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Abstract 
 
Offshore wind developments are increasing the amount of artificial electromagnetic 

fields (EMFs) in the ocean, and these are known to have behavioural and physiological 

impacts on many marine species. A previous investigation on a cetacean (Guiana 

dolphin, Sotalia guianensis) found that an individual was able to electrosense 

accredited to their vibrissal follicles. However, it is not known whether this sensory 

modality is present in other cetaceans, or if they are affected by artificial EMFs. 

Therefore, the aim of this thesis is to evaluate the potential and impact of 

electrosensing in cetaceans by i) identifying potential electrosensory organs, ii) 

identifying cetacean species that may be able to detect electric and magnetic fields 

from ecological characteristics and phylogeny, and iii) reviewing the data on 

movement and interactions of cetaceans around windfarms. The vibrissal follicles of 

three species of foetal cetaceans were characterised here for the first time. Vibrissal 

follicles in two species, the harbour porpoise (Phoconea phocoena) and minke whale 

(Balaenoptera acutorostrata), displayed follicles like that of mechanosensory hair 

follicles observed in mysticetes. In contrast, the Atlantic white-sided dolphin 

(Lagenorhynchus acutus) had follicles that were closer to the electrosensing Guiana 

and the bottlenose dolphin (Tursiops truncatus). These delphinid species had follicles 

that had a characteristic innervation pattern around the base and sides of the follicle. 

Members of the Delphinidae are therefore of great interest to further study the effects 

of EMFs. Around the UK, sighting data are available for several species of cetacean. 

However, these records do not overlap with the dates and positions of windfarm sites, 

and it is therefore not possible to infer the effects of EMFs on cetacean distribution 

and behaviour in situ. Future work would need to survey cetacean distribution and 

behaviour at windfarm sites over the long-term. Anatomical studies and 

psychophysical studies of captive animals will complement the data in this study and 

provide a greater understanding of electrosensory form, function and sensitivity in 

cetaceans. Although the ability of both magneto- and electrosensing in cetaceans is 

not fully understood, these sensory modalities may be crucial in relation to detecting 

the increasing levels of EMFs from the increasing developments of offshore 

windfarms. Therefore, more information is needed to characterise the possible 

impacts of EMFs on cetacean physiology and behaviour.  
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1. Chapter One: Literature Review 
 
1.1. Introduction  
 
Anthropogenic activities in the oceans have increased in recent years, including 

marine traffic (Erbe et al., 2019), overfishing (Sumaila and Tai, 2020), seabed mining 

(Thompson et al., 2018), pollution (Häder et al., 2020) and oil and gas extraction 

(Ragnarsson et al., 2017). The development of offshore renewable energy has also 

increased, particularly around the United Kingdom (UK) and the rest of Europe 

(Hutchison et al., 2020). There are concerns that these developments might be 

negatively impacting marine species (Dolman and Simmonds, 2010), particularly 

cetaceans (Gill et al., 2005; Madsen et al., 2006). Indeed, the construction and 

operation of windfarms is believed to interfere particularly with the sensory 

environment of many marine species (Nyqvist et al., 2020), since they produce noise, 

vibrations, and electromagnetic fields (EMFs) (Thompson et al., 2010). Whilst noise 

and vibrations tend to subside somewhat once the windfarms have been developed 

(Gill, 2005), EMFs from cabling will persist during the lifetime of the windfarm. Artificial 

EMFs have been reported to have both behavioural and physiological effects in a 

number of marine species (Tricas and Sisneros, 2004; Hutchison et al., 2018; 

Hutchison et al., 2020). Elasmobranchs, teleosts and crustaceans use electro- and 

magnetosensing to navigate, hunt and find a mate (Kalmijn, 1982; Krylov, 2014; 

Lohmann and Ernst, 2014; Hutchison et al., 2018), and may therefore be particularly 

sensitive to artificial EMFs. Cetaceans are also known to be sensitive to changes in 

the geomagnetic fields (Gill et al., 2012a). Investigations into a Guiana (Sotalia 

guianensis; Czech-Damal et al. 2012) and bottlenose dolphins (Tursiops truncatus; 

Huttner er al., 2021) identified that they are able to electrosense. Therefore, cetaceans 

may also be impacted by artificial EMFs. As charismatic species (Mazzoldi et al., 

2019), which play important roles within ecosystems (Katona & Whitehead, 1988; 

Parsons et al., 2015), cetaceans are an important taxon to study and are therefore the 

focus of this thesis. The recent findings (Czech-Damal et al. 2012; Huttner er al., 2021) 

that two species of cetacean can electrosense, makes this a timely investigation.  

 

The aim of this review is to synthesise the available literature in relation to cetacean 

ecology and conservation. It will start by reviewing the growth of the offshore windfarm 

sector, the technology that is involved in its operation and the data which are freely 
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sourced on cetacean sightings around the UK. It will summarise the current literature 

on magnetosensing and electrosensing abilities in many marine species and highlight 

the effects of anthropogenic EMFs on species that can either electro- or magneto-

sense. It will also review threats faced by cetaceans and cover key ecological 

characteristics of cetaceans. The chapter will conclude by outlining the knowledge 

gaps and outline the remaining objectives of this thesis.  
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1.2. Windfarms 

 

Offshore wind projects are the leading technology in renewable energy, with more 

sites being developed than any other type of energy production, both non-renewable 

and renewable (Gill et al., 2012b). Positioning turbines offshore gives a higher wind to 

energy production ratio than those onshore (Díaz and Soares, 2020). Larger 

structures can be used offshore and due to their large turbine size and higher hub 

height, they encounter higher wind speeds (Aldersey-Williams et al., 2020). In the past 

two decades, the European offshore wind energy sector has developed rapidly. 

Between 2000-2004 the total number of operational windfarms in European countries 

increased by 42%, further increasing by 258% between 2005-2009 (Brown and 

Simmonds, 2009) and by finally has increased by 300% between 2010-2020 (The 

Wind Power, 2019). Much of this growth has been on the English East coast in the 

North Sea (Díaz and Soares, 2020; Figure 1.1), with the UK having more offshore 

windfarms than any other European country (Díaz and Soares, 2020). The first 

offshore wind turbines in the UK were installed in 2000 off the coast of 

Northumberland. There are currently thirty-two operational wind farms in the UK, with 

two more due to be commissioned shortly (Aldersey-Williams et al., 2020). On the 6th 

of October 2020, The UK Prime Minister Boris Johnson pledged £160 million towards 

the wind power sector with the aim that by 2030, offshore wind will power every home 

in the UK. This target requires offshore wind capacity to increase to 40GW (GOV.UK, 

2020) – quadrupling the current total annual capacity. This further expansion of the 

offshore wind sector in the UK highlights the need to better understand how offshore 

wind farms impact marine organisms, including cetaceans.  

 

Wind farm locations are freely available through KIS-ORCA (Kingfisher Information  

Service – Offshore Renewable & Cable Awareness; https://kis-orca.org/downloads/) 

and The Crown Estate (https://opendata-thecrownestate.opendata.arcgis.com). The 

data sets which were acquired included coordinate locations of detailed attributes such 

as substation points and turbine locations. Of the available data, 44 datasets were 

downloaded, this included 34 windfarms in UK waters. Data on the locations of subsea 

power cables were also freely available via The Crown Estate (https://opendata-

thecrownestate.opendata.arcgis.com) in the form of a shapefile. Windfarm locations 

https://kis-orca.org/downloads/
https://opendata-thecrownestate.opendata.arcgis.com/
https://opendata-thecrownestate.opendata.arcgis.com/
https://opendata-thecrownestate.opendata.arcgis.com/
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and subsea power cables were mapped in QGIS version 3.18 Zurich (QGIS.org, 2022, 

QGIS Association, Zurich; figure 1.1).  

 

 

  

Figure 1.1: Map displaying operational windfarms around England, Scotland, and Wales 2000-
2020.  
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1.2.1. Subsea power cables and EMFs 

 

Subsea power cables have spread across the globe since the 20th century (Hansson, 

1954) and among other uses, they can be used to connect offshore marine renewable 

energy installations to the grid. These cables transmit either high voltage direct current 

(HVDC) or alternating current (HVAC). HVDC lines transmit more power than an 

HVAC line of the same length, but are more expensive (Öhman et al., 2007; Taormina 

et al., 2018). An HVAC cable is more frequently used for close transport, such as inter-

turbine connections within grids or short connections with substations (Copping et al., 

2013), as these reduce the power lost to the surrounding environment (Soares-Ramos 

et al., 2020). HVDC cable is more suitable for long distance transmission, e.g. 

transferring power from farm to shore (Soares-Ramos et al., 2020). The subsea power 

cables used for marine renewable energy installations emit electromagnetic fields 

(EMFs) (Gill et al., 2012b), which are made up of two types of field: electric (E-fields) 

measured in microvolts per metre (μV/m) and magnetic (B-fields) measured in 

microteslas (μT) (Slater et al., 2010; Taormina et al., 2018).  

 

The characteristics of EMFs depend on their location, the type of cable, the type of 

power supply (HVDC vs HVAC) and if transmitting HVAC, the current, frequency and 

amplitude (CMAS, 2003; Öhman et al., 2007; Copping et al., 2013). The strength of 

both magnetic and electric fields increases with current flow and rapidly declines with 

distance from the cable (Gill and Taylor, 2001). Burial of the cable reduces the electric 

fields from the cable but does not reduce the magnetic field (CMAS, 2003). The 

emission of magnetic fields into the surrounding environment can produce an induced 

electric field (iE) by an object or organism moving through the alternating magnetic 

field (Gill et al., 2012b). However, there is a lack of agreement on the specific 

characteristics of EMFs emitted by subsea power cables, and this prevents 

researchers from precisely assessing the potential impacts of EMF emissions on 

marine organisms (CMAS, 2003). It is important to clearly identify the strength and 

type of EMFs emitted by subsea power cables to further investigate their effect on 

marine species.  
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1.2.2. Cetacean observational data around windfarms 

 

Currently there is limited literature reviewed data on the abundance and distribution 

patterns of cetaceans around offshore marine structures in Europe. This lack of 

knowledge limits our understandings of how future expansions of marine renewables 

may affect distributions of cetaceans in European waters. Here I review open sourced 

data to investigate the scale and locations of potential impacts of cetacean abundance 

around marine renewable structures, specifically around the UK. Wind farms have 

been developed in UK waters since 2000. This provides the time frame for the sighting 

data that were required to be investigated. Pre-windfarm sightings are also required 

to set the base line to establish if there are differences from when the construction of 

windfarms began. Therefore, sighting data from 1990 onwards were also sought. In 

total 22 datasets of cetacean sightings were identified and collated (Table 1.1).  
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Table 1.1: Overview of the datasets that were obtained for cetacean sightings in waters around 
the UK between 1990-2020. 

Dataset Years covered Reference 

Données du Réseau d'observateurs des 

mammifères marins en mer de la Manche 
1990-2012 

Inventaire National du Patrimoine 

Naturel N (2020) 

iNaturalist Research-grade Observations  1990-2019 
iNaturalist contributors, iNaturalist 

(2020) 

Incidental sightings of marine mammals 1990-2015 Hartvedt, 2020. 

Inventaire des Mammifères marins de France 

(métropole et outre-mer) 
2000-2016 

Inventaire National du Patrimoine 

Naturel N (2020) 

JNCC Seabirds at Sea data 1990-2000 Camphuysen et al., 2004 

Marine mammal monitoring from coastal sites in 

Cardigan Bay 
2004-2009 Allan, 2011 

NBIS records to December 2016 1990-2016 
Norfolk Biodiversity Information Service 

(2017) 

NE Scotland marine mammal records 1990-2011 
North East Scotland Biological Records 

Centre (2017) 

Observation.org, Nature data from around the 

World 
1990-2020 de Vries and Lemmens M (2021) 

Observations du Grand dauphin du Golfe 

normand-breton 
2012-2016 

Inventaire National du Patrimoine 

Naturel N (2020) 

ORCA sightings 2006-2019 ORCA, 2019 

SCANS I cetacean sightings 1994 Lacey, 2015 

SCANS II cetacean sightings on primary 

platform of vessel surveys 2005 
2005 Lacey, 2014 

SCANS II cetacean sightings on tracker platform 

of vessel surveys 2005 
2005 Lacey, 2014 

SCANS II cetacean sightings from aerial 

surveys 
2005 Lacey, 2014 

Seatrust Cetacean Records West Wales 2004-2015 
West Wales Biodiversity Information 

Centre (2018) 

Belgian Marine Mammals database 2001-2019 Haelters and Vandenberghe (2019) 

UK Royal Navy Marine Mammal Observations 1991-2003 Maughan, B. and K. Arnold. 2010 

United Kingdom National Whale Stranding 

Database 
1990-2008 Officer, 2011. 

Visual sightings from Song of the Whale 1993-2013 Boisseau et al., 2020 

walvisstrandingen_nl 1990-2019 Keijl and Creuwels (2020) 

WDC Shorewatch Sightings 2005-2018 Whale and Dolphin Conservation (2021) 
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These datasets contained the latitude and longitude of sightings of individuals or 

groups of cetaceans. A total of 81,433 sightings were obtained but the data have 

considerable issues. This limited their suitability for reviewing the abundance of 

cetaceans over three decades and therefore the impacts of operational windfarms on 

cetaceans. There was major bias in the number of sightings recorded between the 

decades and is probably indicative of more sighting effort and legislation on the 

monitoring of cetaceans in more recent decades (Hammond et al., 2013). Records 

were not equally distributed over time, with over four times more sightings in the most 

recent decade compared to 1990-2000 (1990-2000: 11,742; 2001-2010: 18,527; 

2011-2020: 51,164; Figure 1.2). This reduces the effectiveness of any baseline data 

for detecting changes in abundance and distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Map of UK and adjacent waters showing sightings 
of cetaceans recorded between 1990-2019. A: Sightings 
recorded between 1990-1999, B: Sightings recorded between 
2000-2009. C: Sightings recorded between 2010-2019. 

A B 

C 
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The spatial coverage of the cetacean data is also rather limited, with large amounts of 

the sightings from specific locations including coastal sightings and on ferry routes 

(figure 1.2). A majority of these sightings therefore do not overlap with windfarm 

locations. The majority of windfarms are too far from the coast to spot any mammals 

in their vicinity. Whilst ferry routes are problematic due to the fact boat routes are not 

consistent between time periods (Hassel et al., 2017). This is in order to navigate 

around an increased number of marine structures to prevent collisions (Yu et al., 

2019). This can be observed in the ferry routes taken between 1990-1999 across the 

North sea (figure 1.2.A) and the reduction of these in the latter two decades, especially 

figure 1.2.A-B. This may indicate that monitoring has had to adapt spatially to the 

growth of offshore structures and with the view of further growth in offshore renewable 

energy these constant changes will persist. Additionally, a large number of records 

consist of strandings which are not a direct representation of population numbers. The 

combination of these factors makes it impossible to compare historical sighting data 

between time periods of specific cetacean abundance and distribution.  
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1.3. Effect of electromagnetic fields on animals 

 

Prior to the development, and during the construction phase, marine mammal and 

seabird populations are monitored on windfarm installation sites (Kaiser et al., 2006, 

Perrow et al., 2006, Perrow et al., 2011). With monitoring as a legal requirement for 

all windfarm installations in the UK and Europe. However, there is no legal stipulation 

to monitor these installations in the long-term once the windfarms are operational. 

Therefore, the effect of windfarm operation and EMFs are less understood. A previous 

study has tried to characterise subsea cable EMF levels in the field (Dhanak et al., 

2016). The subsea cable was energised numerous times with both DC power (2 – 2.4 

Amps) and AC power (0.98 - 1.59 A at 60 Hz). When DC power was used, the 

presence of an electric field was not identified, although this was expected due the 

shielding of this cable. However, a magnetic field was emitted, and was present within 

3 m of the cable, recording levels greater than the Earth’s natural magnetic field. The 

measured induced electric field when AC was used resulted in ranges exceeding 200 

𝜇V/m, which is likely to be detected by marine species, especially elasmobranchs (Gill 

and Taylor, 2002). Other studies have used the literature to model the estimated EMFs 

produced from subsea cables (e.g. CMACS, 2003; Tricas and Gill, 2011; Sutton et al., 

2017), which has highlighted that specific details about the cables are needed, 

including cable design, burial depth, and cable loading, in order to accurately model 

them.  

 

It is predicted that species which can magnetosense are most likely to be impacted 

from DC cables and species which electrosense may be impacted by both AC and DC 

(Gill et al., 2009; Tricas and Gill, 2011; Dhanak et al., 2016). The majority of studies 

that have investigated the effect of a range of EMFs on marine species were 

conducted ex situ, specifically, observing behavioural and physiological effects (Gill et 

al., 2009; Tricas and Gill, 2011; Hutchison et al., 2018; Gill and Desender, 2020; 

Nyqvist et al., 2020). As EMFs contain both electric and magnetic fields (Slater et al., 

2010; Taormina et al., 2018) identifying species that magnetosense and/or 

electrosense may allow us to understand which species are likely to be affected by 

EMFs produced from subsea cables. Species that dive deeply in open water, or inhabit 

shallow coastal waters are also more likely to come in to contact with EMFs (Wilson 

et al., 2012).  
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1.3.1. Magnetosensing and effects of EMFs 

 
Three mechanisms are currently considered for magnetosensing: i) magnetic-particle-

based magnetoreception; ii) radical-pair mechanisms and iii) induced electric field 

detection (Mouritsen, 2018). Species respond to cues of the direction, magnitude 

and/or the inclination of the Earth’s geomagnetic field. Geomagnetic orientation is the 

method of magnetosensing most commonly observed (Wiltschko and Wiltschko, 1995; 

Lohmann et al., 2007). This has been reported in all of the migratory salmonid species 

(Nyqvist et al., 2020), some crustacean species, such as the Atlantic spiny lobster 

(Panulirus argus;Lohmann et al., 1995; Hutchison et al., 2018) and suggested in some 

species of cetacean (Torres, 2017; Zapetis and Szesciorka, 2018; Nyqvist et al., 

2020).  Indeed, long distance migrations in aquatic species might be indicative of the 

ability to magnetosense utilising the Earths geomagnetic field (Walker et al., 2002; 

Taormina et al., 2018).  

 

The increased presence of anthropogenic EMFs in many marine habitats may affect 

magneto-sensing species, especially in species that use naturally occurring 

geomagnetic fields to migrate over long distances, and in those species who migrate 

in specific cardinal directions (Wiltschko and Wiltschko, 1995; Wiltschko and 

Wiltschko, 2005; Johnsen and Lohmann, 2005; Lohmann et al., 2007). While the 

specific characteristics of EMFs emitted from subsea power cables are unknown 

(Section 1.2.1), many studies have evaluated the effects of a range of magnetic fields 

on the behaviour and physiology of marine species. Table 1.3 reports some of these 

studies. Studies were chosen to cover varying strength exposure of magnetic fields 

(0.2 μT-40,000 μT) to observe different types of impacts across different species.  
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Table 1.3: Observed effects of magnetic fields on marine species. The frequency of the electric 
field if present has been reported alongside the exposed magnetic field strength (If DC current, the 
frequency in the cable is 0Hz). The threshold value is the reported value at when a response was 
seen from the species in question. (B – behavioural effect, P –physiological effect, U/K – unknown). 

 

In an in situ experiment, the presence of an electric cable that induced magnetic fields 

of 5µT caused European eels (Anguilla anguilla) to change their migratory path, 

although they corrected their route after about 30 minutes (Westerberg and Begout-

Anras, 2000). It has been reported that fin whales (Balaenoptera physalus) orientate 

their migratory routes to pass through geomagnetic valleys (Walker et al. 1992) and 

their migration could therefore be impacted by artificial EMFs since it suggests that 

they rely on geomagnetic cues. It is also worth noting that records of mass strandings 

in sperm whales (Physeter macrocephalus) in the North Sea are associated with 

disruptions and changes in the Earth’s magnetic field, such as during the occurrence 

of solar storms (Vanselow et al., 2017). This implies that an influx of artificial EMFs 

could increase these occurrences. 

Species Effect Location 

Field strength 
exposure 

(Frequency of 
electric field) 

Threshold (if 
known) 

Reference 

Antarctic amphipod 
(Gondogeneia 

antarctica) 

Disorientation 
(B) 

Ex situ 0.2 μT (976Hz) 0.02 μT 
Tomanova and Vacha 

(2016) 

Rainbow trout 
(Oncorhynchus 

mykiss) 

Disorientation 
(B) Embryonic 
development 

impairment (P) 

Ex situ 10 μT (50Hz) 5 μT 
Formicki and Winnicki 

(1998) 

Cetacea: 
Sperm whale 

(Physeter 
macrocephalus) and 

fin whale 
(Balaenoptera 

physalus 

Stranding 
occurrences 

(B) 
In situ 

<50 μT natural 
fields 

U/K Nyqvist et al. (2020) 

European eel 
(Anguilla anguilla) 

Route 
deviation (B) 

In situ 50μT (DC) U/K 
Westerberg and 

Begout-Anras, (2000) 

Little skate, 
(Leucoraja erinacea) 

Attraction and 
attacking (B) 

Ex situ 65 μT (60Hz) 14 μT 
Hutchison et al. 

(2018) 

European sheatfish 
(Silurus glanis) 

Biomass 
decrease (P) 

Ex situ 600 μT (DC) U/K 
Krzemieniewski et al. 

(2004) 

Edible crab (Cancer 
pagurus) 

Attraction (B) Ex situ 
40,000 μT 

(DC) 
2,800 μT Scott et al. (2018) 
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The majority of investigations of responses to EMFs have been conducted ex situ. The 

little skate (Leucoraja erinacea) increased feeding behaviour, with increases in the 

distance moved, the speed travelled and turning frequency (Hutchison et al., 2018), 

when exposed to laboratory-produced EMFs (51.6-65.3 µT). The scalloped 

hammerhead (Sphyrna lewini), sandbar sharks (Carcharhinus plumbeus; Meyer et al., 

2005), and short tail stingrays (Dasyatis brevicaudata; Walker et al., 2003), were able 

detect the presence of an artificial magnetic field. Crustaceans have also been 

reported to be impacted by EMFs. The edible crab (Cancer pagurus) increased 

sheltering behaviour when exposed to a magnetic field for a 24-hour period (2,800-

40,000 µT; Scott et al., 2018). Presence of magnetic fields varying from 20-200µT 

disrupted the orientation of the amphipod (Gondogeneia antarctica). Upon release, 

the amphipods were able to move in a seaward direction of the home beach, but when 

exposed to magnetic fields this movement was disrupted (Tomanova and Vacha, 

2016).  

    

In addition to behavioural responses, physiological changes have also been observed 

upon the exposure to magnetic fields that are greater than those found naturally 

(natural ranges are between 60 µT at the poles and drop down to 30 µT at the equator). 

Krzemieniewski et al. (2004) found that the total mass of a group of 1200 European 

sheatfish larvae (Silurus glanis) decreased, and mortality increased when exposed to 

a constant magnetic field (400-600µT). Nishi et al. (2004) found that Japanese eels 

(Anguilla japonica) responded to both electric and magneto-sensitive conditioning, 

which was characterised by a decreased heart rate. Effects on the reproduction have 

also been observed. Exposure to a magnetic field slowed down the embryonic 

development of brown (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) and 

altered the circulation motion in the embryos in both pike (Esox lucius) and carp 

(Cyprinus carpio; Formicki and Winnicki, 1998). The presence of a distorted magnetic 

field during the development phase of loggerhead sea turtles (Caretta caretta) and 

rainbow trout resulted in poor magnetic orientation along their normal migratory route 

in accordance with their known cardinal navigation directions and identifying naturally 

occurring distinctive magnetic field markers (Fuxjager et al., 2014; Putman et al., 

2014).  
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1.3.2. Electrosensing and effects of EMFs 
 

Species which are capable of electrosensing can detect electric and induced electric 

fields that are emitted by prey, conspecifics, and potential predators (Taormina et al., 

2018). Such species include elasmobranchs (e.g. Kajiura & Holland, 2002; Kajiura 

2003; Gill et al., 2009), crustaceans (e.g. Love et al., 2015), teleost fishes (e.g. 

Westerberg and Lagenfelt, 2008) and two species of cetacean (Czech-Demal et al., 

2012; Huttner et al., 2021). Many studies have assessed the behavioural effects of a 

range of electric fields on marine organisms and will be discussed below. Table 1.4 

presents a summary of some of these studies that have been conducted across a 

range of field strength exposure (12 μV/m-18,000,000 μV/m) to observe different types 

of effects across different species. 

 

Table 1.4: Observed effects of electric field presences on some marine species. AC currents 
were used at frequency’s ranging 50-60Hz (those generally reported in subsea cables). The threshold 
value is the reported value at when a response was seen from the species in question (B – 
behavioural effect, U/K – unknown) 

Species Effect Location 
Field strength 

exposure 
Threshold 
(if known) 

Reference 

Thornback ray (Raja 
clavata) 

Attraction and 
orientation (B) 

In situ 12 μV/m U/K 
Gill et al., 

(2009) 

Free-swimming 
spurdog (Squalus 

acanthias) 

Attraction and 
orientation (B) 

In situ 12 μV/m U/K 
Gill et al., 

(2009) 

Small-spotted 
catshark (Scyliorhinus 

canicula) 
Avoidance (B) In situ 100 μV/m 1 μV/m 

Gill and Taylor, 
(2001) 

 

Freshwater sawfish 
(Pristis microdon) 

Attraction and 
attacking (B) 

Ex situ 80 μV/m 15 μV/m 
Wueringer et 

al. (2012) 
 

Guiana dolphin 
(Sotalia guianensis) 

Attraction and 
perception (B) 

 
Ex situ 900 μV/m 460 μV/m 

Czech-Damal 
et al. (2012) 

Bottlenose dolphin 
(Tursiops truncatus) 

Detection of 
presence of 

electrical stimuli 
(B) 

 

Ex situ 1500 μV/m 
At least 

500 μV/m 
Huttner et al., 

2021 

Leopard shark (Triakis 
semifasciata) 

At threshold head 
twitch responses 
and attraction, at 

max exposure 
retreat (B) 

Ex situ 
max exposure: 

18,000,000 
μV/m 

4,000,000 
μV/m 

Marcotte and 
Lowe (2008) 
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One of the highest sensitivities to electric fields which has been recorded in literature 

are elasmobranchs. Emissions that range between 0.5–100 𝜇𝑉/𝑚 have been identified 

to attract some species, while those over 100 𝜇𝑉/𝑚 tending to repel them (Gill and 

Taylor, 2002, Tricas and Gill, 2011). Two species of elasmobranch, the thornback ray 

(Raja clavata) and the spurdog (Squalus acanthias), were attracted to EMF stimuli 

from buried subsea power cables in situ. The EMFs which were created presented a 

magnetic field of 12μT and an induced electric field of 36μV/m (Gill et al., 2009). This 

study also indicated that, based on the scale of responses of the species in this 

experiment and modelling estimates, electrosensitive marine organisms would 

encounter fields at or above the lower limit of their detection threshold at up to 300m 

from the cable. This strongly suggests that a range of species may be susceptible to 

the EMFs which can emitted from some subsea cables. 

 

Under laboratory conditions, male Atlantic stingrays (Hypanus sabinus) were able to 

detect the location of plastic model females, which were buried under sediment using 

electric cues emitted from the model (Tricas et al., 1995). Kalmijn (1982) explored 

electric detection in a range of elasmobranch fishes using the presence of artificial 

electric fields that were similar to those of ocean currents. Stingrays (Urolophus helleri) 

were able to orientate themselves relative to these. Additionally, two species of shark, 

smooth dogfish (Mustelus canis) and blue sharks (Prionace glauca), were attracted to 

a bait dipole source and exhibited bite attack responses whilst ignoring the visual 

stimulus. Kajiura (2003) also reported that bonnethead sharks (Sphyrna tiburo) 

exhibited vigorous biting on active dipoles releasing prey stimulus fields. Interestingly, 

two-thirds of behavioural responses were observed to fields of less than 10 𝜇V/m, 

however, positive reactions declined drastically once the stimulus was greater than 10 

𝜇V/m. This supports the fact that, once electric field stimuli reach a certain threshold, 

they can repel individuals (Tricas and Gill, 2011). The sharks also never engaged on 

inactive dipoles and stopped the attack on the dipole as soon as it was switched off. 

Furthermore, the scalloped hammerhead and sandbar sharks demonstrated attack 

responses to fields less than 10 𝜇V/m (Kajiura and Holland, 2002). Bite responses 

were also initiated in the Atlantic stingray with a median stimulus threshold of 0.6 𝜇V/m 

in the saltwater population (McGowan and Kajiura, 2009).  
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Electroreceptive responses have also been reported in two species of cetacean. 

Czech-Damal et al. (2012) demonstrated that the Guiana dolphin can detect an electric 

fields with a stimulus below 10 𝜇V/m. They determined the absolute detection 

threshold of 460 𝜇V/m from a 50% hit rate, which was determined by interpolating the 

percentage of correct go responses to stimuli. Huttner et al. (2021) demonstrated that 

four bottlenose dolphins could be taught cross sensory perception and that the 

dolphins presented above an 80% hit rate on the perception of an electric stimuli. A 

threshold value was not established but is currently being studied further. The studies 

conducted by Czech-Damal et al. (2012) and Huttner et al. (2021), will be further 

discussed in section 2.2.2. As little is known about the responses of cetaceans to 

electric fields, this is an area open for investigation. The presence of electroreception 

is also hypothesised in other species of cetacean (Czech-Damal et al., 2012).  

 
 

1.3.3. Conclusions 

 

Many studies presented here have not been conducted in the field. The majority were 

carried out in the laboratory under variable conditions, making it challenging to 

compare findings between studies. The range of sensitivity values presented in 

literature (Tables 1.1 and 1.2) is large and it is hard to identify if these values are 

species-specific or depend on the exact experimental conditions. In situ EMFs may 

present different characteristics to those in ex situ conditions, and we do not know 

enough about subsea cable EMFs to be able to design representative conditions in 

the laboratory. Variations in current, cable length and cable requirements for farm 

outputs can all affect the strength. While laboratory experiments might not be wholly 

realistic, it must not be ignored that some marine species (e.g. some of those in Tables 

1.1 and 1.2) are likely to be affected by EMFs from subsea cables in their natural 

habitats. These studies indicate that exposure to EMFs likely leads to both behavioural 

and physiological implications. This may include impacts in navigation, feeding 

behaviours, social interactions, reproduction and growth. It is imperative that we 

understand more about EMFs in the marine environment and their effect on marine 

species. 
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Furthermore, the ability to identify which species may be sensitive to EMFs is also 

important so that they can be targeted in future studies. This is especially true of 

cetaceans, where recent work has suggested that some species rely on 

magnetosensing for migration and may be impacted by the presence of magnetic 

fields. In addition, with the findings of electrosensing capabilities in two species of 

dolphin, it is likely that more cetacean species can electrosense. Thus, cetaceans may 

be a species which may be impacted by EMFs in some way. 
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1.4. Ecology and conservation of cetaceans  

 

Cetaceans play vital roles in helping to maintain the integrity and health of ecosystems 

(Katona & Whitehead, 1988; Bowen, 1997; Sergio et al., 2008). By acting as 

distributors of nutrients and generators of material flux in the ocean via the so called 

the whale pump (Roman and McCarthy, 2010) cetaceans can increase species 

richness in ecosystems (Buesseler & Boyd, 2003; Lavery et al., 2010; Roman et al., 

2014). Whales bring key nutrients, such as iron and nitrogen, from the depths and 

defecate near the surface (Lavery et al., 2010). This redistribution of nutrients 

increases plankton productivity and fish population growth (Roman and McCarthy; 

2010; Roman et al., 2014). The influx of iron from deep-diving cetaceans is a crucial 

fertiliser, which stimulates blooms of phytoplankton and causes considerable 

drawdown of CO2 from the atmosphere to the deep ocean (Blain et al., 2007; Pollard 

et al., 2009). Lavery et al. (2010) suggest that these drawdowns could result in the 

removal of at least 200,000 tons C yr-1 from the atmosphere above the Southern 

Ocean, contributing to the reduction of greenhouse gases (Roman et al., 2014). As 

well as improving nutrient cycling, cetaceans also play important roles in oceanic food 

webs (Spitz et al., 2018). Changes in abundance and distribution of predatory 

cetaceans can shift the composition of prey communities, which can affect 

ecosystems (Baum and Worm, 2009) occasionally resulting in trophic cascades (Pace 

et al., 1999). Therefore, cetaceans help to regulate and maintain natural species 

compositions within habitats (Katona & Whitehead, 1988). 

 

Cetaceans also provide economic benefits. Cetaceans are charismatic and are a 

popular taxon among the human population (Mazzoldi et al., 2019). Globally, the whale 

watching industry is worth over 1 billion US dollars annually over the past twenty years 

(Hoyt, 2001; O’Connor et al., 2009; Pace et al., 2015), with over ten million people 

partaking in whale watching each year, across 90 countries worldwide (Parsons et al., 

2003). The industry provides many small coastal communities with income and 

employment (Parsons, 2012).  

 

Global populations of many cetaceans are declining (IUCN, 2012, Pace et al., 2015). 

Of the eighty-nine known cetacean species, the International Union for the 

Conservation of Nature classifies thirty-seven as least concern, twenty-eight at risk, 
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including four as ‘Critically Endangered’; ten as ‘Endangered’; seven as ‘Vulnerable’ 

and seven as ‘Near Threatened’, and finally twenty-four species which are data 

deficient (IUCN, 2019). This means there is over half of the cetacean species (58%) 

which are either at risk or that there is little or no data available on their abundance 

and distribution to state their conservation status.   

 

1.4.1. Threats to cetaceans 

 

Changes in climate, including rise in water temperatures, loss of sea ice and changes 

in ocean currents, are a noteworthy threat to cetaceans (Yadav and Gjerde, 2020). 

These changes may threaten cetacean populations directly, for example water 

temperatures are often a tool of indicating the movements of other cetaceans, changes 

in temperatures may impact survival and mating successes (Roberts et al., 2017), or 

indirectly, e.g. through alterations to the distribution and abundance of prey 

(Learmonth et al., 2006; Simmonds and Isaac, 2007). Species with restricted 

geographical distributions and limited ability for range shifts are expected to be most 

at risk (Simmonds and Elliot, 2009). Noteworthy is the vaquita (Phocoena sinus), this 

species is endemic to the Gulf of California, and is currently the most endangered 

marine mammal in the world (Rodriguez-Perez et al., 2021). This species was thought 

to only have twenty individuals left in 2018 (Jaramillo-Legorreta et al., 2019) and has 

the narrowest geographical range of all cetaceans. Any major change in the vaquitas 

localised habitat would put this species further at risk of extinction. In addition, many 

river dolphins in both Asia and South America may be vulnerable to changes in water 

temperature and declining prey availability in their restricted river systems (Simmonds 

and Elliot, 2009). Range shifts in response to increases in water temperature may 

result in novel species interactions (Van Bressem et al., 2009) which may lead to 

exposure to previously unencountered infectious diseases (Weiss et al., 2019). 

Susceptibility to disease is further increased by other factors, such as depletion of food 

supplies (Johnson et al. 2009), increased levels of immunosuppressive contaminants 

(Van Bressem et al., 2009) and increased stress levels due to human disturbance, 

such as bycatch, ship traffic noise (Rolland et al., 2012) and fish net entanglement 

(Rolland et al., 2019). Some cetacean species are potentially more vulnerable to the 

spread of disease due to their social interactions in multi species groups (Guimarães 

et al., 2007). 
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Species that occur in estuaries and inshore waters may incur higher risks than pelagic 

species as they are exposed to greater levels of anthropogenic activities and 

environmental degradation, such as biological and chemical pollution (Van Bressem 

et al., 2009; Fernández-Gavela et al., 2019). Chemical pollutants are known to impact 

cetaceans. Organochloride pollutants (including pesticides and polychlorinated 

biphenyls) bioaccumulate through the marine food chain and are thought to be 

contributing to declining populations through reproductive toxicity in species such as 

bottlenose dolphins and killer whales (Orcinus orca; Jepson et al., 2016). Mercury is 

a known neuro- and immune-toxin, and bioaccumulates in higher trophic organisms 

(Kershaw and Hall, 2019). There is also an increasing awareness of the threats to 

marine organisms from discarded plastics (Galloway et al., 2017). The ingestion of 

plastic debris is the one of the most common interactions reported between plastics 

and wildlife (Zhu et al., 2019). Ingestion can cause physical harm, but waste plastics 

may also contain toxic chemical additives, heavy metals, and organic pollutants (Mato 

et al., 2001; Koelmans et al., 2016; Massos and Turner, 2017). Plastic debris has been 

reported be contaminated by persistent organic pollutants (Bakir et al., 2012; Caruso, 

2019). Indeed, microplastics can be transferred between trophic levels in oceanic food 

webs (Gutow et al., 2016) potentially culminating as hazard to human health (Caruso, 

2019), although there is limited evidence on plastic and pollutant impacts on cetaceans 

and should be an area which is further researched 

 

Thousands of cetaceans die every year in UK and European waters due to incidental 

capture or asphyxiation in fishing gear (Orca, 2019). It is estimated that around 1,500 

small toothed-whales are caught annually in the UK (Northridge et al., 2018) and a 

substantial number of baleen whales are entangled in fishing gear and lines from pot-

based fishing (Ryan et al., 2016). While many cetaceans die as a result this, others 

become injured or lose conspecifics (Dolman & Brakes, 2018). Where drowning or 

death does not occur, subsequent impairments are faced. This can include decreased 

foraging skills, increased risk of wound infection and severe tissue damage (Moore 

and van der Hoop, 2012). Strikes from boats and other vessels are another prevalent 

threat to cetaceans (Peel et al., 2018). Cetaceans are particularly vulnerable to strikes 

as they surface to breathe. Differences in breathing behaviours and patterns can be 

seen across the cetaceans, this often varying due to feeding behaviours and diving 

activities and durations (Miller, and Roos, 2018). Boats are getting larger and faster, 
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and the number of boats on the water is increasing in order to meet the need for fishing 

and transport (Erbe et al., 2019). In recent decades, collisions between cetaceans and 

vessels have increased significantly (Arregui et al., 2019; Ritter & Panigada, 2019); 

however, the actual number of strikes is unknown and is likely to be under-reported 

from larger vessels (Williams & O’Hara, 2010; Rockwood et al., 2017). Greater 

mortality occurs in areas of high density of shipping activity that overlap with high 

cetacean abundance. Understanding the abundance and distributions of cetacean 

species which are localised to dense shipping routes, and therefore those more at risk, 

is important for conservation mitigation (Rockwood et al., 2017). 

 

When a cetacean is hit, they either sink to the ocean floor or float ashore and become 

stranded (Berman-Kowalewski et al., 2010). The UK’s Cetacean Strandings 

Investigation Programme record approximately 800 strandings a year on UK beaches 

and shorelines (Orca, 2019). Bycatch and ship strikes cause a large proportion of 

strandings in UK waters (Deaville et al., 2019). Reports of strandings have increased 

over the past decade, with boat strikes being the largest cause of mortality (Peel et 

al., 2018). Stranding data give us important information about cetacean health and 

threats, which helps researchers to develop mitigation strategies to protect cetaceans 

from anthropogenic threats (CEFAS, 2019). 

 

Anthropogenic noise has increased in our oceans over the past 100 years (Buckstaff, 

2004; Wright et al., 2007; Orca, 2019), due to the increase in motorised marine 

vehicles, more freight transferred by shipping, oil and gas exploration, military testing 

underwater explosions and the development of offshore marine renewable energy 

installations (Erbe et al., 2019). Sound communications enable cetaceans to sense 

their environment, and to detect prey (Tønnesen et al., 2020) and for some baleen 

whales who are low frequency specialists to be able to communicate hundreds of 

kilometres apart (Tyack and Clark, 2000; Torres, 2017; Deecke, 2018).  Anthropogenic 

underwater noise can have different levels of impacts on cetaceans depending on its 

intensity, nature and location (Weilgart, 2017). Very loud impulsive sounds, such as 

those resulting from underwater explosions and pile driving, can cause hearing loss, 

physical damage, and death if the animal is in close proximity (Boyd et al., 2008). 

Crushing, fracturing, and haemorrhaging of body tissues and organs can occur if 

exposed to high intensity shock waves from impulsive sounds (von Benda-Beckmann 
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et al., 2015). The increase in marine traffic has also led to an increase in lower level 

background noise (Erbe et al., 2018). This background noise is known to interfere with 

communication, resulting in masking of communication sound signals (Cunningham 

et al., 2014). Killer whale communication has been noted to be affected by masking. 

This can interfere with communication, cause changes in behavioural responses and 

lead to temporary and permanent hearing loss (Erbe, 2002). An increase in marine 

traffic in the English Channel is one of the possibilities for the observed alterations of 

whistles produced by common dolphins (Delphinus delphis) in this area (Ansmann et 

al., 2007).  

 

Offshore marine renewable energy installations also increase anthropogenic 

disturbance. These installations, and specifically the construction of offshore 

windfarms has increased as a response to climate change (Gill et al., 2012a). The 

impacts of these installations often present both long and short-term disruptions at 

different stages of development (Dolman et al., 2007). The pre-development 

exploration of sites and construction processes increases the amount of boat traffic 

passing through areas, which can increase the risk of ship strikes on cetaceans 

(Dolman et al., 2007; Carter et al., 2008). Installation development also includes pile-

driving construction noise and disturbance (Boyd et al., 2008). Longer-term impacts 

can consist of disruption and damage to benthic habitats; but can also lead to the 

creation of an artificial reef, which can be beneficial in providing habitat for prey 

species (Langhamer, 2012). The movements of tagged grey (Halichoerus grypus) and 

harbor seals (Phoca vitulina) around two active windfarms were associated to 

increased levels of foraging on the subsea pipelines of the Alpha Ventus and 

Sheringham Shoal windfarms (Russell et al., 2014). Another potential long-term 

impact is the presence of electromagnetic fields (EMFs). EMFs are produced from 

cables transferring electric currents between turbines and also by exporting cables 

between the windfarm and stations on shore (Tricas and Gill, 2011). The effect of 

EMFs on cetaceans is relatively unexplored, however the effects of EMFs on other 

species such as elasmobranchs has been investigated in literature and was discussed 

in Section 1.3.2 of this review. It is thought that EMFs generated by cables can 

interfere with navigation (Lohmann and Ernst, 2014) and can have important 

behavioural and physiological effects (Tricas and Gill, 2011; Gill et al., 2014; Emma, 

2016; Nyqvist et al., 2020). The development of marine renewable energy installations 
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could, therefore, have an effect on cetacean health, physiology and behaviour. Any 

adverse effect could cause cetaceans to avoid these areas, which has implications 

for, ecosystem health, trophic structure and local ecotourism in the longer-term. 

 

1.4.2. Cetacean orientation and navigation 

 

Cetaceans are thought to possess a magnetic sense that is used for orientation, 

navigation, and migration (Torres, 2017; Zapetis and Szesciorka, 2018; Nyqvist et al., 

2020). Detection of magnetic fields are likely due to either a magnetite-based system, 

or through detection of an induced electric field (Wiltschko and Wiltschko,1995). 

Induction perception assumes that an electric field can be detected via 

electroreceptors, generated by the naturally occurring magnetic field.  The magnetite-

based system, which has been proposed in number of cetacean species (Walker et 

al., 1992) works via the presence of ferromagnetic particles such as magnetite (iron 

oxide). These particles have been found in the membrane surrounding the brain and 

spinal cord of both the bottlenose (Bauer et al., 1985) and short-beaked common 

dolphin (Zoeger et al., 1981) and is hypothesised to be present in other species of 

cetaceans (Kremers et al., 2016). These particles act like magnets and it is assumed 

they function by connecting to the central nervous system and align themselves 

relative to the geomagnetic field (Kremers et al., 2016). This mechanism is believed 

to be present in other mammalian species who orientate their body in accordance with 

magnetic field lines such as bats (Chiroptera; Wang et al., 2007), cattle (Bovidae) and 

deer (Cervidae; Begall et al., 2008). Kremers et al, (2014) suggests that cetaceans 

may have inherited magnetosensory perception from their artiodactyl ancestors.  

 

It is known from observations of free-ranging cetaceans, that instances of 

geomagnetic anomalies have resulted in a number of cetacean beach strandings 

(Walker et al., 2002; Zapetis and Szesciorka, 2018). Because of this, researchers 

suggested that they must also be able to utilise geomagnetic cues in normal 

circumstances such as navigation and sensing (Klinowska,1985). The simplest 

method of geomagnetic navigation is vector navigation, this relies exclusively on 

cardinal directional information (Wiltschko and Wiltschko, 2005). This type of 

navigation has been hypothesised in humpback (Allen, 2013), fin (Walker et al., 1992) 

and sperm whales (Vanselow et al., 2017). In captivity, bottlenose dolphins were 
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observed to approach a magnetic object faster than an identical non-magnetic object, 

owing to a sensory modality (Kremers et al., 2014). However, the research into 

magnetoreception in cetaceans is limited and needs to be studied in further detail.   

  

1.4.3. Cetacean habitats 
 
One of the key concepts in understanding cetacean ecology and biology is a species 

preferred habitat. Species-habitat relationships can define ecological niches, in turn 

determining a species’ role in that community or ecosystem (Ballance, 2018). The 

study of cetacean species-habitat relationships can be complex as marine habitats are 

often defined by oceanographic features which are not static. For example, some 

species associate with ice edges (e.g., Killer whales, Pitman and Durban, 2012), or 

prefer shorelines (e.g., minke whales; Balaenoptera acutorostrata; Robinson et al., 

2009). For some oceanic species, preferences can be defined by the physical and 

chemical characteristics of water. For instance, blue whales (Balaenoptera musculus) 

are often found in cool upwelling waters (Ballance, 2018). Observations have also 

been recorded in where pantropical spotted (Stenella attenuata) and spinner (S. 

longirostris) dolphins segregate from common dolphins according water surface 

temperature and salinity (Ballance, 2018). Although, as in most cases, prey type and 

availability are likely key drivers in cetacean species-habitat relationships and 

distribution.  

 
 
1.4.4. Cetacean feeding ecology 
 
Most of the research that has been conducted on feeding behaviour and consumption 

comes from the data collected from dead animals, be it incidental mortality or 

strandings. Hence, we understand that cetaceans feed on four types of prey. The first 

type of cetacean prey can often be characterised as small individuals that occur at 

relatively shallow depths, primarily small fish (e.g., herring (Clupea spp).; Overholtz 

and Link, 2007, sardines, (Sardinops spp); Marcalo et al., 2018) and planktonic 

crustaceans (uphausiids, copepods, amphipods; Dauby et al., 2003). These prey 

generally occur at low trophic levels and have small body sizes occurring in dense 

accumulations. The cetaceans that feed on this type of prey therefore have to capture 

multiple individuals at once and have evolved filtering mechanisms (baleen) to strain 

prey from the water. All mysticetes feed on this prey (Ballance, 2018). The second 
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type of prey are pelagic fish (e.g., hake (Merluccius spp.); Santos et al., 2014) and 

schooling squids (Loligo spp., Dosidicus spp.; Young and Cockroft, 1994). These 

organisms’ school at relatively shallow depths, migrate upwards during the night or 

are located in and above the sediment of the sea floor. These organisms are larger 

and occupy higher trophic levels and are captured individually.  The cetaceans which 

feed on these are typically small bodied and include the large schooling dolphins, 

these dolphins tend to have high tooth counts, pointed teeth and snouts in adaptation 

to catch and forage for individuals (Balance, 2018).  The third type comprises of large 

solitary squid (e.g., Gonatus spp.). Cetacean predators of large squid include the deep 

divers such as the sperm (Whitehead, 2018), dwarf and pygmy sperm (Kogia sima, K. 

breviceps; Wang et al.,2002), beaked (Ziphiidae; MacLeod et al., 2003) and pilot 

whales (Globicephala spp.; Overholtz and Waring, 1991). These species have rounder 

heads and well developed melons perhaps indicating an importance of echolocation 

for prey detection in deep dark waters. The final prey type is species at high trophic 

levels who themselves are top predators, this can include predatory fish, 

elasmobranchs, marine mammals, and other cetaceans. Only a small number of 

cetaceans can actually feed on this prey, including killer (e.g., Reeves et al., 2006; 

Saulitis et al., 2015; Samarra et al., 2018), pilot and melon headed whales (e.g., Shane 

1994; Weller et al., 1996).  

 

Cetaceans feed by two main methods, baleen, and teeth. The baleen is used to strain 

multiple prey organisms from the water, whereas teeth are used for catching individual 

organisms. Species which have high teeth count can grasp and bite prey where as 

those with low teeth count have shown to suction feed (Balance, 2018). Mysticetes 

have baleen plates on the roof of their mouth, the number, length, and density of fibres 

per plate vary by species and type of prey consumed (Bannister, 2018). As well as 

prey type, two different feeding methods are used to corollate to the morphology of 

their baleen plate. Skimming allows balaenids to swim slowly with their mouths open 

to capture prey items over a period of time. As for gulpers (most rorquals) they can 

lunge into dense concentrations of prey and consume large amounts at once 

(Bannister, 2018).  

 

On the other hand, odontocetes feed differently and capture individual prey organisms. 

They have been recorded to show a range of prey capture behaviours, including prey 
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herding (Heithaus et al., 2018), prey debilitation (e.g., “fish whacking”; Scott et al., 

1990) and benthic foraging (e.g., Bahamian bottlenose dolphins; Rossbach and 

Herzing, 1997).  Prey herding works by actively manipulating the behaviour of prey in 

order to capture and consume it. For example, dolphins inhabiting saltmarshes and 

mangroves have been observed to form groups around fish near mudbanks, force a 

wave to hit the fish which strands them on the mudbank and the dolphins will then 

slide up the bank in order to pick up the fish (Heithaus et al., 2018). Other methods 

such as bubble blowing and surface splashing have also been observed (Heithaus et 

al., 2018). Bottlenose dolphins have also been observed to strike fish with their tails 

(“fish whacking”) in order to stun or knock the fish into the air in order to consume their 

prey (Scott et al., 1990). Benthic foraging behaviour has been observed in a small 

number of cetaceans. Guiana dolphins are known to dig and forage in the sediment, 

indicated through the presence of mud plumes after dives and mud adhering to the 

rostrum when surfacing (Rossi-Santos and Wedekin, 2006). Humpback whales 

intentionally disturb the sandy and shell hashed sea floor by scraping their head along 

to flush out substate burrowing fish and will then feed on these once in the water 

column (Hain et al., 1995). Killer whales in New Zealand have been observed to 

engage in benthic digging for stingrays (Visser, 1999). Bottlenose dolphins are known 

to use benthic foraging techniques such as crater feeding in the Bahamas (Rossbach 

and Herzing, 1997) and mud plume feeding in Florida (Lewis and Schroeder, 2003). 

Observations in grey whales (Eschrichtius robustus) have recorded individuals digging 

through sediment to identify prey as well as using suction to pull sediment and prey 

into their mouths, and then filtering sediment and water away (Hatler and Darling 1974; 

Nerini,1984; Würsig et al. 1986). 

 
 
1.4.5. Cetacean vulnerability to EMFs 
 
Due to ecological factors, exposure to artificial EMFs will differ species to species. 

Offshore windfarms in Europe exist on average, 23km from shore and 17.4m in water 

depth (Diaz and Soares, 2020). Therefore, we would expect that species which inhabit 

shallow coastal waters of Europe may be more exposed to EMFs from subsea cables 

(Dolman and Simmonds, 2010; Wilson et al., 2010). Furthermore, there is evidence to 

suggest that some cetacean species can detect geomagnetic fields and may use these 

to orientate themselves or navigate for seasonal migrations (Zapetis and Szesciorka, 
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2018; Horton et al., 2020; Zellar et al., 2021). Consequently, we may also assume that 

if migratory routes or seasonal habitat shifts occur in the vicinity of subsea cables, 

these species too may be at risk from the presence of artificial EMFs.  

 

Elasmobranchs and platypuses (Ornithorhynchus anatinus) use their electrosensory 

systems for the detection benthic prey that release bioelectric fields (e.g. Manger et 

al., 1998). Electrosensory perception has since been identified in two species of 

cetacean, both the Guiana (Czech-Damal et al., 2012) and bottlenose dolphins 

(Huttner et al., 2021). With both species clearly demonstrating benthic foraging 

strategies. It is suggested that the presence of electroreceptors on the dolphin’s 

rostrum may facilitate prey detection while digging in the sediment and thus at least 

act as a supplementary modality to echolocation during benthic feeding. Therefore, 

we may also assume that other species which conduct shallow benthic foraging along 

the sea floor may also be able to detect electric fields and thus be at risk to exposure 

of EMFs from sub-sea cables.  

 

In order to evaluate cetacean vulnerability to EMFs in the UK, species which occupy 

European and Eastern Atlantic waters were sought (Table 1.5). UK species of 

cetacean were identified via Reid et al. (2003) and Hammond et al. (2013). Ecological 

characteristics which have been discussed in 1.4.2-1.4.4 were then recorded for each 

species in table 1.5. Ecological data were obtained from the IUCN Red list 

(https://www.iucnredlist.org).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

https://www.iucnredlist.org/
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Table1.5: Species of cetaceans that are prevalent in European waters, their conservation 
status, estimated population and ecological characteristics. Estimated populations are reported 
distribution based on sighting records from Hammond et al. (2013), Beck et al. (2014) and Hammond 
et al.(2017). (LC: Least Concern, VU: Vulnerable, EN: Endangered, DD: Data Deficient). The species 
which have been highlighted in grey are key species for consideration.  

Scientific name Common name 
IUCN 
Status 

Estimated 
population 

European/E. 
Atlantic 
waters 

Migratory species 
Feeding 

behaviours 
Habitat 

Balaenoptera 
acutorostrata [1] 

Minke whale LC 12,000 
Long distance 

migrators 
Lunge gulp 

feeding 

Coastal and 
oceanic 
waters 

Balaenoptera 
borealis [2] 

Sei whale EN 
Insufficient 

data on 
sightings 

Migratory, but 
specific patterns 

unknown 

Gulping and 
skimming 

Deep oceanic 

Balaenoptera 
physalus [3] 

Fin whale VU 18,000 
Seasonal 

migratory polar to 
equator 

Skimming Deep oceanic 

Balaenoptera 
musculus [4] 

Blue whale EN ~500 
Some evidence of 

seasonal 
migrations 

Lunge gulp 
feeding 

Neritic and 
oceanic 

Megaptera 
novaeangliae [5] 

Humpback 
whale 

LC 1,400 
Seasonal 

migratory polar to 
equator 

Lunge gulp 
feeding, bottom 

feeding, prey 
herding  

Coastal and 
oceanic 
waters 

Delphinus 
delphis [6] 

Short-beaked 
common 
dolphin 

LC 65,000 
Small local 

movements with 
water temperature 

Pelagic shoaling 
fish feeding 

Neritic and 
pelagic 

Globicephala 
melas [7] 

Long-finned 
pilot whale 

LC 25,000 
Small local 

movements with 
water temperature 

Echolocation fish 
hunting 

Oceanic, 
occasionally 

coastal 

Grampus griseus 
[8] 

Risso’s dolphin LC 11,000 
Maintain home 

ranges 

Benthic 
cephalopods, 

occasional night 
time feeding 

Deep pelagic 
waters 

Lagenorhynchus 
acutus [9] 

Atlantic white-
sided dolphin 

LC 15,500 
Maintain home 

ranges 
Mixed species 
feeding groups 

Coastal and 
oceanic 
waters 

Lagenorhynchus 
albirostris [10] 

White-beaked 
dolphin 

LC 35,000 
Seasonal 

migratory polar to 
equator 

Surface and 
benthic feeders 

Oceanic, 
occasionally 

coastal 

Orcinus orca [11] Killer whale DD 10±4 
Long distance 

migrators 

Multiple style 
feeders including 
benthic foraging 

Coastal and 
oceanic 
waters 

Tursiops 
truncatus [12] 

Bottlenose 
dolphin 

LC 30,000 
Maintain home 

ranges 

Multiple style 
feeders including 
benthic foraging 

Coastal and 
oceanic 
waters 

Phocoena 
phocoena [13] 

Harbour 
porpoise 

LC 450,000 
Small local 

movements with 
water temperature 

Pelagic shoaling 
fish feeding and 
benthic foraging 

Mainly 
coastal and 
bay waters 

Physeter 
macrocephalus 

[14] 
Sperm whale VU 13,500 

Food related 
migrations – poorly 

understood 

Deep pelagic fish 
hunting 

Deep 
Oceanic, 

occasionally 
coastal 

Hyperoodon 
ampullatus [15] 

Northern 
bottlenose 

whale 
NT ~20,000 

Minimal 
movements 
observed 

Deep feeding on 
squid (>800m) 

Deep 
Oceanic 
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1. Of the total 17 species which were identified in UK waters regularly, a total of 

five species has been identified as potentially vulnerable to the presence of 

artificial EMFs. 

2. Minke whale: this species often occupies coastal waters exploiting the variety 

of prey availability (Perrin et al., 2018). They also regularly make long distance 

migrations from continental shelfs back to coastal waters (Cook, 2018a). If their 

migratory paths coincide with subsea cables, this could potentially lead to 

disorientation and may affect routes.  

3. Humpback whale: this species displays a range of feeding behaviours, which 

include benthic foraging and digging (Hain et al., 1995; Parks et al., 2014). They 

also occupy coastal waters in summer and visit island and reefs in winter 

(Clapham, 2018). Foraging in shallow waters may directly expose the whales 

the physical cables but also the EMFs which may be produced from them. 

Undertaking seasonal migrations may be facilitated to geomagnetic sensing, 

therefore magnetic fields produced by subsea cables may also disorientate 

routes in leaving or returning to coastal waters.  

4. Three species of delphinids: Killer whale, Atlantic white-sided dolphin and 

bottlenose dolphin. As highlighted in 1.4.4, these species have been observed 

to forage in the sediment along the sea floor. These species also regularly 

occupy coastal waters. This coastal foraging behaviour may also directly 

expose these species to subsea cables from windfarms.    

 

  

Mesoplodon 
bidens [16] 

Sowerby’s 
beaked whale 

LC 
Insufficient 

data on 
sightings 

Minimal 
movements 
observed 

Suction of deep 
ocean fish 

Deep open 
oceanic 

Ziphius 
cavirostris [17] 

Cuvier’s 
beaked whale 

LC 
Insufficient 

data on 
sightings 

Minimal 
movements 
observed 

Suction of deep 
ocean fish 

Deep open 
oceanic 

[1] Cook, 2018a; [2] Cook, 2018b; [3] Cook, 2018d; [4] Cook, 2018c; [5] Cook, 2018e; [6] Braulik et al., 2021; [7] Minton et al., 2018; 
[8] Kiszka, J. & Braulik, G., 2018a; [9] Braulik, G., 2019; [10] Kiszka, J. & Braulik, G., 2018b; [11] Reeves et al., 2017; [12] Wells et 
al., 2019; [13] Braulik et al., 2020; [14] Taylor et al., 2019; [15] Taylor et al., 2008a; [16] Taylor et al., 2008b; [17] Taylor et al., 2008c 
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1.5. Knowledge gaps to be addressed by this thesis 
 
This review has summarised the literature on three key areas for the conservation of 

cetaceans. It has highlighted five important points that need to be considered in order 

to explore the potential effect of EMFs on cetaceans. These are: 

1. We are aware of windfarm growth around the UK. This enables us to have 

spatial understanding of where potential issue may arise.  

2. We do not fully understand the characteristics of EMFs from subsea power 

cables in the ocean. 

3. We have limited data on the sighting records of cetaceans around windfarms. 

We are aware of the problems that come with monitoring cetaceans in the wild 

and should consider methods of how to combat this.  

4. We have identified potential evolutionary and ecological factors that may 

explain the evolution of electrosensing and magnetosensing in cetaceans. 

5. Two species of dolphin have behaviourally displayed electrosensory 

capabilities and leads to question which other species may also.  

 

Therefore, the aim of this thesis is to: 

Evaluate the potential and impact of electrosensing in cetaceans by: 

1. Identifying possible electrosensing cetacean species from anatomical 

structures 

2. Identifying possible electrosensing cetacean species from phylogenetic and 

ecological traits 

3. Making future recommendations for the study of electrosensing in cetaceans. 

 

Chapter 2 of this thesis will describe the anatomy of potential electrosensory organs, 

in three species of cetacean. It will also discuss their possible role as electrosensory 

or tactile sensors and will compare these to other mammal follicles which have been 

observed in literature. It will also finally discuss ecological and phylogenetic 

considerations which may assist in the identification of electrosensing in more species 

of cetaceans.  
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Chapter 3 of this thesis will provide a summary of the literature which has been 

synthesised in this thesis and will conclude by making future recommendations and 

highlighting the wider implications of electrosensing cetaceans. 
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2. Chapter Two: Characterisation of follicle anatomy 
in cetaceans 

 
This chapter is based on the following publication:  

Mynett, N., Mossman, H. L., Huttner, T., & Grant, R. A. (2022). Diversity of vibrissal 

follicle anatomy in cetaceans. The Anatomical Record, 305 (3), pp.609– 621 

This chapter addresses the following aims: 

1. Identify possible electrosensing cetacean species from anatomical structures 

2. Identifying possible electrosensing cetacean species from phylogenetic and 

ecological traits 

 

 

2.1. Introduction  

 

Many aquatic environments already present challenging conditions, these challenges 

can be emphasised with the lack of light which penetrates to deep and turbid waters 

(Thewissen and Nummela, 2008). Indeed, the reliance on non-visual sensory systems 

are important, including hearing, echolocation, and touch (Czech-Damal et al., 2012; 

Torres 2017). Electroreception has evolved in a range of aquatic and terrestrial 

species, including elasmobranchs, bony fishes, turtles, crustaceans, amphibians, and 

some mammals, including monotremes and cetaceans (Czech-Damal et al., 2012; 

Crampton, 2019; Nyqvist et al., 2020). Electrosensing in cetaceans has been 

confirmed in the Guiana dolphin (Sotalia guianensis), although Czech-Damal et al. 

(2012) suggest that it may be more common in other mammals, particularly in other 

cetaceans. Indeed, Huttner et al., 2021 displayed the bottlenose dolphin (Tursiops 

truncatus) could also successfully detect and respond to an electrical stimulus. The 

detection of prey in cetaceans is often attributed primarily to echolocation (Kelkar et 

al., 2018); however, many species may rely on a range of multiple sensory channels, 

including senses such as electrosensing and mechanosensing (Torres and Read 

2009). Electroreception is most likely a short-range sense, used to identify nearby 

objects from within a few centimetres up to several metres away (Czech-Damal et al., 

2013). Electroreception may therefore be a useful sense when visual and mechanical 

cues are masked, such as in deep oceans, turbid water or during substrate digging.  

 



 38 

Many species of cetacean are born with vibrissae on their upper jaw, rostrum and even 

around the blowhole (Ling, 1977; Drake et al., 2015; Bauer et al., 2018). The study 

into cetacean vibrissae is particularly interesting due to the nature of anatomical 

differences which have been observed between mysticetes and odontocetes. Unlike 

most mammals, many odontocetes, lose their whiskers a week or so after birth 

(Palmer and Weddell, 1964; Ling 1977; Czech-Damal et al., 2012; Czech-Damal et 

al., 2013). Many researchers thought that the whisker follicles then become vestigial 

(Yablokov and Klevezal, 1969; Ling, 1977). However, the investigation of vibrissal 

follicles in a Guiana dolphin shows that they are still functional and that an electrical 

stimuli is detected by vibrissal crypts which are atrophied vibrissal follicles (Czech-

Damal et al., 2012). Interestingly, two species, beluga whale (Delphinapterus leucas) 

and narwhals (Monodon monoceros) do not even possess or develop vibrissal hairs 

whatsoever (Yablokov et al., 1972). Conversely, literature highlights that some 

mysticetes maintain fully functioning tactile vibrissae into adulthood (Ogawa and 

Shida, 1950; Berta et al., 2015; Drake et al., 2015). These findings have been 

documented in the bowhead (Balaena mysticetus; Drake et al., 2015), grey 

(Eschrichtius robustus; Berta et al., 2015), and North Atlantic right whales (Eubalaena 

glacialis; Hamilton et al., 2007). Mercado, 2014, also highlights that humpback whales 

(Megaptera novaeangliae) possess hairs that are contained in tubercles, in which 

these hairs are thought to act as vibrotactile sensors. In addition, intact hair follicles 

have been reported in several species of river dolphins as stiff hairs along the rostrum 

(Bauer et al., 2018) and in adult bottlenose dolphins as a vibrissal hair shaft contained 

within the follicles of the rostrum (Gerussi et al., 2020).  

 

The diversity of whiskers across the cetaceans suggests that vibrissal follicles are 

likely to be functional in many species. Unlike in other mammals, where whiskers are 

purely mechanosensory, it is likely that vibrissae play a role in mechanoreception, 

proprioception and electroreception in some species of cetaceans. Czech-Damal et 

al. (2012) suggest that electrosensing may be found in more cetacean species, 

especially those that occupy turbid waters and forage in substrate, such as by digging 

their rostrum into sediment (e.g. Rossbach & Herzing 1997; Visser, 1999, Bender et 

al., 2009). Activities such as these, when visual cues may be masked, presents a 

plausible idea that electrosensing capabilities may function as a supplementary sense 

aiding in pray localisation during benthic feeding.  
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Therefore, the aim of this chapter is to describe the vibrissal follicles of three foetal 

cetacean species, including two odontocetes: Atlantic white-sided dolphin 

(Lagenorhynchus acutus), harbour porpoise (Phocoena phocoena), and one 

mysticete: common minke whale (Balaenoptera acutorostrata). The function of the 

vibrissal follicle as possible mechanoreception, proprioception and electroreception 

organs, will be discussed. A comparison to other follicles which have been described 

in literature will also be discussed. A literature review will introduce the key anatomical 

terms and structures, which will be considered throughout this chapter.  
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2.2. Literature review 

 

2.2.1. Electrosensory structures in elasmobranchs and monotremes 

 

Electroreception in marine fishes was first described morphologically by Stefano 

Lorenzini in 1678, giving rise to the name of the anatomical structures (The ampullae 

of Lorenzini). Early investigations highlighted that these ampullae were able to detect 

both thermal and a mechanical stimulus (Murry, 1960). Further anatomical (Murray 

1962) and behavioural evidence (Dijkgraaf and Kalmijn 1962) then confirmed the 

ampullae to function as electroreceptive organs. Elasmobranchs can possess 

thousands of ampullae of Lorenzini (Newton et al., 2019), however, each of the 

individual ampulla works independently as a detector of external electric fields (Tricas, 

2001). This means that the electrosensory field resolution of a particular species can 

be defined by the distribution and density of the ampullae (Newton et al., 2019). 

Ampullae found in elasmobranchs are pores located on the skin, head and often on 

the pectoral fins (Wueringer et al., 2012). These pores are connected to a canal full of 

conductive jelly, and terminate in ampullary bulbs (Josberger et al., 2016; Figure 

2.1.A). The conductive jelly has similar conductive properties to sea water (Waltman, 

1966). This allows for the detected electrical stimulus to be relayed through the jelly to 

the sensory nerve cells and into the central nervous system (Newton et al., 2019). 

 

Among mammals, electroreception is present in the semi-aquatic platypus, 

(Ornithorhynchus anatinus), the Western (Zaglossus bruijnii) and the short beaked 

echidnas (Tachyglossus aculeatus; Czech-Damal et al., 2013). The platypus 

possesses two types of electroreceptors, which are associated with either mucous or 

serous glands (Manger et al. 1998; Manger and Pettigrew 1996). Both types of 

electroreceptors show similar morphology. In both types, nerve fibres form a large 

bulbous cuff around the basal region of the epidermis of the gland duct (Czech-Damal 

et al., 2013; Figure 2.1.B). These nerve fibres, which extend from the base of the cuff, 

provide a series of connections between the terminals (Manger et al. 1998). Entering 

the water triggers several key physiological processes in the platypus bill, assumed to 

function in preparation for detecting electric fields (Fjällbrant et al., 1998). Wetting of 

the bill changes its temperature, and results in the secretion of a conductive fluid from 

the associated electroreceptor gland (Manger et al., 1998). This conductive fluid plays 
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the same role as the conductive jelly in the elasmobranch ampullae, and conducts the 

electric field to the nerves, in which the peripheral nervous system transmits the signal 

into the central nervous system for processing (Pettigrew, 1999). 
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A) Longnose skate ampullae 
of Lorenzini 

B) Platypus electroreceptor C) Harbour seal F-SC  

E) Bottlenose dolphin   D) Guiana dolphin F) Bowhead whale 

Glossary:  
A: Ampullae bulb;    E: Epidermis;    G: Gland  
K: Keratinous fibres    LCS: Lower cavernous sinus  LU: Lumen  
N: Nerves;     P: Papilla   PO: Pore opening     
RS: Ring sinus     RW: Ringwulst    SC: Sensory cells      
TC: Tissue Capsule    UCS: Upper cavernous sinus  V: Vibrissae   
AFC: Accumulation of fatty cells  AR: Artery   B: Bulb                      
C: Canal     DVN: Deep vibrissal nerve  

Figure 2.1: Schematic drawings of sensory mechanosensory or electrosensory organs discussed in this review. A) Ampullae 
of Lorenzini of a Longnose skate (Raja binoculata; adapted from Josberger et al., 2016); B) Mucous/Serous electroreceptor of a Platypus 
(Ornithorhynchus anatinus; adapted from Czech-Damal et al., 2013); C) Follicle Sinus-Complex of a Pinniped (Phoca vitulina; adapted 
from Hanke and Dehnhardt, 2015); D) Vibrissal Crypt of an adult Guiana Dolphin (Sotalia guianensis; adapted from Czech-Damal et 
al., 2012); E) Follicle Sinus-Complex of a neonatal Bottlenose Dolphin (Tursiops truncatus; adapted from Gerussi et al., 2020); F) Follicle 
Sinus-Complex of a neonatal Bowhead whale (Balaena mysticetus; adapted from Drake et al., 2015). 
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2.2.2. Vibrissal follicles in marine mammals 

 

In most mammals, whiskers play a role in mechanosensing (Evans et al., 2019). Of all 

mammals, whisker follicle anatomy has perhaps been most comprehensively 

described in pinnipeds (Hanke and Dehnhardt, 2016; Bauer et al., 2018). In pinnipeds, 

a single vibrissa consists of a hair shaft that is visible protruding from the epidermal 

layer, and in the dermis sits within a follicle-sinus complex (F-SC). F-SCs consist of a 

connective tissue capsule supported by dense innervation and a blood sinus complex 

around the capsule, often denoted as the ringwulst (Rice et al., 1986). In pinnipeds, 

the follicle is made up of three sections, an upper cavernous sinus (UCS), a ring sinus 

(RS) and a lower cavernous sinus (LCS). Innervation by the deep vibrissal nerve 

(DVN) penetrates into the LCS at the bottom of the tissue capsule (Figure 2.1.C).  In 

ringed seals (Pusa hispida), the UCS comprises up to 60% of the entire follicle length. 

One hypothesis for this elongated tripartite follicle is that it allows the 

mechanoreceptors present around the LCS and RS to be kept at body temperature 

easier, as they are situated deeper inside the hypodermis (Mauck et al., 2000).  

 

In contrast to pinnipeds, many species of cetaceans lose their facial vibrissae upon 

maturity (Ling, 1977), potentially indicating cetaceans’ lack of dependency on 

vibrissae due to adaptations in improved hearing and echolocation abilities (Au, 

1980,1993). The presence of facial hair, specifically genal and mystacial as well as 

hair located caudal to the blowhole, is more common in mysticetes than in odontocetes 

(Drake et al., 2015). Therefore, the sensory hair follicles in some species of mysticetes 

have previously been investigated and well-described, this includes bowhead, 

humpback, blue (Balaenoptera musculus), fin (B. physalus), sei (B. borealis) and 

Minke whales Yablokov and Klevesal, 1969).  

 

Ling, (1977), documents that number of vibrissal follicles are variable in mysticetes, 

however their structure and anatomy are simple and conserved. Mysticetes possess 

single part capsules containing a hair shaft, but lack intrinsic musculature (Drake et 

al., 2015). An anatomical investigation of a postnatal bowhead whale identified a thick 

connective tissue capsule with a hair papilla contained within (Figure 2.1 F; Drake et 

al., 2015). A single large nerve was identified at the base of the capsule, called the 

deep vibrissal nerve (DVN), these anatomical features are analogous of pinnipeds. 
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Mercado (2014) highlighted that humpback whales also possess hairs which are 

contained in tubercles’, in which these protruding hairs are thought to act as 

vibrotactile sensors (Nakai and Shida, 1948; Yablokov et al., 1974; Ling, 1977). 

Literature has suggested that the function of the vibrissae of mysticetes act as tactile 

sensors (e.g. Mercardo, 2014; Drake et al., 2015), due to similarities which have been 

observed to pinnipeds and other terrestrial mammals. It is assumed that these tactile 

sensors can be used in the search of food but are more likely to be used as the organ 

to feel the stream of water (Ogawa and Shida., 1950). To fully understand the vibrissae 

which are found in mysticetes, further investigation into the gross anatomy of vibrissal 

follicles in more species of mysticetes would be helpful. In addition, behavioural 

experimentation would also be beneficial to truly understand their function.  

 

Most odontocetes lose their vibrissae altogether in the first few weeks of life (Bauer et 

al., 2018; Czech-Damal et al., 2012). Strongly innervated hairless follicle pits have 

been found in species of adult odontocetes including common (Delphinus capensis, 

D. delphis; Palmer and Weddell, 1964) Guiana (Czech-Damal et al., 2012) and 

bottlenose (Huttner et al., 2021) dolphins. The fact that the empty follicles remain 

innervated into adulthood suggests that these follicles, or crypts, are likely to still be 

functional in adults. Furthermore, Czech-Damal et al. (2012) suggest that they might 

well serve as electrosensing apparatus, a modality which has been confirmed so far 

in the Guiana and bottlenose dolphins. 

 

Both histological and behavioural studies were carried out on the Guiana dolphin by 

Czech-Damal et al. (2012). The structures found consist of elongated lumina and 

epithelial canals that open to the skin surface (Czech-Damal et al., 2012; Figure 

2.1.D). These structures were lacking most of the characteristic features seen in 

mammalian F-SCs – i.e. vibrissal shaft, hair papilla and ring sinus system and were 

therefore renamed vibrissal crypts. However, the crypts were surrounded by a dense 

capillary network. Indeed, silver staining highlighted that dense accumulation of nerve 

fibres were present at the base and throughout the crypts, features that are also not 

present in many mammalian F-SCs but can be clearly seen in platypus 

electroreceptors (Manger et al., 1995). The crypts varied in length of 4.1-7.1 mm  

deep and 1.2-4.3 mm wide. The lumen of the crypt was filled with a network of  
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keratinous fibres, and a glycoprotein biogel, potentially acting as an electric signal 

conduction matrix and aided in the Guiana dolphin detecting the electric stimulus 

(Czech-Damal et al., 2012, 2013). Noteworthy, a form of biogel is s present on the 

epidermis of many other odontocetes as well (Baum et al., 2000, 2001). This biogel is 

rich in glycoproteins and could function as a conductive gel that works in joint with the 

nerve fibres to detect electric stimuli. This gel may act in a similar function to the gel 

which can be found in electrosensory follicles in species such as the platypus, and 

some fish i.e., longnose skate. 

 

As well as a histological investigation, Czech-Damal et al. (2012) also conducted a 

behavioural test on a 28-year-old male Guiana dolphin to identify the behavioural 

detection threshold. Under a go/no go protocol the individual was trained to respond 

to an electrical stimulus in the order of magnitude of that produced by small-medium 

fish, which consisted of six stimulus strengths. When a stimulus was presented or 

detected the dolphin was trained to leave the set-up station and was to remain still for 

when there was no detection of a stimulus. A detection threshold was therefore 

established upon the 50% success rate in reaction to the stimuli strengths. However, 

as with all novel experiments, inaccuracies may occur. Such as if the dolphin displayed 

a negative result, this may not be due to the fact it did not sense the stimuli but instead, 

learned the incorrect response behaviour as this was the first time experiencing this 

kind of stimuli. In addition, the dolphin may have been focusing on other sensory input 

instead and acted in response. The limited experience by both human and dolphin 

conducting a novel test may also have impacted the outcomes. A control was set up 

for the experiment, in which adaptations to the set up were conducted. Firstly, a control 

in which a plastic shell covered the vibrissal crypt, these plastic shells completely 

covered the openings of the vibrissal crypts. Control trials were triggered at a higher 

intensity stimulus than the detection threshold of the dolphin that has been identified 

from the main trial, and the dolphin did not respond as successfully. In an additional 

control test, there was the presence of the plastic shell cover, but this time sea water 

was able to come in contact with the vibrissal crypt openings. The results showed that 

this time the dolphin was not impaired in response to the stimuli when this was the 

case. These behavioural findings suggest that the source of the detection of the 

electrical stimuli occurred from the vibrissal crypt, owing their function as 

electroreceptors.  
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Gerussi et al. (2020) recently investigated the gross follicle anatomy of common 

bottlenose dolphins, and instead of hairless follicles as observed by Palmer and 

Weddell, (1964), they found that adult individuals retain their whisker shafts, albeit 

contained well within the follicle. Their follicles did however have a dense innervation, 

similar to the Guiana dolphin, with nerves spreading around the follicle penetrating 

and terminating at the base and various locations up the sides of the follicle (Gerussi 

et al., 2020; Figure 2.1.E). They therefore concluded that these follicles may still act 

as functional sensors and suggested a more proprioceptive role instead but stated that 

electrosensory ability cannot be ruled out. A proprioceptive role however is reflective 

of findings by Yablokov et al. (1972) who suggested that small hairs contained within 

a follicle may act as a sensor to movement of water and head movements. 

 

More recently, Huttner et al. (2021) investigated the anatomical and behavioural 

evidence for electroreception in the bottlenose dolphin. The anatomical results 

identified that neonate bottlenose dolphins possess vibrissal follicles with a functional 

hair papilla and a cavernous sinus, but that adults lack these features. This suggests 

that there are functional differences of vibrissal follicle structures in neonates and 

adults in bottlenose dolphins. As in the Guiana dolphin, Huttner et al. (2021) suggests 

that adult follicles are denoted ‘vibrissal crypts’ and show a postnatal morphological 

transformation from a mechanoreceptor to an electroreceptor. The follicles in 

neonates varied between 4-6mm in length and 0.3-1mm in width, they contained a 

hair which was curled caudally and protruded 18mm from the skin surface. In adults 

these follicles lacked a hair shaft and hair papilla but exhibited an expanded lumen of 

5.4-7.5mm in length and 0.6-2.4mm in width. Innervation of the follicles was almost 

equal in both neonates and adults showing functionality in both, even with key 

mechanosensory features lacking in adults. 

 

In the behavioural experimentation, four bottlenose dolphins were trained on a go/no 

go paradigm, three different training stimuli were used in stages to teach a generalised 

behaviour response before exposure to electrical stimuli. These different training 

modalities were audio, optical and mechanical. In the last stage (electrical) all four 

dolphins responded correctly with ‘go’ to the presence of weak DC electric fields with 

an average of 86.85% success rate in the entire session across all four dolphins 

(p<0.0001). Unlike in the Guiana dolphin a threshold was unable to be established 
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however the accurate and reliable actions of the dolphins to stimuli as low as 0.5mV 

cm-1 indicates that these dolphins could detect low field strengths. Control tests were 

unable to be carried out on the bottlenose dolphins, but Huttner et al. (2021) states 

that the control tests by Czech-Damal et al. (2012), showed beyond doubt that the 

crypts were the site of electroreception. 

 

2.2.3. Conclusions 

 

Due to the anatomical diversity and the fact that cetaceans possess both 

mechanosensory and electrosensory vibrissal follicles, justifies further investigation 

into this taxon. Therefore, the current study will investigate and qualitatively describe 

the gross follicle anatomy of three species of cetacean to characterise their follicle 

anatomy. Comparisons with the findings of other follicle anatomy which have been 

described in other species of cetaceans such as bottlenose dolphin, Guiana dolphin, 

and bowhead whale, as well as pinnipeds will be used to examine the anatomical 

evidence in support of electroreception in cetaceans.  
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2.3. Methods 

 

Animals Tissue  

Samples were obtained from four species of cetacean: harbour porpoise (Phocoena 

phocoena), Atlantic white-sided dolphin (Lagenorhynchus acutus), minke whale 

(Balaenoptera acutorostrata), and Sowerby’s beaked whale (Mesoplodon bidens). 

Sowerby’s beaked whale was a stranded adult. Whereas the other three species were 

foetuses that had died from natural causes and washed up on Scottish beaches. 

Samples were donated by the National Museum of Scotland in Edinburgh, UK. As is 

usual for museum store specimens, samples were kept in freezer conditions and 

occasionally went through freeze-thaw cycles, which affected the quality of samples 

somewhat and created ice crystals within the sample. This effect can be seen in the 

minke whale, where repeated freezing and thawing has affected the tissue sample 

quality and impacted the histological analysis (Figure 2.4.B). Several dimples in the 

skin of the Sowerby beaked whale were identified under microscope (Figure 2.2); 

however, no follicles were able to be found. Therefore, this species was removed from 

the study, leaving three study species. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

  

Figure 2.2: Light micrograph image of a Masson-Trichrome staining of Sowerby’s beaked whale 
upper lip tissue. Dimple in the skin. Scale bar 1 mm. (Glossary: D: Dimple E: Epidermis). 
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One individual per species was used in this study, and for each specimen, three to 

four vibrissal follicles were investigated, (Atlantic white-sided dolphin: 3, harbour 

porpoise: 4 and minke whale: 4). Dissection of a whole row of vibrissal follicles were 

collected and an area around each individual follicle was dissected into roughly an 

8cm3 tissue sample cube which had the vibrissal hair intact. Samples were flattened 

by padding with foam, stored in histology cassettes, and left in 4% paraformaldehyde 

(PFA) overnight. 

 

Histology 

Samples were then subject to dehydration and mounting in paraffin wax for slicing and 

staining with Masson’s Trichrome, based on the protocol described by Grant et al. 

(2017). Samples were processed through several industrialised methylated spirit 

(IMS) increasing gradient baths (70%, 80%, 90%, and 100%). They were then 

immersed in xylene and paraffin wax. Total processing time was approx. 12 hours. 

Tissue samples were then submerged in hot paraffin wax moulded onto cassettes and 

set into solid paraffin wax blocks. These were sliced using a Thermos Scientific 

microtome HM355S into 20 µm thick slices, which fell into a 37-39oC bath and were 

then mounted onto slides and left to dry. Slides were then moved through a sequence 

of solutions for the Masson’s Trichrome staining protocol. This started with 1 hour in 

4% PFA in 0.1 M phosphate buffer, then Bouin’s Solution for 3 hours. Slides were then 

rehydrated using xylene (X1, X2) and three IMS solutions (100%, 90% and 70%). 

Muscle fibres were stained by adding the slides to Biebrich Scarlet acid. Collagen was 

stained by adding the slides to acid solution (phosphotungstic and phosphomolybdic 

acids) and aniline blue. Between each stage of staining, the slides were washed 

multiple times with distilled water. The final stage consisted of dehydrating the slides 

through reverse IMS gradients (70%, 90%, 100%) and xylene (X2, X1). Once 

completed, slides were dried, and cover slipped with DPX and left to air in the fume 

hood for 48hrs. Masson’s Trichrome is a commonly used stain and allowed for 

comparison to literature which have investigated cetacean follicle anatomy (Czech-

Damal et al., 2012; Drake et al., 2015; Gerussi et al., 2020). As well as Masson’s 

Trichrome staining, three slides per species were selected to be stained with Luxol 

fast blue solution, this solution stains myelinated fibres blue, which assists in the 

identification of innervation of the follicle. Slides were then examined, and images 

captured on a Zeiss Axioimager M1 light microscope (Carl Zeiss Microscopy GmbH, 
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Jena, Germany) using Zen Pro 3.1 (blue edition; Carl Zeiss Microscopy GmbH, Jena, 

Germany). Maximum follicle length and width measurements were taken from each 

follicle, and a mean was presented per species (Table 2.1). Only adjustments in 

exposure and white balance were made to the images. 
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2.4. Results 

 
All three species had an elongated tissue capsule surrounding the vibrissal follicle. All 

follicles contained a hair, or vibrissal shaft. There was no ringwulst or ring sinus, nor 

were any muscles or glands associated with the follicles in any of the three species. 

Results will be discussed species by species below.  

 

Atlantic white-sided dolphin  

The specimen which was investigated contained four vibrissae per row on the section 

dissected from the rostrum. Within each follicle there was a short and dark hair which 

was curved in shape and protruded out of the follicle approx. 10mm (Figure 2.3.A). 

These follicles were the longest follicle of all three species (Table 2.1) and displayed 

a dense accumulation of nerves bundles both surrounding the base of the follicle 

(Figure 2.3.B-D). Innervation can also be observed running parallel to the follicle and 

entering at superficial levels up the follicle towards the epidermis (Figure 2.3.D). The 

follicles were simple in structure and were contained within a tissue capsule (Figure 

2.3 A-D).  

 

 

 

 

 

 

 

 

 

 

 

  

A B C D 

Figure 2.3: Light micrographs of cross sections of vibrissal follicle anatomy of Atlantic white-sided dolphin 
(Lagenorhynchus acutus). A-B show Luxol fast blue staining. Images C-D show Masson’s Trichrome staining. Images 
A and C show full follicle view, images B and D show close up of follicle base. Image D shows the path of innervation 
into higher levels of the follicle via path of asterisks (*). B: Hair bulb; E: Epidermis; TC: Tissue capsule; P: Papilla; (*): 
Nerve bundles. All scale bars are 0.5mm. 
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Harbour porpoise  

The specimen which was investigated contained two vibrissae per row on the section 

dissected from the rostrum. Each follicle contained a short and pale hair which 

protruded out of the follicle approx. 10mm. Large curvature of the vibrissal shafts was 

observed (Figure 2.4.A). Follicles were thin and were the narrowest out of the three 

species (Table 2.1). The follicles consisted of both epidermal and dermal parts in 

which the epidermal layer of the harbour porpoise was thicker than that of the other 

two species (Figure 2.4.A-B). Nerve bundles and fibres were loose in the surrounding 

tissue of the follicle, upon closer proximity to the base of the follicle, these fibres 

appeared to bundle together and entered the follicle mainly in one location (Figure 

2.4.C-D). The follicles were simple in structure and were contained within a tissue 

capsule with a thin follicle wall which was uniform in thickness (Figure 2.4.B). 

 

 

 

 

 

 

 

 

  
Figure 2.4: Light micrographs of cross sections of vibrissal follicle anatomy of Harbour porpoise (Phocoena 
phocoena). Images A-D show Masson’s Trichrome staining. Image E shows Luxol fast blue staining. Images A and B show 
full follicle view, images C-E show close up of follicle base. Image D-E shows the paths of innervation into base of the follicle 

via path of asterisks (*). B: Hair bulb; E: Epidermis; TC: Tissue capsule; P: Papilla. All scale bars are 0.5mm. 



 53 

Minke whale (Balaenoptera acutorostrata)  

The specimen which was investigated contained four vibrissae per row on the section 

dissected from the rostrum. Each follicle contained a short and pale hair. Follicles were 

oval and were the widest and shortest out of the three species studied (Table 2.1). 

The follicle sample contained both epidermal and dermal parts, with a thin epidermis 

(Figure 2.5.A-B). The follicles were simple in structure and were contained within a 

tissue capsule with a thin follicle wall which was dissimilar in thickness on either side 

of the follicle (the wall of the follicle was slightly thicker on the right hand-side of the 

sliced tissue sample than the left (Figure 2.5.A-B)). Ice crystallisation can potentially 

be observed in sections of the tissue (Figure 2.5.B). This may have impacted the size 

of the follicle sinus and tissue capsule through the enlarging of tissue. The innervation 

was a compact accumulation of nerve fibres which appeared to enter the follicle 

capsule at a singular insertion point from directly below the follicle (Figure 2.5.C) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

A B C 

Figure 2.5: Light Micrographs of cross sections of vibrissal follicle anatomy of Minke whale 
(Balaenoptera acutorostrata). Image A shows Luxol fast blue staining. Images B-C show Masson’s 
Trichrome staining. A and B show full follicle view, C shows close up of follicle base. Images B and C 
shows the single insertion site path of innervation of the follicle via path of asterisks (*). B: Hair bulb; E: 
Epidermis; TC: Tissue capsule; P: Papilla; FD*: potential freezer damage. All scale bars are 0.5mm. 
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Table 2.1 Structural characteristics of size of follicles. Length and width measurements taken from top of 
epidermis to the base of tissue capsule. Measurements recorded through microscope imaging and averages 

calculated from total of number of follicles in a single row for comparison. 

Species 
Length 
(mm) 

Average 
length (mm) 

Width 
(mm) 

Average 
width (mm) 

Atlantic white-sided dolphin 

3.79 
3.64 
3.63 
3.74 

3.70 

0.91 
0.83 
0.81 
0.85 

0.85 

Harbour porpoise 
3.33 
3.37 

3.35 
0.58 
0.64 

0.61 

Minke whale 

2.94 
2.91 
2.98 
3.01 

2.96 

1.20 
1.16 
1.24 
1.28 

1.22 
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2.5. Discussion 

 

The data presented in this study characterised the whisker follicle anatomy of three  

foetal cetacean species. All three species present few (2-4) and short vibrissae, which 

protrude approx. 10mm from the surface. All the vibrissal follicles were also elongated 

structures which were all contained within a tissue capsule and had some form of 

innervation, although they lacked muscles, ringwulst and a ring sinus (Figures 2.3-

2.5.). The Atlantic white-sided dolphin possessed a dense accumulation of innervation 

at the base and side of the follicle, similar to bottlenose and Guiana dolphins. 

 

Delphinid follicles 

The densely innervated follicles in the Atlantic white-sided dolphin are comparable to 

those that have been previously described in the bottlenose dolphin (Gerussi et al., 

2020) and display similar anatomical characteristics to the Guiana dolphins innervated 

vibrissal crypts (Czech-Damal et al., 2012). In Atlantic white sided dolphin, the deep 

vibrissal nerve (DVN) branched around the follicle and even travelled up parallel to the 

follicle and inserted in more superficial heights (Figure 2.3.D). Both the bottlenose and 

Atlantic white sided dolphins have large follicles that are innervated by nerve fibres 

around the base and the sides of the follicle. The presence of a densely innervated 

follicle is also observed in platypuses and is believed to play a crucial role in the 

transduction of electrical stimuli (Manger et al., 1995; Czech-Damal et al., 2013). The 

nature of this innervation makes it plausible that the Atlantic white-sided dolphins may 

also be able to operate as electrosensory organs. The similarities which have been 

observed in these three dolphin species indicate that investigation into more species 

of the delphinids should be conducted.  

 

Whisker follicles in porpoises and baleen whales 

Unlike the delphinids, the harbour porpoise and minke whale displayed a singular 

innervation site at the base of the follicle. This was similar to the structures seen in 

sensory hairs of other cetaceans that are thought to serve as tactile sensors, 

specifically in mysticetes such as the bowhead whale (Berta et al., 2015). This may 

suggest that the minke whale and harbour porpoise vibrissae are primarily for 

mechanoreception too. It was originally hypothesised that many of the mysticetes use 

facial sensory hairs to detect food when surface feeding (Nakai and Shida, 1948), 



 56 

which has been reported in the bowhead whale (Drake et al., 2015). Thus, it is 

presumed that the sensory hairs in the bowhead whale act as sensors changes in the 

environment, such as during breaching and detecting the change between water and 

air or water flow when feeding (Drake et al., 2015). Indeed, many mysticetes may use 

sensory hairs in the tactile sensing of prey and water and this may explain the simpler 

innervation and sensory hair type observed in the minke whale and harbour porpoise. 

 

Echolocation in cetaceans 

Sensory adaptations in species of cetacean are associated with improved hearing 

abilities. Utilising echolocation as their main source of information for finding, tracking, 

and catching prey items (Wisniewska et al., 2016). Echolocation capabilities in 

dolphins in the past have been studied in detail (Au et al., 2000; Kremers et al., 2016). 

The maximum detection range of a 30 cm fish by a bottlenose dolphin was ~173m (Au 

et al., 2007). Additionally, Au and Snyder (1980) demonstrated that bottlenose 

dolphins can detect small objects (~8cm) at distances over 100 m. In comparison to 

odontocetes, less research has been conducted on the acoustic abilities of baleen 

whales due to their size and limited ability to keep them in captivity (Torres, 2017).  In 

the wild, baleen whales produce low frequency calls enabling long range vocalisations 

of distances of 9-45km, varying by species (Stafford et al.2007, Clark et al.2010). In 

addition to being able to locate prey over distances, the distinction of prey type and 

quality is critical to foraging success. Dolphins such as bottlenose dolphins may be 

capable to discriminate different types of species of fish (Auet al.2009), through 

echolocation capabilities by using the echo spectrum shape and changes in target 

strength (DeLong et al., 2006). However, many oceans’ environments present variable 

sea floor structure and conditions ranging from sandy to silty sediment or even rock 

beds. These locations therefore possess different reflectivity and conditions to 

navigate (Dähne et al., 2020). These variable conditions can affect reverberation of 

sound and therefore the speed of sound in the water (Dähne et al., 2020). Certain 

foraging behaviours are known to create turbid waters and mud plumes, making the 

conditions of the water unclear and dense with sediment. When this occurs, it can 

become challenging to detect sound accurately (Wisniewska et al., 2016). 

Electroreception may therefore function as a supplementary sensory modality to 

echolocation to aid in close range prey localization during benthic feeding. 
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Feeding behaviours 

Certain ecological factors may be associated with the presence of electrosensing 

modalities. Specifically, we might associate electrosensing with certain feeding 

behaviours, including benthic foraging. The fact that Guiana dolphins forage in murky 

turbid water was proposed as a need for the evolution of the electrosensory organ 

(Czech-Damal et al., 2012). They are known to dig and forage in the sediment. This is 

indicated through the presence of mud plumes after dives and mud adhering to the 

rostrum when surfacing (Rossi-Santos and Wedekin, 2006). Czech-Damal et al. 

(2012) suggest that other cetacean species that forage in a similar way may also 

electrosense. Many other toothed whales report displaying benthic foraging 

behaviours, for example common bottlenose dolphins display a range of these 

behaviours when feeding, such as crater feeding (Rossbach and Herzing, 1997) and 

mud plume feeding (Lewis and Schroeder, 2003). Atlantic white sided dolphins have 

been observed to feed at the surface, although there is research documenting their 

benthic foraging behaviours (Craddock et al., 2009). A study on Atlantic spotted 

dolphins (Stenella frontalis) observed feeding behaviours both during the day and at 

night-time periods in the deeper waters of the Bahamas (Herzing and Elliser, 2014). 

In addition, a study into the diving and deep foraging behaviours of Risso’s dolphins 

(Grampus griseus) identified that their foraging behaviours adjusted in accordance 

with longer winter nights in the Mediterranean sea, displaying longer periods of 

foraging during the night (Giorli et al.,2016). These behaviours suggest that the 

Atlantic spotted and Risso’s dolphins exhibit nocturnal feeding patterns, which are 

limited by the availability of daylight. Therefore, whilst vision, echolocation or both may 

first be used in localisation and tracking of potential pray, electroreception may provide 

important sensory information when the cetacean is near prey, when visual or audio 

cues may no longer be of use. 

 

 

Phylogenetic considerations 

A phylogenetic tree was produced to identify the species that may electrosense. 

Datasets were downloaded from ‘10K trees’ (https://10ktrees.nunn-lab.org), and a 

consensus tree (from 100 trees) with posterior probabilities were plotted using FigTree 

v1.4.4 (Figure 2.6).  
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Figure 2.6: Cetacean phylogenetic tree. Constructed using data from 10k trees (https://10ktrees.nunn-lab.org). The family 
Delphinidae is identified by the blue box and subfamilies identified by red boxes. Relevant species include: Balaenoptera 
acutorostrata – minke whale; Tursiops truncatus – bottlenose dolphin; Sotalia guianensis – Guiana dolphin; Lagenorhynchus 
acutus – Atlantic white-sided dolphin; Phocoena phocoena – harbour porpoise 
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The Delphinidae are the largest family of odontocetes with three main subfamilies: 

Delphininae, Globicephalinae and Lissodelphininae (Figure 3.1). The divergence of 

the Atlantic white-sided dolphin occurred prior to the divergence of the subfamily 

lineages (LeDuc et al., 1999; May-Collado and Agnarsson, 2006; Agnarsson and May-

Collado, 2008; Caballero et al., 2008; McGowen et al., 2009) however the species is 

still considered part of the family Delphinidae. Additionally, the genera Sotalia and 

Steno have been described as a sister taxon to the subfamily Delphininae (Caballero 

et al. 2008; Figure 3.1).The placement of the bottlenose dolphin within the Delphininae 

subfamily is well supported (Caballero et al., 2008; McGowen et al., 2009). Anatomical 

similarities observed between the Atlantic white sided, bottlenose and Guiana 

dolphins, who are members of the Delphinidae, could suggest the possibility that other 

Delphinids may possess similar anatomical features. This therefore presents an 

interesting taxon to investigate in relation electrosensory perception 

 

The harbour porpoise is part of the family Phocoenidae. This could explain the 

differences between the follicle structure and lack of dense innervation. The minke 

and bowhead whales underwent divergence separately to dolphin species (McGowen 

et al., 2009). This has resulted in different adaptations, the most striking being the 

presence of the baleen plate and the resulting differences in feeding, which may mean  

they do not need electrosensory organs.  

 

Comparing to other mammalian species 

Throughout the transition from terrestrial into aquatic environments, marine mammals 

have undergone sensory specialisation (Bauer et al., 2018). This is especially true in 

pinnipeds, who have the most diverse whisker morphology, in terms of shape, surface 

texture, organisation and number, of all mammals (Mattson and Marshall, 2016; 

Dougill et al., 2020). Conversely, very little is currently known about the hair shape 

and surface texture of cetacean vibrissae (Bauer et al., 2018). This is likely, in part, 

due to the loss of the hairs in many species of odontocetes. However, I suggest that 

as in pinnipeds, adaptation to the aquatic environment has also led to vibrissal 

diversity in cetaceans. Indeed, cetacean vibrissae vary in number, position and in 

function, possibly serving as electrosensors in some delphinid species. 
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Overall, cetacean vibrissal follicles lack key features that are observed in other 

mammals, including muscles, ringwulst and ring sinus. However, these features are 

also absent in other species, especially in terrestrial, diurnal mammals such as such 

as primates (Primatomorpha), horses (Equidae) and deer (Cervidae); which also 

present thin and reduced whiskers and follicles (Muchlinski et al., 2013; Muchlinski et 

al., 2020), similar to those I observed in cetaceans. Whiskers in these diurnal species 

may be reduced due to a greater reliance on vision, as well as an increase in fingertip 

tactile sensing in primates (Dahiya et al., 2009). This may also be true in cetaceans 

who have evolved a greater reliance on other senses, such as echolocation. However, 

the function of the whisker follicle evolving to serve an electrosensory purpose may 

also reduce the mechanosensory needs of the tactile whisker follicle use in cetaceans. 

 

Histological sample material 

Only foetal specimens were used in this study. This made locating the vibrissae easier 

for histology. Gerussi et al. (2020) documented that there was not much variation of 

structural change when bottlenose dolphins reached maturity. Therefore, the samples 

in this study are to be representative of the adult samples too. However, while the 

gross anatomy of the follicles is unlikely to differ from birth to mature adult, some 

species of odontocetes appear to have a reduction in or lose their vibrissal hair shafts. 

Whilst at least two species of river dolphin retain their vibrissae as stiff hairs into 

maturity (Bauer et al., 2018). Therefore, the size of the hair shaft in an adult specimen 

is therefore more likely to give a clue of the function of the follicle and should be further 

explored. Though the presence of vibrissae in foetal animals may suggest a function 

associated with basic tactile sensing in the initial stage of life.  This could include 

creating a close contact with the mother, recognition and locating the nipple for nursing 

(Gerussi et al. 2020).  

 

Conclusions 

This study has shown that the anatomy of vibrissal follicles in cetaceans is diverse and 

that evolutionary, phylogenetic, and ecological factors may be key drivers for this 

diversity. The differences in follicle anatomy are likely to be associated with function, 

and that it is plausible that benthic and nocturnal foraging behaviours are key for the 

evolution of an electrosensory modality. The similarity between the follicles of different 

delphinids may also suggest that follicle anatomy is phylogenetically associated, and 
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that delphinid species are more likely to have electrosensory follicles than mysticetes 

or other odontocetes. In addition, a key commonality of electrosensing in 

elasmobranchs, platypuses and the Guiana dolphin is the presence of an 

electroconductive gel (Czech-Damal et al., 2012; Czech-Damal et al., 2013; Josberger 

et al., 2016). The presence of a conductive gel in vibrissae follicles of cetaceans may 

also indicate electrosensory abilities. Therefore, cetacean vibrissal follicle contents 

should be investigated further for conductivity and material properties.   
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3. Chapter Three: Studying the implications of EMFs 
on cetaceans and future recommendations 

 

This chapter addresses the following aims: 

 
1. Making future recommendations for the study of electrosensing in cetaceans 

 
 
 
3.1. Introduction 

 

Growth of the offshore windfarm industry in Europe has increased in the past two 

decades (Hutchison et al., 2020). A large majority of this growth has occurred on the 

English East coast in the North Sea (Díaz and Soares, 2020), with the United kingdom 

(UK) having more offshore windfarms than any other European country (Díaz and 

Soares, 2020). This thesis was able to accumulate the spatial data of offshore 

windfarms to identify the scale of their growth and the potential issues that they may 

cause. It has also highlighted that the available data on cetacean sightings around the 

UK have significant drawbacks. Therefore, limiting the ability to compare historical 

sighting data between time periods of specific cetacean abundance and distribution.  

 

The characteristics of EMFs which are produced from subsea power cables from 

windfarms depend on a range of factors, which include: their location, the type of 

cable, the type of power supply (HVDC vs HVAC; CMAS, 2003; Öhman et al., 2007; 

Copping et al., 2013). However, the number of scientific publications on the specific 

characteristics of in situ subsea power cables is scarce (Taormina et al., 2018). This 

prevents researchers from precisely assessing the potential impacts of EMF 

emissions on marine organisms in situ (CMAS, 2003). Although, some studies have 

investigated the effect of a range of EMFs ex situ, observing behavioural and 

physiological effects on marine organisms (Gill et al., 2009; Tricas and Gill, 2011; 

Hutchison et al., 2018; Gill and Desender, 2020). This thesis has synthesised some of 

the literature that is available from these studies.  

 

Chapter one also reviewed the threats cetaceans face and ecological factors which 

are key for their survival. Factors such as feeding habits, habitats and migration 
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patterns may affect the level of exposure to artificial EMFs from subsea cables, certain 

species may face. Five species were identified as vulnerable to artificial EMFs in UK 

waters.  

  

Vibrissae are present on the faces of most mammals (Ahl, 1986; Grant & Goss, 2021). 

Unlike in other mammals, where vibrissae are purely mechanosensory, it is likely that 

they play a role in mechanoreception, proprioception and electroreception in 

cetaceans. Chapter two qualitatively described the gross vibrissal anatomy of foetuses 

of three species of cetacean and compared the findings to previous anatomical 

descriptions. Two members of the family Delphinidae, the Atlantic white-sided and 

bottlenose dolphins have vibrissal follicles that are densely innervated by nerve fibres 

around the base and the sides of the follicle. The nature of this innervation makes it 

plausible that the follicles of Atlantic white-sided and bottlenose dolphins may also be 

able to operate as electrosensory organs. Indeed, recent evidence from Huttner et al., 

(2021) demonstrated electroreceptive behaviours in four bottlenose dolphins. Chapter 

two also reviewed ecological and phylogenetic considerations for the evolution of 

electrosensing in cetaceans. Differences in follicle anatomy in Cetacea are likely to be 

associated with function, and it is plausible that benthic foraging in sea floor sediment 

is one of the key drivers in the evolution of electroreception. Also, the anatomical 

similarities which have been observed across the delphinids also suggests 

phylogenetic relationships may also play a role in the presence of electrosensory 

perception. This certainly provides an interesting group to further study this sensory 

modality in.     
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3.2. Future recommendations 
 
Data  
 
Data on the locations of offshore windfarm locations and their cables are freely 

available, however the available data on cetacean sightings are problematic. 

Traditional boat and aerial transect surveys of cetaceans have major drawbacks 

including systematic bias in the species that are recorded, incorrect identification of 

species, temporal and spatial heterogeneity in survey efforts or safety concerns if 

travelling near to windfarms (Clough et al., 2012).  

 

Not enough data are available to confidently determine whether windfarms are 

affecting cetaceans due to EMFs. Further efforts need to be invested in the cetacean 

surveys in European waters, especially around UK windfarms and cable sites. Since 

we know the current locations of UK windfarms and cables (figure 1.1), this allows 

special locational survey efforts. Behavioural data also need to be collected. However, 

baseline data are also lacking, and we are therefore unable to reliably examine 

cetacean distribution and behaviour in the absence of windfarms and cables in situ. 

We are currently limited to measuring changes over time as more windfarms are 

developed, rather than measuring the effect of their presence.  

 

Furthermore, due to the variability and uncertainty of EMF production from subsea 

cables; we are not able to reliably state the strengths of artificial EMFs present in our 

oceans. Legislation regarding the commissioning of windfarms could call for 

compulsory reports of annual EMF production and surveying in the long term. This 

could then be usefully complimented by cetacean sighting and behavioural data.  

 
Cetacean species 
 
In chapter two, differences in vibrissal number, follicle size and shape, and innervation 

distribution were observed in the three species which were examined. Systematically 

examining vibrissal shafts and follicles across more species of cetaceans would be 

beneficial, especially focusing on delphinids. Modern technology now allows detailed 

quantitative anatomical analysis to be conducted and it is even possible to measure 

the conductivity of the material that is found within the follicle, to judge electroreceptive 

capabilities. The amount of innervation which surround the follicle should also be 
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considered for investigations to aid in estimating vibrissal sensitivity. However, this 

can be time consuming, difficult to measure and requires good anatomical samples 

(Marshall et al., 2006). Unfortunately, many cetacean specimens often come from 

beach strandings or museum freezer specimens which often can degrade the tissue 

quality, as we have seen in the sample of minke whale. Therefore, to further review 

vibrissal function and sensitivity in cetaceans, we need additional behavioural studies 

in more species of cetaceans. The easiest way to conduct behavioural 

experimentations is to do so in captivity, but this faces both practical and ethical 

challenges, with a recent increase in opposition to cetaceans in captivity (Muka and 

Zarpentine, 2021). However, I do suggest that investigating the anatomy of follicles 

and behavioural responses of delphinids would be a good starting point to understand 

the associations between vibrissal form and function in cetaceans. Huttner et al., 2021, 

demonstrated methods in which cross sensory modality learning can be taught in 

bottlenose dolphins and thus may be a reference point for further studies.   

 

 

   

 
 
 
 
 
 
 

  



 66 

3.3. Wider implications 
 
Some subsea cables may release magnetic field greater than those of the Earth’s 

geomagnetic field (see Dhanak et al., 2016). If migratory paths of cetaceans pass over 

these subsea cables this may distort their navigation and may lead to increased 

strandings (Zapetis and Szesciorka, 2018), however this has not yet been confirmed. 

Although, incidences of sperm whales becoming entangled in newly developed 

submarine tele communication cables were reported. This then rarely occurred once 

the cables were redesigned and as a result no longer emitted electric fields (Wood & 

Carter, 2008). 

 

While electrosensing has been found in the Guiana dolphin (Czech-Damal et al., 

2012), the threshold was around 460μV/m, which is higher than the reported values 

which are produced from subsea cables (Öhman et al., 2007; Taormina et al., 2018). 

This suggests that the levels of EMFs produced from subsea cables may not be high 

enough to trigger the detection in Guiana dolphins. However, as the detection 

thresholds may differ between the lab and field, and we do not have a good 

understanding of the EMFs stimuli around subsea cables in situ, artificial EMFs 

produced from subsea cables may yet be detectible by the Guiana dolphin. 

Electrosensory perception has now also been identified in the bottlenose dolphin 

(Huttner et al., 2021), although the detection threshold is still under investigation. As 

these are a species are prevalent in UK waters, they may be at risk of exposure to 

electric fields from subsea cables from the increased growth of offshore windfarms in 

UK waters. Exposure is likely to have behavioural and physiological effects, similar to 

those we have observed in other marine species. These can include impacted 

migration, foraging, reproduction and general health and welfare. It is crucial that we 

further explore this sensory modality in bottlenose dolphins to establish a threshold 

detection value to assess if artificial EMFs from subsea cables are a hazard to this 

species. If electrosensory perception is also present in other species of delphinids this 

may increase the number of species which will be vulnerable to artificial EMFs from 

subsea windfarm cables.   
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3.4. Conclusions 
 
This thesis evaluated the potential and impact of electrosensing in cetaceans. 

This was achieved by addressing four objectives: 

1. Identifying possible electrosensing cetacean species from anatomical 

structures 

I suggest that innervation patterns around the base and sides of the vibrissal follicle, 

and a large follicle size, may be indicative of an electrosensory follicle. This appears 

to be the case in the Guiana dolphin, as well as in other members of the family 

Delphinidae, including the bottlenose dolphin and the Atlantic white-sided dolphin.   

 

2. Identifying candidate cetacean species for electrosensing capabilities from 

phylogenetic and ecological traits 

I suggest that delphinids are an interesting group to study, due to the innervation 

patterns and anatomical similarities of their vibrissal follicles. Moreover, species which 

forage benthically may benefit from another sensory modality which would aid in 

successful prey capture. Species which migrate, exhibit preference for coastal habitats 

and forage benthically may be more affected by artificial EMFs. In the UK, the minke 

whale, humpback whale, Atlantic white sided dolphin, white beaked dolphin and 

bottlenose dolphin are such species. 

 

3. Identifying the distribution of current wind farm, cable and cetacean data 

Current windfarm and cable data are freely available, however, the temporal and 

spatial resolution of the cetacean data is problematic. Sighting data are not available 

around wind farms and very limited behavioural recordings exist. Reliable baseline 

sighting or behaviour data are also not available. 

 

4. Making future recommendations for the study of electrosensing in cetaceans. 

I recommend that the specifically delphinids are a species to focus on in further 

studies, since they are prevalent in European waters. They are also available in 

captive collections for ex-situ research. For future work in situ, this could consist of 

improving sightings data collection, especially developing long-term consistent 

datasets around windfarms, including both sighting and behavioural data. Although no 

evidence exists to ascertain whether EMFs are directly affecting cetaceans, many of 
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their prey items, including fish and crustaceans can, which is likely to affect cetacean 

foraging and distribution. Therefore, I recommend that the effect of EMFs on 

cetaceans needs to be studied further as both a primary and secondary impact. 

 

This thesis has highlighted the diversity in cetacean vibrissal anatomy and reviewed 

the literature on cetacean ecology that may result in the evolution of electromagnetic 

sensing in cetaceans. The fact two species of dolphin have displayed experimental 

evidence for electroreception also suggests that this sensory modality may be 

prevalent in more species. This is something which should be further investigated 

across the taxa. The links between the discovery of this sensory modality in cetaceans 

and their ecology is crucial in the conservation of cetaceans. This is especially 

apparent considering anthropogenic actions in response to climate change with 

offshore marine renewable energy.  
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