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Abstract

Manually converting the design of a graphical user interface (GUI) into

code is a time-consuming and error-prone process. A feasible solution

is to automatically generate code by designing images or text through a

GUI. Recently, deep learning technology has shown promising results in

detecting GUI elements for this automation.

This project develops new approaches to GUI development and evalua-

tion. First, a code semantic metric (CSM) is developed. It uses n-gram

sequence features and cosine similarity to judge the accuracy of trans-

lated code. The results show that this metric has better performance

than bilingual evaluation understudy (BLEU). Second, a modified frame-

work is proposed to solve the problem of feature vector losses in a pix2code

model, which generates the specific GUI code with a screenshot. The re-

sults of the empirical study outperform the state-of-the-art methods based

on BLEU. Third, a UIGAN model that performs better than the tradi-

tional generative adversarial network (GAN) is proposed, and a new data

augmentation method is introduced to overcome data deficiency in GUI

generation. Fourthly, to address the problem of existing text-to-image

generation models, a scene graph-to-UI (SG2UI) model is proposed for

GUI generation. In this approach, a graph convolutional network (GCN)

is used as the feature extraction network of the input scene graph. The

Fréchet inception distance (FID) and perceptual loss are used to calcu-

late the difference between the generated GUI and the real GUI. The

experimental results demonstrate that the object details of the final GUI

generated are more apparent and the model improves the quality and

creativity of the generated GUI.

Future research is needed to improve the model to directly generate com-

plex scene layouts with the hypertext nature of GUI design.
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Chapter 1

Introduction and Overview

1.1 Background

A graphical user interface (GUI) is an interface through which users interact with

electronic devices such as computers, handheld devices and other devices [171]. Text-

based interfaces display data and commands in text format, whereas GUIs use icons,

menus, and other visual graphics to represent information and related user controls

to be displayed. It is widely used in online websites, modern desktop software and

mobile applications. As a necessary part of using electronic information products,

a GUI realises the information interaction between people and software. This hu-

man–computer interaction makes the user’s operation more convenient [82].

For the ever-changing electronic products, the GUI is becoming increasingly im-

portant [186]. A beautiful and friendly interface design is often more appealing to

customers and has become the key for enterprises to obtain a competitive advantage.

For example, many computer users believe that Apple’s Macintosh system has a bet-

ter GUI than Microsoft’s Windows system, which improves their brand loyalty to

Apple [186].

A successful GUI design may require complex and time-consuming processes. The

design process must follow many design principles and rules, including smooth inter-

action and applicability [48]. Clear readability and aesthetics are also key elements in

the design. Therefore, GUI designers must innovate through design and adapt to the

latest applications/software to keep up with fashion trends and meet the changing

market needs [28].

This kind of work is usually left to a few designers, so software developers also

need to undertake design tasks to fill this gap most of the time [69]. A survey of more

than 5,700 developers found that 51% of developers said they performed application

GUI design tasks more frequently than other tasks [62]. Software developers often
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lack UI/UX design training and have limited artistic sensitivity. Developers strive

to create GUIs from scratch. Instead, developers usually search the internet for

existing GUI designs and then modify them to meet their needs [148]. This is usually

done in open-source software projects or small start-ups without professional UI/UX

designers.

Although the existing studies help retrieve GUI and analyse its code structure,

some substantive problems have not been solved [15, 12]. First, there is no connection

between the developer’s intention and the problem of outputting text. There is also

a gap between visual GUI design and text queries, which may lead to the retrieved

GUI not meeting the developers’ needs. Second, GUI design can be copied by other

developers, which can negatively affect the application’s uniqueness and originality.

Using other GUIs directly may also cause potential intellectual property problems.

Third, some GUI design styles may be outdated, and developers may be unable to

keep up with current trends. Hence, an automated method must be built for creative

GUI design to reduce the workload of novice developers and designers [23, 14, 122].

Developers can use generated GUI design to automatically generate GUI code and

simplify the entire GUI development process.

1.2 Aims and Objectives

The aim of this project is to develop a system that can automatically generate a

specific platform code for a given GUI screenshot or GUI elements as inputs. The

extended version of this method might reduce the need to manually program GUIs.

The objectives of this thesis are:

• Design a novel metric to evaluate the accuracy for GUI layouts.

• Propose an improved framework to solve the problem of feature vector losses in

a pix2code framework to a certain extent.

• Synthesise realistic GUI images using generative adversarial networks.

• Create a scene graph model to generate additional GUI examples such as actual

texts, images, and buttons.

1.3 Main Contributions

The main contributions of this thesis are as follow:
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• This study has designed a code semantic metric (CSM) using n-gram sequence

features and cosine similarity to measure the accuracy of translation code.

• An improved framework based on pix2code is developed to automatically gen-

erate a specific platform code for a given GUI screenshot as an input.

• The UIGAN is developed for GUI data augmentation.

• A scene graph-to-UI (SG2UI) generation model based on a graph attention

network is proposed to generate higher quality GUI layouts.

1.4 Organisation of Thesis

1.4.1 Chapter 2: Literature Review

Deep learning techniques are being widely adopted to classify and recognise GUI com-

ponents. This chapter studies the relevant literature for deep learning techniques used

to recognize GUI components. It provides a review of the techniques and approaches

used in deep learning and computer vision to classify components.

1.4.2 Chapter 3: Evaluating Semantic Similarity for Source
Code Translation

Statistical machine translation (SMT) is a research hotspot in machine translation

and natural language processing. Recently, source code translation tasks based on

the SMT model have been applied to software engineering. Unfortunately, there is no

automated metric that can effectively detect the accuracy of code translation. Con-

sidering the similarity between code similarity detection and the machine translation

scoring process, this chapter proposes CSM based on traditional code plagiarism de-

tection metrics to verify its applicability to code translation tasks. Our empirical

research shows that the results of different code plagiarism detection methods are

quite different. After a specific parameter adjustment, the CSM can reflect the cor-

rectness of translation code semantics to a certain extent. We confirm that the CSM

has a high correlation with human judgment in the semantic accuracy of translated

code, and surpasses the scores of MOSS and JPlag, the mainstream traditional code

plagiarism detection methods.

3



1.4.3 Chapter 4: Automatic GUI Generation with Domain-
Specific Language (DSL) Model

Over the past few years, various studies have been conducted to solve the problems

of automatically converting image models into source code. Since 2018, pix2code

has inspired and promoted research in this domain. This chapter presents a new

model architecture to improve the framework of pix2code. We designed a framework

that can automatically generate a specific platform code for a given GUI screenshot

as an input. Although bilingual evaluation understudy (BLEU) is natural language

processing metric, it has been adopted for source code evaluation. To overcome

the limitations of BLEU in DSL tokens evaluation, we introduced a modified BLEU

(MBLEU) score. Our results show our proposed frameworks outperform the state-of-

the-art methods in BLEU and MBLEU. The MBLEU is suitable for DSL similarity

evaluation, but further research is necessary to establish this new metric.

1.4.4 Chapter 5: Data Augmentation on Graphical User In-
terface Generation

As a branch of artificial neural networks, deep learning is widely used in the field of

image recognition but the lack of its datasets leads to imperfect model learning. By

analysing the data scale requirements of deep learning and aiming at its application

in GUI generation, it is found that the collection of GUI datasets is a time-consuming

and laborious project, and it is difficult to meet the needs of existing deep learning

networks. To solve this problem, this chapter proposes a semi-supervised deep learn-

ing model that relies on the original small-scale datasets to produce a large number of

reliable data sets. By combining the cyclic neural network with the generated coun-

termeasure network, the cyclic neural network can learn the sequence relationship

and characteristics of the data, make the generated countermeasure network produce

reasonable data, and then expand the Rico dataset. Relying on the network structure,

the characteristics of collected data can be thoroughly analysed, and a large quantity

of reasonable data can be generated according to these characteristics. After data

processing, a reliable dataset for model training can be formed, which resolves the

problem of dataset shortages in deep learning.
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1.4.5 Chapter 6: Scene Graph-to-UI (SG2UI) Model for Graph-
ical User Interface Layout Generation

Presently, the text-to-image generation model only performs well on scene image

datasets with a single object. When a scene image involves multiple objects and

relationships, the generated layout becomes chaotic. The best existing solution is to

convert the text description into a scene graph structure that can better represent the

scene relationship in the layout, and then use the scene graph to generate the GUI

design. However, the final GUI generated by the existing scene graph to the GUI

layout generation model is not clear enough, and the object details are insufficient.

Therefore, a scene graph-to-UI generation model based on a graph attention network

is proposed to generate higher quality GUI layouts.

The model consists of a graph attention network for extracting scene graph fea-

tures and an object layout network for synthesising scene layout. The graph attention

network transfers the output object feature vector with stronger expression ability to

the improved object layout network to synthesise the scene layout closer to the real

label. At the same time, a feature-matching method is proposed to calculate the

layout loss, which makes the final generated layout more similar to the real GUI in

semantics. By training the model to generate 64 times 64 pixel images in the Rico

dataset containing multiple objects, the model in this chapter can generate complex

scene layouts containing multiple objects and relationships. The Frechet Inception

Distance (FID) of the generated GUI is about 8.8, which is 0.5 higher than the orig-

inal scene image-to-image generation model. The SG2UI generation model based on

the graph attention network proposed in this chapter can not only generate complex

GUI layouts containing multiple objects and relationships, but also produce GUIs

with higher quality and clearer details.

1.4.6 Chapter 7: Conclusion

This chapter concludes the thesis with a summary of the findings and a discussion of

possibilities for further research.
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Chapter 2

Literature Review

2.1 Introduction

Deep learning techniques are being widely adopted in classifying and recognizing

Graphical user interface components. This chapter studies the relevant literature and

extracts the context for deep learning techniques to recognize GUI components. It

provides a review of techniques and approaches used by deep learning and computer

vision to classify components. This chapter is the literature review of the topic and

provides data from valid and relevant sources for the comprehensive study of the

subject.

2.2 Software Automation

Software automation mainly involves software development, software specification,

automatic generation and automatic verification [17]. Since the beginning of the 21st

century, the global influence of the information industry has been increasing, and

software systems have gradually penetrated into various industrial fields and promoted

the continuous development and progress of those fields. At the same time, the scale

and complexity of software systems have increased dramatically. However, human

errors inevitably exist in the process of software development, resulting in defects in

software design or implementation, making the behaviour of software systems more

and more difficult to predict and control during operation [145]. Once the software

is run with specific input parameters or execution flow, defects can be activated,

resulting in software failure. In addition to causing a lot of property damage, this

can also result in the loss of life. To improve software quality and minimise the

risk of software failure, it is necessary to take appropriate control measures during

the software development process. Moreover, there are a large number of feedback
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mechanisms in the process of software design, development, testing, operation and

maintenance that provide sufficient space for the use of control theory to solve software

engineering problems [104]. Thus, software automation uses the corresponding theory

to rely on software to achieve specific functions.

With the development of the modern social information network, software testing

has become a valuable part of software engineering and it occupies an increasingly

important position in the software development process [141]. Software testing is

used not only to find errors in the system, but to also test the software system by

applying various testing techniques and methods, which can effectively improve the

quality of the software system and enhance the testers’ perception of confidence in

the product’s quality. Although the errors existing in the software cannot be fully

predicted, after software testing, the possibility of software failures and the severity

of the consequences of the failures can be accurately determined [113]. Through

software testing, the probability of software errors in the system can be limited to an

acceptable range, thus greatly improving the reliability of software quality.

The traditional software testing method primarily uses manual testing, which re-

quires a significant allocation of human resources, a long testing cycle and low testing

efficiency; moreover, it is very dependent on the tester’s personal experience, which is

easily affected by personal thinking habits, resulting in poor testing work, omissions

and errors [65]. Due to the gradual reduction of software development time and the

gradual expansion of software development scale, there is an increasing number of

problems in software testing, and the use of software testing automation technology

has become an inevitable trend in software development. Software test automation

technology can quickly and thoroughly test software systems and eliminate the test

omissions and errors caused by the testers’ personal thinking habits, thereby effec-

tively improving software quality, saving a significant amount of money related to

human resources and development costs and reducing software development time [6].

Currently, software automation testing focuses on managing the automation of the

software testing process and the automation of dynamic testing, such as performance

testing automation and functional testing automation [42]. Test automation consists

of the following components: the automated process of testing and the automated

analysis of test results [191]. In the automated process of testing, the tester does not

need to use the test cases one-by-one to test the software. The automatic analysis

of test results means that the tester does not need to analyse and record the test

data process and the intermediate results of the test. If there is an error in the test
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process, the automated test tool automatically reports the error and provides some

important clues, so the problems that occur during the test can be quickly identified.

Automated testing mainly evaluates the application set to be tested through test

scripts, which are provided by automated testing tools [4]. Test scripts are codes writ-

ten and implemented in a specified language (such as C#) in a specific environment.

The software testing system method is different; it can be regarded as a text that

uses specific language to parse the test function, or it can be regarded as a simple

‘batch’ command. It can also be regarded as a powerful function with more complex

scripting language program fragments.

2.3 Human–computer interaction (HCI)

Human–computer interaction (HCI) is a multidisciplinary field of study that fo-

cuses on interaction modes between humans and machines and is sometimes also

used in manufacturing or process control systems [161]. The more general term ‘hu-

man–machine interface’ (HMI) refers to the interface’s manufacturing or process con-

trol systems. In other words, the HCI discipline is concerned with all issues related

to the design and implementation of interfaces between humans and computers. Due

to its nature and goals, HCI will naturally involve multiple disciplines of computer

science (image processing, computer vision, programming languages, etc.) and multi-

ple disciplines of humanities (ergonomics, human factors, cognitive psychology, etc.)

[121]. HCI research primarily deals with the design, implementation, and evalua-

tion of novel interfaces that can improve HCI [121]. The improvements here involve

multiple aspects, including intuitive use and interface robustness.

An intuitive, natural, efficient, robust, and customizable interface can significantly

bridge the gap between human mental models and computers, machines, or robots

accomplishing a given task [121]. While HCI research dates back to 1975, recent

advances in consumer electronics have opened exciting new horizons. Designing af-

fordable, natural user interfaces (NUIs), gestures, hand and body gestures, speech,

and gaze are just a few examples of the many natural interaction modes.

In the early days of computer science, designers and developers paid little attention

to the usability or ‘user friendliness’ of hardware and software products [114]. How-

ever, as more users expect devices to be easy to use, researchers are finally focusing

on usability.

The International Organisation for Standardisation (ISO) defines usability as the

degree to which a product can be used effectively, efficiently, and satisfactorily by a
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user to achieve a specific goal [16]. That is, usability defines a set of criteria, including

efficiency, safety, and practicality, primarily related to computer systems.

In the mid-1990s, another important concept related to usability emerged. User

experience (UX) focuses on user-related factors, such as satisfaction, liking, emo-

tional satisfaction, and aesthetic appeal [5]. In some areas, the UX concept has

expanded and become more explicit. For example, web interface designers often use

the UX honeycomb to determine priorities during the design phase. The honeycomb-

shaped seven hexagons represent the parameters that must be carefully balanced for

a satisfactory quality of experience (QoE) for users: useful, usable, needed, visible,

convenient, reliable, and valuable [159].

Understanding human mental models is another important HCI issue. Different

users learn and maintain knowledge and skills in unique ways, often influenced by age

as well as cultural and social backgrounds. Therefore, the purpose of HCI research is

to bridge the gap between users and new technologies (now changing faster than ever)

[64]. Effective, efficient, and natural forms of human–machine interaction can lessen

the required skill level to operate complex equipment, thereby potentially reducing

inequalities between people, which in turn helps to address the ‘digital divide’—the

ability to access the gap between those who are able to use ICT technologies and

those who are unexposed and lack relevant skills [121].

For years, humans have been giving orders to machines through a keyboard and

mouse, also known as WIMP (windows, icons, menus, pointing devices) [67]. In

addition to the point-and-click devices normally associated with computers, we use

a variety of keyboards, such as dialling phone numbers, interacting with a TV, and

selecting the intricate functions on a car’s dashboard. In most cases, the device feeds

back its output to the user through a significant means, such as a monitor.

A few affordable sensors are also starting to shake up the way people interact with

devices. Touch and multi touch screens have driven the transition from regular cell

phones to smartphones, and gestures have become the primary interaction mode for

activating functions on personal devices [73]. At the same time, speech recognition

technology and the increasing computing power of CPUs also allow users to type

effectively when gestures are inconvenient.

Personal devices are the clearest example of new HCI forms that can reduce the

gap between human mental models and technology. One market leading this huge

innovation in HCI is entertainment. As users look to game and device makers for new

ways to control characters, console developers have devised a variety of new controllers

to free players from keyboards and mice [34]. The new interface offers haptic feedback
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and some form of tactile interface (controllers become steering wheels, guns, tennis

racquets, etc.).

Sensors—such as the Microsoft Kinect—are a major step towards an all-natural

interface, where the human body itself is the controller [45]. The device allows users

to send instructions to the machine through gestures and body postures, and the

embedded background hardware processes the raw data gathered by the depth camera

in real time, thereby obtaining the skeleton’s basic shape composed of human bones

and joints. Recognizing the position and orientation of the bones, the hardware can

recognize the posture and gestures and then map them into machine instructions.

Researchers are also working on sensors that can track a user’s hands [79]. For

example, Leap Motion interactively tracks a user’s hands by identifying fingertip po-

sitions and palm centres and then utilises inverse kinematics to solve for knuckle posi-

tions. Some automakers have developed interactive solutions based on hand tracking

as an alternative to the traditional model of managing infotainment functions via

touchscreens. Likewise, some smart TVs can replace traditional remote controls by

allowing users to employ gestures to make selections.

The above scenarios only existed in science fiction movies a few years ago but have

become an HCI reality. On the other hand, new and more interesting scenarios will de-

velop soon; for example, brain interfaces seem to be poised to reverse the relationship

between humans and machines [118]. The success of new interaction models depends

on future technological advancements that aim to transform interface devices into

wearable embedded objects. Interfaces based on augmented reality (AR) technology

are clear examples of this shift. Travel, entertainment, repair, shopping, and social

networking applications for personal devices are emerging, and new wearable sensors

may soon change our habits [95]. Google Glass will hit the market shortly, with new

application areas emerging every day. The concepts of HCI and human–computer

integration are destined to become one. In fact, solutions like Google Glass may soon

be replaced by contact lenses to truly achieve a natural, eye-mounted interface.

New HCI forms will dramatically change our lives. Novel interaction paradigms

will improve the quality of life for those who have difficulty enjoying today’s in-

terfaces, such as those with physical disabilities [51]. Conversely, new issues will

arise—especially regarding privacy, security, and ethics—that could slow the rollout

of wearable hardware and software. While some researchers are already working on

interface design and legal and privacy-related issues, countries’ diverse legal systems

are not ready for future HCI advancements.
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2.3.1 Graphical User Interface (GUI)

A graphical user interface (GUI) is a type of user interface through which users

interact with electronic devices via visual indicator representations [82]. It is an

amalgamation of technologies and gadgets that provides users with a set of rules

by which to navigate a computing environment and enables the interrelationship

between elements of an electronic device. A GUI is an interaction program with

photographic constituents for computer software, wherein different recipients who

transmit statistical data and the actions taken by users are presented [151]. Apart

from a GUI, there are three other computer interfaces, namely, a command line

interface, a menu-driven interface and a touchscreen interface. GUIs and touchscreen

interfaces are similar, but the latter are an advancement that is extensively used in

today’s world.

The advantages of a GUI are: 1) It renders computer operation more intuitive

and consequently eases usage and learning [157]; 2) It normally provides a user with

rapid visual feedback about the result of each action and enables multiple programs

or activities to be simultaneously displayed; and 3) Interplay through intelligibility

and control, officiousness and seamless user navigation. The best GUI is designed in

such a way that anticipates users’ needs. It captures and maintains awareness. The

most significant and perhaps the most frequently used advantage of a GUI is multi-

tasking, which enables computer users to interrelate with a computer and allows for

the revision of a standard layout—a major quality of any software for user accessibility.

As can be seen, a GUI is very advantageous and significant for the technological

advancement of the world.

GUIs are quiet and easy to use upon startup because they can simply shuffle

information between programs when different functions are used, as is the case with

the ‘copy’ and ‘paste’ shortcuts and the ‘drag-and-drop’ function. The use of a

GUI entails increased storage and can also be a preparatory ability. For modern

users, the functions of a GUI can go beyond the advantages of injection lines that

use the interface. The four main GUI attributes that were introduced are windows,

icons, menus and the pointer, which constitute the WIMP (windows, icons, menus,

pointer) system [134]. The WIMP system is the avenue through which a user and

a visual input device interact: It enables users to manipulate a pointing device,

most often the mouse, arranges information in windows and exhibits icons that are

available for executing commands—all these functions are combined in the menu and

the gesture that is accomplished for enabling signalling with a pointing device. A

window manager expedites the interconnection among windows, applications and the
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windowing system. The windowing system advances hardware-related actions, such

as personalising a device, the graphics hardware and the positioning of the pointer.

Advancements in GUIs and the development of the touchscreen interface eliminated

the need to use pointing devices.

2.3.2 Component of Graphical User Interface

The GUI is underlain by two major languages: presentation language, which paves

the way for a computer’s depiction of a human’s concerns, and action language that

distinguishes between human and computer segments [50]. Together, these compo-

nents transform the appearance of the GUI and the satisfaction with its expression

(i.e. the interface). The key components of the GUI are the pointer, icons, windows,

menus, scroll bar and intuitive input. Such components, which signify the assemblage

of computer programs, should correspond with a computer’s graphics for the easy cre-

ation and use of a computer program [158]. Familiar GUIs are Microsoft Windows,

Mac OSX, Chrome OS, GNOME and Android.

Gosling developed a programming language that was initially called ‘oak’, after

the oak sapling that stood outside his office [170]. This development was then suc-

ceeded by the green project, which was eventually rechristened ‘Java’, from a type

of coffee produced in Indonesia. Gosling’s aim was to build apparatus from essential

machines and a programming language that includes C, which is similar to annotation

but whose development involved more consideration of consistency and intelligibility

than that devoted to C/C++. The term ‘GUI’ is used not only for Java but also in

all programming languages that are the building blocks of such interfaces. As previ-

ously stated, a GUI assembles the graphical components through which a user can

interrelate with pages and applications. Java’s GUI incorporates components such as

labels, text fields, text areas and buttons, among others. Its conceptual windowing

toolkit can also incorporate receptacles that include the aforementioned components.

A Java program should accommodate two principal issues that clear the way for ma-

nipulating the sub-components. The programs must be catalogued to incidents on

the components, and the programs can serve as an instrument in an event, that is,

the instructor that can be called when an occasion occurs.

Python, which Guido van Rossum invented, is the expound, the recipient of a de-

vice located, the soaring flush in the programming language with dynamic semantics.

Python was developed in 1980 at the Centrum Wiskunde and Informatics (CWI) in

the Netherlands as the descendant of the ABC programming language, which was

created on the basis of SETL. SETL can manipulate anomalies and can be used in
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conjunction with the Amoeba intervene complex. Python was launched in December

1989. It is very easy to learn, and its syntax emphasises explicitness, thereby reduc-

ing the cost of program preservation. Python is an extensive programming language

applicable to many different projects, but it is used primarily for web development,

artificial intelligence, machine learning, operating systems development, mobile appli-

cation development and video game development. The language also features unique

GUI frameworks, namely, PYQT, PYGUI and TKINTER, among others. The frame-

works afford a Python user easy fabrication of GUI elements using gizmo, which is

found in the TK toolkit. TK widgets can be used to establish buttons, menus, data

fields and other elements that constitute Python gadgets. Python can provide nu-

merous options for the creation of a GUI, and an excellent Python interface can be

developed using the TK GUI toolkit that comes with the language. Developing a

GUI using applications is an easy task in ML.

MATLAB was originated by mathematician and computer programmer Cleve

Moler in consultation during the conducive algebraic programming era of 1967. Its

GUI is made up of apps that enable point-and-click actions for controlling software

and eliminate the need for users to master different languages and different types

of orders to scurry the solicitation. MATLAB can also be used with different ap-

plications independent of a desktop or the websites of these applications. Users are

allowed control over motif and creation in MATLAB, as these elements explain the

formation and behaviours of different apps.

2.4 Computer Vision

Computer vision is the field of study to develop techniques to aid the computers in

seeing and understanding the context of the images and videos [178]. It ensures that

computers are compatible and work efficiently with images and videos. Computer

vision is the most common and popular application of deep learning. It is an amal-

gamation of different disciplines, including computer science, physics, mathematics

and psychology. Given the broadness of these disciplines, computer vision is consid-

ered related to artificial intelligence [178]. Some of the most effective and extensively

used computer vision or deep learning techniques are ‘image classification, object de-

tection, object tracking, semantic segmentation, instance segmentation, and image

reconstruction’.
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2.4.1 Image Classification

Image classification is considered the primary domain of deep learning or computer

vision. It is aimed at recognising and identifying the features of images as objects.

It is also defined as the process of differentiating and categorising groups of pixels

and vectors on an image or identifying classes of images. This process takes two

forms: supervised classification and unsupervised classification. In machine learning

or computer vision, image classification is a ‘supervised learning problem’ resolved

by defining a set of target classes on an image and training a model through labelled

examples of images to enable it to predict image classes or sets [147]. Playing a

critical role in image classification are neural networks, among which the best-suited

deep learning algorithms are convolutional neural networks (CNNs).

2.4.2 Object Detection

Object detection is the process of defining objects on an image, labelling them and

creating boundaries for better recognition [190]. It is a methodology that enables a

computer to locate and identify an object, image or video. This identification method

is used to comprehensively label an object on an image and gather data about its

location and other factors. A CNN is also an applicable and exceptionally suitable

algorithm for object detection. Object detection differs from image classification in

that it creates inbounding boxes over the objects detected on an image. For example,

image classification labels only images containing a cat; even if there are two cats in

a photo, the image will still be labelled ‘cat’.

Conversely, object detection creates boxes and labels those individual boxes on an

image [190]. There can be numerous boxes on an image or video. Object detection

is very useful for applications involving webcams, security cameras, crowd counting,

anomaly scanning and self-driving cars, among other uses. Deep learning approaches

come with state-of-the-art methodologies for the recognition of objects. Because of

these methodologies, deep learning techniques are commonly used to recognise GUI

components. Object tracking is interlinked with other computer vision and deep

learning approaches. The basic structure of object detection approaches underlain by

deep learning consists of encoders and decoders [190]. An encoder takes an image and

assesses it through layers and networks to analyse its features and differentiate it from

other images. The image classified by the encoder is taken by a decoder, which then

binds and labels the image. The output port of the encoder is attached to a regressor,

which serves as the decoder. This basic model structure has its limitations. On a
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multi-object image, for instance, a module requires more regressors. The extension

of regressors for such an image is called a ‘region proposal network’, which is a more

efficient module. The proposed locations of an object on an image show that the

pixels of proposed predictions are analysed through classification networks [207].

2.4.3 Object Tracking

Object tracking can be referred to as the second stage of object detection. It involves

detecting, labelling and tracking similar objects on an image or video [190]. This

approach creates a unique and distinct ID for each individual object detected and is

widely used in video tracking. It also helps in object counting and locating. Problem

object tracking approaches use object detection once during the initial stages of de-

tection. It is accurate and efficient enough to locate an object when it moves outside

boundaries. An object-tracking algorithm is robust between occlusions and efficient

enough to track objects during rapid motions and movements.

2.4.4 Semantic Segmentation

Semantic segmentation, also called image segmentation, is the process of segmenting

objects on an image through the clustering of objects that belong to the same class

[71]. In simple terms, it involves the partitioning of digital images into segments. The

aim or purpose of semantic segmentation is to alter an image into a detectable and

readable structure. Segmentation is achieved by using different colours to represent

different classes of objects. Semantic segmentation can also be defined as the method

of labelling every pixel of an image and classifying similar characteristics of image

pixels in one class. Semantic segmentation is used in computer vision, deep learning

and artificial intelligence. It is an advanced method of classification and detection.

On an image, similar objects are classified as one segmentation: For example, the

people in a picture make up one segment, the animals constitute another and the

picture’s background is a separate segment. The segmentation approach uses the K-

means algorithm for the clustering of images. Segmentation is a highly complex task

that gives rise to more understandable and comprehensive images. It is an essential

part of computer vision and deep learning. For liberation, a dense pixel prediction

by models is required.
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2.4.5 Instance Segmentation

An expansion of semantic segmentation is instance segmentation, in which every

model and object on an image is classified, segmented and labelled. In segmentation,

for instance, every car on an image is a different object or belongs to different seg-

ments. Semantic segmentation groups cars on an image into a single category, but

instance segmentation breaks down each car into individual categories represented

with different colours. Instance segmentation uses more examples, approaches and

algorithms than semantic segmentation.

2.4.6 Image Reconstruction

The restoration of old or destroyed images is termed image reconstruction, wherein

models use current datasets to protect eroded or degraded parts of an image. It

is a very advanced field that continuously evolves, with researchers studying this

discipline and its applications. Image reconstruction is used in deep learning and

artificial intelligence [181]. It also helps remove substantial noise from images and

develops high-resolution images via CNNs in deep learning.

2.5 Deep Neural Networks

Deep learning is part of an inclusive ancestry of the machine learning procedure root

on the artificial neural network with the depiction of learning [101]. It is also termed

deep structured learning. Learning can be conducted, also be semi-conducted, or can

be conducted. Deep learning builds deep neural systems, deep belief systems, deep

reinforcement learning, recurrent neural systems, and convolution neural networks.

They have been trying to pasture counting the computer vision, speech recognition,

machine translation, bioinformatics, medical image analysis, drug design, a medium

that survey and board game programs, where they have manufactured the answer sim-

ilar to and, in some instances, outstanding skillful human production. Deep learning

is a type of machine learning and artificial intelligence (AI) that emulates the path

in which humans earn a definite type of information. Virtual assistants are cloud-

based entreaties that realize natural language voice order and finish the work for the

user [101]. It is widely being used in Chatbots, healthcare, engineering, music, etc.

Chatbots are generated for the use of machine learning algorithms. The deep learn-

ing Chatbot can gain aggregate from the data and the human-to-human talk. Deep
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learning is also used to create music based on the waving net and can be fructuous

on the replica for the raw audio, and it was Invented by google deep mind.

Python conducts the group, with 57% of fact researchers and machine learning

designers utilizing it and 33% categorizing it for evolution. Little admiration is given

to all the development in the deep learning that Python chassis over the two years

past, counting on the declaration of the Tensor flow and extensive selection of the

other libraries [54]. The skills of deep learning to operate a large number of functions

make deep learning very strong when dealing with amorphous data. Although, deep

learning algorithms can be a belly full for less complex problems because they need

access to a huge amount of the data to be effective. Deep learning has become

an integral and vital part of machine learning. The most beneficial or significant

advantage of deep learning is that deep learning is the machine language technique

that guides the computer to do what comes consistently to humans [101].

The history of deep learning was from 1943 when Walter Pitts and Warren Mc-

Culloch produced a computer model based on the visual matrix of the human mind.

They used a union of algorithms and the mathematics they knew as ‘threshold logic’

to mimic the thought process. From that time, Deep learning has been advanced

regularly, with only the two-notable smash in its evolution. They both were tied to

the infamous Artificial Intelligence developments. The first important Deep learning

advancement came in the 1960s when the Soviet Mathematician Alexei lvakhnenko

(helped by his assistant VG Lap) produced a small but practical sensual matrix. Deep

learning is called deep because of the formation of those ANNs [60]. Four decagons

back, sensual matrices were only two layers deep as it was not arithmetically prac-

ticable to build the biggest matrices. It is common to have sensual matrices with

10+ layers, and even 100+ layer ANNs are being tried upon. Using different sen-

sual matrices in deep learning, computers now have the volume to see, learn, and

react to compound circumstances as well or better than humans. The crash of deep

learning in the industry started in the early 2000s, when things were already han-

dled as approximately 10% to 20% of all the inspects written in the US, according

to Yann LeCun [102]. Commercial applications of deep learning to large-scale speech

recollection started around 2010. Deep learning is obtaining much popularity due

to its ascendancy in terms of precision when trained with a large amount of data.

In a normal way, Machine Learning is the set of algorithms that intrinsically data,

learn from them, and use what they have learned to make brilliant resolutions. The

father of deep learning is Geoffrey Everest Hinton. Geoffrey Hinton was born on 6

December 1947 in Wimbledon, London. He was an Alma master of the University of
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Cambridge (BA) and University of Edinburgh (Ph.D.) and is known for Applications

of Backpropagation Boltzmann machine Deep learning Capsule neural network. The

abstraction of Deep learning is much tranquil; it can be created by using the (GUI)

graphic user interface, which is more useful for the beginner who is impassioned to

learn and for the apparatus of the deep learning algorithms. Deep learning is easier

and more comfortable for the apprentice. The deep tools are the entourage of the

python tools, which are exceptionally created for the methodological inspection of

the high executes that sequencing the information [102]. The applications of deep

learning are the virtual subordinate.

2.5.1 Convolutional neural network (CNN)

The convolutional neural network (CNN) is a deep learning approach to computer

vision, and recognition of Graphical user interface components is very effective and

highly used in today’s times. It is a double shot or two-stage detector. It is a

multi-layer neural network with a special architecture that enables it to recognize

and detect the complexities in the data and images or information. It is highly used

in image classification, deep learning techniques, robotics, Artificial intelligence, and

autonomous vehicles [91]. The ‘R-CNN’, ‘Faster R-CNN’ and ‘Mask R-CNN’ are the

types of double shot detectors.

Digital images compressor pixels and each pixel is represented by numbers between

0 and 255, which means every pixel in the image has a digital representation or

identity, which enables computers to work efficiently with the images. Instead of

a fully connected network to brief each pixel, the CNN weights to look at a patch

of the object’s image. Sources have comprehended the convolution neural network

approaches by the example of reading a book using magnification glass. An individual

will read the whole page but will look at the smaller detail for a single time. Due

to using overabundant measures of information, deep learning networks can foresee

the model of the information with high precision from the user accommodation and

classification or detection of issues [91]. Deep learning is the new period of AI, and

it is spreading massively in the public eye. It is being utilized in the web looking,

internet business locales, independent vehicles, man-made consciousness, and every

one of the uses of computer vision. The picture classification highlight of deep learning

is the most progressive application on the planet with straightforward and complex

pictures. The layers of the neural organization of deep learning engineering work

better with pictures. Deep learning utilized CNNs for its approaches and algorithms

[91].
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A CNN works by following five convolution steps: rectified linear unit, pooling,

flattening, and full connection. The first step, convolution, is the combined integration

of two functions. It consists of three factors that are; Input image, feature detector,

and feature map. A feature detector is also termed a kernel or filter. In the second

step, after convolution, the rectifier function is applied to increase the non-linearity of

the image in the convolution neural network. The deep convolutional neural network

has been in the core position of the deep learning domain. However, CNNs were used

as an image classification technique for simple digits or character recognition tasks in

earlier times. However, due to the success of recent work, using a deep convolutional

neural network to beat state-of-art in the ImageNet challenge, the deep convolutional

neural network has become a common and useful tool for image classification prob-

lems. The CNN is similar to the traditional neural network; it also has weights and

biases in each neuron. However, the CNN is more focused on complicated inputs, such

as images. CNNs are structured by three essential ideas, local receptive fields, shared

weights, and subsampling [3]. A typical CNN contains multiple hidden layers, such

as a convolutional layer, pooling layer, and fully connected layer. A neural network is

based on affine transformations. The input vector is multiplied by the weights vector

to produce an output. When the input is an image, depending on the type of image,

it can be seen as a single signal channel multi-dimensional array or a three-channel

multi-dimensional array (a color image consisting of three channels, red, green, and

blue). A convolutional layer performs a linear transformation. In this process, only

a couple of input information contribute to an output unit. The shared weights are

applied to different locations in the input. In a conventional neural network, pooling

operations decrease the size of feature maps by utilizing some functions. Generally,

there are two types of pooling, max pooling and average pooling. Max pooling means

taking the max pixel value of one specific region.

On the other hand, average pooling means taking the average of one particular

region. After the pooling, the transformation of the entire map is achieved through

the fishing process. The neural map is passed through a network made up of the input

layer, connection layer, and output layer. The fully connected layer is also called the

hidden layer.

The CNN is the pennant of today’s deep learning and machine learning ap-

proaches, and it can be used for clarifying the seniority of the complication [3]. Nu-

merous software or tools utilize convolution neural network methods and approaches

to classify and detect problems and objects. The Tensor is the category of the data

and the formation which is used in linear algebra. The cognitive toolkit is used for
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faster instruction and the effectiveness of the deep learning models. The cognitive

toolkit can be taught to the cavalcade and corroborate with the different quintessence

for the neural networks. The PyTorch is the initial which is started as a source of

deep learning for the skeleton, invented and financed by the social app known as

Facebook.

2.5.2 Graph Convolutional Network (GCN)

Representation of data in a graph could be helpful in several ways to give an insight

into underlying information. Graphs have many real-world applications including

fraud detection, computer vision, and social analysis. Graph structure data is nor-

mally non-Euclidean in nature that leads to complexity. However, this problem can

be overcome by representing graphs in low-dimension Euclidean space with the help

of the embedding technique. These include the traditional graph embedding method

and network method. Feature transformation, aggregation of neighborhood nodes,

and non-linear activation are propagation rules of GCN to refine the embedding. A

large fraction of machine learning (ML) problems would be effective if modeled by the

graph. A convolution graph is similar to a social graph representation that helps to

understand the friend’s connection in a social network. In GCN, the input is graph-

ically provided to the neural network (NN). This way the graph did not predict a

single value rather calculate a value for each node in the graph [203].

The GCN is a modern technique that attracts the attention of researchers. Its

applications reside in different fields from anomaly detection to computer vision and

analyzing the demand and supply. An overview of GCN is illustrated by Zhang et

al [203]. The applications of GCN in some of the fields have been mentioned but it

does not end here. The list of the applications of GCN is too long as it dramatically

improved the state of art in different fields. The objective of the graphical convolution

network was to leverage deep learning. However, certain modes are still suffering from

the shallow structure. The deeper the architecture of GCN is, the smoother will be

the representation of nodes on a graph. Although the researchers attempt to address

the problem by skipping the connection-based model, the problem is still an open

challenge [203].

Various deep learning architecture based on CNN has been employed for computer

vision. However, some shortcomings are associated with CNN as it becomes difficult

to encode the graph structure for specific learning. GCN performs better results to

encode images, videos, point clouds, and meshes.
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Visual reasoning is an emergent hot topic in computer vision. Classification of

images is necessary for many real-world applications. By employing the graph con-

struction method, the unstructured image could be converted into structured graph

data and can be fed to GCN. Visual question-answering explores the answers of a

particular question on images. Images are usually complex as they contain more than

one object and understanding the link between those objects becomes necessary in

visual questioning to characterize the interaction among them. Narashimen et al.

proposed a GCN-based model for answering the questions by taking multiple facts

of an image [127]. Cui et al proposed a GCN-based model that takes both graphs of

words and scenes into account [33]. Yang et al. proposed a Graph Convolution (GC)

model that considers the reliable edges while overlooking the effect of unreliable edges

from the graph [194]. The model Graph R-CNN is efficient at detecting the objects

in a picture and their relationship with each other. The results of the study showed

that the proposed model outperforms existing methods for scene graph generation

. In contrast to this model, Johnson et al proposed a GCN-based model that takes

input in the form of a graph and generates an image out of it [86]. This way GCN

helps in computer vision for extracting information from a picture as well as generates

an image out of graphical data.

Action recognition helps in understanding a video but it is a complex task because

there is a huge volume of data and high computational cost. The idea to develop GCN

architecture was to bridge the gap between spatial-based approaches and spectral-

based approaches by using automatic learning potential that also helps to tackle

problems with arbitrarily structured graphs [31]. Felipe F. Costa classifies video

actions using GCNs.

The proposed approach provides better flexibility and accuracy. Comparison of

different video action classification models and their accuracy reveal that presented

approach has highest accuracy among all models. However, it is a time-consuming

task to generate the graphs that is the major drawback.

Point clouds are a convenient way to represent 3D data. 3D sensors have wide

applications in robotics and self-driving cars. However, due to computational strains,

3D sensors produce noisy point clouds. Moreover, point clouds facilitate by providing

a geometrical representation of different applications in graphics.

GCN is considered a powerful tool to process non-Euclidean data. Research has

shown the power of GCN-based models in encoding locally as well as global infor-

mation. Guocheng Qian et al. proposed NodeShuffle and Inception DenseGCN for
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upsampling point clouds. The proposed GCN-UP pipeline performs better as it is

more efficient in inference [144].

Another study conducted by brings forth an architecture named as Graph-Convolutional

Point Denoising Network (GPDNet) to denoise the geometry of point clouds. The ob-

jective of the study was to investigate the potential GCN in dealing with permutation

invariance problems during the processing of point clouds [139].

The experimental results of the study successfully learn the hierarchies of features.

It proved that the proposed method would improve the state-of-art technique. Wang

et al. proposed the GCN for both point cloud classification and segmentation [180].

Similarly, Velsesia et al. propose a localized generative model to generate 3D cloud

models using GCN [173]. A study conducted by Nitika Verma presents a deep neural

network –FeaStNet – to dynamically determine the link between nodes and filter

weights in a localized graph [176]. The results of the study show that FeaStNet

learns the properties of shapes as well as part labeling more efficiently and precisely.

CNN is not extended to data that is not represented in 3D meshes or another

graphical form on which local convolutional operators are not applied. GCN finds

correspondence between a collection of shapes thus has an edge over a convolution

neural network. Litany et al. proposed a combination of auto-encoder and GCN-

based models for image completion tasks [108].

Text classification is a classical problem in natural language processing (NLP).

Application of text classification includes the organization of the document, spam

detection, opinion mining, and news filtering. Traditional methods represent text

as bags of words and n-grams. However, recent research in graph embedding has

attracted the attention of the world. Information extraction is a cornerstone in ap-

plications related to natural language processing. The graph convolution has been

applied in this field.

A study conducted by Yao et al. proposed a graph neural network-based method

for the classification of text. The authors build heterogeneous text graphs that contain

word nodes and document nodes [195].

The result of simple two-layer text GCN demonstrates that the model can achieve

text classification results and also could learn predictive documents. Since the struc-

ture of a sentence contains rich linguistic knowledge it is useful for language under-

standing. The main issue in natural language processing is effectively integrating

the syntactic structure information in neural language models. GCN successfully ex-

plores grammar. Recent studies have exploit GCN for improving the representation
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learning in text mining tasks. These tasks include semantic role labeling and relation

extraction.

For language processing tasks, the graph convolution gathers non-consecutive

words based on syntactic constraints. Word dependency gate mechanism model the

syntactic dependency, analyze the valuable dependency, as well as discard irrelevant

dependencies [41]. This way GCN-WDG model effectively obtains valuable word

dependency paths and encode relative syntax-related words.

GCN can leverage the structure of the network. Tobais et al. introduced a novel

GCN-based model for road networks [83]. Traffic forecasting has become a challenge

due to varying traffic patterns at different times of the day. Graphical Convolution can

effectively extract the data of local traffic patterns in graphical form. GCN assists

to learn the interaction between roadways and forecast the network-wide state of

traffic. Researchers have to exploit GCN based model in traffic forecasting and traffic

flow prediction by taking external factors, spatial, and temp factors into account.

This traffic forecasting in return assists in highway traffic management. Traffic flow

prediction is necessary to avoid traffic congestion as well as help the government in

planning and developing roads.

Zhang et al. proposed and employed a hybrid GCN to achieve better results of

traffic prediction at highways [205]. HGCN is a combination of GCN and Feedforward

Neural Network (FNN). The network effectively obtained the non-Euclidean features

of the highway network, weather type, and data type of toll stations to predict the

subject effectively. The results of the study showed that the GCN-based model has

high prediction accuracy as compared to other models such as LSTM, GBRT, and

KNN.

Besides this, Guo et al. uses a spatial-temporal-based GCN for traffic forecasting

[56]. The model – Attention-based spatial-temporal graph convolution model (AST-

GCN) – capture the dynamic characteristics of traffic data. The accuracy of the

results shows the potential of the proposed model in efficient traffic forecasting.

The demand for bike-sharing is increasing globally due to a shift in a sustainable

lifestyle. For monitoring of supply-demand relation of bikes, the GCN data has been

employed to get real-time accurate forecasting of demand. Since bike demand is

affected by many complex factors such as weather patterns, holidays, Current time,

and the number of bikes present at the station, the deep learning mechanism would

be helpful to get meaningful information from the raw dataset. Frade and Ribeiro

analyze the features of weather patterns and other temporal patterns for bike demand.
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Similarly, Kim et al. proposed a GCN-based model to predict the hourly bike sharing

demand [92].

The study considers the influence of global variables on the demand for bikes. The

proposed framework reflects the spatial dependencies among stations and temporal

patterns at different times. The predictive power of the model employed for this

purpose was robust for the sudden change in the cycling environment. The results

give a clear picture of the resilience of using GCN models such as GCN-UP and

GCN-IDW in predicting the demand-supply curve. The study fairly contributed to

minimizing the imbalance between demand and supply of cycling. Moreover, the

same model could be employed to analyze the D-S of other transportation units.

GCN is a building block for neural networks on graph-structured data. Graph con-

volution has also gracefully found its applications for anomaly detection. Anomaly

detection is quite important in artificial intelligence systems to encounter abnor-

mal events that disturb the functionality of an organization. Ding et al proposed

an unsupervised anomaly detection method using a GCN-based auto encoder [40].

The approach leverage topical structure and nodal attributes to reconstruct normal

instances as small errors while encoding anomalies as large errors. However, the

proposed method is prone to outliers that affect the credibility of the results ob-

tained. Kumagai et al proposed two GCN-based anomaly detection models that are

semi-supervised [99]. The first model labels only normal incidents while the later

one labels both normal as well as anomalous incidents. However, both models suffer

from hypersphere collapse problems. Another study conducted by Mesgaran et al.

proposed a graph fairing convolutional network (GFCN) model for anomaly detec-

tion [116]. The model gets information from distant nodes by skipping connections

between layers and detects anomalies using graph structure.

The GCN has its applications in particle physics. PartcleNet is built on edge

convolution. It is a neural network that operates on particle clouds using jet tagging.

Furthermore, GCN has its applications in IceCube signal classification. Another

application of a graphical network is to predict the structural-based dynamics of a

cube such as how a cube deforms as it hit the surface of a particular thing. Mrowca

et al. proposed a hierarchical graph-based representation of objects that decomposes

the particles of an object and could assemble the particles in the same group [125].

Then, they propose a GCN to predict the physics of particles.

GCNs have a wide range of applications in physics, chemistry, biology, and ma-

terial science. Learning the chemistry, properties, and characteristics of molecules

attract a lot of attention in drugs discovery and material science. In drug discovery,
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GCN mode named DeepChemStable is used that predict the stability of a compound.

Moreover, by learning the interaction between drug and target protein using a graph

convolution network, it becomes easy to analyze the polypharmacy side effects. Pre-

diction of protein interface has become a challenge in drug science [105]. Fout et

al. construct a graph by employing a GCN model where each residue in a protein is

considered as a node [46]. The sequence and structure of amino acids in each protein

are considered as features of nodes. To predict the interface of protein, GC layers are

used for different protein graphs.

Another application of GCN in chemistry is the prediction of molecular properties.

Message-Passing Neural Networks (MPNNs) can be used to predict the properties of

the molecule. PotentialNet uses graph convolution over chemical bonds to learn the

characteristics of constituents. The bond-based and spatial-distance-based propaga-

tion was entailed, and a graph was gathered over the ligand atoms. Later on, a

connected layer was formed for the prediction of the molecule’s properties [44].

Besides the applications in social science, GCN has been applied in social network

analysis. Fake news can be detected using a graph convolution network. Furthermore,

GCN has been widely used for social media recommendations. The social recommen-

dation aims to boost the recommendation performance. Ying et al. proposed a

GCN-based model – PinSage – to find the interaction between pins and boards in

Pinterest [198].

Another dimension in which graphical convolution help is fake news detection.

Exposure to fake news misleads the masses. Automatic detection of fake news has

become crucial as well as challenging. Guoyong et al. proposed a multi-depth GCN

framework to detect the fake news spread on social media. The experiment of the

model was conducted on one of the largest fake news datasets of the world – LIAR –

to confirm that M-GCN outperforms among the latest five methods proposed [70].

Prediction of stock price movement is necessary as well as challenging in financial

markets. Previously it has been inferred that stock price fluctuation depends upon

its information thereby neglecting the cross-relation among involved stocks. Now it

has become well known that the price of the stock is correlated with the price of other

stocks. A graphical convolution network could predict the movement of stock. Jiexia

et al. proposed a framework called Multi-GCGRU that is the integration of GCN and

GRU to predict the stock movement. Experiments on stock indexes of China market

showed that the proposed model is feasible to incorporate stock relationships [196].

GCN is an automatic learning build to tackle problems with arbitrary graphs. It

has greater advances in deep learning so GCN has wide range of applications in social
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and material science, theft and fraud detection, computer vision – images, videos,

meshes, and point clouds – and natural language processing. Moreover, GCN help

governments to minimize the traffic congestions and accidents by providing real-time

traffic prediction data. In the same manner, it helps to predict the fluctuation in stock

market by carefully understanding the other stocks. Lastly, GCN help in demand and

supply of transportation sharing such as bike sharing. GCN is still Facing challenges

due to some architecture problems. However, it is still have promising applications.

2.5.3 Generative Adversarial Network (GAN)

A generative Adversarial Network (GAN) is a model of machine learning that is

operating with two neural networks. According to this theory, both networks working

effectively on the same input and GAN predict the most accurate output [2]. GAN

has based on AI technology that is the most recent and widely used in the Google

search engine, business software, Intelligence forces and armed institutes including

police for different purposes including image recognition and mapping. AI technology

worked through three orbits which are artificial intelligence, machine learning and

deep learning [32]. All these networks are connected with the neural nodes and

resulted in an effective and accurate outcome.

GAN is the model and class of machine learning and process all the information

according to the AI system. This model is widely using in voice, video and image

recognition, processing and generation [179]. This model is working through the two

networks which are generator Gx and discriminator Dx that enable the system to

present accurate results [138]. In the era of modernisation and innovations, the use of

this model for fake news, image and voice is increasing which is a negative factor of

the technology and against ethics. There is a need to use this innovation in business,

healthcare and other positive outcomes instead of the unethical use of the technology.

This section of the literature review provides the GAN application in different sectors

as major applications. The last part of the LR discusses the application of the GAN

model in the deep learning area of AI.

GAN model is a multifunctional and diverse purpose-based tool that has a wide

range of applications in different sectors. Healthcare, Business, Cybersecurity, An-

imation, Translation and Editing are the major are most important fields in which

the GAN model is assisting to improve the quality and performance [76]. The health-

care sector is the most beneficiary of the neural network and GAN model because it

is helping in the area of diagnosing and radiation to make appropriate images and

observe the movement of internal body parts [197]. It is helping to develop the 3D
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image for a better understanding of the malfunctioning and illness. It is a competent

tool for drug recovery and tumours identification.

This tool of AI is also helping to effectively deal with business activities and

improve decision-making efficacy. This model is applicable in the presentation of

quality images and improves software authentication by selecting the appropriate

network like in accounting software [169]. In the field of cybersecurity, this tool has

vital applications in maintain privacy, detecting unauthorised users and recognise

the official users and providing permission to use and log in. This tool of Machine

Learning is increasing the quality of images and providing a better design for the one

input into different outcomes.

There are different applications of the GAN model in deep learning to generate

the most attractive designs, outputs and changed the images, videos into fake human

images [22]. It converted the rough images into attractive colours and designs. The

research studies in the AI and IT have demonstrated the followings applications of

the GAN tool in deep learning.

It is the most effective application and feature of the GAN model that has been

used in business, trade, healthcare and image editing based on deep learning. Through

the neural coordination and supportive physical apparatus, this tool helped the detec-

tion of an object. For example, if the system has been stored and coded with different

objects then GAN will help to detect accurately those objects [182]. If the hand, book

or snacks will be pitted in the GAN then it will be detected accurately. This tool has

been used in different supermarkets and departmental stores to recognise the specific

object, code and bar. It is also used for the security purpose to detect any weapon

and used for drug recognition at airports.

GAN applications has also widely used in cybersecurity, phone privacy and official

data protection including private files. In this kind of working the model can recognise

the fingerprint that has been registered in the system [72]. The image and face one

time has been stored as the output and later this process will be worked. When any

irrelevant image, fingerprint or face appeared on the sensor or camera then the access

has been prohibited and neural networks recognised the transaction as unauthorised

activity.

The GAN system has the ability due to its efficacy and feature of AI including

graphic features to convert the 2D and simple objects and images into 3D images

that are most easy to understand and work furthermore on the object. The field of

architecture is based on this technology and maps are developing through the neural

network’s efficacy [204]. The 3D drafts and mapping are more accurate, feasible and
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easy to work with. The best example of the 3D generation images from this tool is

chair, table and a room development structure.

The GAN theory and neural networks are most important in business intelligence

like google is worked according to the AI. There are different tools and software

that are used in business studies to make the strategies, plans and reports related

to finance, training and accounts. This model effective coordination of the neural

nodes provided the most suitable design, strategy and techniques related to the on-

going project [110]. For example, if there are already coded tools and techniques of

management then working on new management will suggest the appropriate tools

for recent use based on the previous practices and actions. In this way, the GAN is

helping to resolve the account and management related issues.

It is the most effective feature and application of the tool that reduced the time of

working from the start rather it is converted the image text into another language and

reduce the manual working. This system worked with the online and offline tools that

have been already made and languages are installed in these systems [78]. When the

image of the English language is putting from the person to process it in the French

language then neural coordination and nodes worked more accurately and selected

the most similar and suitable words in the image. In this way, it reduced the working

on the manual dictionary, image creation and translation.

The process of translation from image to text is lengthy because there is a need to

first develop an image again and then translate the image text from basic language

to the needed one. But the application and features of the GAN model are reducing

the manual work and save time [86]. This dual neural network can change the image

into text within seconds and there is no need for manual translation. Nowadays there

are different features that GAN is supporting like a photo to emoji, face ageing and

video prediction. There is a need to reduce the negative and fake use of the GAN

model and make effective utilisation of the innovation.

2.6 Deep Learning Techniques for the Recognition

of GUI Components

Implementation and application of a GUI is a multi-step process. In software develop-

ment, the GUI application is a complex process that needs a proper identification of

all the components, machine language, assembly, and complications. These complex

steps are based on the initiation by developing the idea of required GUI, refinement
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into visual design, assessed through relevant prototype or design. It is ended by iden-

tifying problems and acquiring user feedback. Due to the advancement, the GUI is

altering and acquiring new tools and techniques to address user problems and pro-

vide convenience—deep learning tools and techniques at enhancing and improving

the GUI components and their functions.

2.6.1 Deep Learning Tools for GUI Components

The most widely used and effective tools or software to recognize Graphical user

interface components are Pix2code, Sketch2code, ReDraw, and Rico, which uses a

CNN and KNN approach.

2.6.2 Pix2code

Beltramelli [14] describes an important development in this area, explaining how deep

learning can transform screenshots of the GUI created by designers into computer

code. Betramelli achieves 77% accuracy on three different platforms (iOS, Android,

and Web-based technologies) by using deep learning to train the model’s code to

automatically generate a single image end-to-end. The authors believe that this is

the first attempt to solve the problem of generating GUI code from visual input by

using machine learning to understand potential variables rather than complex problem

solving engineering [14]. The paper states that GUI components are synthetically

generated, but the author does not give a way to generate DSL code.

The pix2code dataset maps bootstrap-based websites into a DSL consisting of 18

vocabulary tokens. It consists of 3,500 image and mark-up pairs, which was split

into 80% train, 10% cross validation, and 10% test set. The dataset is rescaled by

PyTorch from 2,400 × 1,380px to 224 × 224px in order to fit the requirements of the

ResNet model. The ResNet model is used to extract features from the image (size 1

× 1 × 2,048px per screenshot) which it passes onto a decoder model.

The author relies on two methods in computer vision literature to capture im-

ages. The first is the CNN, and its unsupervised feature learning that performs

GUI is mapped to learning representation. In addition, a recurrent neural network

(RNN) is used to perform language modelling of descriptive text, which is associated

with GUI image input. It is a Keras-based implementation, and the author calls

this method ‘pix2code model architecture’, which is used to solve three phases of

problems: computer vision creation of GUI, language modelling of computer code

29



understanding, and then using these outputs to generate objects represented by these

variables described by computer code.

Another related work is a project developed by Emil Wallner, which is another

Keras-based implementation of pix2code, using the same dataset. it differentiates

itself from pix2code by replacing the pre-trained image features with a light CNN.

Instead of using max-pooling to increase information density, it increases the strides.

Andrew S. Lee also made improvements on the basis of pix2code. Unlike the single

end-to-end pix2code model, his system follows an image captioning model previously

created for PyTorch: an encoder CNN and a decoder RNN. As a whole, the system

takes in a screenshot as input and outputs a sequence of indices (based on DSL

language’s vocabulary) which then convert into valid HTML.

2.6.3 ReDraw

A ReDraw dataset [122] comprises many Android screens captures, GUI metadata,

and annotated GUI segment pictures. It incorporates 15 classifications like ‘Ra-

dioButton, ProgressBar, Switch, Button, and Checkbox in 14,382 GUI pictures, and

191,300 annotated GUI segments’. The quantity of every segment comes to 5,000

after the dataset is handled. For more data about the dataset, see The ReDraw

Dataset. This dataset is utilized for preparing and assessing the AI advancements of

the CNN and K-closest neighbor (KNN) referenced in the ReDraw paper [122]. The

paper proposes a technique for computerizing the change from GUI to code in three

stages: Detection, Classification, and Assembly.

It starts with implementing or utilizing the CV technology to remove GUI meta-

data from the plan draft, for example, bounding boxes (positions and sizes). Then

it uses a huge programming distribution center to perform information mining and

dynamic examination to get the segments that show up in the GUI. After utilization

and assessment, the outcome information uses a CNN technology dataset to figure

out how to arrange the separated components into explicit sorts, like Radio, Progress

Bar, and Button [168]. The third step is the Assembly of these components and the

output Information.

2.6.4 Sketch-to-Code

The GUI design process involves many creative iterations. This process usually starts

on a blank sheet of paper, where designers and software engineers share ideas and try
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to design scenarios or workflows that their clients want [153]. Once there is a prelimi-

nary design, it is usually captured through photos and then manually translated into

an application or web pages that can be accessed on computers or mobile devices.

This translation requires time and effort and usually delays the design process.

For GUI designers, sketching is the most natural and intuitive form of expression,

so they aim to skip the intermediate steps and generate the final product directly

from a sketch. For example, designers from Airbnb believe that the time cost of

validating an idea should be zero; that is, when they have an idea, they should be

able to immediately generate an app prototype for testing. The technology that will

emerge in the next few years will remove obstacles in the development process and

allow people to design products more intuitively [167]. Because Airbnb has developed

a mature design system, each component has its own name, and a machine is trained

to identify different sketch symbols and corresponding components. After training,

the machine can recognise most manuscripts and generate code directly from the

combined symbols, which are represented as interfaces in browsers.

In addition, Microsoft has also developed an artificial intelligence web design tool

called Sketch2Code, which can convert website sketches into functional HTML code

[167]. Sketch2Code has been trained with pictures of different handwriting designs

and marked with common HTML related element information, including text boxes,

buttons and images. It can store the information associated with each step of the

HTML generation process, including the original image, prediction results, layout and

grouping information. It also supports Microsoft Azure and uses it as a back-end entry

point to coordinate the generation process through interaction with services. The new

designs can upload and view the generated HTML results through its website.

However, these companies have not disclosed their source code solutions. Although

it is a promising example machine-aided design, how much of this model is fully

trained end to end and how much it relies on hand made image functions are unclear.

2.6.5 RICO

Rico [36] is by a long shot the biggest versatile GUI dataset, made to help five

sorts of information-driven applications: ‘design search, GUI layout generation, GUI

code generation, user interaction modelling and user perception prediction.’ The

Rico dataset contains 27 classes, in excess of 10,000 applications, and around 70,000

screen captures. From that point forward, there have been a few examinations and

applications dependent on the Rico dataset, for instance, Learning Design Semantics

for Mobile Apps. This paper presents a code-and visual-based technique to add
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semantic comments to versatile GUI components. Using this technique, 25 GUI

part classifications, 197 content button ideas, and 99 symbol classifications can be

distinguished depending on the GUI screen captures and view order.

2.7 Evaluation Metrics for GUI Structure

2.7.1 Bilingual Evaluation Understudy (BLEU)

Bilingual evaluation understudy (BLEU) is a score for comparing a candidate transla-

tion of text to one or more reference translations [137]. It is particularly preferred as

a metric that has been used widely to evaluate Natural Language Processing (NLP)

systems and other branches of machine learning which help to produce language,

specifically machine translation (MT) and Natural Language Generation (NLG) sys-

tems. BLEU matrices are being consumed widely by different organizations and

other platforms in NLP for over fifteen years with an aim to evaluate NLP systems

specifically within natural language generation and in machine translation [111]. This

technology is perceived to play a major role in substituting actions taken by humans

and by providing efficient alternatives to NLP for the past few years [142]. Further-

more, BLEU itself computes the word-based overlap with the gold-standard reference

text [166]. Also, among its different applications within NLP, it is being used widely

as an evaluation matric depending on the assumptions which let it correlate with

and predict the real-world utility of the natural language processing systems that

are measured extrinsically through task performance or user satisfaction. Therefore,

through a survey conducted targeting the participants on one IT company, it was

concluded that BLEU matric was used by their company to ease down the human

efforts and indulge different aspects and calculations which helped the NLP based

activities to stay efficient. BLEU retains a quality of computing word-based overlap

with the gold-standard reference text, which lets it predict the real-world utility of

the NLP systems [58]. One of the BLEU’s applications targets the area of clinical

medicine according to which, the BLEU metric is used to evaluate the AIDS diseases

and its medication through its impact on viral load instead of assessing it explicitly

whether it leads to longer or higher-quality life [152].

BLEU is particularly a score used for comparisons and contrasting the candidate

translation of a certain text to one or more reference translations and it has been used

differently in NLP products [47]. It is claimed that BLEU was originally developed

for the translations purposed but today it is being consumed widely to evaluate text
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generated for the task related to NLP. Additionally, regarding its application on

Machine Translation (MT), it is claimed that the BLEU metric scores the translation

on the scale of 0 to 1 intending to measure the tolerability of the MT output. This

technique metric is applied on NLP systems so effectively which is proved through the

closeness of score with MT output. Closer to one the test sentences score is the more

overlap is present with the human reference translations and therefore, the better the

NLP systems are estimated to be.

Some major applications of NLP include chatbots, text summarization, machine

translation, and language models [81]. All of the NLP applications are known to

generate some text as outputs additional to the automatic speech recognition and

image captioning. All these products of NLP are protected by BLEU to reduce human

errors and provide accurate translations. According to which there are a number of

responses while translating a certain text and this condition is, even more, trickier in

case images and video inputs which can be at the same time [172]. BLEU techniques

are known to produce the best matching response to the original input. This problem

has been solved through the BLEU score which is not even perfect as it contains

numerous drawbacks. However, it is not complex and has different benefits due to

which it is used frequently as a metric [119]. The most recognized approach of BLEU

score is that the more closely the predicted text is to the human-generated target

sentence, the perfect it is. As the score of BLEU are in the middle of 0 and 1, so the

sentence score of 0.6 or 0.7 is considered as the best output score. BLEU score 1 is

not realistic to achieve because two people cannot come up with a similar sentence

variant for a certain problem so attainment of a perfect match is not possible.

It can be claimed that the most realistic results are achieved when the BLEU

score is less than one [30]. Furthermore, N-gram and precision are considered as

widely used concepts or applications of the BLEU that are used from regular text

processing. These applications are not specific to BLEU or NLP which means they

are employed by other output-based technologies too [199]. While investigating the

drawbacks and benefits of BlEU score within NLP systems, this technique of machine

translation is understandable and quick [27]. Also, it was assessed through this study

that it collides and cooperates with the human ways of evaluating similar text and is

language independent due to which it can be straightly applied to the NLP models.

On the other hand, some drawbacks of the BLEU score were also assessed through this

study according to which meanings of words are not considered due to which humans

can change the word with synonyms if find useful. This lowers the accuracy of the

BlEU score which is not desired and the BLEU score considers that word incorrect.

33



Furthermore, BLEU looks at the same word matches and considers the variants of

the same word wrong. For example, raining and rain are not similar for the BLEU

score which is a major shortcoming of BLEU applications within NLP. The BLEU

scores are often not recommended by organizations because orders of words are not

considered by it [210]. It is evident that sentence meanings get change by changing

the order of words. For example, ‘the guard arrived late due to the rain’ and ‘the rain

arrived late due to the guard’ are not giving a different meaning by just changing the

order of the words. BLEU score will get these sentences the same which is a major

drawback.

2.7.2 Website Structural Complexity (WSC) Metrics

Jin, Zhu and Hall [85] proposed an abstract model of website GUI as a directed graph,

where a website can be modeled as a pair < G,S >, where G =< V,E > is a directed

graph representing the website; V is the set of nodes representing web pages; E is

the set of edges representing links between web pages; and S is the start node of the

graph, i.e. the home page of the website. The directed graph must also satisfy the

condition that all nodes v in V are reachable, i.e. there is at least one path from the

home page to node v. They suggested the use of the Number of Independent Paths

(NOIP) as a measure of hypertext navigation complexity. The larger the NOIP, the

more complex the website structure is.

This idea was further investigated in Zhang, et al [206]. Five website struc-

tural complexity (WSC) metrics were proposed. The metrics were evaluated against

Weyuker [185]’s axiom system of software complexity.

WSC1 =
n∑

i=1

outlink(i) (2.1)

where: outlink(i): out-link of a given page i, n: number of pages in a website.

From graph theory, for all directed graphs, the sum of in-links of all nodes is equal to

the sum of out-links, which is equal to the total number of clickable links. Therefore,

we have that

WSC1 =
n∑

i=1

inlink(i) = total number of links (2.2)

WSC1 catches the intuition that a small website with fewer pages and links are

less complex than a large web site that has hundreds even thousands of pages and

links. However, for comparison purposes, it is desirable to know its relative complexity
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taking into consideration of the size. Dividing the overall complexity by the number

of pages gives a normalized complexity.

WSC2 =
WSC1

n
=

∑n
i=1 outlink(i)

n
(2.3)

Informally, WSC2 defines structural complexity as the average number of links

per page.

As suggested in [85], the number of independent paths in a hyperlinked network

of web pages can be used as a complexity metrics. Let NOIP(G) denote the number

of independent paths in a graph model G. We define the following metrics.

WSC3 = NOIP (G) (2.4)

According to graph theory, the number of independent paths in a directed graph

G can be calculated by the following formula [208].

NOIP (G) = e− n+ d+ 1 (2.5)

where e is the total number of links in the graph, n is the number of nodes in the

graph and d is the number of dead end nodes in the graph. We have that

WSC3 = e− n+ d+ 1 (2.6)

We can also define a relative complexity metric based on the average linear of

independent paths as follows.

WSC4 =
WSC3

n
=
e− n+ d+ 1

n
(2.7)

Not only does the number of out-link and in-links affect website structural com-

plexity, but also the distribution of the links within a website. For a fixed number

of links, a website in which links are concentrated in a few pages is more complex

than one in which links are mostly evenly distributed. In the discussion of software

structural complexity measurement, Belady and Evangelisti [13] applied interconnec-

tion matrix representation of partition to their study and suggested that complexity

increases as the square of connections (fanout), where fanout is number of the calls

from a given module. In website designs, all pages are connected by hyperlinks. This

leads to the following metrics, WSC5, for website structural complexity.

WSC5 =

∑n
i=1 outlink

2(i)

n
(2.8)
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Other metrics of website structural complexity have also been proposed and inves-

tigated in the literature; see, e.g. [39] for a survey of web metrics. In comparison with

assessment methods and analysis methods, navigability metrics have the advantages

of objectiveness and the possibility of using automated tools to evaluate large-scale

websites efficiently. Therefore, this paper takes this approach.

2.8 Summary

The analysis and review of current literature sources on the GUI and deep learning

techniques revealed the advancements and the revolution in the fields. The graphical

user interface components need classification and visual recognition, which is possible

and convenient through deep learning techniques. Studies revealed that Computer

vision is the most important aspect of deep learning, which uses different algorithms

for object detection, tracking, classification, etc. By using the computer vision ap-

proaches, the graphical user interface components can be tracked and identified. The

techniques and approaches use single shot and double shot detectors or neural net-

works for detection and classification purposes.

By reviewing the existing research on deep learning models and evaluation metrics

for automatic GUI generation, a number of critical issues must be addressed, such as:

• Do the existing evaluation metrics for GUI structure work for the deep learning

model?

• Can the performance of the existing pic2code model be further improved?

• Can we modify or improve the existing dataset for a better performance?

• Can we find a better model or approach to outperformanced the existing one?

To address the above questions, the following approaches are intended to apply:

• To develop a new metric to evaluate the accuracy for GUI layouts.

• To propose a modified framework for solving the problem of feature vector losses

in pix2code framework. The outcome should outperform the existing method

based on BLEU, a metric for NLP.

• To propose a new GAN model for GUI generation. To achieve satisfactory

results, a new data augmentation method should be developed to address the

issue of the insufficient data.
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• To develop a scene graph model to generate GUI examples such as actual texts,

images, and buttons. The new model is able to predict the object segmentation

mask and frame in the GUI.Then a GUI generation method will be applied to

convert the scene layout into a real GUI.
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Chapter 3

Evaluating Semantic Similarity for
Source Code Translation

3.1 Introduction

In the information world, which cannot be separated from computation and pro-

gramming, translating source code from one programming language to another is an

indispensable task. Software vendors often develop multiple versions of programming

languages so the same product can run on different platforms (Windows, iOS, Android

and UNIX). With the increasing research in statistical machine translation (SMT),

researchers in the field of software engineering (SE) have been studying how to use

natural language processing (NLP) technology and SMT modeling to translate the

source code of different programming languages in recent years [130, 89, 132].

Source code translation must ensure that the code runs correctly, because it has

strict specifications compared to ordinary text. In natural language translation as-

sessment, there are some effective automatic measurement methods, such as BLEU

scores [137]. Unfortunately, no automated metric has been successfully validated to

assess the accuracy of source code translation.

Since the 1970s, similarity detection in source code plagiarism has been studied in

academic and industry communities [124, 59]. Attribute counting is the earliest code-

detection technology proposed and applied. Subsequently, a semantic measure based

on code semantic information for similarity comparison emerged [37, 97]. In addition,

the model based on Extensible Markup Language (XML) and the method based on

semantic trees are also successfully applied to the partial similarity recognition system

[189]. At present, semantic metrics are widely used in most similarity recognition

systems because of their wide applicability and high detection accuracy. Stanford
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University’s Measure of Software Similarity (MOSS) is one of the most popular tools

designed using semantic metrics technology [156].

Because most of code plagiarism detection technologies also use semantic mea-

surement, the focus of this chapter is to judge the accuracy of code translation by

referring to the semantic measurement method of code plagiarism detection. We

can feasibly establish an automatic measurement method for evaluating the quality

of SMT-based code translation tools by combining related code similarity detection

technologies. Based on this, we propose code semantic metric (CSM) for empiri-

cal research on source code translation metrics, and seek to verify the following two

questions:

• Whether existing code plagiarism detection tools can effectively compare to the

translation quality of the SMT-based code translation model.

• Whether CSM can better reflect the similarity between reference code and trans-

lated code than existing code plagiarism detection tools.

3.2 Related Work

According to the ways in which the code features of the program are extracted, the

similarity measurement techniques are divided into two categories: attribute-counting

and structural metrics.

3.2.1 Attribute-Counting

The attribute-counting method mainly performs statistical processing on various at-

tributes included in the source code, maps these attributes to the vector space and

calculates the similarity between the two. software science metrics [59] is the ear-

liest attribute-counting method. First, the metrics of software similarity are given,

and several software metric features are defined. Then, the software metric features

contained in the source code are statistically mapped to corresponding feature vec-

tors. The cosine metric formula calculates the similarity between two vectors as the

similarity between the two software programs.

Most of the subsequent attribute-counting techniques are based on software science

metrics. In 1996, Sallies et al. [154] considered the six-part program attributes

of capacity, control flow, data dependence, nesting depth and control structure in

statistical software metrics and formed a six-element vector matrix. The similarity

calculation was then performed on the sextuple vector. Experiments show that this
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method’s detection efficiency is better than that of software science metrics, but the

detection accuracy is not ideal, and misjudgments occur. Some researchers have

proposed to increase the dimensions of the feature vector based on software science

metrics to improve detection accuracy, but the experimental results did not improve

significantly. Verco et al. [175] pointed out that increasing the vector dimension does

not reduce the error rate of detection or improve detection accuracy.

3.2.2 Structural Metrics

Compared with the attribute-counting method, structural metrics add more internal

structure information and implicit semantic information to the detection process,

and structural information (control flow, nesting relationship, calling relationship,

etc.) inside the program. It performs in-depth analyses to generate data sequences

representing the meaning of source code and then calculates the similarity of the

data sequences. Structural metrics’ detection accuracy is improved compared to the

attribute-counting method. The detection method based on structural metrics usually

includes the following two steps:

1) Source code formatting. This includes converting identifiers in the source code

to specific symbols, filtering out blank lines and comment statements in the code, uni-

fying uppercase and lowercase letters and more. There are many formatting methods.

The methods used by researchers include: string-based, token-based, tree-based and

semantic-based [84].

String-based: First, the source code is divided into strings by line; each pro-

gram fragment contains adjacent strings. Second, it judges whether the strings in

the two program fragments are the same. Finally, it judges whether plagiarism oc-

curred according to the similarity of the fragments contained in the program. A more

representative string-based detection method is the parametric matching algorithm

proposed by Baker in 1995 [8]. The algorithm unifies the identifiers and literials in the

source code and then compares the similarities. However, after unified formatting,

the detection results will have a large deviation, which affects detection accuracy.

Token-based: The source code is lexically analysed and a sequence is generated;

then, the same sequence fragment in the sequence generated by the two program

codes is detected. Compared with string-based methods, token-based methods are

more robust at detecting code formatting and code spacing. The detection efficiency

of token-based methods is very high, but detection accuracy is still poor [146].

Tree-based: To perform lexical and syntactic analysis on the source code, and

obtain corresponding abstract syntax trees (ASTs) [87]. If two sub-trees contained in
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two ASTs are identical, they are determined to be similar. The similarity of programs

is judged according to the similarity of the similar sub-trees contained in the AST

species [7, 11, 10]. Compared to string-based and token-based methods, the detection

accuracy of the tree-based method is significantly improved. However, the AST-based

method’s efficiency leads to higher optimization costs and poor detection efficiency

[146].

Semantic-based: Komondoor et al. [96] first converted the source code into a

program dependency graph (PDG), and then used program slicing [184] to determine

whether the sub-graphs of the two program dependency graphs are identical or iso-

morphic, thereby determining whether plagiarism is suspected. The semantic-based

method has high detection accuracy, but it is difficult to detect the source code of

large data due to extremely high space-time complexity, which makes it impossible

to obtain practical applications [146].

2) The similarity calculation is performed on the data sequence obtained by for-

matting the source code, and the similarity value between the two data sequences is

obtained. Commonly-used methods are the vector space model method and string

matching algorithms, including: the Levenshtein distance [128], cosine similarity

[165], longest common subsequence [115], Greedy String Tiling (GST) [187] and Run-

ning Karp-Rabin Greedy String Tiling (RKR-GST) [188].

3.2.3 Hybrid Metrics

Structural metrics add more program structure information to the process of source

code detection, which improves detection accuracy more than attribute counting.

However, some complex plagiarism methods can not be detected without in-depth

analyses of program data flow and control flow. To better balance detection efficiency

and detection accuracy, most recently-developed source code plagiarism detection

systems combine attribute-counting and structure metrics, such as JPlag [140], MOSS

[156], Sim [53] and YAP3 [189]. MOSS, YAP3 and JPlag are among the most widely-

used systems. MOSS’s core algorithm is the Winnowing algorithm [109], and both

YAP3 and JPlag use the RKR-GST algorithm.

There are many key issues to be solved in the field of source code plagiarism

detection. Based on existing source code plagiarism detection research, this chapter

will study the detection accuracy and detection efficiency of code plagiarism detection

methods.
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3.3 Methodology

This section describes the datasets and our proposed CSM. In evaluating the trans-

lated source code, in addition to comparing the structural similarity of the code, it is

important to consider the semantics and functions of the generated code. The more

similarities between the semantics and functions of the translated and reference codes,

the better the translation quality. By evaluating existing code plagiarism detection

tools and technical experiments in existing literature, we will provide empirical evi-

dence to prove whether the accuracy of code translation detection using technology

in these areas can improve detection performance.

3.3.1 Datasets

We choose two SMT-based datasets from lpSMT [129] and mppSMT [131] to evalu-

ate algorithm performance. The SMT-based datasets focus on phrase and grammar

translation. A total of 34,209 pairs of parallel methods corpuses written in Java and

C# were collected from these datasets. The datasets were manually created by de-

velopers and were initially used in nine open-source systems developed in Java. They

were then translated to C#. A total of 2,250 semantic scores were allocated manually

by human judgement (0, 0.25, 0.5, 0.75 and 1, respectively). Each score index was

calculated on the basis of each line in the translation result. The higher the score,

the closer the translated code is to the reference code.

Figure 3.1: lpSMT Example
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3.3.1.1 lpSMT

The lpSMT dataset [129] can adapt to translation between phrases and produce trans-

lation codes with high lexical and code symbol sequence accuracy. When multiple

tokens or sequences of token appear in the wrong place, the semantic accuracy of

the code is directly affected. Figure 3.1 shows an example of the lpSMT model,

which converts calls to parent class constructors through ‘super’. In Java, ‘super’

is called inside the method body. Conversely, in C#, the call to the constructor is

done through the base and occurs before the method body, i.e. in the method sig-

nature, such as ‘base(ta, initialSize)’. However, in the translated version, the call is

divided into two parts: one is in the method signature ‘base(ta’, while the other is

in the method body ‘,initialSize);’. Therefore, the translation code is grammatically

incorrect. In this case, lpSMT is obtained based on the transformation of method

signatures and markers in the body, but it does not take into account that the entire

grammar unit of the constructor invokes the parent in ‘super’ for conversion.

3.3.1.2 mppSMT

The mppSMT dataset [131] is mainly for syntax translation; that is, translating code

in the syntactic structure first, and then aggregating the translation code of all struc-

tures to generate the final translation code. To improve semantic accuracy, mppSMT

integrates type mapping and API usage between two languages in the translation pro-

cess. Compared with existing technologies, this strategy is more effective at achieving

higher grammatical and semantic accuracy [131]. An important feature of mppSMT

is that a large part of the translated code is semantically correct, but it is obviously

different from manual translation. Specifically, the correct code involves a) code with

a local variable name different from the reference method, but all variables are re-

named consistently; b) code that adds or deletes namespaces to a type (e.g., new

P.A() and new A()); c) code that adds or deletes ‘this’ code in an existing or method

has the same identity; d) syntax units and code for different API purposes, such as

field access for getters or array access for method calls.

3.3.2 Our Proposed CSM

We design CSM as a comprehensive operational approach based on N-grams [20],

Term frequency-inverse document frequency (TF-IDF) weighting scheme [61] and co-

sine similarity [165]. We name our methods CSM 3-gram and CSM 4-gram according

to the N value as described in the following section.
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Table 3.1: 2-grams of the Java Program ‘Hello World’

2-grams code count
System. 1
.out 1
out. 1
.println 1
println ( 2
(‘ 1
‘Hello 1
Hello World 2
World’ 1
’) 1
); 1

3.3.2.1 N-gram

N-gram [20] is a statistical language model that is widely used in many domains, such

as speech recognition, text recognition, machine translation, information retrieval,

text classification and other fields. Program code text is essentially pure text, which

has more structural features than natural language text, so N-grams can also play a

role in detecting program code plagiarism. Using N-gram to represent the program

code to be detected not only maintains the context order of the program code, but

also transforms the program code into an N-gram set [20].

In the case of text processing, an N-gram is a sequential sequence, and N is the

markup length in the sequential data. When N = 1, it discards all information about

word order, so that all possible sequence alignments may produce the same vectors.

To solve the problem of local sorting, N-grams must divide text into all sequences of

length N: 2-grams, 3-grams, 4-grams, etc. For example, when N = 2, the Java program

‘System.out.println (‘Hello World’);’ is split into non-alphanumeric characters as 2-

grams sequences (see Table 3.1). In addition to splitting text into words, a single

character can also be used as a token for N-grams. For example, the character-level

4-grams in the text ‘print(‘a’)’ is represented by the set prin,rint,int(,nt(‘,t(‘a,(‘a’,‘a’).

3.3.2.2 TF-IDF

A common situation with N-gram is that some unimportant sequences in the dataset

appear more frequently than others. This requires scaling feature vector values ac-
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cording to the relative importance of each feature. An effective way to scale the

features is to use the TF-IDF weighting scheme [61].

TF-IDF is a statistical method used to assess the importance of a word to a

document set or a document in a corpus. Word importance usually increases with

the number of times it appears in documents, but inversely decreases with how often

they appear in corpus [61]. The TF-IDF calculation is as follows:

TF − IDF (t, d,D) = TF (t, d) · IDF (t,D) (3.1)

Where TF (t, d) is the frequency of the term t appearing in the current document

d, and IDF (t,D) is the frequency of the term t appearing in the whole text domain

D. If a term appears in many texts, its IDF value will be high. For example, the

word ‘void’ appears in almost all programs in C#. Although ‘void’ has a higher word

frequency, it has a much lower importance than ‘ref’, which is used less frequently.

3.3.2.3 Cosine Similarity

Because TF-IDF can be used to extract terms in a document, and terms can often be

used as the basis for us to judge whether two documents are similar [61]. Therefore,

we can extract the terms between the two documents, and then use the cosine sim-

ilarity to calculate the similarity between the terms of the two documents to obtain

the similarity between the documents. We convert the terms of the two documents

into word frequency vectors, and then calculate the cosine similarity between word

frequency vectors to obtain the similarity of the corresponding documents.

In lpSMT and mppSMT, we select key terms from the documents of reference code

and translated code. After that, we combine the key terms of the two documents into

a set. For each term in the set, calculate its TF-IDF value in the reference code

document and the translation code document respectively. Then, we can obtain the

word frequency vector A of the reference code and the word frequency vector B of

the translation code in both datasets.

The calculation of cosine similarity [165] can be regarded as the operation between

two vectors:

cosinesimilarity(A,B) =
A ·B
‖A‖ ‖B‖

(3.2)

After normalising the word frequency vectors before computing the distance ma-

trix, the angle between two vectors will be calculated. When comparing the angle,

the difference between the two directions is generally pointed out. When the angle is
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0 degrees, the two directions are the same and the vectors coincide; when the angle is

90 degrees, the two directions are different and completely independent. The closer

the cosine value is to 1, the closer the angle is to 0 degrees and the more similar the

two vectors are. In this way, the similarity score for the two source codes is obtained.

3.4 Evaluation Results

Figure 3.2: The Semantic Scores for Each Method on SMT Code Translation Datasets

We evaluated the performance of the highest results by running SMT-based code

translation datasets through different code plagiarism detection tools (CSM 4-gram,

CSM 3-gram, difflib, JPlag, MOSS, marble, plaggie, Sherlock and Sim).

We compared the scores of CSM and each code plagiarism tool with human judge-

ment using semantic scoring. The results are shown in Figure 3.2. First, it should

be clear that difflib (a Python diffing library) scored the closest to ground truth in

all SMT-based code translation datasets. Difflib had the highest average accuracy of

all tools. The reason may be that most code translation cases in datasets are easily

detected; that is to say, they contain at least some identical parts. Sometimes, some

of these tools may be fooled by peers who only have formatted characters (such as

spaces, newlines and braces), just like in the mppSMT dataset.
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Table 3.2: Average Precision Scores on Source Code Translation Datasets

Dataset lpSMT lpSMT2 mppSMT mppSMT2 Average Scores
ground truth 0.645 0.879 0.957 0.914 0.849
CSM 4-gram 0.409 0.826 0.874 0.892 0.750
CSM 3-gram 0.635 0.683 0.819 0.903 0.760
difflib 0.532 0.939 0.981 0.951 0.851
JPlag 0.436 0.829 0.872 0.833 0.743
marble 0.659 0.727 0.716 0.624 0.682
MOSS 0.545 0.834 0.829 0.888 0.774
plaggie 0.477 0.877 0.864 0.911 0.782
Sherlock 0.584 0.855 0.775 0.553 0.692
Sim 0.596 0.755 0.783 0.721 0.714

* Bold font indicates the top three results when compared to the ground truth.

The proposed CSM method achieved strong performance on the majority of the

datasets when N = 4, but not on lpSMT. Compared with other popular plagiarism

tools, such as JPlag and MOSS, it achieves an average score closer to that of the

human judgement. Table 3.2 shows that CSM 4-gram was the best performer when

evaluated using mppSMT and mppSMT2.

The learning similarity model of the CSM method at N = 3 has not been signifi-

cantly improved, and other datasets, except lpSMT, are not ideal. From this, we can

conclude that the 3-gram model has not been well extended to these data sets. By

contrast, JPlag, marble, Sherlock and Sim seem to be relatively weak, while difflib,

MOSS and plaggie perform relatively well.

3.5 Discussion and Future Work

At present, our method has limitations. CSM uses N-gram sequence features and

cosine similarity to judge the accuracy of translated code. There is no training process

for the dataset before running. This indicates that the method only understands the

importance of some similarities at runtime, based on the features in the dataset.

This means that when the dataset is small, the distribution of some features may not

represent the true distribution of tasks.

Future research directions may consider building a simpler monitoring model us-

ing deep learning and multiple similarity metrics. The model must understand the

importance of each similarity metric. Another interesting direction is to use unsuper-

47



vised learning algorithms on multiple source code translation datasets and then use

these representations as features of the supervised model.

3.6 Summary

In this chapter, we proposed CSM and compared its performance with the benchmark

plagiarism detection tools. We validated using four SMT-based datasets from two

sources, i.e. lpSMT, lpSMT2, mppSMT and mppSMT2. The N-gram model, based

on TF-IDF weighting and cosine similarity, solved this problem well and achieved

high scores on different datasets. TF-IDF’s weighted features can also be used as

part of the visualization method, because more unique parts of a word pair will show

more significance than other similarities. To further improve the accuracy of code

plagiarism detection, more empirical study is required. Overall, further improvement

of CSM in the future will bring more reliable results.
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Chapter 4

Automatic Graphical User
Interface Generation with a
Domain-Specific Language Model

4.1 Introduction

When people communicate with machines, the user interface (UI) is an indispensable

tool [57]. Most user-oriented software applications rely on an attractive graphical

user interface (GUI) to attract customers and facilitate the effective completion of a

computing task [57]. When developing any GUI-based application, an important step

is to draft and prototype design models, which help the UI instantiate to evaluate or

prove abstract design concepts. In large-scale industrial environments, this process

is usually accomplished by professional designers who have expertise in this field and

can use image-editing software, such as Photoshop [74] or Sketch [29], to generate

attractive, intuitive GUIs. After the initial design drafts are created, it is important

to faithfully translate them into code so that the end user experiences the design and

expected form of the user interface can be achieved (Figure 4.1).

Figure 4.1: A Web UI Design Workflow
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Previous studies have shown that this process (usually involving multiple itera-

tions) is challenging, time-consuming, and error-prone [133], especially if the design

and implementation are performed by different teams [123]. In addition, UI teams

usually adopt an iterative design process to collect feedback on GUI effectiveness

at early stages. It is best to use prototypes because more detailed feedback can be

collected; however, using current practices and tools is often too expensive [126]. In

addition, past work on detecting GUI design violations in mobile applications has

emphasised the importance of this issue from an industrial perspective [123]. Instead

of spending scarce time and resources on iterative design and user interface coding, it

is better to choose an accurate automation method. This will enable smaller compa-

nies to focus more on features and values rather than turning design into operational

application code. Given the setbacks faced by front-end developers and designers in

building accurate GUIs, automation support is clearly needed.

To help ease this process, some modern IDEs, such as Xcode [75], Visual Studio

[117], and Android Studio [55], provide built-in GUI editors. However, recent studies

have shown that using these editors to create complex, high-performance GUIs is

cumbersome because users are prone to introducing errors and demonstration failures,

even with simple tasks [200]. Other business solutions include collaborative GUI

design and interactive preview design on target devices or browsers (with limited

functionality using custom frameworks), but none provides an end-to-end solution

that automatically converts mockups. Obviously, a tool that can partially automate

this process could significantly reduce the burden of the design and development

process.

Beltramelli [14] described an important development in this area called pix2code,

explaining how deep learning can transform screenshots of a GUI created by designers

into computer code. Since pix2code is focused on GUI layouts, graphical components

and their relationships, the actual text value of the tag is ignored, and the resulting

text portion is replaced with a specified number of random letters.

The aims of this chapter are two-fold: first, to design a framework based on

pix2code that can automatically generate a specific platform code for a given GUI

screenshot as an input. Second, to investigate the performance metrics used in

domain-specific language evaluation. We hypothesize that the extended version of

this method may reduce the time for manual GUI coding processes.
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4.2 Related Work

Models and prototypes are used to collect feedback at the beginning of the design

process. They help improve visual design and are meant to be used by design teams

as communication tools to focus on the final appearance and solve layout problems

for websites or applications [19]. The problem of automatically generating computer

programs from a given specification has been studied since the early days of artifi-

cial intelligence (AI) [38]; however, recent research has focused on the possibility of

generating source code from design models to save developers from labour-intensive

and repetitive parts of the design process. As a result, deep learning applications

are being explored as a potential solution to this problem. Because computing power

is the biggest obstacle to front-end development automation, deep learning has been

applied to the design model field. User interface code development for applications

is a cumbersome and expensive practice, and users expect mobile and computer user

interfaces to be highly customised and optimised for the specific tasks at hand [135].

A gap has been observed during production, and the conversion of user interface

concepts to a working user interface code is done manually by programmers in a

cumbersome, error-prone and expensive manner [133].

Many of the approaches discussed so far have relied on domain-specific languages

(DSL; languages for specialised domains that are more restrictive than full-featured

computer languages). The use of domain-specific languages limits the complexity of

programming languages that need to be modelled and reduces the size of the space

to be searched [14]. Betramelli’s pix2code achieved 77% accuracy on three different

platforms (iOS, Android, and web-based technologies) by using deep learning to train

the model’s code and automatically generate a single image end to end [14]. The

authors believe that this is the first attempt to solve the problem of generating GUI

code from visual input by using machine learning to understand potential variables

rather than complex problem-solving engineering [14]. The paper further states that

UI components are synthetically generated, but the author does not offer a way to

generate DSL code.

Another related work is a project developed by Emil Wallner [1], which is another

Keras-based implementation of pix2code, using the same dataset. It differentiated

itself from pix2code by replacing the pre-trained image features with a light convolu-

tional neural network (CNN). Instead of using max-pooling to increase information

density, it increased strides. Lee et al. [103] also made improvements on the basis

of pix2code. Unlike the single end-to-end pix2code model, their system followed an
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Figure 4.2: The Web DSL Token Mapping from Pix2code

image-captioning model previously created for PyTorch, with an encoder CNN and a

decoder Recurrent neural network (RNN). As a whole, the system takes a screenshot

as input and outputs a sequence of indices (based on DSL’s vocabulary), which are

then converted into valid HTML.

4.3 Approach

4.3.1 Model Architecture

As the framework of pix2code is based on Vinyals’s image captioning model [177],

the first input of Long short-term memory (LSTM) comes from the feature vector

extracted by CNN. The feature vector of the image is the first input of the LSTM,

and its information is captured in the hidden state of the LSTM. This can cause some

of the information in the feature vector to be discarded as the length of the caption

increases, thereby affecting the overall performance of the model [88].

To solve this issue, we redesigned the pix2code model’s framework (Figure 4.3).

The LTSMs are replaced by gated recurrent unit (GRU) [26] to improve the training
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Figure 4.3: Our Proposed Framework Based on Pix2code [14]

rate, and the CNN’s feature vector connects to the GRU’s input as an embedded

input to the GRU. Therefore, in theory, the model can capture all the future vector’s

information during the DSL token generation process.

Referring to the pix2code dataset, we preprocessed the data by resizing the input

image to 256 × 256 pixels without retaining its aspect ratio and then normalised the

pixel values. We used VGG16, VGG19 [164] and ResNet34 [63] as the encoders for

our experiment. We adjusted the embedded size of GRU to 50, with 3 layers and 256

hidden units as a decoder.

4.3.2 Training and Sampling

When training the model, we divided an input into an image and its DSL token

sequence, the label of which was the next token in the DSL file. The model compares

its next token prediction with the actual next token prediction using a cross-entropy

loss function.

During sampling, the image is processed through the CNN network, but text

processing is only the seed of the starting sequence. In each step, the model’s pre-

diction of the next token in the sequence is appended to the current input sequence

and entered as a new input sequence. This process is repeated, beginning with the

<START> token, until the model predicts an <END> token or the process reaches

a predefined limit on the number of tokens in each DSL file (Figure 4.4). After the
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Figure 4.4: An Example of DSL Token Prediction

model generates the predicted token, the compiler converts the DSL token into HTML

code that can be rendered in a web browser.

4.4 Experiment

4.4.1 Datasets

Beltramelli’s pix2code dataset [14] contains 1,750 screenshots of synthetically gener-

ated websites and their associated source code, which are used as training features.

Because each site generated in the dataset comprises only a few simple bootstrap ele-

ments (such as buttons, text boxes and divs), the ‘vocabulary’ of the model is limited

to these features. However, this approach could be generalised to a larger vocabulary

by increasing the number of elements. The DSL file is compiled with reference to the

code in JSON format. The source code for each example comprises tokens in a DSL

file, with each token corresponding to a piece of HTML code, as illustrated in Figure

4.2. The compiler is used to convert the DSL file into working HTML code.

4.4.2 Evaluation Metrics

In automatic translation evaluation, bilingual evaluation understudy (BLEU) [137] is

an algorithm that must be mentioned. The basic assumption of BLEU is that if there

are more N-grams to be co-produced with the reference translation, the more similar

the description, the higher the quality of the translation. By counting the number of
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Figure 4.5: An Example of MBLEU Score in DSL Tokens

co-occurring N-grams and adding a penalty factor to short sentences, the translation

of the same topic can be evaluated through a reference translation. Since the field

of code metrics has recently emerged, there is no corresponding method to measure

the accuracy of DSL at this stage. Therefore, we designed a modified BLEU score

(MBLEU) to evaluate the model. The formula to calculate the MBLEU score is as

follows:

MBLEU = BP · exp(
N∑

n=1

(wnlogPn) (4.1)

where BP is a penalty factor for translations whose length is less than the reference

value:

BP =

{
e1−c/r, if c > r

e1−r/c, if c ≤ r
(4.2)

and Pn is the N-gram matching rate.

Take a sequence of tokens in a DSL file as an example (Figure 4.5). MBLEU

divides sentences from one to four token sequences into four N-grams. In the predic-

tion below, ‘btn-orange’ is a false prediction, and the actual correct token should be

‘btn-green’. When N = 4 (4-gram), wn will be 1/4 or 0.25. Then, the MBLEU score

will be (11/12)× 0.25 + (9/10) × 0.25 + (4/6) × 0.25 + (4/5) × 0.25 = 0.22 + 0.22

+ 0.16 + 0.2 = 0.8.

The sum also needs to be multiplied by the penalty BP of a sentence’s length.

In the 3-gram example, the token length is outside the measurement range, so the

BP equals 1, and the result of the above becomes our final score. If MBLEU gets a

score of 1.0, the correct elements will be in the correct position of the given source

image. The lower the score, the greater the difference between the generated DSL

token sequence and the real result, and the decoded HTML code will be different

from the input sketch.

We compared the experimental scores of our model on MBLEU and BLEU-N [137]

with the model from pix2code [14] in three different CNN types (Model-A: VGG16,

Model-B: VGG19 and Model-C: ResNet34). Each score on methods ranges from 0

to 1, and a higher value gives a more accurate result for GUI code generation (Table

4.1). The results of evaluation metrics may change with further experiments in the

future.
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Table 4.1: Evaluation Results from the Metrics of Pix2code Dataset

Methods CNN Types BLEU-1 BLEU-2 BLEU-3 BLEU-4 MBLEU
Pix2code Model VGG16 0.527 0.452 0.397 0.322 0.79
Model-A VGG16 0.535 0.463 0.404 0.337 0.82
Model-B VGG19 0.556 0.485 0.417 0.346 0.88
Model-C ResNet34 0.577 0.502 0.452 0.376 0.93

4.5 Discussion

Through the experimental results for the pix2code dataset, we obtained a higher score

when compared with pix2code model in the same CNN type (Model-A in Table 4.1).

Our models also delivered the best performances on ResNet34 when compared with

the other two CNN types (VGG16, VGG19).

At present, the model still has some limitations, which illustrate the following

possible follow-up steps:

• Due to the limitations of the existing pix2code dataset, the model only trains

a vocabulary of 16 elements, so it can only predict the DSL token specified in

the data.

• Because CSS lacks style changes when making sketches part of existing datasets,

there is still a significant difference compared to hand-drawn sketches.

• There are some shortcomings in the NLP evaluation metrics. The existing

methods lack the ability to judge dependency relationships between different

DSL tokens and their importance to the overall web page. It is necessary to

improve the penalty factor or find a suitable alternative.

Existing work in the area of automatic GUI generation is still in the early stages

of development; models such as Beltramelli’s [14] have so far contained only a few

parameters and have been trained on small datasets. There is further scope to focus on

the more limited areas of a web-based GUI that do not require data synthesis. Because

a large number of websites are already available online, and because new websites are

created every day, this situation provides almost unlimited training data to extend

deep learning methods and transform web-based design models into HTML/CSS code

[14].
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4.6 Summary

This chapter proposed a modified framework for solving the problem of feature vector

losses in pix2code framework. The preliminary experimental results outperformed

state-of-the-art methods based on BLEU and MBLEU. We demonstrated MBLEU is

suitable for DSL evaluation but it is inconclusive due to a lack of datasets for further

evaluation.

The next step could be attempting to create more elements to generate additional

web examples, such as actual texts, images, drop-down menus, forms and bootstrap

components. With increasing computer hardware performance, it is better to create a

dataset that can be directly trained by HTML/CSS code than a DSL token sequence.

A good way to generate more variants in hand-drawn sketch data might be to create

a realistic hand-drawn website image using a generative adversarial network (GAN).
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Chapter 5

Data Augmentation on Graphical
User Interface Generation

5.1 Introduction

The automated generation of graphical user interface (GUI) design has recently be-

come the subject of extensive research [98],[161]. Notably, deep learning technology

has become a key method for promoting advancements in this field [120],[106]. How-

ever, this method usually requires a large amount of data as support, which is a

difficult problem that cannot be avoided in the implementation of automated GUI

generation. Presently, it is very difficult to obtain new data directly by using re-

lated techniques, such as object recognition in the user interface. Once an image is

obtained, it must be manually annotated and classified according to its layout, and

these are time-consuming tasks that professionals in the field have to perform accu-

rately [183]. In addition, the existing GUI data sets lack standards and diversity in

the classification of data objects. For example, the Rico dataset does not effectively

classify the functional categories of GUIs, and there is a lack of interactive GUIs such

as input forms and search pages. The distribution of data objects is lack of balance,

which is too complicated in some GUIs and too simple in others [36].

Data augmentation is one of the effective methods for solving the problem of

limited data at this stage [162],[163]. This technology enables the transformation of

generating new training samples from an original dataset without changing the data

category. The method has been successfully applied in many situations in the field of

image processing, such as image classification, object recognition, semantic segmen-

tation, and information retrieval. However, existing augmentation methods cannot

be directly applied to relevant GUI design datasets due to varying data structures.

In the case of natural images, the objects are usually invariant to orientation. Here,
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operation methods, such as rotating, tilting, and changing colors, can be used to

achieve the effect of data augmentation. In the case of a GUI, the objects must be

arranged in an orderly manner in accordance with the layout design specifications

[68]. Therefore, there are only a limited set of operations applicable in this domain.

In this chapter, we introduce a new GUI layout data augmentation method that

directly synthesises a set of graphic elements in the layout. In this model, we use the

Rico dataset [36] as the reference for the training data and pre-specify a set of fixed

element categories (for example, ‘text’, ‘button’, or ‘image’). In our network, each

element is defined by its category probability and geometric parameter representation,

which are bounding box keys. The generator takes the random sampling probability

of graphical elements and geometric parameters as input and arranges the chosen

elements in the layout. The output includes the deterministic category and geometric

parameters of the design elements, which have been chosen according to the sampling

probability. The generator has the function of replacing invariants. If the input

elements are re-ordered, this function will generate the same layout.

For this structured data, we implement a two-stage operation mode. The first

stage directly acts on the category probability and geometric parameters of the ele-

ment with size adjustments. Although effective, it is not sensitive enough for misalign-

ments and spacing in terms of exact pixels between elements. In the second stage, we

propose the user interface generative adversarial network (UIGAN) for the generator

based on work in the field of vision. Just as a person can judge a design by looking at

rasterised images, by mapping different elements onto a two-dimensional layout, we

can evaluate their relationship with the specific methods. The models can then be

used for layout optimisation because they are specifically utilised to distinguish visual

patterns including, but not limited to, image segmentation and occlusion. However,

the key challenge is how to map the geometric parameters to pixel-level layouts. One

method that can be applied is a spatial transformation network to decompose the

graphic elements into bitmap masks [80].

We evaluate our method by generating a GUI layout from the frame of the markup.

In summary, our model has the following contributions: (1) a differentiable wireframe

generator that can determine the alignment based on the arrangement of the discrete

elements and (2) UIGAN based on the generative adversarial network (GAN) [11]

that directly creates structured data, which is represented in the GUI design as a set

of resolution-independent markup graphic elements.
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5.2 Related Work

5.2.1 Model-Based User Interface Automatic Generation

Early user interface generation methods were mainly model based. Modelers need to

fully understand the whole system and define multiple models, including task, user,

presentation, session, and platform models. The models can be represented by highly

professional tags to make the interface easier to create and maintain.

Puerta [143] describes a model-based interface designer (MOBI-D), a comprehen-

sive environment that supports user-centered design through model-based interface

development. To solve the problems of transitioning from scenario to formal specifi-

cation and unclear UI code generation, Elkoutbi et al. [43] proposed a requirements

engineering method that generates a user interface prototype from the scenario and

formal specification of the application. To model interactive operation objects and

realise the cooperation between interactive objects and domain objects, Silva et al.

[35] designed the unified modeling language for interactive applications (UMLi), an

extension of UML that provides support for UI design.

Generating graphical user interface code using machine learning technology is a

relatively new research field [18], [21]. DeepCoder is a system that can generate

computer programs by using statistical prediction to enhance traditional search tech-

nology [9]. In this work, the author defines a programming language with sufficient

expressiveness, including real-world programming problems. It can be predicted from

input and output examples and obtains a model for mapping input and output ex-

ample sets to program attributes. Experiments were carried out showing an order

of magnitude in acceleration compared with standard program synthesis technology.

This makes it possible to use this method to solve similar problems to the simplest

when programming competitive websites.

In Gaunt et al.’s [49] research, the source code can be generated by learning the

relationship between input and output examples through a differentiable interpreter.

The author’s goal here was to develop a new machine learning method based on a

neural network and a graphical model and understand the ability of machine learning

technology relative to traditional alternatives, such as the constraint-solving method

based on the programming language community. The main contribution here was

the proposal of TerpreT, a domain-specific language (DSL) used to express program

synthesis problems. TerpreT is similar to a probabilistic programming language: the

model consists of a specification for program representation (declaration of random

variables) and an interpreter that describes how the program maps input to output
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(connecting unknowns to the observed model). The reasoning task involves observing

a set of input and output examples and inferring the underlying program.

In addition, Ling et al. [107] demonstrated program synthesis from mixed natural

language and structured program specifications as input. It is worth noting that most

of these methods rely on a DSL (such as a markup, programming, or modelling lan-

guage). They are designed for a specific domain, but they are usually more restrictive

than a fully functional computer language. Therefore, the use of a DSL limits the

complexity of the programming language to be modelled and reduces the search space

size.

There is less work to generate code through visual input—examples include hand

drawing and UI screenshots. The pix2code project [14] was the first attempt to solve

the problem of user interface code generated by visual input by understanding poten-

tial variables through a machine learning method rather than complex engineering

heuristics. The author first generates a DSL from the prototype diagram and then

compiles the DSL into source code. The author uses the design prototype map and

the DSL context as training data, a convolutional neural network (CNN) to obtain

image features, and two long short-term memory (LSTM) networks to understand

the basic laws of the DSL contexts and the relationship between a DSL and a corre-

sponding prototype map. On the whole, pix2code performs well, but there are some

limitations, such as the need to formulate the code length range in advance and that

pix2code does not consider the GUI hierarchy and code structure.

The attention-based layered decoding model of Zhu et al. [209] improved pix2code.

The author proposed an attention-based code generation model, which can more

finely describe GUI images and generate layered structured code consistent with the

hierarchical expansion of GUI graphic elements. In addition, all the components can

be extracted separately for end-to-end joint training. The experimental results show

that the author’s method had obvious better performance compared with the original

pix2code in a public GUI code dataset and their own dataset.

Nguyen et al. [133] first proposed the technology of automatic reverse engineering

of mobile application user interface (REMAUI). REMAUI automatically infers the

source code of a mobile application user interface from a screenshot or conceptual

design diagram of the user interface. On a given input bitmap, REMAUI identifies

user interface elements through computer vision and optical character recognition

(OCR) technology, infers the appropriate user interface hierarchy, and exports the

results as source code for compilation and execution. The experimental evaluation

results show that the UI generated by REMAUI was similar to the original UI at
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the pixel level and the UI hierarchy at its runtime. However, REMAUI also has

limitations. First, it does not support the classification of detected components into

their local component types but uses the binary classification of text or images, which

limits the practical applicability of this method; second, from a developer’s point of

view, it is not clear whether the GUI hierarchy generated by REMAUI is really useful

because the GUI hierarchy is not evaluated.

Moran et al. [122] proposed redraw based on REMAUI. In contrast to other

methods, redraw is not specific to any particular field. It uses data-driven methods

to classify and generate a GUI hierarchy, can use a CNN to classify GUI components

into their own types, and can use a data-driven iterative k-nearest neighbours (KNN)

algorithm combined with computer vision technology to generate a GUI hierarchy.

5.3 Methodology

5.3.1 Basic Layout Manipulations

The first stage of the data augmentation task includes specifying a set of transfor-

mations so that the image classification problem is considered constant, including

the X-shrinking and the zoom adjustment; the transformations do not change the

image category. The X-shrinking refers to the proportional shrinkage of the width

of each component in each GUI layout (Figure 5.1). Zoom adjustment is scaling the

whole of each component in the GUI layout with the centre coordinate as the base

point (Figure 5.2). With these two methods, the number of Rico datasets can be

doubled each time they are scaled by a certain percentage (e.g., 5%, 10%). It should

be noted that the image enhancement technique depends on the problem, and certain

transformations should not be applied.

5.3.2 Layout Generation with GAN

The second stage is based on layout generation, in which all design elements are ar-

ranged in an appropriate size and position according to their content-based attributes

(such as area, aspect ratio, and reading order). We use a generative adversarial net-

work (GAN) to automatically generate the layouts of the Rico dataset.

A GAN [90] can create data similar to original data through the complex operation

of a neural network. An excellent GAN can closely imitate the characteristics of the

original data. The accuracy of its output directly affects the results of subsequent
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Figure 5.1: Transformation of X-shrinking

Figure 5.2: Transformation of zoom adjustment

research on behaviour recognition, an outcome that is very significant to follow-up

work.

GANs are widely used in various fields [2]. However, they remain very rare in

the field of GUI dataset generation. By analysing the characteristics of the layout

structures in the Rico dataset, we find no great difference between the layout structure

data and sequence data. Thus, GANs are also suitable for the expansion of the GUI

datasets. For a generating process, a special network structure is necessary to generate

satisfactory layout data.

After the selection of the generator and discriminator, we propose UIGAN, a

modified GAN framework especially for GUI layout generation. The structure of

UIGAN proposed in this chapter is shown in Figure 5.3.

As seen in the architecture of UIGAN, in addition to using a non-traditional

recurrent neural network (RNN) [52] and a convolutional neural network (CNN) [160],

the discriminator and generator must also be connected to the fully connected layer

(FC). The generator mainly consists of three layers of RNN, which are used to generate

characteristic data with time correlations. Each layer of the RNN includes 3n RNN

nodes, where n represents the total number of component points in each frame of the

layout data. The component points in the layout are obtained from the coordinate

values of each vertex of the bounding box. It is observed that there are two fully

connected layers, with each FC still containing 3n nodes.

The fully connected layer is used to further generate layout data. Through the
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Figure 5.3: Architecture of UIGAN

fully connected layers, data with the same dimensions and time correlations with the

original data can be generated. Through training, the sequence of the layout data

that meets the needs can then be generated.

The discriminator is mainly composed of the CNN, pooling layer, and FC. Each

CNN layer includes a 3 × 3 convolution kernel. The pooling layer adopts maximum

pooling. The number of nodes in the FC of the first layer was set to 13, and the

number of nodes in the FC of the second layer was set to one. The main task of the

CNN is to extract the matrix’s shape features. Because the layout data sequence is

essentially the same as the image data, the trained CNN can effectively analyse the

difference between the generated data and the original data. The three-layer FC’s

objective is to convert the extracted features into identification values to determine

the data’s authenticity.

5.3.3 Training of UIGAN

After preprocessing the dataset, it is also necessary to initialise the GAN’s parameters.

Generally, all parameters are either assigned a value of zero or conform to a normal

distribution. After all initialisation work is completed, model training can be started.

The training process of UIGAN alternates between training the generator and

training the discriminator [26]. In training the generator, one must ensure that the

discriminator’s parameters remain unchanged. In a similar vein, the process of train-

ing the discriminator requires the generator’s parameters to be kept constant. This

process is an iteration, and each iteration includes two forward propagations and two

backpropagations.
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In training the generator, a piece of data is selected from the dataset (that is,

layout data is extracted, which is generally stored in the form of a matrix). The

matrix’s number of rows is the number of layouts, set as m, and n represents the

total number of three-dimensional coordinate dimensions of all the component points

from the layout. Thus, the data is expressed as follows:

Imn = F (O) (5.1)

where O is the original dataset, and F is the layout data selected from O.

After selecting an action, one must generally obtain the number of layouts m and

the number of spatial coordinates n of the component points. To ensure that the

generated data are as similar to the original data as possible, it is necessary to set

the generated data matrix’s number of cycle iterations to m. Doing so ensures that

the number of rows and columns of the generated data matrix are equal to those of

the original layout data.

Next, the system needs to generate a random vector set as z, input the random

vector into the generator, and, after m iterations, generate a matrix with the same

dimensions as the original data R according to the algorithm described above, which

is called the pseudo layout sequence Z. This is expressed by the following:

S = G(Z) (5.2)

The generated layout sequence S is then sent to the discriminator to generate an

eigenvalue T as follows:

T = D(S) (5.3)

Finally, the generator parameters are adjusted according to the following error

formula:

Lg(S) = −
∑

log(D(G(S))) (5.4)

The adaptive moment estimation (Adam) technique is used to optimise all the pa-

rameters of the generator. In the process of training the identifier, it is ensured that

the generator parameters remain unchanged. Similarly, a piece of data in the real ac-

tion sequence is selected, such as in Equation 5.1. After selecting an action, it is still

necessary to obtain the number of layouts m and the number of spatial coordinates

n of the component points. Similarly, the number of iterations of the generated loop

is then set to m.
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Through the method described above, the random variable z is obtained. After

passing through the generator according to Equation 5.2, the pseudo layout data ma-

trix is still obtained. It is then input into the discriminator to obtain the characteristic

value T1 according to the following equation:

T1 = D(S) (5.5)

In a process different from the one utilised for training the generator, the original

data R is input into the discriminator to obtain the eigenvalue T2 as follows:

T2 = D(R) (5.6)

Adjust the parameters of the appraiser according to the error formula:

Ld(S,R) = −
∑

(log(T1) + log(1− T2)) (5.7)

Finally, Adam is used to optimise all the parameters of the discriminator. The two

processes are iterated continuously. When the discriminator can no longer identify

the data created by the generator, the training is deemed complete.

After the training, the generator needs to be extracted from the UIGAN sys-

tem, the required dataset expansion tool. The continuous input of random variables

can generate a large number of datasets to supplement contexts with an otherwise

insufficient number of GUI datasets.

5.4 Experiment

The computer used in the experiment had 32 GB of DDR4 RAM and 8 GB of graphics

memory through an NVIDIA GeForce RTX2080 graphics card accelerator.

5.4.1 Dataset

An encoder can be trained by using the Rico dataset to understand the embedding of

the GUI layout and add 64-dimensional vector annotations to each GUI to represent

the encoded visual layout [36]. The vector representation is usually used to compute

structurally (and typically semantically) similar GUIs and support an example-based

dataset search. To create training input for the automatic encoder embedded with

layout information, We constructed the layout for each GUI, captured the bounding

box area of all the leaf elements in its view hierarchy, and distinguished text, images,
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Figure 5.4: GUI layouts constructed for the Rico dataset

and buttons (Figure 5.4). Rico’s view hierarchy eliminates the noise image processing

or OCR technology normally required to create these inputs.

Because the Rico dataset is stored as a basic digital sequence, a layout sequence

can be abstracted into a matrix and then further abstracted into a vector through

the transformation method [36]. Therefore, the layout sequence can be transformed

into a matrix or vector through abstract methods. When evaluating the similarity

between two actions, one must only obtain the similarity of two matrices or vectors

through mathematical methods.

5.4.2 Evaluation Metrics

Since the Rico dataset is stored as a sequence of basic numbers, each data object in

the GUI has its vertex coordinates of the top-left and the parameters for its width and

height. For a certain sequence of numbers, it can be abstracted into a matrix, and

then through the conversion method, it can be abstracted into a vector. Therefore,

a GUI data object sequence can be transformed into a matrix or vector by abstract

methods. To compare the similarity between the generated GUI and the original

GUI, we need to compare the coordinate parameters of each data object to judge the

deviation of its position, and the length of width and height to judge the accuracy of

its size.

At present, two evaluation methods were adopted:

The first method is Euclidean distance evaluation. This loss function is used for

the similarity of matrices. Let the two matrices be A and B and the elements be a

and b, respectively. The Euclidean distance can be expressed as follows:

Le =
∑
A,B

|a− b| (5.8)
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This method’s main idea is to add the differences of numerical values to obtain

the differences in the data and ignore the influence of other aspects. The advantages

are intuitive and simple; the disadvantage is that significant calculation is necessary,

especially for the square calculation of 1-norm. Because in Euclidean distance, the

contribution of each coordinate is the same. When coordinates represent measured

values, they often have random fluctuations of varying sizes.

We use cosine similarity to compensate for the defect of Euclidean distance. Cosine

similarity measures the correlation between two vectors (x, y), which is defined as

follows:

cos(x, y) =
x · y
|x| · |y|

(5.9)

The calculation result is a decimal value from -1 to 1. Specifically, -1 means that

the two vectors have opposite directions, 0 indicates that the two vectors are vertical,

and 1 shows that the two vectors have the same direction.

This method describes the similarity of vectors in terms of vector direction. If

the directions of the two vectors differ greatly, this will be reflected by this method.

A combination of the two methods is used to measure the dataset generated by

UIGAN from two angles and compare it with other semi-supervised and unsupervised

algorithms.

Summarise the formula of cosine similarity and define the evaluation formula as

follows:

E =
Le

2 + cos(x, y)
(5.10)

We have also tested other metrics such as Manhattan distance, Hamming distance,

etc. We finally determined that, for the parameter setting of the Rico dataset, the

combination of Euclidean distance and cosine similarity metric method can obtain

the most accurate calculation results.

5.4.3 Experimental Results

Ideally, by the end of the UIGAN training, the generator and discriminator will have

strong creation and identification abilities. The two form a state of confrontation:

when the value of one loss function rises, the other will fall until the values balance.

The calculation results of the loss function are shown in Tables 5.1 and 5.2. By

using Equation 5.5, increasing the iterations results in the identification of the original

data converging to one, indicating that the identification ability is increasing.
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Table 5.1: Calculation results of the Euclidean distance loss function

Number of Iterations Original Data Loss Generated Data Loss

0 0.81 0.82

2,000 0.97 0.84

4,000 0.98 0.8

6,000 0.99 0.85

8,000 0.99 0.86

10,000 0.99 0.86

12,000 0.99 0.86

14,000 0.99 0.87

Table 5.2: Calculation results of discriminator loss and generator loss

Number of Iterations Discriminator Loss Generator Loss

0 2.03 0.24

2,000 2.07 0.22

4,000 2.19 0.22

6,000 2.34 0.21

8,000 2.49 0.21

10,000 2.63 0.21

12,000 2.77 0.20

14,000 2.91 0.20
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Table 5.3: Experimental results of GUI generation based on the Rico dataset

Data Object Category Traditional GAN (E value) UIGAN (E value)

Text 2,708.71 2,693.35

Image 2,723.54 2,634.47

Button 2,265.68 2,116.81

How to determine the loss result of the discriminator for the generator is indicated

in Equation 5.5. From this, it can be seen that the result generated by the discrim-

inator for the generator gradually increases and approaches one. Stated differently,

the data produced by the generator becomes increasingly similar to the original data.

The change of the loss function of the discriminator in the training process corre-

sponds to Equation 5.7, while the change of the loss function of the generator in the

training process is represented by Equation 5.4.

It can be seen that the two trends begin at opposite ends of a range and finally

converge, which fully reflects their confrontation operation. The changes in the above

parameters reflect the training process of UIGAN. Under the described hardware

conditions, the total time consumed by the whole training process was measured at

about seven hours.

The process of traditional GAN—that is, the GAN model if the RNN module is

deleted—is as follows: input the original data into the traditional GAN, use the GAN

to generate data of a certain scale, then calculate the evaluation value of the dataset

(as in Equation 5.10).

The experiment was carried out on the Rico dataset, and the results are shown

in Table 5.3. Several layouts were randomly selected for the experiment. From

the analysis of the Rico dataset experiment, it can be concluded that the similarity

between the data generated by UIGAN and the original data was higher than that of

the traditional GAN and the original data; that is, the RNN achieved the expected

effect in the UIGAN system.

However, there exists a limited number of experiments and evaluation standards

in related fields to serve as benchmarks in regards to judging whether the similarities

between the dataset created by UIGAN and the original data were reasonable and well

generated. Nevertheless, the experimental results returned an evaluation value smaller

than that of traditional GAN, showing that the algorithm improved upon the GAN

in the field of GUI generation to a certain extent. This could be attributed to the fact
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that UIGAN can learn the dependencies between data sequences. The experimental

results also show that UIGAN was able to generate similar GUI datasets.

5.5 Summary

The algorithm regularly deviates from the correct result of a GUI in generating a

complex layout; thus, further improvements are necessary. On the whole, UIGAN

performs well in experiments of dataset augmentation, going beyond initial expecta-

tions. Despite the lack of comparable experiments, the generated dataset meets the

expected goal for GUI layout training and performs better than the traditional GAN

based on the experimental results.

Future work will further classify the data objects in the existing datasets. For

example, text objects and image objects in a GUI can be subdivided into ‘TextView’,

‘ImageView’, ‘TextButton’ and ‘ImageButton’ according to their functions. In addi-

tion, more categories can be extended, such as ‘Headline’, ‘Icon’ and ‘Toolbar’. It

can be seen that data expansion will have more potential to be tapped in the field of

GUI generation.
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Chapter 6

Scene Graph-to-UI Model for
Graphical User Interface Layout
Generation

6.1 Introduction

Graphical user interface design has become the subject of extensive research, and this

includes its aesthetics [174]. Automatic GUI design allows users to complete tasks

without expending unnecessary energy on the design itself. GUI design can also

improve the usability of the interface. Designing a GUI presents a series of significant

challenges. One of the most critical challenges is to represent abstract concepts in

the visual language of graphics. GUI design should maintain a unified visual style

and prioritize giving a distinct personality to each graphic [100].

Although significant progress has recently been made in the methods of generat-

ing authentic natural images, particularly in Graph Convolutional Networks (GCNs)

[155], the current method of creating GUI design is much more primitive. This chap-

ter proposes a scene graph to user interface (SG2UI) model that directly synthesises

a group of graphic elements in the design. In this model, a fixed set of element

classes (i.e., ‘text’, ‘button’, or ‘image’) are specified in advance. In the network of

SG2UI, each element is represented by its class probability and geometric parameters.

These are the keys of bounding box. The generator takes the graphical elements of

random sampling class probability and geometric parameters as input and arranges

them in the design. The output is comprised of the deterministic class probability

and geometric parameters of the design elements. The generator has the invariant

displacement function, which will generate the same layout if the input elements are

reordered.
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Figure 6.1: Our GUI generation model can support content aware layout generation.
Given the input design category and keywords of the summary text content, it will
automatically generate multiple layouts that conform to the visual and text content.
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For structured data, we propose two discriminant networks. The first is struc-

turally similar to a generator; it acts directly on the element’s class probability and

geometric parameters. Although effective, it is not sensitive enough to prevent dislo-

cation and occlusion between elements. The second discriminator works in the field

of vision. Just as one can judge a design by looking at rasterized images and mapping

different elements into a two-dimensional layout, the relationship between them can

be evaluated. However, the critical challenge lies in how to map geometric parame-

ters to the pixel-level layout. One method entails decomposing graphic elements into

bitmap masks using spatial transformation networks [80]. However, filling pixels in

design elements can lead to occlusion and may have no effect on backpropagation,

such as when small polygons are hidden behind large polygons. We evaluate the

SG2UI model by generating GUI layouts from the marked boundaries.

Our proposed SG2UI model includes the following contributions: 1) The gen-

erator for directly synthesizing structured data is represented as a set of resolution-

independent labelled graphic elements in the design; and 2) A differentiable wireframe

render layer allows the discriminator to determine alignment based on the arrange-

ment of discrete elements.

6.2 Related Work

6.2.1 Text-to-Image Generation

Image generation based on text description is the main research direction of the

image generation model. If the model can realise the conversion from text to image, it

shows that the model understands the image semantically. The GAN-INT-CLS model

proposed by Reed et al. [149] is the first attempt to use the generative adversarial

network (GAN) model to generate images from text sequences. By taking the text

vector as the conditional input of the GAN model, the text-to-image generation is

better realised, but it is mainly suitable for generating images with a resolution of

32 × 32 pixels. On this basis, Zhang et al. [201] proposed the StackGAN model,

using two tandem GANs to generate an image with a resolution of 256 × 256 pixels.

Reed et al. [150] proposed a GAWWN (learning what and where to draw) model for

text-to-image generation based on position constraints. By capturing the positioning

constraints of objects in the image, they learn the boundary box of objects in the

image and improve the quality of the generated image. Zhang et al. [202] proposed

the StackGAN++ model, which uses multi-pair generators and discriminators to solve

the limitation of using only two pairs of StackGAN models, increase unconditional
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image loss for the discriminator, and improve the ability of the discriminator. Xu et

al. [193] proposed the AttnGAN model, introduced the attention mechanism based

on the StackGAN++ model [192], matched different subregions of the image through

relevant words in the natural language description, and proposed the deep attention

multimodal similarity model (DAMSM) to calculate the loss between the subimage

and the corresponding words, so that the text features have sufficient visual resolution.

The existing research on the text-to-image generation model is only applicable to

image data sets containing a single object. When complex scene images containing

multiple objects and relationships are encountered, the generated images will become

chaotic. The reason is that text sequence is a linear structure, and it is difficult to

transfer information between objects in text descriptions. Johnson et al. [86] pro-

posed image generation from a scene graph (sg2im) model based on a scene graph.

Compared with a text sequence, the input scene graph can more effectively represent

the structural relationship between objects in the image and is more conducive to

information transmission between objects. The sg2im model uses the graph convolu-

tional network [94] to extract the features of the scene graph and generate an image

containing multiple objects and relationships.

6.2.2 Sg2Im

The sg2im model takes the scene graph describing the object and its relationship as

the input to generate a realistic image corresponding to the scene graph [86]. The

model consists of a generator network and a discriminator network. The subnetworks

of the sg2im model proposed in this chapter include the graph convolutional network

(GCN), scene layout synthesis network (SLSN), cascaded refinement network (CRN)

and discriminator network.

The GCN introduces the graph convolution idea proposed by Kipf and Welling

[94] to process the model input scene graph in the way of spatial domain convolution,

in order to obtain the abstract vector representation of each object in the graph,

and the embedded vector aggregates the feature information of other objects in the

graph. Each layer of the graph convolutional network obtains the abstract vector

representation of the object and relationship in the graph by training three functions.

The input of the function is the edge in the graph, and the output is the vector

representation of the starting subject, relationship, and target object of the edge.

Then, the final vector representation of all object nodes is obtained by an average

pooling function. After stacking through multiple graphs, each final output object

vector can aggregate the information of other objects along the edge of the graph.
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The purpose of the SLSN is to synthesise a rough scene layout corresponding to

the final generated image. The scene layout is similar to the semantic segmentation

map of the generated image, which only contains object position information and edge

contour information, but does not include object colour details. Therefore, in order

to synthesise a scene layout with enough respect for facts, we need to predict the

border and segmentation mask of each object. The sg2im model predicts the frame

and segmentation mask of each object through the object layout network, including

the box regression network and mask regression network. Finally, all object layouts

in a single image are combined to obtain the scene layout of the whole image.

A cascaded refinement network is used to transform the synthetic scene layout

into a generated image, which is similar to the inverse process of image semantic

segmentation [112]. The network generates the final image from coarse to fine by

gradually adding detailed information to the scene layout. CRNs are suitable for

image generation with high resolution and high fidelity. Chen and Koltun [24] used a

CRN to generate a photo-like real image containing hundreds of thousands of pixels.

Discriminator and generator network confrontation training can greatly improve

the output of generator networks. The discriminator in the sg2im model consists

of an image discriminator and an object discriminator. The image discriminator can

improve the quality of the generated image. The object discriminator network ensures

that the objects in the generated image are realistic enough. At the same time, an

auxiliary classifier [136] is introduced into the object discriminator to ensure that the

objects can be classified correctly.

Although the sg2im model generates complex scene images containing multiple

objects and relationships, the quality of the final generated images is not high. Ex-

periments show that only by using the object frame and segmentation mask provided

by the real label to generate the image can we better distinguish the relationship be-

tween different objects in the image. The segmentation mask generated by prediction

and the image generated by frame are relatively chaotic, indicating that the frame

regression network in the object layout network cannot better locate the objects in

the scene map, and the mask generated by the mask regression network cannot better

represent the edge contour information of the objects. Therefore, we need to improve

the object layout network to obtain a better object segmentation mask and frame.
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6.3 Methodology

In this chapter, the SG2UI model is proposed to generate higher quality complex

GUIs containing multiple objects and relationships. It is divided into two parts: 1)

Feature extraction of the scene graph using a graph attention network to obtain object

vectors with stronger expression ability; and 2) Improved mask regression network

and frame regression network to obtain a more accurate object mask and frame, and

synthesise a 2D scene layout closer to the generated GUI semantics.

6.3.1 Scene Graph Preprocessing

A scene graph is a way to sort data into a hierarchical structure [86]. Scene graph is

usually used to describe the objects, attributes and relationships between objects in

an image. It can be used for image retrieval, image generation, image/video action

capture and special relationship detection [86].

Because it does not limit the types of objects, attributes and relationships that

can be represented, this representation method can describe the visual scene in great

detail. Figure 6.2 illustrates an example GUI scene graph, which shows that the

object instance has been set to ‘image, button and text’ within GUI. Each component

is represented using different colours. A relationship between components can be

created by using ‘above, below, left of, or right of’.

Given a set R of relationship types, we can define scene graph G as a tuple

G = (O,E), where O = o1, ..., on is a set of objects and E ⊆ O × R × O is a set

of edges, and n is the number of instance objects in the scene graph; R = r1, ..., rm

represents the relationship set between objects in the scene graph, and m is the

number of relationships in the scene graph; E = (oi, r1, oj), ..., (op, rm, oq) represents

all directed edges in the scene graph, and i, j, p, q represents the instance object label

in the scene graph.

Embedding technology [25] is used to convert all objects and relationships in

the scene graph into abstract embedding vectors. The object feature vector set is

represented by ho = ho1, ..., hon, and hr = hr1, ..., hrm represents the relational feature

vector set. The feature dimension of the object feature vector set and the relationship

feature vector is set to F1.

6.3.2 Feature Extraction of Scene Graph

The scene graph object layout network outputs the embedded vector expression of

instance objects in the scene graph, and each vector aggregates the feature information

77



Figure 6.2: A Scene Graph Example in the GUI.

Figure 6.3: Architecture of SG2UI model.
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Figure 6.4: Architecture of graph attention network.

of all other objects and relationships [86].

In the SG2UI model, each layer converts the low-level feature vector representation

corresponding to three elements in each edge (oi, rk, oj) of the scene graph into high-

level feature vector representation by training three learnable functions: gs, gp, and go.

Therefore, the function inputs are the embedding vectors (hoi, hrk, hoj) corresponding

to the edges in the scene graph. By extracting the edge features in the scene graph,

the information is aggregated along the edges of the scene graph. After multiple

convolution layers, each final output object vector aggregates the feature information

of all other objects and relationships.

In order to obtain more expressive object embedding vectors, a graph attention

network is used as a scene graph feature extraction network. The graph attention

network introduces an attention mechanism based on the GCN; that is, when each

output eigenvector aggregates neighbourhood nodes, it assigns a learnable attention

coefficient to all neighbourhood nodes, so that each object can have a different per-

ception of all its neighbourhood nodes. The specific steps are as follows:

1) A shared parameter matrix W ∈ RF1×F2 is used to convert all object vectors and

relationship vectors in the scene graph into higher-level feature vectors to ensure that

the object and relationship feature vectors have stronger expression ability. Then,

the attention coefficient between objects is calculated by using the high-level feature

vector of edges in the scene graph, which is calculated as:

eij = T (W [hoi, hrk, hoj]) (6.1)
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where eij is the contribution of instance object oj to instance object oi in any

edge (oi, rk, oj) of the scene graph, where attention computing network T indicates a

tensor merging operation.

2) The softmax function is used to standardise all neighbourhood node objects of

each object, so that the coefficients can be easily compared between different nodes,

specifically:

αij = softmax(eij) =
exp(eij)∑

k∈Ni
exp(eik)

(6.2)

where Ni represents all first-order neighbourhood nodes of node i (including i

itself). After the standardised attention coefficients are obtained, the linear combina-

tion of node features corresponding to them is calculated as the final output of each

object node.

3) After processing multiple graph attention layers, each object obtains its cor-

responding final output feature vector, which contains the feature information of all

other objects in the scene graph. This ensures that different objects of the same cate-

gory have different abstract vector representations, and different outputs can be used

to predict the object layout. Figure 6.4 shows the graph attention network structure.

6.3.3 Scene Layout Synthesis

When converting a scene graph into a GUI, it is necessary to synthesise the scene

layout corresponding to the GUI as a transition. Therefore, the object vector output

from the graph attention network is transferred to the object layout network, the

object layout of each object is predicted, and then all object layouts in the graph are

combined to obtain the GUI scene layout [86].

The object layout network is composed of three parts: the prediction object bor-

der, the partition mask frame regression network, and the mask regression network.

In the SG2UI model, the frame regression network uses two-layer multi-layer percep-

tron (MLP) [86] to predict the relative GUI coordinates of the object frame; that is,

b = (x0, y0, x1, y1). The mask regression network uses a series of upper sampling layers

and convolution layers to predict the binary mask m with a fixed size of M ×M , and

then synthesises the scene layout of the GUI.

6.3.4 Object Layout Network Training

The object layout network introduces the training idea of the confrontation process.

Therefore, in order to avoid an object layout with large errors generated in the early
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stages affecting the subsequent training of the network, the whole generation network

needs to be trained in stages. The specific network structure is shown in the scene

layout synthesis network in Figure 6.3. The network first generates a scene layout

diagram that respects the generated GUI, and then trains it to generate high-quality

GUIs.

Finally, the improved frame regression network and mask regression network are

used to generate the object segmentation mask of the frame. In order to better

distinguish the outline of objects, a non-transparent canvas colour mask is used to

label different objects.

6.3.5 Loss Function

The generation from scene graph to scene layout is realised through training the

graph attention network and the object layout network. The network loss function is

calculated as follows:

Loss =
n∑

i=1

C(m,mi) (6.3)

Where C represents the cross entropy loss of binary classification of the generated

mask m and the real mask mi.

6.3.6 Evaluating Indicator

To better evaluate the generated image quality, this section introduces the FID [66]

concept for testing. It evaluates the generation model from two aspects: clarity and

diversity. Mathematically, Frechet Distance is used to calculate the distance between

two “multivariate” normal distributions [66]. For a “univariate” normal distribution,

the Frechet distance is:

d(X, Y ) = (µX − µY )2 + (σX − σY )2 (6.4)

where µ and σ are the mean and standard deviation of the normal distribution,

and X and Y are two normal distributions. FID is given by Frechet Instance of

multivariate normal distribution:

FID = ‖µX − µY ‖2 − Tr(ΣX + ΣY − 2
√

ΣXΣY ) (6.5)

where X and Y are real and false embeddings, respectively, and are assumed to

be two multivariate normal distributions [66]. µX and µY are the mean values of the
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vectors X and Y . Tr is the trace of the matrix, and ΣX and ΣY are the covariance

matrices of vectors.

6.4 Experiment

The SG2UI model is trained and verified using the Rico dataset. First, the scene

graph is synthesised using the annotation information provided by the GUI, and then

the model is trained to generate a 256 × 256 pixel GUI. The quality of the generated

GUI is evaluated by using the FID [66]. The accuracy of the objects in the generated

GUI is evaluated using Intersection Over Union (IOU).

6.4.1 Dataset

The Rico dataset [36] contains design data for more than 9.3k Android applications,

covering 27 categories. It exposes 66K visual, textual, structural, and interactive

design properties of unique GUI screens. Each GUI annotates the objects in it,

focusing on the object frame information and segmentation mask. Through this

annotation information, the model input scene graph can be synthesised.

Specifically, the relative relationship between objects is marked according to the

GUI layout coordinates of the objects, while the scene graph is constructed with

six mutually exclusive geometric relationships ‘left of’, ‘right of’, ‘above’, ‘below’,

‘inside’, and ‘surrounding’. At the same time, a special GUI object is added to all

scene graphs for expansion and a special in-GUI relationship is added between each

object and GUI object to ensure that all objects can be connected in the scene graph.

The experiment ignores objects whose coverage areas are less than 5% of the GUI

but retains images with 3 to 8 objects. Finally, 11,550 GUI images meeting the

requirements are obtained from the Rico training set and designated as the training

set for this experiment, 1,024 images meeting the requirements are selected from

the Rico verification set and designated as the verification set, and 2,048 images are

selected as the test set.

6.4.2 Implementation

The actual GUI size in the Rico dataset (2,560 × 1,440 pixels) was too large to be used

for neural network training. To adapt to the graph attention network, we normalised

the Rico dataset before the training process, and preprocessed the training samples

into a format that can be read by the network. First, the following parameters are
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established: input object vector dimension F1 = 128, final output vector dimension

F2 = 128, segmentation mask output dimension M = 16, and length and width of

the generated GUI W = H = 64. The Adam method [93] with a learning rate of

0.0001 is used as the optimisation function for all model trainings. Batch size is set to

32 and 100,000 iterations are performed. The network structure design is as follows:

1) The graph attention network is composed of five identical graph attention layers

in series. Each layer needs to train two parametric matrices. The object and rela-

tionship vector are transformed respectively to obtain the shared parametric matrix

W ∈ RF1×F2 and attention computing network T . The attention computing network

is composed of two linear layers with ReLU function as the activation function. 2)

The object layout network consists of a frame regression network, a mask regression

network, and a mask discriminator network. Input is the object vector and output

the four transformation coefficients of the frame.

The mask regression network requires a series of transpose convolution operations

to realise the conversion from the object tensor to the mask tensor. Here, the up-

sample layer is connected with the convolution layer (conv). The convolution layers

comprise 3 × 3 convolutions with a filling step of 1 with ReLU as the activation

function. Herein, the batch normalisation proposed by Ioffe et al. [77] is introduced.

In the last layer, to ensure that the output mask value is between (0, 1), the Sigmoid

function is used as the activation function. The mask discriminator network is used to

identify the real mask and generate the mask. Given that the classifier mainly learns

the contour features of the mask for classification, a smaller convolution network can

be used.

6.4.3 Qualitative Results

The Rico test set is used to verify the generalisability of the model. The final generated

sample is shown in Figure 6.5. For a better comparison, Figure 6.5 also shows the

corresponding reference GUI, the model input scene diagram synthesised according

to the annotation information of the reference GUI, the reference text of one of

the description images corresponding to the reference image, the 2D scene graph

corresponding to the generated GUI layout, the generated GUI layout of the sg2im

model [86] input with the same scene graph, and the generated GUI layout of the

StackGAN model [201] input with reference text.

As can be seen in Figure 6.5, compared with the GUI layout generated by the sg2im

model, the GUI layout generated by SG2UI is smoother, clearer and less different from

the reference GUI. Meanwhile, the alignment accuracy of GUI layout generated by
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(a) Scene
Graph

(b) StackGAN (c) sg2im (d) SG2UI (e) Canvas (f) GUI

Figure 6.5: GUI generated using the Rico test set.

StackGAN model is lower than that of our model, which shows that the method that

makes use of the scene graph as input is more conducive to generating complex GUIs

containing multiple objects and relationships than the method using text description

as input.

In the Rico dataset, the test set samples are randomly divided into five groups,

and the mean and standard deviation of each group are recorded. For the Sg2UI

and sg2im models, the GUIs of each test set are synthesised into five different scene

graphs to generate five sample GUIs. For the StackGAN model, each text description

of each test set GUI generates a GUI with a size of 256 × 256 pixels. The GUI is

reduced to 64 × 64 pixels by downsampling. The final results are shown in Table 6.1.

In addition to viewing the GUI layout, evaluating the quality of the generated
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Table 6.1: Comparison of FID for 64 × 64 pixels GUIs generated by different methods

Methods FID Loss
Real GUIs 17.3 ± 0.4 0.212
StackGAN 9.4 ± 0.2 0.467
sg2im 8.3 ± 0.1 0.279
SG2UI(ours) 8.8 ± 0.1 0.248

Table 6.2: Statistics of predicted bounding boxes

Methods R@0.3 R@0.5
sg2im 53.4 33.2
SG2UI(ours) 59.7 39.4

GUI can also detect the object frame predicted by the model. There are two common

measurement methods. The first method entails calculating the IoU ratio between

the predicted generated object frame b and the object frame B provided by the real

label. Specifically:

IoU =
b
⋂
B

b
⋃
B

(6.6)

The other measurement method entails generating the diversity of object frames,

that is, the predicted changes in the object frames relative to other objects and

relationships in the graph are evaluated by the standard deviation of the position

and area of the object bounding boxes of each category.

Table 6.2 presents an evaluation of the accuracy and diversity of the prediction-

generated frame by the SG2UI and sg2im models [86]. Herein, R@t represents the

recall rate of objects with different IoU thresholds, which is used to evaluate the

accuracy of the prediction object frame, while σx and σarea represent the average of

the standard deviation of the frame position and area of objects in all categories.

If graph convolution is not used, the model can only predict a separate bound-

ing box for the objects from each object category, but cannot realise the prediction

generation of different objects from the same category, that is, σx = σarea = 0.

The experimental data shows that compared with sg2im and StackGAN models,

the SG2UI model discussed in this chapter is more conducive for the generation of

complex scene graphs containing multiple objects and relationships. Notably, the
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generated GUI quality is better. In addition, the improved object layout network

is more accurate in predicting the position of objects in the GUI and can better

distinguish different objects from within the same category.

6.5 Summary

With the aim to address the problem of existing text-to-image generation models

being unable to generate multiple objects and relationships, a SG2UI model based on

graph attention network scene graph-to-GUI generation is proposed in this chapter.

First, the graph attention network is used as the feature extraction network of the

input scene graph. Then, the improved object layout network is used to predict the

object segmentation mask and frame in the GUI to obtain a more realistic scene

layout. The canvas is used to convert the scene layout into a real GUI. Thereafter,

the FID and perceptual loss are used to calculate the difference between the generated

GUI and the real GUI.

The final qualitative experimental results demonstrate that the object details of

the final GUI generated by the model are more apparent and the relationship be-

tween objects is more in line with the source information, indicating that the model

improves the quality of the generated GUI to a certain extent. At the same time, the

quantitative experimental results show that compared with the sg2im model proposed

by Johnson et al. [86], the SG2UI model can obtain a higher FID score.

In Chapter 4, we proposed an improved method for some defects in the pix2code

framework. This method implemented an encoder–decoder model. They trained per

the GUI metadata and information in the screenshot. The target screenshot is first

translated into a domain-specific language (DSL), then into GUI code. This method

has some disadvantages: (I) It is only verified on a small number of synthetic appli-

cations, and there is no large-scale user interface mining; (II) It requires a DSL that

must be maintained and updated over time, increasing the complexity and workload

required to use the method. Therefore, it is difficult to judge this method’s perfor-

mance on actual GUI data. In contrast, SG2UI is trained on a large data set, Rico,

collected through a new application for the automatic dynamic analysis of user in-

terface mining. The data collection and training process can be fully automated and

repeated, which helps reduce the burden on developers.

In this chapter, the SG2UI model successfully realises the generation of complex

scene layouts containing multiple objects and relationships, but the input scene graph

of the model depends on a large amount of image annotation information, which has
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an adverse effect on the generation of objects and relationships that do not appear in

the training dataset. Therefore, as follow-up work, a planned research direction is for

the model to directly generate complex scene layouts through more easily obtained

natural semantic text. Furthermore, new methods will be explored to capture objects

in semantic text and determine the relationships between them.
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Chapter 7

Conclusions

7.1 Introduction

The aim of this project is to develop a system that can automatically generate a

specific platform code for a given graphical user interface (GUI) screenshot or GUI

elements as inputs, it provides two main methods for GUI generation. The extended

version of these methods might reduce the need to manually program GUIs. Users

can choose which method to obtain the desired generation results according to their

requests. The improved version of pix2code in Chapter 4 can obtain its HTML code

through a GUI screenshot, and the CSM proposed in Chapter 3 can be used as one

of its extended measurement methods. If users do not have GUI screenshots or just

want to generate results through their own design inspiration, they can just give the

keywords of elements in the GUI and complete it through the SG2UI model provided

in Chapter 6. Chapter 5 provides the method of generating original GUI datasets to

provide further data support for the above two generation methods.

This chapter summaries the findings of the study and gives conclusions drawn

from the findings. Finally, some suggestions for future research will be given.

7.2 Research Findings

Table 7.1 illustrates the objectives and the outcomes of this thesis. The first objective

focuses on the development of evaluation metrics for GUI code generation. Chapter

3 proposed CSM and compare its performances with the benchmark plagiarism de-

tection tools. We validate on four SMT-based datasets from two sources, i.e lpSMT,

lpSMT2, mppSMT and mppSMT2. The N-gram model based on TF-IDF weight-

ing and cosine similarity solves this problem well, and has good scores on different

datasets. TF-IDF weighted features can also be used as part of the visualization
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Table 7.1: Objectives and outcomes of this thesis.

No Objective(s) Outcome(s)

1 Design a novel metric to evaluate the accuracy
for GUI layouts.

This study has designed a code semantic metric
(CSM) using n-gram sequence features and co-
sine similarity to measure the accuracy of trans-
lation code. (Chapter 3)

2 Propose an improved framework to solve the
problem of feature vector losses in a pix2code
framework to a certain extent.

An improved framework based on pix2code is
developed to automatically generate a specific
platform code for a given GUI screenshot as an
input. (Chapter 4)

3 Synthesise realistic GUI images using generative
adversarial networks.

The UIGAN is developed for GUI data augmen-
tation. (Chapter 5)

4 Create a scene graph model to generate addi-
tional GUI examples such as actual texts, im-
ages, and buttons.

A scene graph-to-UI generation model based on
a graph attention network is proposed to gener-
ate higher quality GUI layouts. (Chapter 6)

method, because more unique parts of a word pair will show more significance than

other similarities.

At present, the model still has some limitations, which illustrate the possible

follow-up steps:

• CSM uses n-gram sequence features and Cosine Similarity to judge the accuracy

of translation code. There is no training process of dataset before running.

• The method only understands the importance of some similarities at runtime

based on the features in the dataset. This means that when the data set is

small, the distribution of some features may not represent the true distribution

of tasks.

Chapter 4 proposed a modified framework for solving the problem of feature vec-

tor losses in pix2code framework to a certain extent. The preliminary experimental

results outperformed the state-of-the-art methods based on BLEU and MBLEU. We

demonstrate MBLEU is suitable for DSL evaluation.

At present, we found that the model have one or more of the following drawbacks:

• Due to the limitations of the existing pix2code dataset, the model only trains

a vocabulary of 16 elements, so it can only predict the DSL token specified in

the data.

• Because CSS lacks style changes when making sketch parts of existing datasets,

there is still a big difference compared to human hand-drawn sketches.
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• There are some shortcomings in the NLP evaluation metrics. The existing

methods lack the ability to judge the dependency relationship between different

DSL tokens and its importance to the whole web page. It is necessary to improve

the penalty factor or find a more suitable alternative.

Chapter 5 introduced UIGAN, which performed well in experiments of dataset

augmentation, achieving beyond initial expectations. The experimental results re-

turn an evaluation value smaller than that of traditional GAN; this shows that the

algorithm has improved upon GAN in the field of GUI generation to a certain extent.

This could be attributed to the fact that UIGAN can learn the dependencies between

data sequences. The experimental results also show that UIGAN can generate similar

datasets of GUI.

With an aim to address the problem of existing text-to-image generation models

being unable to generate multiple objects and relationships, Chapter 6 proposed a

SG2UI model based on graph attention network scene graph to GUI generation is

proposed in this chapter. First, the graph attention network is used as the feature

extraction network of the input scene graph. Then, the improved object layout net-

work is used to predict the object segmentation mask and frame in the GUI to obtain

a more realistic scene layout. The canvas is used to convert the scene layout into a

real GUI. Thereafter, the FID and perceptual loss are used to calculate the difference

between the generated GUI and the real GUI.

The final qualitative experimental results demonstrate that the object details of

the final GUI generated by the model are more apparent and the relationship be-

tween objects is more in line with the facts, indicating that the model improves the

quality of the generated GUI to a certain extent. At the same time, the quantitative

experimental results show that compared with the sg2im model proposed by Johnson

et al. [86], the SG2UI model obtained a higher FID score.

7.3 Future Work

The future of Automatic GUI generation with great promises, as major technology

companies and developers have been attempting the application of machine learning

in their own field. The following are some future work for GUI generation:

• In order to further improve the accuracy of code semantic metric in Chapter

3, future research directions will consider building a simpler monitoring model

through deep learning and multiple similarity metrics. The evaluation model
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needs to be able to understand the importance of each similarity metric. An-

other interesting direction is to use unsupervised learning algorithms on multiple

source code translation datasets, and then use these representations as features

of the supervised model.

• In Chapter 4, the future work could be trying to create more elements to gen-

erate additional web examples such as actual icons, image buttons, drop-down

menus, forms, and bootstrap components. With the increasing performance of

computer hardware, it is better to create a dataset that can be directly trained

by HTML/CSS code than a DSL token sequence in the future. A good way to

generate more variants in hand-drawn sketch data might be to create a realistic

hand-drawn website image using a Generative Adversarial Network (GAN).

• There exists a limited number of experiments and evaluation standards in re-

lated fields on whether the similarities between the dataset generated by UIGAN

and the original data are reasonable and well generated. At the same time, the

algorithm regularly deviates from the correct result of GUI in the generation

process of complex layout. Future work will focus on improving the existing

GAN model and trying to realize the generation of more complex layout struc-

ture on GUI datasets such as Redraw [122].

• In Chapter 6, the SG2UI model successfully realises the generation of complex

scene layouts containing multiple objects and relationships, but the input scene

graph of the model depends on a large amount of image annotation informa-

tion, which has an adverse effect on the generation of objects and relationships

that do not appear in the training dataset. Therefore, in the follow-up work, a

planned research direction is for the model to directly generate complex scene

layouts through more easily obtained natural semantic text. Another research

direction is to functionalize GUI by placing GUI design in the context of HCI

design, especially leading from the GUI to the process of human-computer in-

teraction and the hypertext nature of graphic user interface. Furthermore, new

methods will be explored to capture objects in semantic text and determine the

relationships between them.
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