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Abstract: The lattice Boltzmann method (LBM) is characterised by its simplicity, parallel processing
and easy treatment of boundary conditions. It has become an alternative powerful numerical method
in computational physics, playing a more and more important role in solving challenging problems in
science and engineering. In particular, the lattice Boltzmann method with the single relaxation time
(SLBM) is the simplest and most popular form of the LBM that is used in research and applications.
However, there are two long-term unresolved problems that prevent the SLBM from being an
automatic simulator for any flows: (1) stability problem associated with the single relaxation time and
(2) no method of direct implementation of physical variables as boundary conditions. Recently, the
author has proposed the macroscopic lattice Boltzmann method (MacLAB) to solve the Navier–Stokes
equations for fluid flows, resolving the aforementioned problems; it is unconditionally stable and uses
physical variables as boundary conditions at lower computational cost compared to conventional
LBMs. The MacLAB relies on one fundamental parameter of lattice size δx, and is a minimal version
of the lattice Boltzmann method. In this paper, the idea of the MacLAB is further developed to
formulate a macroscopic lattice Boltzmann method for shallow water equations (MacLABSWE). It
inherits all the advantages from both the MacLAB and the conventional LBM. The MacLABSWE
is developed regardless of the single relaxation time τ. Physical variables such as water depth and
velocity can directly be used as boundary conditions, retaining their initial values for Dirichlet’s
boundary conditions without updating them at each time step. This makes not only the model to
achieve the exact no-slip boundary condition but also the model’s efficiency superior to the most
efficient bounce-back scheme for approximate no-slip boundary condition in the LBMs, although the
scheme can similarly be implemented in the proposed model when it is necessary. The MacLABSWE
is applied to simulate a 1D unsteady tidal flow, a 2D steady wind-driven flow in a dish-shaped lake
and a 2D steady complex flow over a bump. The results are compared with available analytical
solutions and other numerical studies, demonstrating the potential and accuracy of the model.

Keywords: macroscopic lattice boltzmann method; shallow water equations; numerical method;
mathematical model; boundary conditions; bed slope; force term

PACS: 47.11.-j; 02.60.Cb; 02.70.-c

1. Introduction

In nature, many flows have large and dominant horizontal flow characteristics com-
pared to the vertical ones, e.g., tidal flows, waves, open channel flows, dam breaks, and
atmospheric flows. Those flows are called shallow-water flows and are described by the
shallow-water flow equations [1]. As numerical solutions to the equations turn out to be a
very successful tool in studying diverse flow problems encountered in engineering [1–7],
the corresponding research has received considerable attention, leading to many numerical
methods ranging from finite difference method, finite element method and the Godunov
type to the lattice Botzmann method. For example, Casulli [3] proposed a semi-implicit
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finite difference method for the two-dimensional shallow water equations; Zhou [8] devel-
oped a SIMPLE-like finite volume scheme to solve the shallow water equations; Alcrudo
and Garcia-Navarro [2] described a high-resolution Godunov-type finite volume method
for solution of the inviscid shallow water equations; Zhou et al. [9] proposed a surface
gradient method for the treatment of source terms in the shallow water equations us-
ing Godunov-type finite volume method; and Zhou [10] formulated a lattice Boltzmann
method for the shallow water equations.

In all methods mentioned above, the lattice Boltzmann method (LBM) is characterised
by its simplicity, parallel processing and easy treatment of boundary conditions. It has
become an alternative powerful numerical method in computational physics, playing a
more and more important role in solving challenging problems in science and engineering.
Its simplest and most popular version is the lattice Boltzmann method with the single
relaxation time (SLBM), which is widely used in research and applications for various
flow problems such as nonideal fluids [11], microscale flow in fibrous porous media [12],
groundwater flows [13] and morphological change [14]. The study on lattice Boltzmann
method for the shallow water equations has continuously been undertaken and improved
by the author, e.g., the removal of calculating the first order derivative associated with a
bed slope for consistency of the lattice Boltzmann dynamics [15], and determination of
theoretical relation between the coefficients in the respective local equilibrium distribution
function and the lattice Boltzmann equation for complex shallow water flows [16]. This
makes the development of the lattice Boltzmann method for the shallow water equations
(eLABSWE) to a point where it is able to produce accurate solutions to complex shallow
water flow problems in an efficient way. The method has been applied to several complex
flow problems, including large-scale practical applications, demonstrating its potential,
capability and accuracy in simulating shallow water flows [17–20].

However, there are two main gaps in the research on the lattice Boltzmann method for
the shallow water equations using the single relaxation time, i.e., (1) the stability problem
related to single relaxation time and (2) the lack of a method for the direct implementation
of physical variables as boundary conditions. They are, in fact, two long-term unresolved
problems that prevent the SLBM from being an automatic simulator for any flow problems.
In addition, although there are 1st- and 2nd-order accurate bounce-back schemes for no-
slip boundary conditions in the LBMs [21], neither can generate exact no-slip boundary
condition. If the collision term can be removed, the former problem will be resolved forever;
if a lattice Boltzmann method can be formulated based on physical variables only, the latter
will be resolved and an exact no-slip boundary condition will also be ensured. Recently, the
author has proposed the macroscopic lattice Boltzmann method (MacLAB) and successfully
resolved these two problems to solve the Navier–Stokes equations; it is unconditionally
stable and uses physical variables as boundary conditions at lower computational cost. The
MacLAB relies on one fundamental parameter of lattice size δx, and is a minimal version
of lattice Boltzmann method. We refer to the author’s paper about the MacLAB [22] for
details of other relevant literature review.

In this paper, the MacLAB is further extended and developed to formulate a new
macroscopic lattice Boltzmann method for the shallow water equations (MacLABSWE).
The main contributions and novelty of this research are that (1) the collision step associated
with single relaxation time is removed for unconditional stability and only lattice size is
required in the model, leading to a precise “Lattice” Boltzmann method for shallow water
flows; (2) the eddy viscosity is embedded in a natural way through the particle speed in
the local equilibrium distribution function, changing the conventional way of determining
suitable values of the parameters such as single relaxation time and lattice size for it; (3) the
particle speed or time step is no longer independent and is determined with the eddy
viscosity and lattice size, resulting in an automatic model for shallow water flows without
choosing or tuning other simulation parameters by trial and error; (4) the model shares the
same valid condition as that of the local equilibrium distribution function and becomes
unconditionally stable in this regard; (5) physical variables such as water depth and velocity
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can directly be retained at boundaries, making modelling not only more efficient but also
an exact no-slip boundary conditions at lower computational cost. All these make the
MacLABSWE an ideal automatic simulator for simulation of any scale shallow water flows,
especially when a super-fast computer such as a quantum computer becomes available in
the future. The model is validated through modelling a 1D unsteady tidal flow, a 2D steady
wind-driven flow in a dish-shaped lake and a 2D steady complex flow over a bump.

2. Shallow Water Equations

The 2D shallow water equations with a force term for all forces such as bed friction
and wind shear stress may be written in tensor notation as [8]

∂h
∂t

+
∂(huj)

∂xj
= 0 (1)

and

∂(hui)

∂t
+

∂(huiuj)

∂xj
= − g

2
∂h2

∂xi
− gh

∂zb
∂xi

+ ν
∂2(hui)

∂x2
j

+ Fi, (2)

where i and j are indices and the Einstein summation convention is used, i.e., repeated
indices mean a summation over the space coordinates; xi is the Cartesian coordinate; h is
the water depth; t is the time; ui is the depth-averaged velocity component in ith direction;
zb is the bed elevation above a datum; g = 9.81 m/s2 is the gravitational acceleration; ν is
the depth-averaged eddy viscosity; and Fi is the force term and defined as

Fi =
τwi
ρ
− τbi

ρ
+ Ωhuyδix −Ωhuxδiy, (3)

in which τwi is the wind shear stress in ith direction and is generally defined by

τwi = ρaCwuwi
√

uwjuwj, (4)

where ρa = 1.293 kg/m3 is the air density, uwi is the component of wind speed in ith

direction with Cw = 0.0026; and τbi is the bed shear stress in ith direction defined by the
depth-averaged velocities as

τbi = ρCbui
√

ujuj, (5)

where ρ is the water density and Cb is the bed friction coefficient, which is linked to Chezy
coefficient Cz as Cb = g/C2

z ; Ω is the Coriolis parameter for the effect of the earth’s rotation;
and δij is the Kronecker delta function,

δij =

{
0, i 6= j,
1, i = j.

(6)

3. Review of Enhanced Lattice Boltzmann Equation for Shallow Water Equations

The enhanced lattice Boltzmann equation for the shallow water Equations (1) and (2)
(eLABSWE) is described and reported in [15,16]. The eLABSWE is developed on a 2D
square lattice with nine particle velocities (D2Q9) shown in Figure 1 and reads

fα(x + eαδt, t + δt) = fα(x, t)− 1
τ
[ fα(x, t)− f eq

α (x, t)]

− gh
e2 Cα[zb(x + eαδt)− zb(x)] +

δt
e2 CαeαjFj, (7)

where fα is the particle distribution function; x is the space vector defined by Cartesian
coordinates, i.e., x = (x, y) in 2D space; t is the time; δt is the time step; eα is the particle
velocity vector; eαj is the component of eα in jth direction; e = δx/δt is the particle speed,



Water 2022, 14, 2065 4 of 14

δx is the lattice size; τ is the single relaxation time [23]; Cα = 1/3 when α = 1, 3, 5, 7
and Cα = 1/12 when α = 2, 4, 6, 8 and f eq

α is the local equilibrium distribution function
defined as

f eq
α =

 h
(

1− 5gh
6e2 − 2uiui

3e2

)
, α = 0,

λαh
(

gh
6e2 +

eαiui
3e2 +

eαieαjuiuj
2e4 − uiui

6e2

)
, α 6= 0,

(8)

in which λα = 1 when α = 1, 3, 5, 7 and λα = 1/4 when α = 2, 4, 6, 8; and h is defined by

h = 0.5[h(x + eαδt, t + δt) + h(x, t)], (9)

which is in an implicit form for h and reduces efficiency in the model. Although such
implicitness can be eliminated by using the method by He et al. [24], it is founded that the
use of a semi-implicit form, h = 0.5[h(x + eαδt, t) + h(x, t)], is explicit, efficient and able to
produce accurate solutions, which is preferred in practice for efficient simulations.

8

1

24

5

6

3

7

Figure 1. Two-dimensional square lattice for nine-particle velocities, which are labelled by Numbers
1–8 for directions and 0 for still particle (D2Q9).

The physical variables of water depth and velocity are calculated as

h = ∑
α

fα, (10)

and
ui =

1
h ∑

α

eαi fα. (11)

The depth-averaged eddy viscosity in eLASWE is determined as

ν =
e2δt

6
(2τ − 1). (12)

The solution procedure for the eLABSWE is as follows:

1. Initialise water depth and velocity;
2. Select suitable lattice size δx and time step δt;
3. Choose single relaxation time τ according to the stability condition;
4. Calculate f eq

α from Equation (8) using water depth and velocity;
5. Compute the particle distribution function fα via the lattice Boltzmann Equation (7);
6. Update the depth and velocity using Equations (10) and (11);
7. Apply the bounce-back scheme for no-slip boundary condition or implement others

through conversion of physical variables into particle distribution functions;
8. Repeat Step (4) until a solution is reached.
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4. Macroscopic Lattice Boltzmann Method (MacLABSWE)

To formulate a new macroscopic lattice Boltzmann method for the shallow water
equations through the macroscopic physical variables of water depth and velocity without
calculating particle distribution functions, Equation (7) is rearranged as

fα(x + eαδt, t + δt) = f eq
α (x, t) +

(
1− 1

τ

)
[ fα(x, t)− f eq

α (x, t)]

− gh
e2 Cα[zb(x + eαδt)− zb(x)] +

δt
e2 CαeαjFj, (13)

Taking ∑ Equation (13) and ∑ eαiEquation (13) yields

∑ fα(x + eαδt, t + δt) = ∑ f eq
α (x, t)

− g
e2 ∑ Cαh[zb(x + eαδt)− zb(x)] +

δt
e2 ∑ CαeαjFj, (14)

and

∑ eαi fα(x + eαδt, t + δt) = ∑ eαi f eq
α (x, t)

− g
e2 ∑ Cαeαih[zb(x + eαδt)− zb(x)] +

δt
e2 ∑ CαeαieαjFj (15)

due to conservation of zeroth and first moments in the lattice Boltzmann method,

∑ fα(x, t) = ∑ f eq
α (x, t), ∑ eαi fα(x, t) = ∑ eαi f eq

α (x, t). (16)

The above Equations (14) and (15) can be rewritten as

∑ fα(x, t) = ∑ f eq
α (x− eαδt, t− δt)

− g
e2 ∑ Cαh[zb(x)− zb(x− eαδt)] +

δt
e2 ∑ CαeαjFj, (17)

and

∑ eαi fα(x, t) = ∑ eαi f eq
α (x− eαδt, t− δt) +

δt
e2 ∑ CαeαieαjFj

− g
e2 ∑ Cαeαih[zb(x)− zb(x− eαδt)]. (18)

where
h = 0.5[h(x, t) + h(x− eαδt, t− δt)], (19)

and the force term Fj, according to the centred scheme [7,25], can be evaluated at the
midpoint between (x− eαδt, t− δt) and (x, t) for accurate solution [15,16] as

Fj = Fj

(
x− 1

2
eαδt, t− 1

2
δt
)

. (20)

By using Equations (10) and (11), the Equations (17) and (18) can be expressed as

h(x, t) = ∑ f eq
α (x− eαδt, t− δt)

− g
e2 ∑ Cαh[zb(x)− zb(x− eαδt)] +

δt
e2 ∑ CαeαjFj (21)
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and

h(x, t)ui(x, t) = ∑ eαi f eq
α (x− eαδt, t− δt) +

δt
e2 ∑ CαeαieαjFj

− g
e2 ∑ Cαeαih[zb(x)− zb(x− eαδt)]. (22)

It can be seen from Equations (21) and (22) that the water depth and velocity are
determined using the macroscopic physical variables through the local equilibrium dis-
tribution function without calculating the particle distribution function from Equation (7)
that is required in Equations (10) and (11) for the depth and velocity in the eLABSWE.
Equations (21) and (22) form the macroscopic lattice Boltzmann method for the shallow
water equations (MacLABSWE). Clearly, it seems nowhere in the MacLABSWE to account
for the eddy viscosity. This problem arises from the removal of the collision term in the
lattice Boltzmann equation. As demonstrated in MacLAB [22], the problem is completely
resolved through the discovery that the following formula

e = 6ν/δx, (23)

is used for the particle speed e in the local equilibrium distribution function (8) for deter-
mining f eq

α instead of using e = δx/δt in the conventional lattice Boltzmann method. It
will be shown in the recovery section that the eddy viscosity ν is already embedded in the
model after Equation (23) is used.

The simulation procedure for MacLABSWE is as follows.

1. Initialise water depth and velocity;
2. Choose the lattice size δx and determine the particle speed e from Equation (23);
3. Calculate f eq

α from Equation (8) using water depth and velocity;
4. Update the depth and velocity using Equations (21) and (22);
5. Only apply the boundary conditions when it is necessary;
6. Repeat Step (3) until a solution is reached.

5. Recovery of the Shallow Water Equations

In this Section, we prove that the water depth and velocity calculated from Equa-
tions (21) and (22) satisfy the shallow water Equations (1) and (2). By realising that (A)
Equations (21) and (22) are equivalent to Equations (17) and (18) due to the definitions of
Equations (10) and (11), and (B) Equation (18) is obtained through ∑ eαi× Equation (17),
without loss of generality, we may start the derivation with Equation (17).

According to the Chapman–Enskog analysis, fα can be expanded around local equilib-
rium distribution function as

fα = f (0)α + f (1)α δt + f (2)α δt2 +O(δt3), (24)

where f (0)α = f eq
α for conventional notation in the analysis. Substituting Equation (24) into

Equation (17) leads to

∑[ f (0)α + f (1)α δt + f (2)α δt2 +O(δt3)] = ∑ f (0)α (x− eαδt, t− δt)

− g
e2 ∑ Cαh[zb(x)− zb(x− eαδt)] +

δt
e2 ∑ CαeαjFj, (25)
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Taking a Taylor expansion to the first term, f (0)α (x− eαδt, t− δt), on the right-hand side of
above Equation (25) in time and space at point (x, t) yields

f (0)α (x− eαδt, t− δt) = f (0)α − δt

(
∂

∂t
+ eαj

∂

∂xj

)
f (0)α

+
1
2

δt2

(
∂

∂t
+ eαj

∂

∂xj

)2

f (0)α +O(δt3). (26)

Similarly, the second term on the right hand side of Equation (25) can also be expressed via
the Taylor expansion,

gCα

e2

[
h− δt

2

(
∂h
∂t

+ eαj
∂h
∂xj

)](
δteαj

∂zb
∂xj
− δt2

2
eαieαj

∂2zb
∂xi∂xj

)
+O(δt3), (27)

and the third term given by Equation (20) on the right hand side of Equation (25) can be
written, via a Taylor expansion, as

Fj

(
x− 1

2
eαδt, t− 1

2
δt
)
= Fj −

δt
2

(
∂

∂t
+ eαj

∂

∂xj

)
Fj +O(δt2). (28)

After the substitution of Equations (26)–(28) into Equation (25), equating the coefficients of
δt results in, for the first-order δt1,(

∂

∂t
+ eαj

∂

∂xj

)
f (0)α = − f (1)α −

ghCαeαj

e2
∂zb
∂xj

+
CαeαjFj

e2 , (29)

and for the second-order δt2,

−1
2

(
∂

∂t
+ eαj

∂

∂xj

)2

f (0)α = − f (2)α +
Cαgeαj

2e2

(
∂h
∂t

+ eαi
∂h
∂xi

)
∂zb
∂xj

+
ghCαeαieαj

2e2
∂2zb

∂xi∂xj
−

Cαeαj

2e2

(
∂Fj

∂t
+ eαi

∂Fj

∂xi

)
. (30)

Substitution of Equation (29) into Equation (30) gives

1
2

(
∂

∂t
+ eαj

∂

∂xj

)
f (1)α = − f (2)α . (31)

Taking ∑ [(29) + δt× (31)] about α provides

∂

∂t ∑
α

f (0)α +
∂

∂xj
∑
α

eαj f (0)α = 0. (32)

which is in fact the second-order accurate continuity Equation (1) in local equilibrium
distribution function, i.e., Equation (1) can be recovered by substitution of Equations (10),
(11) and (16) into the Equation (32).

Taking ∑ eαi [(29) + δt× (31)] about α after mathematical manipulations yields

∂

∂t ∑
α

eαi f (0)α +
∂

∂xj
∑
α

eαieαj f (0)α +
δt
2

∂

∂xj
∑
α

eαieαj f (1)α = −gh
∂zb
∂xi

+ Fi. (33)

After using Equations (10), (11), (16) and (23), the above equation becomes the momentum
Equation (2) with the eddy viscosity ν, which is second-order accurate. Undoubtedly, the
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use of Equation (23) naturally embeds the eddy viscosity in the MacLABSWE without any
treatment.

It should be pointed out that the shallow water equations have been recovered from
the MacLABSWE and its proof is independent of the single relaxation time τ, which is
consistent with the development of the model in Section 4.

6. Unique Features and Main Limitation of the MacLABSWE

As the collision step is removed and only stream step or lattice size δx is retained, the
MacLABSWE becomes a precise lattice Boltzmann method and takes a minimal version of
the method for shallow water flows. It may be stressed that the MacLABSWE is developed
regardless of chosen value for the single relaxation time τ, i.e., there is no assumption of
setting τ = 1. The main features and limitation of the model is described and discussed in
this section.

6.1. Unique Features

• Only lattice size δx is required: After a lattice size δx is chosen, the MacLABSWE is
ready to simulate a flow with an eddy viscosity ν as seen from the solution procedure
in Section 4. This is because (xj − eαjδt) stands for a neighbouring lattice point; f eq

α

at time of (t− δt) represents its known quantity at the current time; and the particle
speed e is determined from Equation (23) for use in computation of f eq

α .
• There is no need to choose time step δt: the time step δt is no longer an independent

parameter and calculated as δt = δx/e, which is used to calculate time in simulations
of unsteady flows, and has no effect on steady flows.

• It is unconditionally stable: The method is unconditionally stable as it shares the
same valid condition as that for f eq

α , or the Mach number M = Uc/e is much smaller
than 1, which is the intrinsic restriction on the lattice Boltzmann method, where Uc
is a characteristic flow speed. The Mach number can also be expressed as a lattice
Reynolds number of Rle = Ucδx/ν via Equation (23). In practice, it is found that the
model is stable if Rle = Umδx/ν < 1 where Um is the maximum flow speed and is
used as the characteristic flow speed.

• Physical variables are directly implemented as boundary conditions: As only macro-
scopic physical variables such as water depth and velocity are required, they are
directly retained as boundary conditions with a minimum memory requirement at
lower computational cost. At the same time, the most efficeint bounce-back scheme
can be implemented as that in the standard lattice Botlzmann method if it is required,
e.g., if the water depth is unknown and no-slip boundary condition is applied at south
boundary for a straight channel, f eq

2 , f eq
3 , f eq

4 in Equation (21) are unknown and they
can be determined as f eq

2 = f eq
6 , f eq

3 = f eq
7 , f eq

4 = f eq
8 using the bounce-back scheme

for no-slip boundary condition, after which the water depth can be determined from
Equation (21) and in this case Equation (22) is no longer required for calculation of
velocity as the initial zero velocity will retain as no-slip boundary condition there.

• It is more efficient and needs less memory: compared to the eLABSWE [15,16], the
proposed model is more efficient and needs less computer storage because for each
time step in the eLABSWE, (1) calculations of particle distribution function fα needs
both additional computational cost and computer storage, and (2) conversion of phys-
ical variables into particle distribution function also needs additional computational
cost for boundary conditions.

• It is an automatic simulator: All above features make the MacLABSWE an automatic
simulator without tuning other simulation parameters for modelling a large flow
system when a super-fast computer, such as a quantum computer, becomes available
in the future.
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6.2. Main Limitation

The only limitation of the proposed model is that, for a very small eddy viscosity
or very high speed flow, the chosen lattice size after satisfying Rle < 1 may turn out to
generate very large lattice points (Lattice points, e.g., for one dimension with length of L
is calculated as NL = L/δx and NL is the lattice points); if the total of lattice points is too
big such that the demanding computations are beyond the current power of a computer,
the simulation cannot be carried out. Such difficulties may be solved or relaxed through
parallel computing using computer techniques such as GPU processors and multiple
servers, and will be largely or completely removed using a quantum computer when it
becomes available.

7. Validation

In order to verify the described model, three numerical tests typical of shallow water
flows are presented. The SI Units are used for the physical variables in the following
numerical simulations.

7.1. 1D Tidal Flow

First of all, a tidal flow over an irregular bed is predicted, which is a common flow
problem in coastal engineering. The bed is defined with data listed in Table 1. Here, we
consider a 1D problem with the initial and boundary conditions of

h(x, 0) = 16− zb(x), (34)

ux(x, 0) = 0 (35)

and

h(0, t) = 20− 4 sin
[

π

(
4t

86, 400
+

1
2

)]
, (36)

ux(1500, t) = 0. (37)

In the simulation, δx = 7.5 m or 200 lattices are used with eddy viscosity of ν = 31.25 m2/s
for same computational parameters used in [15]. This is an unsteady flow. Two numerical
results at t = 10,800 s and t = 32,400 s corresponding to the half-risen tidal flow with maxi-
mum positive velocities and to the half-ebb tidal flow with maximum negative velocities
are compared with the analytical solutions [26] and depicted in Figures 2 and 3, respectively.
The maximum relative errors are less than 0.005% for the water level, less than 0.05% for
velocity larger than 0.002 m/s, and less than 0.3% for smaller velocity, revealing excellent
agreements. After compared with the results using eLABSWE [15,16], it is revealed that
the two models effectively predict the similar accurate results up to machine-accuracy of a
computer. However, the current model is more efficient and needs less computer storage to
generate the solutions.

Table 1. Bed elevation zb for irregular bed.

Horizontal distance x(m) 0 50 100 150 250 300 350 400
Bed elevation zb(m) 0 0 2.5 5 5 3 5 5

x(m) 425 435 450 475 500 505 530 550 565 575
zb(m) 7.5 8 9 9 9.1 9 9 6 5.5 5.5

x(m) 600 650 700 750 800 820 900 950 1000 1500
zb(m) 5 4 3 3 2.3 2 1.2 0.4 0 0
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negative velocities for 1D tidal flow.

7.2. 2D Wind-Driven Circulation

Secondly, we consider a wind-driven circulation in a lake, which may generate a
complex flow phenomenon depending on the bed topography of a lake and the wind speed.
In this test, a uniform wind shear stress is applied to the shallow water in a circular basin
with the bed topography defined by the still water depth H,

H(x, y) =
1

1.3

1
2
+

√
1
2
−
√

x2 + y2

386.4

, (38)

from which, the bed level can be determined as zb(x, y) = H(0, 0)− H(x, y). The same
dish-shaped basin is also used by Rogers et al. [27] to test a Godunov-type method. Initially,
the water in the basin is still and then a uniform wind speed of uw = 5 m/s blows from
southwest to northeast, at which wind shear stress is calculated from Equation (4). Its steady
flow consists of two relatively strong counter-rotating gyres with flow in the deeper water
against the direction of the wind, exhibiting complex flow phenomenon. In the numerical
computation, δx = 2 or 200× 200 lattices are used with eddy viscosity of ν = 5.33 m2/s.
After the steady solution is obtained, the flow field is shown in Figure 4 and the normalised
resultant velocities at cross section A-A are compared with the analytical solution [28] in
Figure 5, exhibiting similar agreement to that by Zhou and Liu using eLABSWE [16] for
the same test. Although there is discrepancy between the numerical prediction and the
analytical solution, such agreement is reasonable due to the fact that the assumptions of
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both the rigid-lid approximation for the water surface and a parabolic distribution for the
eddy viscosity were used in the analytical solution.

A

A

Figure 4. Flow field for wind-driven flow, showing well-developed counter-rotating gyres with flow
in the deeper water against the direction of the wind.
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Figure 5. Comparison of the resultant velocities along cross-section A-A (see Figure 4) with the
analytical solution [28], where U0 = 0.129 and s = ux + uy.

7.3. Flow Over a 2D Hump

Finally, a steady shallow water flow over a 2D hump is investigated. The 2D hump is
defined as

zb(x, y) =
{

ψ(x, y), if (x, y) ∈ Ω,
0, otherwise,

(39)

where Ω = [300, 500]× [400, 600] and

ψ(x, y) = sin2
(

π(x− 300)
200

)
sin2

(
π(y− 400)

200

)
. (40)
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The flow conditions are: discharge per unit width is q = 10 m2/s; water depth is
h = 10 m at the outflow boundary and the channel is 1000 m long and 1000 m wide. This is
the same test as that used by researchers in validation of numerical methods [29–31] for
sediment transport under shallow water flows. Here, only steady flow over the fixed bed
without sediment transport is simulated as prediction of correct flow plays an essential
role in the determination of bed evolution, and hence it is a suitable test for the proposed
scheme. We use δx = 5 or 200× 200 lattices in the simulation. After the steady solution is
obtained, the velocities ux and uy are shown in Figures 6 and 7, respectively, demonstrating
good agreements with those obtained using high-resolution Godunov-type numerical
methods [29–31]. The results are also compared to that using the eLABSWE and again
show similar accuracy.
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Figure 6. Velocity ux distribution for a steady flow over a 2D bump.
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Figure 7. Velocity uy distribution for a steady flow over a 2D bump.

8. Conclusions

The paper presents a novel macroscopic lattice Boltzmann method for the shallow
water equations (MacLABSWE). The collision step is removed and the model is completely
determined by the lattice size only, creating a minimal version of the lattice Boltzmann
method, MacLABSWE. This changes the standard view of two integral steps of streaming
and collision in the conventional lattice Boltzmann method. The shallow water equations
are recovered from the MacLABSWE to ensure that the calculated water depth and velocities
from the mode are the solutions to the shallow water equations. The derivation of the
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model and the recovery of the flow equations are independent of the single relaxation time
τ and consistent with each other. Steady and unsteady numerical tests have shown that the
method can provide accurate solutions. The main conclusions are

• The method is unconditionally stable, which shares the same validation as that of the
local equilibrium distribution function. This takes the research on the method into a
new era in which future work may focus on improving the accuracy of or formulating
a new local equilibrium distribution function.

• The model depends on physical variables only and they are directly applied as bound-
ary condition without converting them to their corresponding distribution functions,
which not only save computational storage at lower computational cost but also
achieve an exact no-slip boundary condition unlike the use of the first or second
order-accurate bounce-back scheme.

• The MacLABSWE is an automatic model for water flows once a lattice size is chosen.
It is an ideal model for simulation of any scale flows to achieve an ultimate goal of
generating real-time predictions for solving challenging flow problems such as weather
forecast and flooding when a super-fast computer such as a quantum computer
becomes available in the future.

• It is discovered that the use of Equation (23) for the particle speed e in the local equi-
librium distribution function naturally embeds the eddy viscosity in the MacLABSWE
without any treatment.

• The model preserves the simple arithmetic calculations of the lattice Boltzmann
method at the full advantages of the conventional lattice Boltzann method. The
most efficient bounce-back scheme can be applied straightforwardly, if it is necessary.

• The solution procedure involves two fewer steps compared to eLABSWE and the
conventional lattice Boltzmann method, making the model more efficient.
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