
Please cite the Published Version

Akintoye, Samson B, Han, Liangxiu , Zhang, Xin , Chen, Haoming and Zhang, Daoqiang
(2022) A hybrid parallelization approach for distributed and scalable deep learning. IEEE Access,
10. pp. 77950-77961. ISSN 2169-3536

DOI: https://doi.org/10.1109/access.2022.3193690

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Version: Published Version

Downloaded from: https://e-space.mmu.ac.uk/630155/

Usage rights: Creative Commons: Attribution 4.0

Additional Information: This is an Open Access article which appeared in IEEE Access, pub-
lished by IEEE

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0003-2491-7473
https://orcid.org/0000-0001-7844-593X
https://doi.org/10.1109/access.2022.3193690
https://e-space.mmu.ac.uk/630155/
https://creativecommons.org/licenses/by/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Hybrid Parallelization Approach for
Distributed and Scalable Deep Learning
SAMSON B. AKINTOYE1, LIANGXIU HAN1*, XIN ZHANG1, HAOMING CHEN2, AND
DAOQIANG ZHANG3
1Department of Computing and Mathematics, Manchester Metropolitan University, UK (e-mail: s.akintoye@mmu.ac.uk; l.han@mmu.ac.uk;
x.zhang@mmu.ac.uk)
2Department of Computer Science, University of Sheffield, UK (e-mail: hchen78@sheffield.ac.uk)
3College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, P.R.China (e-mail: dqzhang@nuaa.edu.cn)

* Corresponding author: L. Han (e-mail: l.han@mmu.ac.uk).

ABSTRACT Recently, Deep Neural Networks (DNNs) have recorded significant success in handling
medical and other complex classification tasks. However, as the sizes of DNN models and the available
datasets increase, the training process becomes more complex and computationally intensive, usually taking
longer to complete. In this work, we have proposed a generic full end-to-end hybrid parallelization approach
combining model and data parallelism for efficiently distributed and scalable training of DNN models. We
have also proposed a Genetic Algorithm Based Heuristic Resources Allocation (GABRA) mechanism for
optimal distribution of partitions on the available GPUs for computing performance optimization. We have
applied our proposed approach to a real use case based on 3D Residual Attention Deep Neural Network
(3D-ResAttNet) for efficient Alzheimer Disease (AD) diagnosis on multiple GPUs and compared with the
existing state-of-the-art parallel methods. The experimental evaluation shows that our proposed approach
is 20% averagely better than existing parallel methods in terms of training time and achieves almost linear
speedup with little or no differences in accuracy performance when compared with the existing non-parallel
DNN models.

INDEX TERMS Deep Learning, Genetic Algorithm, Data Parallelization, Model Parallelization

I. INTRODUCTION
In recent time, Deep Neural Networks (DNNs) have gained
popularity as an important tool for solving complex tasks
ranging from image classification [1], speech recognition [2],
medical diagnosis [3], [4], to the recommendation systems
[5] and complex games [6], [7]. However, training a DNN
model requires a large volume of data, which is both data and
computational intensive, leading to increased training time.
To overcome this challenge, various parallel and distributed
computing methods [8] have been proposed to scale up the
DNN models to provide timely and efficient learning solu-
tions. Broadly, it can be divided into data parallelism, model
parallelism, pipeline parallelism and hybrid parallelism (a
combination of data and model parallelism). Data parallelism
is a parallelization method that trains replicas of a model on
individual devices using different subsets of data, known as
mini-batches [9], [10]. In data parallel distributed training,
each computing node or a worker contains a neural network
model replica and a churn of dataset, and compute gradients
which are shared with other workers and used by the param-
eter server to update the model parameters [11]. However,

as parameters increases, the overhead for parameter synchro-
nisation inceeases, leading to performance degradation. In
addition, when a DNN model size is too big, it couldn’t be ex-
ecuted on a single device. Hence it is not possible to perform
data parallelization. Model parallelism is a parallelization
method where a large model is split, running concurrent
operations across multiple devices with the same mini-batch
[8]. It can help to speed up the DNN training either through
its implementation or algorithm. In model parallelism, each
node or a worker has distinct parameters and computation of
layer of a model, and also updates weight of allocated model
layers. Pipelining parallelism splits the DNN models training
tasks into a sequence of processing stages [56]. Each stage
takes the result from the previous stage as input, with results
being passed downstream immediately.
Recently, the combination of model and data parallelization
methods known as Hybrid parallelization has been explored
to leverage the benefits of both methods to minimize com-
munication overhead in the multi-device parallel training of
DNN models [15], [18], [19].
Despite the performance of the existing parallelization meth-

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3193690

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ods, they are still subject to further improvement by optimally
allocating the model computations and data partitions to the
available devices for better model training performance. In
this paper, we have proposed a generic hybrid parallelization
approach for parallel training of DNN in multiple Graphics
Processing Units (GPUs) computing environments, which
combines both model and data parallelization methods. Our
major contributions are as follows:

• Development of a generic full end-to-end hybrid paral-
lelization approach for the multi-GPU distributed train-
ing of a DNN model.

• Model parallelization by splitting a DNN model
into independent partitions, formulating the network
partitions-to-GPUs allocation problem as a 0-1 multiple
knapsack model, and proposing a Genetic Algorithm
based heuristic resources allocation (GABRA) approach
as an efficient solution to optimize the resources alloca-
tion.

• Exploitation of data parallelization based on the All-
reduced method and asynchronous stochastic gradient
descent across multiple GPUs for further acceleration
of the overall training speed.

• Evaluation of the proposed approach through a real
use case study – by parallel and distributed training of
a 3D Residual Attention Deep Neural Network (3D-
ResAttNet) for efficient Alzheimer’s disease diagnosis.

The remainder of this paper is organized as follows: Section
II reviews the related work of the study. Section III discusses
the details of the proposed approach. In Section IV, the
experimental evaluation is described. Section V concludes
the work.

II. RELATED WORK
This section provides an overview in relation to distributed
training of deep neural networks and genetic algorithms for
resource optimisation.

A. PARALLEL AND DISTRIBUTED TRAINING OF DEEP
NEURAL NETWORKS (DNNS)
As mentioned earlier, existing efforts on parallel and dis-
tributed training of DNNs can be broadly divided into three
categories, which include data parallelism, model paral-
lelism, pipeline parallelism and hybrid parallelism.

1) Data Parallelism
In data parallelism, a dataset is broken down into mini-
batches and distributed across the multiple GPUs and each
GPU contains a complete replica of the local model and
computes the gradient. The gradients aggregation and up-
dates among the GPUs are usually done either synchronously
or asynchronously [11]. In synchronous training, all GPUs
wait for each other to complete the gradient computation
of their local models, then aggregate computed gradients
before being used to update the global model. On the other
hand, in asynchronous training, the gradient from one GPU

is used to update the global model without waiting for other
GPUs to finish. The asynchronous training method has higher
throughput in that it eliminates the waiting time incurred
in the synchronous training method. In both asynchronous
and synchronous training, aggregated gradients can be shared
between GPUs through the two basic data-parallel training
architectures: parameter server architecture and AllReduce
architecture. Parameter server architecture [14] is a central-
ized architecture where all GPUs communicate to a dedicated
GPU for gradients aggregation and updates. Alternately,
AllReduce architecture [20] is a decentralized architecture
where the GPUs share parameter updates in a ring network
topology manner through the Allreduce operation.

2) Model Parallelism
In model parallelization, model layers are divided into parti-
tions and distributed across GPUs for parallel training [21],
[22]. In model parallel training, each GPU has distinct pa-
rameters and computation of the layer of a model, and also
updates weight of allocated model layers. Huo et al. [51] pro-
posed a Decoupled Parallel Back-propagation (DDG), which
splits the network into partitions and solves the problem
of backward locking by storing delayed error gradient and
intermediate activations at each partition. Similarly, Zhuang
et al. [52] adopted the delayed gradients method to propose
a fully decoupled training scheme (FDG). The work breaks
a neural network into several modules and trains them con-
currently and asynchronously on multiple devices. However,
the major challenges are how to break the model layers into
partitions as well as the allocation of partitions to GPUs for
efficient training performance [16]. Moreover, using model
parallelization alone does not scale well to a large number
of devices [17] as it involves heavy communication between
workers.

3) Pipelining Parallelism
Pipelining parallelism breaks the task (data and model) into
a sequence of processing stages. Each stage takes the result
from the previous stage as input, with results being passed
downstream immediately [53]. Various works have adopted
this technique. Lee et al. [54] used the pipeline parallelism
approach to overlap computation and communication for
CNN training. They implement a thread in each computer
server to spawn communication processes after the gradient
is generated. Chen et al. [55] proposed a pipelined model
parallel execution method for high GPU utilisation and used
a novel weight prediction technique to achieve a robust
training accuracy. However, one of the significant drawbacks
of pipelining parallelism is that it is limited by the slowest
stages and has limited scalability.

4) Hybrid Parallelism
Several research works have explored both data and model
parallelization methods for efficient DNN models training.
Yadan et al. [23] achieved 2.2× speed-up when trained a
large deep convolutional neural network model with hy-

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3193690

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

bridized data and model parallelism. Krizhevsky et al. [9]
used model and data parallelization techniques to train a
large deep convolutional neural network and classify 1.2
million high-resolution images in the ImageNet LSVRC-
2010 contest into the 1000 different classes. Shazeer et
al. [25] proposed Mesh-TensorFlow where data parallelism
is combined with model parallelism to improve training
performance of transformer model with a huge number of
parameters. In Mesh-TensorFlow, users split layers across
the multi-dimensional mesh of processors and explored data
parallelism technique in conjunction with All-reduced update
method. Moreover, Onoufriou et al. [26] proposed Nemesyst,
a novel end-to-end hybrid parallelism deep learning-based
Framework, where model partitions are trained with inde-
pendent data sets simultaneously. Similarly, Oyama et al.
[27] proposed end-to-end hybrid-parallel training algorithms
for large-scale 3D convolutional neural networks. The algo-
rithms combine both data and model parallelisms to increase
throughput and minimize I/O scaling bottlenecks.
The above-aforementioned approaches adopted data, model
and pipeline parallelization separately or the combination of
the methods to improve the performance of DNN models
training. However, none of the existing methods considered
the resource utilization and allocation problem in deep learn-
ing and provided solutions for efficient distributed training
performance.

B. GENETIC ALGORITHMS FOR RESOURCE
MANAGEMENT OPTIMIZATION
Resource management optimization is an important research
topic in distributed computing systems [28]. Several works
have been proposed, with different techniques for addressing
resource management problems, such as scheduling [29] and
allocation [30]. Genetic Algorithms (GA)s are commonly
used to optimize either homogenous or heterogeneous re-
sources in distributed system environments [31] [57]. For
instances, Gai et al. [32] proposed the Cost-Aware Het-
erogeneous Cloud Memory Model (CAHCM) to provide
high performance cloud-based heterogeneous memory ser-
vice offerings. It proposed the Dynamic Data Allocation
Advanced (2DA) algorithm based on genetic programming to
determine the data allocations on the cloud-based memories
for the model. Mezache et al. [33] proposed a resource
allocation method based on GA to minimize the number
of hosts required to execute a set of cloudlet associated
with the corresponding set of the virtual machine, thereby
reducing excessive power consumption in the data centre.
Furthermore, Jiang et al. [34] proposed a multi-objective
model based on the non-dominated sorting genetic algorithm
to minimize the expected total makespan and the expected
total cost of the disassembly service under the uncertain
nature of the disassembly process. Mosa and Sakellariou
[35] proposed a dynamic VM placement solution used a GA
to optimize the utilization of both CPU and memory with
the aim to ensure better overall utilization in the cloud data
centre. Devarasetty and Reddy [36] proposed an optimization

method for resource allocation in the cloud with the aim to
minimize the deployment cost and improve the QoS perfor-
mance. They used the GA to find optimal solutions to the
allocation problem. In addition to resource allocation in the
cloud environment, Mata and Guardieiro [37] investigated
the resource allocation in the Long-Term Evolution (LTE)
uplink and proposed a scheduling algorithm based on GA
to find a solution for allocating LTE resource to the user re-
quests. Moreover, Li and Zhu [38] adopted genetic algorithm
to develop a joint optimization method for offloading tasks to
the mobile edge servers (MESs) in a mobile-edge computing
environment under limited wireless transmission resources
and MESs’ processing resources.
However, none of the work mentioned above considered the
resource allocation problem in deep learning and applied GA
to solve the problem for efficient training performance of the
DNN model.

III. THE PROPOSED APPROACH
In parallel and distributed computing, there are several con-
siderations on efficient training of DNN models including:
1) how to decompose a model or a dataset into parts/small
chunks; 2) how to map and allocate these parts onto dis-
tributed resources for efficient computation as well as reduc-
ing communication overhead between computing nodes.
This work has proposed a generic full end-to-end hybrid par-
allelization approach for efficient training of a DNN model,
which combines both data and model parallelization. For
data parallelization, we have exploited data parallelization
based on the All-reduced method and asynchronous stochas-
tic gradient descent across multiple GPUs for acceleration
of the overall network training speed. For model paralleliza-
tion, model layers are partitioned individually with the aim
to reduce communication overhead during training process.
We have also designed Genetic Algorithm-based heuristic
resource allocation mechanism to map and allocate partitions
to appropriate resources for efficient DNN training.
Figure 1 shows the high-level architecture, including 1)
model parallelization consisting of network partitions and
resource allocation components; and 2) data parallelization.
The details of the proposed method are presented in the
following sections. The important notations in this paper are
detailed in Table 1.

A. MODEL PARALLELIZATION
Model parallelization includes neural network model par-
titioning and Genetic Algorithm based heuristic resource
allocation mechanism.

1) Network Partitioning
The principle of the network partitioning is based on the
computation loads of each layer with the aim to reduce
communication overhead during training process. The highly
functional layers are partitioned individually as a single
partition for even distribution of the DNN model layers. For
instance, a convolution layer of CNN architecture has a large

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3193690

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1: The high level architecture of the proposed hybrid parallelization approach

TABLE 1: Notations

Notations Descriptions
Q Number of network layers of a DNN model.
pn The network partitions of n size.
si The i− th network layer in partition pi.
q A layer in a DNN model such that q = 1, 2, . . . , Q
dm The set of m GPUs.
t Iteration.
at Activation at iteration t.
wq The weight parameter of q layer.
b The Batch size.
l The Loss function.
γt Learning rate at iteration t.
v Data point.
V Total data points of the dataset.
Ψc The crossover operator.
Ψm The mutation operator.
gts(i) The gradient at partition (i) at iteration t.

volume of weights and can be partitioned as a single partition
for efficient parallel training performance.
Specifically, let’s assume a model network contains a set of
layers {s1, s2, . . . , sQ}. The model network P is split into
partitions {p1, p2, . . . , pn}where pi = {si, si+1, . . . , si+1−
1}, which denotes a set of layers in i partition such that
1 ≤ i ≤ n. si + 1 and si+1-1 are the second layer and last
layer of each partition. In addition to this, all partitions are
computed simultaneously, the gradient of the partition input
is passed to the next partition (i− 1), while the partition out-
put is sent to partition (i+1) as its new input. In forward pass,
the input atsi−1

from partition (i− 1) is sent to partition i and
gives activation ats(i+1)−1 at iteration t. Also, In backward

pass, the gts(i+1)−1 denotes the gradient at partition (i + 1)

at iteration t. For each layer (si ≤ q ≤ si+1 − 1) such that

q ≤ Q, the gradient is given as: ĝtwq
=
δats(i+1)−1

δwtq
gts(i+1)−1

which can be updated by wt+1
q = wtq − γtĝ

t
wq

where γt is
learning rate.

ĝt−i+1
wq

=
δat−i+1
s(i+1)−1

δwt−i+1
q

gt−i+1
s(i+1)−1 (1)

which can be updated by:

wt−i+2
q = wt−i+1

q − γt−i+1ĝ
t−i+1
wq

(2)

where γt−i+1 is learning rate.

2) Genetic Algorithm Based Resource Allocation (GABRA)
To enable efficient DNN model training on multiple GPUs,
we have also proposed a Genetic Algorithm-based heuristic
resource allocation mechanism. A genetic algorithm (GA)
is one of the evolutionary algorithms commonly used to
provide efficient solutions to optimisation problems such as
resource allocation problems, based on biologically inspired
operators such as mutation, crossover and selection. The
proposed genetic based algorithm aims to finds the best
network partitions to be allocated to the available GPUs to
maximise resource utilisation and minimise the computation
time of network partitions for efficient and better overall
training performance over the existing methods.
Thus, we formulate the problem of allocating GPUs to net-
work partitions as a 0-1 multiple knapsack problem model.

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3193690

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

As previously illustrated, we consider computation load of a
set of partitions pi, where i = {1, 2, . . . , n}. We also con-
sider the capacity of a set of available GPU G, each denoted
by dj where j = {1, 2, . . . ,m} and dj ∈ G. Furthermore,
we assume that the GPUs can either be heterogeneous or
homogeneous; with the different or same capacities items
of memory. Each GPU runs at least one partition, and each
partition needs to be allocated to only one GPU.
Let C = (cij) ∈ Rn×m be a n ×m matrix in which cij is a
profit of allocating gpu j to partition i:

cij =
pi
dj

(3)

Also, Let X = (xij) ∈ Rn×m where

xij =

{
1, if gpu j is allocated to partition i
0, otherwise.

(4)

Thus, we formulate the multiple knapsack model in terms
of a function z as:

max
p,x,c

z(X) =

n∑
i=1

m∑
j=1

xijcij (5)

subject to:

n∑
i=1

pixij ≤ dj ,∀j ∈M = {1, 2, . . .m} (6)

m∑
j=1

xij = 1,∀i ∈ N = {1, 2, . . . n} (7)

xij = 0 or 1, for i = 1, 2,. . . n, and for j = 1, 2,. . . m
(8)

Our goal is to find (8) that guarantees no GPU is overutilized
and yields the maximum profit simultaneously. Thus, the
objective function in equation 5 maximizes the sum of the
profits of the selected partitions. The constraint Eq. 6 implies
that each partition is allocated to at most one GPU, while
constraints Eq. 7 ensures that the capacity of each available
GPU is not exceeded.
Next, we present a Genetic Algorithm-Based Resources Al-
location (GABRA) as an efficient solution to the model.
Genetic Algorithm has been proven as a stochastic method
to produce high-quality solutions for solving combinatorial
optimization problems, particularly NP-hard problems [39].

The Algorithm 1 shows the pseudo-code of the GABRA
for solving GUPs-to-partitions allocation problem. It consists
of four major parts: input, initialization, looping and output.
In the initialization part (line 3), unlike the classical GA, the
set of chromosomes which also known as initial population
P(t) for allocating GPUs to partitions, is generated as indi-
cated in the Algorithm 2, by randomizing the allocation of
resources without exceeding their capacities with respect to
the computation load of each network partition.

Algorithm 1: Genetic Algorithm Based Resources
Allocation (GABRA)

input : {p1, p2,, pn} : computation loads of
partitions
{d1, d2,, dm} : capacity values of

available GPUs
output: optimized solution f(Z∗)

1 evaluate cij ←
pi
dj

, for i = {1, 2, . . . , n} and

j = {1, 2, . . . ,m};
2 set t← 0;
3 initialise P(t)← {β1, β2, . . . , βn} ;
4 evaluate P(t) : {f(β1), f(β2), . . . , f(βn)} ;
5 find Z∗ ∈ P(t) such that f(Z∗) ≥ f(Z),∀Z ∈ P (t) ;
6 while (t < tmax) do
7 select {Y1, Y2} = φ(P(t)); // φ is a selection

function ;
8 crossover W ← Ψc(Y1, Y2); //Ψc is a crossover

function;
9 mutate W ← Ψm(W); //Ψm is a mutation

function;
10 if W = any Z ∈ P(t) then
11 go to 7
12 end if
13 evaluate f(W) ;
14 find Z

′ ∈ P(t) such that
f(Z

′
) ≤ f(Z),∀Z ∈ P (t) and replace Z

′ ←W
;

15 if f(W) > f(Z∗) then
16 Z∗ ←W ; //update best fit Z∗

17 end if
18 t← t+ 1 ;
19 end while
20 return Z∗, f(Z∗)

Algorithm 2: initial population algorithm
input : {p1, p2,, pn} : computation loads of

partitions
{d1, d2,, dm} : capacity values of

available GPUs
output: initial population

1 for (all partition loads) do
2 randomize the allocation of partitions to the

number of the available GPUs
3 end for
4 return initial population

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3193690

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The looping part contains fitness evaluation, selection,
crossover and mutation functions. The objective is to opti-
mize the total profit of allocating GPUs to partitions. The
fitness evaluation validates the optimal solution condition
with respect to the optimization objectives. Thus, the fitness
value of each chromosome is calculated as:

f(β) =

n∑
i=1

cijβi, and for j = 1, 2,. . . , m (9)

In the case where the optimal solution condition is not
satisfied the optimization objectives, a new population is
computed from an initial population of the solutions using
their fitness values and genetic functions: selection, crossover
and mutation functions in the looping part (lines 7 - 18).
We use the selection function (φ), which is based on the
roulette wheel method [50] to select the best chromosomes.
The selection is based on the chromosomes’ fitness values,
representing the total profit of allocating partitions to the
available GPUs. The chromosomes with higher fitness values
are selected for the generation of the next population. The
midpoint crossover function Ψc as described in Algorithm 3,
works on two-parent chromosomes {Y1, Y2} with crossover
probability 0.8 and produces a new individual.

Algorithm 3: Crossover function (Ψc)
input : Y1, Y2 : two parent chromosomes
output: Yλ1, Yλ2 : two offspring chromosomes

1 Φ← length(Y1);
2 cp← Y1

2 ; //mid cross point;
3 Yλ1 ← Y1(1 : cp) ∪ Y2(cp : Φ);
4 Yλ2 ← Y1(cp : Φ) ∪ Y2(1 : cp);
5 return Yλ1, Yλ2

Next, the inversion mutation functions Ψm is adopted
where a subset of genes in a chromosome is selected and
inverted to form mutated offspring. In the line 14, the old
chromosomes in the current population are replaced with
the new chromosomes to form a new population. Finally,
the algorithm terminates when the maximum number of
generations is reached, or the optimal total profit of allocating
GPUs-to-partitions is obtained.

B. DATA PARALLELLISATION
To accelerate the training process, each GPU uses a different
mini-batch that is GPU1 uses the first mini-batch, GPU2 uses
the second mini-batch and so on. To reduce computation
time, the full DNN is trained by training a partition with
mini-batch in all GPUs concurrently. Furthermore, we adopt
Asynchronous Stochastic Gradient Descent (ASGD) [8] as
well as ring All-reduce mechanisms [40] for parameter up-
dates to complete an iteration. The process continues until all
the iterations are completed. ASGD achieves a faster training
speed as there is no need to wait for the slowest GPU in

every iteration for the global model updates. The ring All-
reduce is an optimal communication algorithm to minimize
the communication overhead among the GPUs, where all
GPUs are logically arranged in a ring All-reduce topology.
Each GPU sends and receives the required information to
update its model parameters from the neighbour GPUs.
In all, the objective is to minimize as follows:

f(w;V) =
1

b×m

b×m∑
i=1

`(w, vi) (10)

where f is a neural network, b is the batch size, m is the
number of GPUs, ` is a loss function for each data point v ∈
V , and w is the trainable parameter of the neural network.
The derivative of this objective which also referred to as the
gradient is given as:

∂f(w;V)

∂w
=

1

b×m

b×m∑
i=1

∂`(w, vi)

∂w
(11)

In data parallellization, the gradient updates is calculated
as a sum of summations each of which is the sum of deriva-
tives over b data points, and is given as:

∂f(w;V)

∂w
=

1

m

(
1

b

b∑
i=1

∂`(w, vi)

∂w
+

1

b

b×2∑
i=b+1

∂`(w, vi)

∂w
+

)
. . .+ 1

b

b×m∑
i=b×(m−1)+1

∂`(w, vi)

∂w

(12)

In addition, the speed of data-parallel training with m
GPUs can be expressed as:

STm =
T1
Tm
× TS1

TSm
× E1

Em
(13)

where T1 is the average training time per step for using one
GPU, while Tm is the time per step for using m GPUs. E1

is the number of epochs required to converge for one GPU,
while Em is the number of epochs required for m GPUs.

IV. EXPERIMENTAL EVALUATION THROUGH A REAL
USE CASE STUDY
We have applied our approach to a real case study in Neu-
rocomputing to evaluate the effectiveness of the proposed
method in this work. Previously, we have developed a 3D ex-
plainable residual self-attention convolutional neural network
(3D-ResAttNet) to automatically classify discriminative at-
rophy localization on sMRI image for Alzheimer’s Disease
(AD) diagnosis [42]. It is a non-parallel model and runs only
on a single GPU. To evaluate the proposed parallel approach,
we have parallellized our previous 3D-ResAttNet model, run
it on a homogenous multiple-GPUs setting and compared the
performance with and without parallelization.
Moreover, we have compared our approaches with the state-
of-the art methods including Distributed Data Parallel (DDP)
and Data Parallel (DP) from PyTorch framework [43], FDG
[51] and DDG [52].

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3193690

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

A. EVALUATION METRICS
We have adopted standard metrics for performance evalua-
tion including Speedup (S), Accuracy (ACC) and Training
Time (TT). The Speedup (S) is to measure the scalability
and computing performance. It is defined as the ratio of the
serial runtime of the best sequential algorithm for solving a
problem to the time taken by the parallel algorithm to solve
the same problem on multiple processors (e.g., GPUs in this
case). It can be calculated as:

S = Ts/Tp (14)

where Ts represents computing time on a single machine
or GPU. Tp refers to the computing time on multiple ma-
chines or GPUs. The Accuracy (ACC) measures the classifi-
cation accuracy and is defined as:

ACC = (TP + TN)/(TP + TN + FP + FN) (15)

where TP = True positive, FP = False positive, TN = True
negative and FN = False negative. Training Time (TT) is
the time taken for training 3D-ResAttNet using the proposed
approach and other existing distributed training methods.

B. SYSTEM CONFIGURATION
We have conducted our experiments on an Amazon Web
Service (AWS) EC2 P3 instances. Specifically, we used a
p3.16xlarge instance consisting of homogeneous 8 NVIDIA
Tesla V100 GPUs developed purposely for the deep learning
and Artificial intelligent crowd to provide ultra-fast GPU
to GPU communication through NVLink technology. Other
hardware configuration of the p3.16xlarge instance includes
128GB GPU memory, 64 vCPUs, 488GM memory, and
25Gbps network bandwidth. Additionally, software config-
uration /installation include: Ubuntu 18.04, Python 3.7.3,
Pytorch 1.2.0, Torchvision 0.4.0, Numpy 1.15.4, Tensor-
boardx 1.4, Matplotlib 3.0.1, Tqdm 4.39.0, nibabel, fastai,
and NVIDIA Collective Communications Library (NCCL)
CUDA toolkit 10.2 - a library of multi-GPU collective com-
munication primitives [41].

C. A USE CASE - PARALLELIZATION OF
3D-RESATTNET FOR ALZHEIMER’S DISEASE (AD)
DIAGNOSIS
As described earlier, we have applied our hybrid paralleliza-
tion approach to our previous non-parallel 3D-ResAttNet
for automatic detection of the progression of AD and its
Mild Cognitive Impairments (MCIs) such as Normal cohort
(NC), Progressive MCL (pMCI) and Stable MCI (sMCI)
from sMRI scans [42]. It includes two types of classification:
NC vs. AD, and pMCI vs. sMCI.

1) The High-Level Parallelization Of The System
Fig. 2 shows the high level parallelization of our previous
3D-ResAttNet model architecture based on self-attention

FIGURE 2: The hybrid parallelisation of 3D-ResAttNet

TABLE 2: Demographic data for the subjects from ADNI
database

Class Number/Size Gender
(Male/Female)

Age
(Mean/Std)

MMSE
(Mean/Std)

AD 389/1.4GB 202/187 75.95/7.53 23.28/2.03
pMCI 172/484MB 105/67 75.57/7.13 26.59/1.71
sMCI 232/649MB 155/77 75.71/7.87 27.27/1.78
NC 400/2.4GB 202/198 76.02/5.18 29.10/1.01

residual mechanism and explainable gradient-based localisa-
tion class activation mapping (Grad-CAM) to improve AD
diagnosis performance. The 3D-ResAttNet model consists
of 3D Convolutional blocks (Conv blocks), Residual self-
attention block, and Explainable blocks. Conv blocks use
a 3D filter for computation of the low-level feature repre-
sentations. The residual self-attention block combines two
important network layers: Residual network layer and Self-
attention layer. The residual network layer comprises two
Conv blocks consisting of 3 × 3 × 3 3D convolution layers,
3D batch normalization and rectified-linear-unit nonlinearity
layer (ReLU). The explainable block uses 3D Grad-CAM to
improve the model decision.
As shown in Fig. 2, the hybrid parallelization approach
for 3D-ResAttNet is divided into three phases: the split-
ting of 3D-ResAttNet into partitions, allocation of GPUs to
partitions, and data partitioning and distribution. For data
parallelization, we adopt a stochastic gradient descent as
well as ring All-reduce mechanisms for parameters updates
and equally distribute data parts to each GPU. For model
parallelization, the network model is partitioned based on

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3193690

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3: Parallel training performance of 3D-ResAttNet using our proposed approach

3D-ResAttNet18 3D-ResAttNet34
sMCI vs. pMCI AD vs. NC sMCI vs. pMCI AD vs. NC

#GPUs ACC TT
(mins)

ACC TT
(mins)

ACC TT
(mins)

ACC TT
(mins)

1 0.82 34 0.95 62 0.83 37 0.96 68
2 0.81 15 0.94 26 0.84 17 0.96 29
3 0.81 13 0.96 21 0.84 14 0.97 24
4 0.82 11 0.92 18 0.83 12 0.96 21
5 0.8 10 0.94 17 0.84 11 0.97 19
6 0.82 9 0.95 15 0.82 10 0.96 16
7 0.81 7 0.95 12 0.84 8 0.96 14
8 0.81 6 0.95 11 0.84 7 0.96 12

(a) sMCI vs. pMCI and AD vs. NC classification with
respect to 3D-ResAttNet18

(b) sMCI vs. pMCI and AD vs. NC classification with
respect to 3D-ResAttNet34

(c) 3D-ResAttNet18 vs. 3D-ResAttNet34 with respect to
sMCI vs. pMCI

(d) 3D-ResAttNet18 vs. 3D-ResAttNet34 with respect to
AD vs. NC

FIGURE 3: Speedup of our proposed approach

the computational complexity which usually synonymous
to the number of basic operations, such as multiplications
and summations, that each layer performs. Each Conv Block
in the network consists 3 × 3 × 3 3D convolution layer,
3D batch normalization and rectified-linear-unit nonlinearity
layer (ReLU). Moreover, a convolutional layer has higher
operations with complexityO(Co.C1.T.H.W.KT .KH .KW)
where Co and C1 denote the number of output and input

channels respectively, T , H and W are image dimension,
and KT , KH and KW are filter dimension. Consequently,
we partitioned each Conv block individually as a single
partition while other layers with less computation operations
are partitioned as shown in Fig. 2.

2) Dataset Description
The dataset is obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (http://adni.loni.usc.

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3193690

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

(a) Training Time of 3D-ResAttNet18 over AD vs. NC
Dataset

(b) Training Time of 3D-ResAttNet18 over sMCI vs. pMCI
Dataset

(c) Training Time of 3D-ResAttNet34 over AD vs. NC
Dataset

(d) Training Time of 3D-ResAttNet34 over sMCI vs. pMCI
Dataset

FIGURE 4: Training time of proposed approach, FDG, DDG, DDP and DP

edu), which is the same dataset previously used for validation
of our 3D-ResAttNet. The dataset contains 1193 MRI scans
of four classes: 389 Alzheimer’s Disease (AD), 400 Normal
Cohort (NC), 232 static mild cognitive impairment (sMCI)
and 172 progressive mild cognitive impairment (pMCI) pa-
tients. The demographic data for this dataset is shown in
Table 2.

D. EXPERIMENTS
We have conducted experiments under different strategies:

1) We have evaluated the model performance in the parallel
setting across the number of heterogeneous GPUs.

2) We have compared our proposed approach with four
existing data and model parallelism methods, including
data parallelism - two PyTorch generic distributed train-
ing methods: DistributedDataParallel (DDP) and
DataParallel (DP), and model parallelism - delayed
gradient parallel methods: FDG and DDG for further
evaluation. DDP is a multi-process data parallel training
across GPUs either on a single machine or multiple
machines, while DP is for single-process multi-parallel

training using multiple GPUs on a single machine [43].
Both FDG and DDG were implemented by partitioning
data and trained parallel models with sub-data across
multiple GPUs.

In all experiments, we carried out several distributed train-
ing of 3D-ResAttNet18 and 3D-ResAttNet34 for two classi-
fication tasks: sMCI vs. pMCI and AD vs. NC with different
number of GPUs (ranging from 1 to 8). Furthermore, we opti-
mized model parameters with SGD, a stochastic optimization
algorithm. We adopted other training parameters, including a
batch size of six samples, cross-entropy as the loss function,
and 50 epochs for better convergence. In addition, we set
initial learning rate (LR) as 1 × 10−4, then reduced by
1× 10−2 with increased iterations.

E. EXPERIMENTAL RESULTS AND DISCUSSION
1) Performance of 3D-ResAttNet in the parallel setting
We conducted the experiments on 3D-ResAttNet model for
two classification tasks: sMCI vs. pMCI and AD vs. NC.
The Tables 3 shows the experiment results of our parallel
3D-ResAttNet (with 18 and 34 layers respectively) in terms

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3193690

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

of both training time (TT) and accuracy. Based on it, we
calculated the speedup, as shown in Figs. 3a, 3b, 3c, and 3d.

In all cases, it is observed that our proposed approach
achieves almost linear speedup, which demonstrates the
scalability of our approach in that the number of GPUs is
directly proportional to the training speedup performance.
For instance, in AD vs. NC classification task with 3D-
ResAttNet34, the training speedup for 1, 2 3, 4, 5, 6, 7, and
8 GPUs are 1, 2.38, 2.95, 3.44, 3.65, 4.13, 5.17, and 5.64
respectively. A similar trend is also observed in the sMCI vs.
pMCI classification task with 3D-ResAttNet34, the training
speedup for 1, 2 ,3, 4, 5, 6, 7, and 8 GPUs are 1, 2.27, 2.62,
3.09, 3.40, 3.78, 4.86, and 5.67 respectively.

TABLE 4: Accuracy comparison with the existing works

References Model Parallel
Train-

ing

sMCI
vs.

pMCI

AD vs.
NC

Hosseini-Asl et al
[44]

CNN No N/A 97%

Suk et al. [45] DBM No 76% 95%
Sarraf et al. [46] CNN No N/A 96%
Billones et al.
[47]

CNN No N/A 91%

Li et al. [48] 3D CNN No 77% 91%
Shi et al. [49] MM-SDPN No 75% 95%
Zhang et al. [42] 3D-ResAttNet34 No 84% 97%
Our approach 3D-ResAttNet34 Yes 84% 97%

2) Comparison With The Existing Parallel Works
We compare our proposed approach with existing parallel
and non-parallel methods regarding training time and accu-
racy, respectively, to affirm the robustness of the proposed
method.

(i) Training speed: Our Proposed Approach And The Ex-
isting Parallel Approaches
We have compared our approach with DDP [43], DP
[43], DDG [52] and FDG [51]. DDP and DP are two
PyTorch generic distributed training methods. FDG and
DDG are model parallelism approaches based on the
delayed gradient method. The experiment results are
shown in Figs. 4a, 4b, 4c, and 4d. It can be seen
that our proposed approach outperforms the existing
methods in terms of training time. For instance, for
3D-ResAttNet18 on AD vs. NC and sMCI vs. pMCI
classification tasks, the training time incurred by our
proposed approach is 20% averagely lower than DDP,
DP, DDG and FDG. Similarly, there are related trends
when comparing the proposed approach with the DDP,
DP, DDG and FDG concerning the distributed training
of 3D-ResAttNet34 for two classification tasks: AD vs.
NC and sMCI vs. pMCI.

(ii) Accuracy: Comparison With The Existing Non-Parallel
Works
Table 4 shows the accuracy comparison results from
seven state-of-the-art deep neural networks and our
methods. The best testing accuracies obtained in our

approach are 97% and 84% for AD vs. NC and sMCI
vs.pMCI classification respectively. The results show
that our proposed approach performs efficiently when
compared with the existing works in terms of accu-
racy. In addition, our work implements parallel dis-
tributed training of networks in a multi-GPU environ-
ment, whereas existing works are non-parallel methods.

V. CONCLUSION AND FUTURE WORK
In this work, we have proposed a hybrid parallelization
approach that combines both model and data parallelization
for parallel training of a DNN model. The Genetic Algorithm
based heuristic resources allocation mechanism (GABRA)
has also been developed for optimal distribution of network
partitions on the available GPUs with the same or different
capacities for performance optimization. Our proposed ap-
proach has been compared with the existing state-of-the-art
parallel methods and evaluated with a real use case based
on our previous 3D-ResAttNet model developed for efficient
AD diagnosis. The experiment results show that the proposed
approach achieves linear speedup, which demonstrates its
scalability and efficient computing capability with little or no
differences in accuracy performance (when compared with
the existing non-parallel DNN models).
Future work will be focused on further improvement of
parallelization approach for efficient training performance.

ACKNOWLEDGMENT
The work reported in this paper has formed part of the project
by Royal Society - Academy of Medical Sciences Newton
Advanced Fellowship (NAF \R1\180371).

REFERENCES
[1] Y. Li, Y. Zhang and Z. Zhu, Error-Tolerant Deep Learning for Remote Sens-

ing Image Scene Classification, in IEEE Transactions on Cybernetics, vol.
51, no. 4, pp. 1756–1768, April 2021, doi: 10.1109/TCYB.2020.2989241.

[2] B. J. Abbaschian, D. Sierra-Sosa, A. Elmaghraby, Deep learning techniques
for speech emotion recognition, from databases to models, Sensors, 2021,
(4).

[3] M. Liu, J. Zhang, C. Lian and D. Shen, Weakly Supervised Deep Learning
for Brain Disease Prognosis Using MRI and Incomplete Clinical Scores,
in IEEE Transactions on Cybernetics, vol. 50, no. 7, pp. 3381–3392, July
2020, doi: 10.1109/TCYB.2019.2904186.

[4] M. F. J. Acosta, L. Y. C. Tovar, M. B. Garcia-Zapirain, et al., Melanoma
diagnosis using deep learning techniques on dermatoscopic images, BMC
Med Imaging 2021 (6).

[5] M. Schedl, Deep learning in music recommendation systems, Frontiers in
Applied Mathematics and Statistics 5 (2019) 44.

[6] D. J. N. J. Soemers, V. Mella, C. Browne, O. Teytaud, Deep learning for gen-
eral game playing with ludii and polygames, ArXiv, 2021, abs/2101.09562.

[7] H. Tembine, "Deep Learning Meets Game Theory: Bregman-Based Algo-
rithms for Interactive Deep Generative Adversarial Networks," in IEEE
Transactions on Cybernetics, vol. 50, no. 3, pp. 1132–1145, March 2020,
doi: 10.1109/TCYB.2018.2886238.

[8] Michael Diskin and Alexey Bukhtiyarov and Max Ryabinin and Lucile
Saulnier and Quentin Lhoest and Anton Sinitsin and Dmitry Popov and
Dmitriy Pyrkin and Maxim Kashirin and Alexander Borzunov and Albert
Villanova del Moral and Denis Mazur and Ilia Kobelev and Yacine Jernite
and Thomas Wolf and Gennady Pekhimenko, Distributed Deep Learning
In Open Collaborations, in: Advances in Neural Information Processing
Systems, 2021.

[9] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep
convolutional neural networks, Commun. ACM 60 (6) (2017) 84–90.

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3193690

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[10] J. George, P. Gurram, Distributed deep learning with event-triggered
communication, ArXiv, 2019, abs/1909.05020.

[11] S. Kim, G.-I. Yu, H. Park, S. Cho, E. Jeong, H. Ha, S. Lee, J.
S. Jeong,Byung-GonChun, Parallax: Sparsity-aware data parallel training
of deepneural networks, in: Fourteenth EuroSys Conference 2019 (Eu-
roSys19),Dresden, Germany., 2019, p. 15.

[12] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C.
Zhang, Z. Zhang, Mxnet: A flexible and efficient machine learning library
for heterogeneous distributed systems, ArXiv, 2015, abs/1512.01274.

[13] PyTorch, Pytorch deep learning framework that puts python first,
http://pytorch.org/, 2020 (accessed 16 Dec. 2020).

[14] Zhen Song, Yu Gu, Zhigang Wang, Ge Yu. DRPS: efficient disk-resident
parameter servers for distributed machine learning. Front. Comput. Sci. 16,
164321 (2022).

[15] J. Ono, M. Utiyama, E. Sumita, Hybrid data-model parallel training for
sequence-to-sequence recurrent neural network machine translation, ArXiv,
2019, abs/1909.00562.

[16] Swapnil Gandhi and Anand Padmanabha Iyer, P3: Distributed Deep Graph
Learning at Scale, in: Proceedings of the 15th USENIX Symposium on
Operating Systems Design and Implementation, OSDI’21, July, 2021, pp.
551–568.

[17] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou, N.
Kumar, M. Norouzi, S. Bengio, J. Dean, Device placement optimization
with reinforcement learning, in: ICML, 2017.

[18] M. Wang, C. Huang, J. Li, Unifying data, model and hybrid parallelism in
deep learning via tensor tiling, ArXiv, 2018, abs/1805.04170.

[19] L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, Y. Chen, Hypar: Towards hybrid
parallelism for deep learning accelerator array, 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2019.

[20] A. Sergeev, M. D. Balso, Horovod: fast and easy distributed deep learning
in tensorflow, ArXiv, 2018, abs/1802.05799.

[21] Z. Jia, M. Zaharia, A. Aiken, Beyond data and model parallelism for deep
neural networks, ArXiv, 2019, abs/1807.05358.

[22] A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le, J. Dean, A
hierarchical model for device placement, in: International Conference on
Learning Representations, 2018.

[23] O. Yadan, K. Adams, Y. Taigman, M. Ranzato, Multi-gpu training of
convnets, CoRR, 2014, abs/1312.5853.

[24] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, Z. Chen,
Gpipe:Efficient training of giant neural networks using pipeline parallelism,
ArXiv, 2019 abs/1811.06965.

[25] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool, P.
Hawkins, H. Lee, M. Hong, C. Young, R. Sepassi, B. A. Hechtman, Mesh-
tensorflow: Deep learning for supercomputers, in: NeurIPS, 2018.

[26] G. Onoufriou, R. Bickerton, S. Pearson, G. Leontidis, Nemesyst: A hybrid
parallelism deep learning-based framework applied for internet of things
enabled food retailing refrigeration systems, Comput. Ind. 113, 2019.

[27] Y. Oyama, N. Maruyama, N. Dryden, E. McCarthy, P. Harrington, J.
Balewski, S. Matsuoka, P. Nugent, B. Van Essen, The case for strong scaling
in deep learning: Training large 3d cnns with hybrid parallelism, IEEE
Transactions on Parallel and Distributed Systems 32 (7) (2021) 1641–1652.

[28] Z. Wesoowski, Network resource allocation in distributed systems: A
global optimization framework, in: 2015 IEEE 2nd International Confer-
ence on Cybernetics (CYBCONF), 2015, pp. 267–270.

[29] A. Velarde Martinez, Scheduling in heterogeneous distributed computing
systems based on internal structure of parallel tasks graphs with meta-
heuristics, Applied , 10 (18), 2020.

[30] L. Haji, S. Zeebaree, O. Ahmed, A. Sallow, K. Jacksi, R. Zebari, Dynamic
resource allocation for distributed systems and cloud computing, Test
Engineering and Management 83 (2020) 22417–2242.

[31] M. Zhang, L. Liu, S. Liu, Genetic algorithm based qos-aware service com-
position in multi-cloud, in: 2015 IEEE Conference on Collaboration and
Internet Computing (CIC), 2015, pp. 113–118.

[32] K. Gai, M. Qiu, H. Zhao, Cost-aware multimedia data allocation for
heterogeneous memory using genetic algorithm in cloud computing, IEEE
Transactions on Cloud Computing (2016) 1–1.

[33] C. Mezache, O. Kazar, S. Bourekkache, A genetic algorithm for resource
allocation with energy constraint in cloud computing, in: Proceedings of the
International Conference on Image Processing, Production and Computer
Science (ICIPCS-2016), 2016, pp. 62–69.

[34] H. Jiang, J. Yi, S. Chen, X. Zhu, A multi-objective algorithm for task
scheduling and resource allocation in cloud-based disassembly, Journal of
Manufacturing Systems 41 (2016) 239–255.

[35] A. Mosa, R. Sakellariou, Dynamic virtual machine placement considering
cpu and memory resource requirements, in: 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD), 2019, pp. 196–198.

[36] P. Devarasetty, S. Reddy, Genetic algorithm for quality of service based
resource allocation in cloud computing, Evolutionary Intelligence, 2019.

[37] S. H. da Mata, P. R. Guardieiro, A genetic algorithm based approach for
resource allocation in lte uplink, in: 2014 International Telecommunications
Symposium (ITS), 2014, pp. 1–5.

[38] Z. Li, Q. Zhu, Genetic algorithm-based optimization of offloading and
resource allocation in mobile-edge computing, Information 11 (2), 2020.

[39] T. Perry, M. Bader-El-Den, S. Cooper, Imbalanced classification using
genetically optimized cost sensitive classifiers, 2015 IEEE Congress on
Evolutionary Computation (CEC) (2015) 680–687.

[40] Alexander Sergeev and Mike Del Balso, Horovod: fast and easy distributed
deep learning in TensorFlow, ArXiv abs/1802.05799 (2018)

[41] Nvidia, Nccl, https://docs.nvidia.com/deeplearning/nccl/install-
guide/index.html, 2021, (accessed 23 Jan. 2021).

[42] X. Zhang, L. Han, W. Zhu, L. Sun, D. Zhang, An explainable 3d
residual self-attention deep neural network for joint atrophy localiza-
tion and alzheimer’s disease diagnosis using structural mri, ArXiv, 2020,
abs/2008.04024.

[43] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J.
Smith, B. Vaughan, P. Damania, S. Chintala, Pytorch distributed: Experi-
ences on accelerating data parallel training, Proc. VLDB Endow. 13 (2020)
3005–3018.

[44] . Hosseini-Asl, R. Keynton, A. El-Baz, Alzheimer’s disease diagnostics by
adaptation of 3d convolutional network, 2016 IEEE International Confer-
ence on Image Processing (ICIP) (2016) 126–130.

[45] H. Suk, D. Shen, Deep learning-based feature representation for ad/mci
classification, Medical image computing and computer-assisted interven-
tion : MICCAI ... International Conference on Medical Image Computing
and Computer-Assisted Intervention 16 Pt 2 (2013) 583–90.

[46] S. Sarraf, G. Tofighi, Classification of alzheimer’s disease using fmri
data and deep learning convolutional neural networks, ArXiv, 2016,
abs/1603.08631.

[47] C. D. Billones, O. J. L. D. Demetria, D. E. D. Hostallero, P. C. Naval,
Demnet: A convolutional neural network for the detection of alzheimer’s
disease and mild cognitive impairment, in: 2016 IEEE Region 10 Confer-
ence (TENCON), 2016, pp. 3724–3727.

[48] H. Li, M. Habes, Y. Fan, Deep ordinal ranking for multi-category di-
agnosis of alzheimer’s disease using hippocampal mri data, ArXiv, 2017,
abs/1709.01599.

[49] J. Shi, X. Zheng, Y. Li, Q. Zhang, S. Ying, Multimodal neuroimaging
feature learning with multimodal stacked deep polynomial networks for
diagnosis of alzheimer’s disease, IEEE Journal of Biomedical and Health
Informatics PP (2017) 1–1.

[50] Fengrui Yu and Xueliang Fu and Honghui Li and Gaifang Dong, Improved
Fitness Proportionate Selection-Based Genetic Algorithm, Proceedings of
the 2016 3rd International Conference on Mechatronics and Information
Technology, 2016, pp. 136–140.

[51] Z. Huo and B. Gu and Q. Yang and H. Huang. Decoupled parallel
backpropagation with convergence guarantee. In ICML, 2018.

[52] H. Zhuang and Y. Wang and Q. Liu and Z. Lin. Fully decoupled neural
network learning using delayed gradients. IEEE transactions on neural
networks and learning systems, PP, 2021.

[53] D. Narayanan and A. Harlap and A. Phanishayee and V. Seshadri and N. R.
Devanur and G. R. Ganger and P. B. Gibbons and M. Zaharia. Pipedream:
Generalized pipeline parallelism for dnn training. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, pages 1–15, New York,
NY, USA, 2019. Association for Computing Machinery.

[54] S. Lee and D. Jha and A. Agrawal and A. Choudhary and and W.
Liao. Parallel deep convolutional neural network training by exploiting
the overlapping of computation and communication. In 2017 IEEE 24th
International Conference on High Performance Computing (HiPC), pages
183–192, Jaipur, 2017.

[55] C.-C. Chen and C.-L. Yang and H.-Y. Cheng. Efficient and robust parallel
dnn training through model parallelism on multi-gpu platform. ArXiv,
abs/1809.02839, 2018.

[56] C Kim and H Lee and M Jeong and W Baek and B Yoon and I Kim and
S Lim and S Kim. torchgpipe: On-the-fly pipeline parallelism for training
giant models. arXiv preprint arXiv:2004.09910. 2020.

[57] S. Li, Z. Huang and L. Han. A Genetic Algorithm Enhanced Automatic
Data Flow Management Solution for Facilitating Data Intensive Applica-

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3193690

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

tions in the Cloud. Concurrency and Computation: Practice and Experience,
2018.

SAMSON B. AKINTOYE received the Ph.D. de-
gree in Computer Science from University of the
Western Cape, South Africa, 2019. He is currently
working as a research associate in the Depart-
ment of Computing and Mathematics, Manch-
ester Metropolitan University, United Kingdom.
His current research interests include parallel and
distributed computing, deep learning, and cloud
computing.

LIANGXIU HAN received the Ph.D. degree in
computer science from Fudan University, Shang-
hai, China, in 2002. She is currently a Professor
of computer science with Department of Com-
puting and Mathematics, Manchester Metropoli-
tan University. Her research areas mainly lie in
the development of novel big data analytics and
development of novel intelligent architectures that
facilitates big data analytics (e.g., parallel and dis-
tributed computing, Cloud/Service-oriented com-

puting/ data intensive computing) as well as applications in different do-
mains using various large datasets (biomedical images, environmental sen-
sor, network traffic data, web documents, etc.). She is currently a Principal
Investigator or Co-PI on a number of research projects in the research areas
mentioned above.

XIN ZHANG is associate researcher in Manch-
ester Metropolitan University (MMU), he received
the B.S degree from The PLA Academy of Com-
munication and Commanding, China, in 2009 and
Ph.D. degree in Cartography and Geographic In-
formation System from Beijing Normal Univer-
sity(BNU), China, in 2014. His current research
interests include remote sensing image processing
and deep learning.

HAOMING CHEN is studying for a master’s
degree in Computer Science and Artificial In-
telligence in University of Sheffield. His current
research interests include machine learning and
Artificial Intelligence.

DAOQIANG ZHANG received the B.Sc. and
Ph.D. degrees in computer science from Nanjing
University of Aeronautics and Astronautics, Nan-
jing, China, in 1999 and 2004, respectively. He is
currently a Professor in the Department of Com-
puter Science and Engineering, Nanjing Univer-
sity of Aeronautics and Astronautics. His current
research interests include machine learning, pat-
tern recognition, and biomedical image analysis.
In these areas, he has authored or coauthored

more than 100 technical papers in the refereed international journals and
conference proceedings.

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3193690

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

