is conducted on (a-b) AVIRIS and (c-d) UHD-186 training dataset
with a SNR level of 40db and an upscaling factor of ×8.

during the training of LE-GAN. However, a big drop of IS 956

is observed during the training of BAGAN (e.g. after 3500 957

iterations, as shown in Fig. 11a ) and during the training 958

of WGAN (e.g. after 2000 iterations, as shown in Fig. 11c). 959

Moreover, the curves of FID don’t steadily decrease during the 960

training for WAGAN or BAGAN. These observations indicate 961

that the mode collapse occurs in the training of representative 962

GAN models (e.g. WGAN and BAGNAN), and the proposed 963

model is more effective in alleviating the mode collapse. 964

Finally, to further understand and assess the performance of 965

the generator model in dealing with the mode collapse issue, 966

the distributions of the real high-resolution HSI (IHR) and the 967

generated super-resolution HSI (ISR) were visualised in the 968

feature space, where the probability densities of the discrimi- 969

nator eigenvalues of IHR and ISR, denoted as D(IHR) and 970

D(ISR), were used to represent the sample distributions. With 971

IHR and ISR as inputs separately fed into the discriminator 972

D described in Section III-A2, the outputs from the last 973

Maxpool layer, denoted as D(IHR) and D(ISR), represent 974

the eigenvalues of the inputs IHR and ISR in the high- 975

level discriminating space, and the probability densities of the 976

D(IHR) and D(ISR) represent the sample distributions of 977

IHR and ISR. The coverage of probability densities between 978

the D(IHR) and D(ISR) represent the mode similarity of the 979

IHR and ISR to indicate whether model collapse occurs in 980

the generator. 981

Fig. 12 illustrates that the probability density curves of 982

D(IHR) and D(ISR) obtained for three GAN models, LE- 983

GAN and its two best competitors, WGAN and BAGAN, 984

through training the models on AVIRIS and UHD-185 datasets 985

with an SNR level of 40db and an upscaling factor of ×8. In 986

comparison with the other two models, the probability density 987

curves of ISR generated by LE-GAN are much closer to those 988

of the real IHR for both AVIRIS (Fig. 12a) and UHD-185 989

datasets (Fig. 12d). However, the probability density curves of 990

the ISR generated by WGAN (12b and e) and BAGAN (12c 991
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Fig. 12. Statistic distributions of the high-resolution HSI (Ihr) and the
generated super-resolution HSI (ISR) in the discriminator network (D). We
tested the proposed LE-GAN with the two best competitors (i.e. WGAN and
BAGAN) on AVIRIS (a-c) and UHD-186 (d-f) test dataset with an SNR level
of 40db and an upscaling factor of ×8.

and f) have an obvious tendency shifting towards the right992

and having a higher peak (i.e. a lower standard deviation).993

This means the ISR generated by WGAN or BAGAN can be994

better discriminated from the real IHR by D (i.e. low spectral-995

spatial fidelity), and the generated ISR only covers the limited996

spectral-spatial patterns of the real IHR (i.e. existing the mode997

collapse issue). These observations shows that the proposed998

model outperforms the competitors in generating diversity of999

super-resolution samples and alleviating mode collapse.1000

V. DISCUSSION1001

The challenge of GANs in improving the spectral and spatial1002

fidelity of HSI super-resolution and addressing the issue of1003

mode collapse is on how to make the generator learn the real1004

spectral-spatial patterns, and meanwhile, prevent the generator1005

from over-learning limited patterns. Since there is no such1006

kinds of constraints in the JS distance based loss functions, the1007

original GAN is hard to generate the high fidelity HSI super-1008

resolution and easy to suffer mode collapse. In this study, we1009

proposed a novel GAN model, named as LE-GAN, through1010

improving the GAN baseline and introducing a new SSRP1011

loss function. The new SSRP loss was used to guide the1012

optimisation and alleviate the spectral-spatial mode collapse1013

issue occurred in the HSI super-resolution process. The model1014

validation and evaluation were conducted using the datasets1015

from two hyperspectral sensors (i.e. AVIRIS and UHD-185)1016

with various upscaling factors (×2, ×4, and ×8 ) and added-1017

noises (∞db, 40db, and 80db). The evaluation results showed1018

that the proposed LE-GAN can achieve high-fidelity HSI1019

super-resolution for relatively high upscaling factors and have1020

a better robustness against noise and better generalizability to1021

various sensors.1022

A. The ablation analysis of the improved modules1023

In the proposed model, a total of five different modifications1024

have been made to improve the GAN baseline including: 1)1025

using 3D-convolutional filters in G, 2) adding an Upscale-1026

Block in G, 3) removing the sigmoid in D, 4) adding a novel1027

La network, and 5) using a new loss function to optimise the 1028

model. 1029

To evaluate the effects of these improvements on the perfor- 1030

mance of the proposed LE-GAN, we have conducted an abla- 1031

tion analysis in which we gradually substituted the traditional 1032

GAN components with the proposed modules and compares 1033

their effects based on six evaluation metrics, PSNR, SIM, PI, 1034

SAM, SRE, and computing time (CT). Each improvement is 1035

an incremental modification to the original GAN model, thus 1036

forming five different models: Model 1 to Model 5. The details 1037

of the five models and their influences on the six evaluation 1038

metrics for the testing datasets (AVIRIS and UHD-185) with 1039

×8 scale factor are presented in Fig.13. The super-resolution 1040

results of three example patches are also displayed for the 1041

visual comparison. 1042

1) Model 1: using 3D-convolutional filters in G: In order 1043

to process continuous spectral channels and capture spectral- 1044

spatial joint features learning in the ResBlock in G, 3D- 1045

convolutional filters are used. Theoretically, this modification 1046

is able to extract both the spectral correlation characteristics 1047

and spatial texture information. 1048

2) Model 2: Adding an UpscaleBlock in G: In a super- 1049

resolution network, the most important strategy to improve 1050

the performance is to increase the information (e.g. the di- 1051

mensionality of feature maps) of an LR HSI to match with 1052

that of the corresponding HR HSI. However, the traditional 1053

approaches increase the feature dimensionality in the entire 1054

intermediate layers gradually, which increases the computation 1055

complexity and computational cost. In contrast, we proposed 1056

an UpscaleBlock to super-resolve the detailed spectral-spatial 1057

information only at the end of the generator network (see 1058

Fig. 3). This adjustment directly eliminates the need of the 1059

computational and memory resources for super-resolution op- 1060

erations. Thus, a smaller filter size can be effectively used in 1061

our generator network for the extraction of super-resolution 1062

features. The results of Model 2 (the third column in Fig. 1063

13) reveals a performance improvement after adding the 1064

UpscaleBlock. Compared to Model 1, the computation time 1065

has a 35.1% reduction on average without losing the super- 1066

resolution quality, Model 2 even has a better super-resolution 1067

quality in terms of PSNR, SSIM, PI, SAM and SRE. 1068

3) Model 3: Removing the sigmoid function from the dis- 1069

criminator: In the traditional GAN framework, the sigmoid- 1070

activated features often skew the original feature distribution 1071

and result in lower reconstructed spectral values. Therefore, in 1072

this study, we removed the sigmoid activation in D network 1073

for two reasons. Firstly, using the feature before activation 1074

can benefit accurate reconstruction of the spectral and spatial 1075

features of input. Secondly, the proposed latent space distance 1076

requires real feature distribution of the input HSI in the low- 1077

dimensional manifold in order to measure the divergence 1078

between the generated super-resolution HSI and real HR HIS. 1079

This modification, as shown in Model 3 in the fourth column 1080

of Fig. 13, contributes to an approximately 7.2% reduction 1081

in SAM and 13.9% reduction in SRE. These findings suggest 1082

that removing the sigmoid activation can help keep the spectral 1083

consistency between the LR and HR HSIs. 1084
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4) Model 4: Adding a newly developed LE network: The1085

LE network is developed to produce a latent regularisation1086

term, which holds up the manifold space of the generated1087

super-resolution HSI so that the dimensionality of the gen-1088

erated HSI is consistent with that of real HR HIS. In addition,1089

the LE network makes the divergence of the generated HSI1090

and real HSI satisfy the Lipschitz condition for optimisation.1091

The generated super-resolution HSI patches from Model 4 (see1092

the fifth column of Fig. 13) indicates that, after adding the LE1093

network into the original GAN framework, both SAM and1094

SRE have a significant reduction, with a drop of 6.7% and1095

15.3%, respectively. Besides, there is a slight improvement on1096

the PNSR, SSIM, and PI (the PNSR and SSIM respectively1097

increase 2.8% and 1.4%, the PI declines 4.3%). These results1098

indicate that the regularisation term produced by the LE1099

network has a great contribution in reconstructing the spectral-1100

spatial details consistent with real HR HIS. However, the LE1101

need to occupy a certain amount of computational and memory1102

resources, subsequently the computation time increases 15.1%.1103

5) Model 5: Using the new loss function to optimise the1104

model: The most important contribution of our work is to1105

develop a SSRP loss function with a latent regularisation to1106

optimise the whole model. Model 5 (see the last column of1107

Fig. 13), the final version of the LE-GAN, improves all of1108

the evaluation metrics. The increases of PNSR and SSIM are1109

5.2% and 12.4%,respectively, while the decreases of SAM1110

and SRE are 13.1% and 7.9%, respectively. But, it leads to a1111

11.4% increase of computation time. These findings suggest1112

that the proposed SSEP loss function with the latent space1113

regularisation can boost the performance on measuring the1114

divergence of generated HSI and real HSI in both spectral1115

and spatial dimensionality.1116

B. The Evaluation of the loss function1117

The proposed loss function introducing latent regularisation1118

into the Wasserstein loss function optimises the GAN in the1119

latent manifold space and addresses the problems of mode1120

collapse. In order to verify the effectiveness of the proposed1121

loss function, we trained the proposed LE-GAN model with1122

three kinds of losses: 1) the traditional JS divergence-based1123

loss, 2) the Wasserstein distance-based loss, and 3) the pro-1124

posed improved Wasserstein loss with latent regularisation,1125

and plotted their loss curves on both the training and validation1126

sets in Fig. 14.1127

It is obvious that the training process of the model with1128

a JS divergence-based loss, as shown in Fig. 14a, is un-1129

stable and volatile. The reason behind lies in the fact that1130

the JS divergence always leads to the supports of Pr and1131

Pg disjointing in the low-dimensional manifolds during the1132

process of maximising the discriminative capability of D,1133

which causes the gradient fluctuation. On the contrary, the1134

Wasserstein distance based loss functions, as shown in Fig.1135

14b and c, can improve the stability of learning and lead1136

the loss converges to the minimum. This findings is con-1137

sistent with Arjovsky et al. [50]’s and Ishaan et al. [51]’s1138

studies. In addition, it is noteworthy that the loss curve of1139

the proposed model is more stable and smoother than that of1140
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Fig. 13. The influence of five incremental modifications to the performance of
the proposed model in terms of PSNR, SSIM, PI, SRE and computing time
(CT). The results in each column (except first column) correspond to one
new model with one incremental change to its previous model. The super-
resolution results of different models with ×8 scale factor on the testing
datasets are illustrated for visual comparison.

the traditional Wasserstein distance-based losses. The theory 1141

behind is that introducing the latent regularisation terms into 1142

the training process provides a non-singular support to the 1143

generated sample sets at the corresponding low-dimensional 1144

manifolds. It is expected that the Wasserstein distance (i.e. 1145

W (Pr, Pg)) performs better under the condition of the con- 1146

tinuity and differentiability of the divergence of Pr and Pg). 1147

With the latent regularisation, the max-min game of LE-GAN 1148

will yield a probability distribution Pg(G(I lr)) in a low- 1149

dimensional manifold that has a joint support with Pr(I
hr), 1150

and the process of minimizing the W (Pr, Pg) will facilitate 1151

the gradient descent of the trainable parameters in G because 1152

the valid gradient can be captured from the optimised D in the 1153

low dimensional manifold. Therefore, the latent regularisation 1154

derived Wasserstein loss is regarded as a more sensible loss 1155

function for HSI super-resolution than the JS divergence loss 1156

and the traditional Wasserstein loss. 1157

The subplots above the learning curve shown in Fig. 14 are 1158

the images generated in the optimisation process when three 1159

different losses are used. It is obvious that the super-resolved 1160

HSI subplots optimised by the JS divergence-based loss (see 1161

Fig. 14a) do not produce the equivalent quality of spatial 1162

texture reconstruction as those from the proposed model (see 1163

Fig. 14b). The proposed latent regularisation term makes the 1164

dimensionality of the generated HSI manifold more consistent 1165

with that of the HR HSI in the optimisation process. 1166
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Fig. 14. A comparison of the loss curves during the training of Model 4 using
(a) the traditional JS divergence-based loss (b) the Wasserstein distance-based
loss, and (c) the proposed improved Wasserstein loss with latent regularisation.

C. Model robustness analysis1167

Our experimental results have illustrated the great quality1168

scores and robustness for the proposed LE-GAN model. To1169

further analysis the robustness of our proposed model on1170

resisting the complicated down-sampling blurring in practical1171

applications, we discuss the potential of our model gener-1172

ality from two aspects: 1) the theoritical analysis and 2)1173

the additonal testing and evaluation on on real AVIRIS data1174

products. In the natural conditions, the downsampling bluring1175

is generally caused by two factors, atmospheric effects (e.g. the1176

Gaussian noise and mixed Gaussian noises), and instrumental1177

(sensor) noises (e.g. salt & pepper noise and speckle noise1178

etc). Because the instrumental noises, as part of the internal1179

system errors, are decided by the hardware parameters of a1180

sensor (e.g. the band setting and SNR), here we only discuss1181

the atmospheric effects (i.e. Gaussian noises) under the real1182

natural conditions.1183

Mathematically, the observed reflectance (Robservation) can1184

be formulated as the sum of the real reflectance (Rreal)1185

and noises (N), thus Robservation = Rreal + N . Based1186

on our model setting, the spectral-spatial features (SSF) of1187

the Robservation will be extracted, and then, the singular1188

value decomposition of spectral-spatial features (SSF) will be1189

conducted in the latent encoder as shown in equation 4. After1190

that, the spectral-spatial distribution (SSD) of SSF used for1191

training the latent regularisation term can be expressed as the1192

sum of the SSD of the real reflectance features (SSDreal)1193

and the noise features (SSDN ). Therefore, it is obvious that1194

the influence of the noise in our model depends on the rank 1195

of SSDN , thus the entropy of the noise, rather than the 1196

type of noise. This shows that our model has great potential 1197

in tolerating the complicated noise corruptions of HSI. This 1198

conclusion is also proven by our experimental results in 1199

Section IV-E. 1200

In addition, to further test the generality of our model 1201

on more real HSI, we applied our model on the 20 real 1202

AVIRIS HSI dataset downloaded from the websit (https : 1203

//aviris.jpl.nasa.gov/dataportal/). The results were eval- 1204

uated in terms of PSNR, SSIM, PI, SAM, SRE, IS, and FID 1205

provided in Table S1 of the supplementary. These results are 1206

consistent with our experimental results reported in Section 1207

IV-E. It concludes that the proposed model has great robust- 1208

ness and generality for the practical applications. 1209

D. Limitations and future works 1210

Benefiting from the self-adaptive latent encoder, the pro- 1211

posed LE-GAN architecture performs better on alleviating 1212

the spectral-spatial distortion caused by the mode collapse 1213

issue than traditional GAN networks, and the robustness and 1214

generalizability of the proposed LE-GAN for HSI super- 1215

resolution with large upscaling factor and higher noise levels 1216

are better than existing models. The experimental evaluation 1217

has illustrated a good spectral-spatial fidelity and diversity 1218

of the HSI super-resolution generated by the proposed LE- 1219

GAN. Our model will be more adaptive in real applications 1220

with different disturbances of HSI super-resolution since the 1221

proposed method introduces the STSSRW mechanism into the 1222

generator network to enhance the hierarchical spectral-spatial 1223

information and ignore the non-hierarchical noises during 1224

the upscaling processing. However, there are two limitations 1225

should be noticed. First, because our current input data for 1226

model training only includes two types of sensors (i.e. UHD- 1227

185 and AVIRIS), the direct use of this pre-trained model may 1228

lead to limited performance on the unseen images from other 1229

sensors with different spectral band settings. Second, in the 1230

proposed LE-GAN architecture, an extra latent encoder net- 1231

work will inevitably introduce a lot of parameters and increase 1232

the computational complexity. Based on these two limitations, 1233

our future work will focus on improving the performance 1234

of our model by tackling these two challenges: 1) we will 1235

develop a Reinforcement Learning (RL) strategy to utilize 1236

the knowledge gained in our pre-trained model in unseen 1237

novel tasks, and further test and evaluate the generalization 1238

capacities of the proposed adversarial training methods in 1239

more complicated and unexpected conditions, 2) Considering 1240

the training processes of the generator, discriminator and latent 1241

encoder are relatively independent, we will develop a parallel 1242

processing strategy to improve the computational efficiency of 1243

model training and testing. 1244

VI. CONCLUSION 1245

To address the challenge of spectral-spatial distortions 1246

caused by mode collapse during the optimisation process, 1247

this work has developed a latent encoder coupled GAN for 1248

spectral-spatial realistic HSI super-resolution. In the proposed 1249
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GAN architecture, the generator is designed based on an1250

STSSRW mechanism with a consideration of spectral-spatial1251

hierarchical structures during the upscaling process. In addi-1252

tion, a latent regularised encoder is embedded in the GAN1253

framework to map the generated spectral-spatial features into1254

a latent manifold space and make the generator a better1255

estimation of the local spectral-spatial invariances in the1256

latent space. For the model optimisation, a SSRP loss has1257

been introduced to avoid the spectral-spatial distortion in the1258

super-resolution HSI. By using the SSRP loss, both spectral-1259

spatial perceptual differences and adversarial loss in latent1260

space are measured during the optimization process. More1261

importantly, a latent regularisation component is coupled with1262

the optimisation process to maintain the continuity and no-1263

singularity of the generated spectral-spatial feature distribution1264

in the latent space and increase the diversity of the super-1265

resolution features. We have conducted different experimental1266

evaluation in terms of mode collapse and performance. The1267

proposed approach has been tested and validated on AVIRIS1268

and UHD-185 HSI datasets and compared with five state-of-1269

the-art super resolution methods. The results show that the1270

proposed model outperforms the existing methods and is more1271

robust to noise and less sensitive to the upscaling factor. The1272

proposed model is capable of not only generating high quality1273

super-resolution HSIs (both the spatial texture and spectral1274

consistency) but also alleviating mode collapse issue.1275
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