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Abstract

The Ngorongoro Conservation Area (NCA) of Tanzania, is globally significant

for biodiversity conservation due to the presence of iconic fauna, and, since

1959 has been managed as a unique multiple land-use areas to mutually benefit

wildlife and indigenous residents. Understating vegetation dynamics and ongo-

ing land cover change processes in protected areas is important to protect bio-

diversity and ensure sustainable development. However, land cover changes in

savannahs are especially difficult, as changes are often long-term and subtle.

Here, we demonstrate a Landsat-based monitoring strategy incorporating (i)

regression-based unmixing for the accurate mapping of the fraction of the dif-

ferent land cover types, and (ii) a combination of linear regression and the

BFAST trend break analysis technique for mapping and quantifying land cover

changes. Using Google Earth Pro and the EnMap-Box software, the fractional

cover of the main land cover types of the NCA were accurately mapped for the

first time, namely bareland, bushland, cropland, forest, grassland, montane

heath, shrubland, water and woodland. Our results show that the main changes

occurring in the NCA are the degradation of upland forests into bushland: we

exemplify this with a case study in the Lerai Forest; and found declines in

grassland and co-incident increases in shrubland in the Serengeti Plains, sug-

gesting woody encroachment. These changes threaten the wellbeing of livestock,

the livelihoods of resident pastoralists and of the wildlife dependent on these

grazing areas. Some of the land cover changes may be occurring naturally and

caused by herbivory, rainfall patterns and vegetation succession, but many are

linked to human activity, specifically, management policies, tourism develop-

ment and the increase in human population and livestock. Our study provides

for the first time much needed and highly accurate information on long-term

land cover changes in the NCA that can support the sustainable management

and conservation of this unique UNESCO World Heritage Site.

Introduction

African savannah environments provide essential ecosys-

tem services to communities, sustain endemic biodiversity

and play a critical role in regulating carbon cycles (Liu

et al., 2015; McNicol et al., 2018; Poulter et al., 2014;

Schneibel et al., 2017). In recent years, the provision of

ecosystem services from many savannah regions has pro-

gressively declined due to agricultural expansion, wood-

land degradation, invasive species, bush encroachment,

climate change and management policies, all of which can

place wildlife and communities at risk (Schneibel

et al., 2017; Symeonakis & Higginbottom, 2014; Tsalyuk

et al., 2017).
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The Ngorongoro Conservation Area (NCA) in North-

ern Tanzania is a designated United Nations Educational,

Scientific and Cultural Organisation (UNESCO) World

Heritage Site for exceptional natural and cultural values

(UNESCO, 2010). It is part of the world’s largest intact

savannah systems, the Greater Serengeti Ecosystem, which

includes the Serengeti National Park and the Maasai

Mara, where one of Africa’s largest animal migrations

takes place (Masao et al., 2015; Swanson, 2007). The

NCA also supports the largest population of the critically

endangered Eastern Black Rhinoceros Diceros bicornis

michaeli in Tanzania (Amiyo, 2006; Goddard, 1968; Mills

et al., 2006). The density and diversity of wildlife in the

NCA is of global importance for biodiversity conservation

and economically important for Tanzania. For instance,

in 2016 over 1 million tourists visited the NCA, generat-

ing revenue of approximately $70 million

(Slootweg, 2016, 2017). The NCA is also unique as it

operates as a multiple land-use model designed to protect

not only wildlife but also the lifestyle of the resident Maa-

sai pastoralists (Niboye, 2010).

The NCA vegetation is composed of a combination of

highland forests around the Ngorongoro Crater, savannah

woodland and shortgrass plains (Herlocker &

Dirschl, 1972). Over the last 50 years, African savannahs

have undergone considerable land cover changes, including

forest degradation, spread of invasive plant species, and

woody encroachment (Amiyo, 2006; Higginbottom

et al., 2018; Ludwig et al., 2019; Mills et al., 2006; Symeon-

akis et al., 2018; Venter et al., 2018). In the NCA high-

lands, forest degradation is of particular concern, as these

forests provide ecosystem services to the Maasai through

the provision of fuel wood, traditional medicinal plants,

and forage for livestock (Swanson, 2007). Additionally,

upland forests provide shelter for wildlife and regulate

water resources (Swanson, 2007). Meanwhile, in the grass-

land plains, woody encroachment and invasive species can

reduce rangeland carrying capacity, directly affecting wild-

life and the Maasai livestock (Venter et al., 2018).

Land cover changes in the NCA are driven by a combi-

nation of local and global drivers (Homewood

et al., 2001; Masao et al., 2015; Niboye, 2010). Firstly, the

Maasai community within the NCA increased from

roughly 8000 in 1959 to almost 100 000 in 2018, with an

accompanying livestock population of approximately

800 000 in 2018 (Lyimo et al., 2020; Manzano &

Yamat, 2018). Population growth has led to the expan-

sion of settlements, livestock bomas and demand for

water resources (TAWIRI & NCAA, 2020). In addition,

tourism, grazing pressure, climate change and manage-

ment decisions also seem to be contributors to change

(Homewood et al., 2001; Masao et al., 2015;

Niboye, 2010). Many of these changes have led to the

decline in habitat quality (Amiyo, 2006; Estes et al., 2006;

Niboye, 2010). Less suitable habitats with limited oppor-

tunities for browsing and grazing encourage inter- and

intraspecific competition for resources, threatening wild-

life populations and their distribution, and subsequently

raising concerns of biodiversity loss and increasing

human-wildlife conflicts (Amiyo, 2006; Kija et al., 2020;

Makacha et al., 1979; Niboye, 2010). In addition, for the

Maasai pastoralists these changes threaten the quantity

and quality of pasture resources for livestock and conse-

quently food security. Previous small-scale studies have

mentioned ongoing land cover changes within the NCA,

but the large-scale dynamics remain poorly understood

(Boone et al., 2006; Homewood et al., 2001; Masao

et al., 2015). The research available for the NCA is mostly

based on field surveys and aerial photography, which pro-

vide highly detailed information at the species level but

do not offer large-scale, holistic coverage (Amiyo, 2006;

Herlocker & Dirschl, 1972).

Over the last five decades, Earth-observation (EO) data

have increasingly been used to map and monitor land

cover (Adole et al., 2016; Woodcock et al., 2008; Wulder

et al., 2012). In particular, the Landsat archive provides

open-access, long-term data, with 30-metre spatial resolu-

tion and six spectral bands that are well suited for vegeta-

tion mapping. However, savannah landscapes are

challenging to map due to their heterogeneous and com-

plex characteristics, incorporating a mixture of woody veg-

etation (trees, bushes and shrubs), different grass species

and bare land (Borges et al., 2020; Ludwig et al., 2019;

Mathieu et al., 2013; Settle & Drake, 1993; Symeonakis

et al., 2018; Venter et al., 2018). Mapping and monitoring

change in savannah environments is even more challeng-

ing, as most changes occur gradually and incrementally,

resulting in subtle spectral changes that are difficult to

detect using imagery with a moderate spatial resolution.

Recently, the combination of synthetically generated mixed

samples with machine learning regression methods has

proved effective for mapping fractional cover in complex

environments (Okujeni et al., 2013; Senf et al., 2020; Suess

et al., 2018). Meanwhile, the development of time-series

methodologies has facilitated a more ecologically meaning-

ful quantification of landscape change detection. These

time-series approaches exploit the higher observation den-

sities that are now available, to detect changes in either

spectral bands, vegetation indices or derived layers such as

class probabilities or fractional coverage. (Schneibel

et al., 2017; Schwieder et al., 2016; Souverijns et al., 2020).

There is a pressing need to quantify the extent and

magnitude of land cover changes within the NCA, to

identify vulnerable areas and prevent potential threats to

habitats and livelihoods. The NCA’s multiple-use

approach, which attempts to reconcile biodiversity
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protection and the needs of local people, is a notoriously

challenging task (Harris et al., 2020). Moreover, in the

context of protected area management, an improved

understanding of land cover dynamics is imperative for

sustainable development, to support effective land use

planning, conserve and manage biodiversity and ensure

the long-term survival of wildlife and the prosperity of

resident human communities.

The main aim of the paper is to support the sustain-

able management of the NCA by developing an Earth-

observation-based approach for monitoring multi-faceted

land cover changes occurring over the past 35 years. We

employ the approach of Okujeni et al. (2013) to produce

near-annual fractional cover maps for nine constituent

land cover classes of the NCA. To identify the various

change processes, we employ two pixel level time-series

analyses. Firstly, we employ monotonic linear trend analy-

sis to detect long-term changes in land cover (Herrmann

et al., 2005; Higginbottom & Symeonakis, 2014). Sec-

ondly, we used the Breaks For Additive Season and Trend

(BFAST) piece-wise linear regression method to detect

possible breakpoints, specifically for upland forest cover

(Grogan et al., 2016; Lewi�nska et al., 2020; Morrison

et al., 2018; Schmidt et al., 2015; Wu et al., 2020). We

use the linear trend analysis to detect long-term, incre-

mental land cover changes, such as shrub encroachment

and grassland decline. Meanwhile, BFAST is well-suited to

identifying abrupt shifts and reversals in trends that may

be obscured by monotonic analysis, such as deforestation

and regrowth (Verbesselt, Hyndman, Zeileis, et al., 2010).

Study area

The NCA covers an area of around 8283 km2 (Swan-

son, 2007, Fig. 1). It contains the largest, intact volcanic

caldera in the Ngorongoro Crater and has highly abun-

dant and diverse wildlife (Estes et al., 2006, Fig. 1C).

Annual rainfall ranges from 450 mm/year in the lowlands

to 1200 mm/year in the highlands (Boone et al., 2007;

Fig. S1). Rainfall follows a bimodal pattern, characteristic

of East Africa, comprising two wet seasons: the main

between March and May, and a shorter one between

November and December (Pellikka et al., 2018). During

the dry season, temperature ranges between 11 and 20°C,
while in the wet season it ranges between 7 and 15°C
(Amiyo, 2006).

Materials and Methods

Landsat image acquisition and processing

We acquired and processed Landsat Collections Level 1

Tier 1 imagery from 1985 to 2020. Based on our previous

study, we selected images from the short dry season (Jan-

uary–April), which enables the highest separability of the

land cover types (Borges et al., 2020). For the 35-year

study period, we obtained 26 images with cloud cover less

than 75%, acquisition dates ranged from 9 January to 28

April (Fig. 2). No suitable images were available for 1986,

1988, 1991–1994 and 1996–1999. The Landsat collections

are pre-processed for atmospheric corrections using the

Landsat Ecosystem Disturbance Adaptive Processing Sys-

tem (LEDAPS) routine (Masek et al., 2006). Cloud mask-

ing was provided by F-mask (Schmidt et al., 2013). We

topographically corrected the images using a Sun Canopy

Sensor (Gu & Gillespie, 1998) and C-correction approach

(Teillet et al., 1982). The Normalised Difference Vegeta-

tion Index (NDVI; Tucker, 1979) was calculated using the

standard equation and added to the spectral bands, NDVI

is useful in savannahs that do not feature dense forest

canopies (Prince & Tucker, 1986). We used the Google

Earth Engine cloud-computing environment for all Land-

sat processing (Gorelick et al., 2017; Moore &

Hansen, 2011).

Fractional cover mapping

Our approach focusses on the generation of near-annual

fractional land cover maps, where each pixel represents

the 0%–100% coverage of the constituent land cover

types. The production of fractional land cover maps

requires predictive models quantifying the relationship

between the input satellite imagery products and the tar-

get classes as fractions. Previous studies have generated

fractional training data by the manual interpretation or

classification of imagery with a finer spatial resolution

than the input predictive layers; however, this is a time-

consuming exercise (Baumann et al., 2018). More

recently, Okujeni et al. (2013) developed an approach to

generate mixed samples from pure spectra representing

100% class coverage, producing synthetic samples of

mixed fractions for the desired land cover types. This syn-

thetic training data can be combined with modern

machine learning models and has proved highly effective

in a range of settings (Okujeni et al., 2013; Senf

et al., 2020; Suess et al., 2018).

Here, we expand on the methodology developed by

Okujeni et al. (2013). First, we developed a spectral

library for a land cover schema of the NCA. We focussed

on ecological meaningful land cover types comprised of

mixed vegetation communities which are spectrally sepa-

rable. Second, we generated synthetically mixed training

data using the approach proposed by Okujeni

et al. (2013). Finally, we input these synthetic samples

into a Random Forest regression model. To guide our

analysis, we employed a land cover map of the NCA
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Figure 1. The Ngorongoro Conservation Area (A) and its location within Africa (B), Tanzania and the Greater Serengeti ecosystem (C).

Figure 2. Methodological flowchart of our study.
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Table 1. Description of the nine main land cover types of the NCA, according to Herlocker and Dirschl (1972) and Pratt et al. (1966).

Land cover types Description Examples of land cover

Bareland Minimal or no vegetation cover including bare

rock, sand, saline or alkaline flats or riverine

deposits.

Bushland Closed shrub canopy comprising woody plants,

bushes or trees, ranging from 3 to 6 m in

height.

Cropland Natural vegetation has been removed and replaced

by other types of vegetation cover that require

human activity to maintain it.

Forest Closed canopy trees ranging between 7 and 40 m

or more in height. The ground is mostly

covered by bushes and shrubs making it

difficult for animals to move through it.

Grassland Grasses that vary between short (<25 cm) and tall

(150 cm). In certain areas, herbs, scarred trees,

or shrubs can occur. During the dry season and

during droughts, it can be almost bareland.

Montane heath Medium-sized vegetation (<1 m) including shrubs,

grasses, ferns, and mosses, usually at higher

altitudes.

Shrubland Open canopy with medium-sized woody vegetation

(<6 m in Pratt), surrounded by grass or

bareland. Some trees and bushes can occur.

(Continued)
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produced in an earlier study (Borges et al., 2020). This

map was based on multi-temporal Sentinel-1 and 2 com-

posites for 2019 with a 10 m spatial resolution. With

higher quality input data used in its production and

achieving high per-class and overall classification accura-

cies, we consider this dataset to be the best available and

most suitable reference for informing our Landsat-based

methodology in the present study.

Spectral library development

We employed a land cover classification schema based on

the detailed surveys of the NCA undertaken in the 1960s

by Herlocker and Dirschl (1972) and Pratt et al. (1966).

This aligns with our previous work on land cover classifi-

cation in the area (Borges et al., 2020), and is ecologically

relevant both in terms of habitat usage by species and the

management of the park. For instance, the highest densi-

ties of black rhino occur in bushland areas

(Emslie, 2020), but in the NCA they can also be found in

shrubland, open grasslands and closed-canopy forest, as

such it becomes increasingly important to distinguish

between these classes (Gadiye et al., 2016). In total, we

assigned samples to nine land cover types, detailed in

Table 1.

For the development of the spectral library, we collected

890 polygon samples from across the NCA, covering the

nine land cover classes, based on our knowledge of the area,

spectral information (Figs. S2 and S3), visualisation of

high-resolution imagery within Google Earth Pro and the

processed Landsat images (Fig. 2). The samples were dis-

tributed as follows: 20 for Bareland; 94 for Bushland; 11 for

Cropland; 50 for Forest; 498 for Grassland; 19 for Montane

heath; 82 for Shrubland; 13 for Water, and 103 for

Woodland. The sample size was proportional based on our

earlier land cover map (Borges et al., 2020). Using a pro-

portional sample size accommodates the greater spectral

variability within the large classes (e.g. grassland) relative to

the smaller more classes (e.g. montane heath). We com-

pared multi-temporal Landsat images and aerial photogra-

phy to select only pixels that remained unchanged

throughout the study period (i.e. pseudo-invariant fea-

tures). For each Landsat image, we extracted pixel values to

produce an independent annual-level spectral library, creat-

ing a total of 26 libraries.

Synthetic mixing

To create fractional training data from our spectral library

we used the EnMAP-box (version 3.6; EnMAP-

Box Developers, 2019) software to generate synthetic mix-

ture samples (Okujeni et al., 2013; Van der Linden

et al., 2015). For each class, we generated 1000 synthetic

samples, comprised of different fractional mixtures of all

classes. The following processes, described in (Cooper

et al., 2020), produced each synthetically mixed sample:

1. We established the likelihood for different multi-class

combinations across each pixel and included endmem-

bers according to this weighting. We set a 20% chance

for a two classes mixture, 40% for a three classes mix-

ture and 40% for a four classes mixture.

2. From the target class spectral library, one random end-

member was pulled.

3. This selected endmember was randomly allocated a

mixing fraction between 0 and 1.

4. Additional endmembers were randomly selected from

the additional classes and added.

Table 1. Continued.

Land cover types Description Examples of land cover

Water Ponds, lakes, rivers and swamps (with little or no

vegetation cover).

Woodland Open or continuous canopy with trees as tall as

20 m, often surrounded by shrubs, bushes or

grass but not thicket.
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5. The newly added endmembers were randomly assigned

mixing fraction, with the sum of all fractions equalling

one.

6. Synthetically mixed spectra were generated based on

linear combinations of the assigned mixing frac-

tions.We repeated this process for every synthetic spec-

tra. Finally, we added the original endmembers to the

synthetic samples and assigned mixing fractions of one

or zero for spectra belonging to target and non-target

classes, respectively.

Regression-based unmixing

We used a Random Forest regression to map vegetation

class fractions (Breiman, 2001). The Random Forest is a

non-parametric machine learning model based on ensem-

bles of regression trees, popular for image classification

and land cover mapping (Li et al., 2015; Rodriguez-

Galiano et al., 2012; Symeonakis et al., 2018).

The regression-based unmixing was carried out in the

EnMAP-Box 3.6 (EnMAP-Box Developers, 2019), an

open-source QGIS plugin designed for advanced pro-

cessing workflows of optical remote sensing data (Van

der Linden et al., 2015). We repeated the unmixing

procedure 10 times and averaged the predictions for

each year, produced using the correspondent spectral

library. This allowed the inclusion of multiple types of

synthetic mixtures into the unmixing process while

keeping the training sample size low (Okujeni

et al., 2017).

Figure 3. Fractional cover maps for the nine main land cover classes of the NCA in the year 2020. (A) Bareland, (B) Bushland, (C) Cropland,

(D) Forest, (E) Grassland, (F) Montane heath, (G) Shrubland, (H) Water, (I) Woodland.
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Validation of fraction maps

A validation dataset centredon 2010 and 2020 was developed

based on visual interpretation of high-resolution imagery in

Google Earth Pro (Ludwig et al., 2016). Due to limited Goo-

gle Earth imagery and uncertain dates for certain images,

imagery between 2009 and 2014 was aggregated and com-

pared to the 2010 fraction layers, and imagery between 2015

and 2020 was aggregated and compared to the 2020 layer.

Validation of model predictions prior to 2010 was not possi-

ble as earlier images had substantially lower resolution or

were unavailable. We validated the model predictions by

using a stratified random sampling, based on best practise

(Olofsson et al., 2014). We collected 416 reference pixels for

each epoch, resulting in 832 reference pixels. For each refer-

ence pixel, a 10 9 10 grid of 3 m squares (Fig. S4) was used,

and the class fractions were estimated by a researcher with

local knowledge. For statistical validation, we calculated the

bias, the coefficient of determination (R2) and the mean

absolute error (MAE) between the reference fractions and

predicted fractions.

Change mapping

To detect changes in the fractional land cover, we

employed two complementary time series analyses. Firstly,

to detect the general land cover change, we performed a

linear regression against time on the annual fractional

cover maps of each land cover class (Herrmann

et al., 2005). Changes that were statistically (p > 0.05) or

ecologically (cover in 2020 < 5%) insignificant were

masked.

Secondly, to provide more detailed information on

changes specifically in the upland forests, we applied the

Break For Additive Season and Trend (BFAST) method

(Verbesselt, Hyndman, Newnham, et al., 2010). BFAST is

a piecewise linear regression approach that combines

time-series decomposition with structural breakpoint

detection. The statistical basis of BFAST is the decompo-

sition of a time-series into trend, seasonal and residual

components; with significant changes in the trend compo-

nent detected by a moving sum of residuals (MOSUM)

test. BFAST was originally developed for NDVI time-

series, however, it is not specific for any type of data

(Verbesselt, Hyndman, Newnham, et al., 2010) and has

been applied to other vegetation indexes, rainfall data or

Landsat bands. (Che et al., 2017; Higginbottom & Syme-

onakis, 2020; Horion et al., 2016; Morrison et al., 2018;

Platt et al., 2018). We used the ‘BFAST01’ implementa-

tion of BFAST, which is tailored for non-seasonal (i.e.

annual) data, and allowed for a single breakpoint to occur

in the time series using a P < 0.05 significance threshold.

The breakpoints identified by BFAST were then classified

into six change types, based on de Jong et al. (2013): (1)

Figure 4. (A) RGB composite of the aggregated three main components of savannah landscapes: trees (G, forest and woodland), shrubs (R, bushland

and shrubland) and grasses (B) for the year 2020; locations 1 and 2 are example subsets. (B) Land cover (‘hard’) classification for the year 2020.

Table 2. Accuracy of the fractional land covers for the NCA for the years 2010 and 2020.

Land cover Bareland Bushland Cropland Forest Grassland Montane heath Shrubland Water Woodland

2010 MAE 2.80 5.08 5.34 4.69 14.18 5.64 6.00 4.47 6.70

R2 0.90 0.92 0.43 0.88 0.83 0.64 0.77 0.81 0.61

Bias �3% �6% �8% �6% �1% �8% �3% �6% �8%

2020 MAE 2.97 6.13 6.72 6.09 13.67 5.24 6.23 1.63 6.42

R2 0.89 0.91 0.33 0.84 0.82 0.76 0.76 0.95 0.73

Bias �2% �10% �9% �7% �1% �8% �2% �10% �8%
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monotonic: increase, (2) monotonic: decrease, (3) reversal:

increase to decrease, (4) reversal: decrease to increase, (5)

interruption: increase with negative break, and (6) inter-

ruption decrease with positive break.

Our logic for employing two time-series analyses is as

follows: gradual changes (e.g. shrub encroachment, grass-

land degradation) will be best identified using monotonic

trend analysis (Lewi�nska et al., 2020), whereas BFAST is

well suited for identifying sudden changes and reversals

that may be obscured within the long-term analysis.

However, grasslands and non-woody areas will fluctuate

more on an annual basis, due to climatic variation and

benefit from a simpler change model. Furthermore, we

employ trend analysis over direct comparison of the frac-

tional cover maps to ensure our analysis is robust to

variation and noise in the input maps. We expect our

annual fractional maps to contain errors and noise

which may distort bi-temporal comparisons. This is anal-

ogous to post-classification cleaning of hard classification

change detections, by removing illogical transitions (e.g.

Griffiths et al., 2018) or applying statistical techniques

such as Hidden Markov Models (e.g. Abercrombie &

Friedl, 2016).

Results

Fraction maps

The predicted fractional land cover maps (Fig. 3) suc-

cessfully distinguished the nine land cover types

Figure 5. Land cover changed according to the linear trend analysis in the NCA between 1985 and 2020 for all land cover classes. (A) Bareland,

(B) Bushland, (C) Cropland, (D) Forest, (E) Grassland, (F) Montane heath, (G) Shrubland, (H) Water, (I) Woodland.
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Figure 6. Statistically significant (p < 0.05) changes in land cover between 1985 and 2020 for forest, bushland, shrubland, and grassland.

Figure 7. True colour composite Landsat image for the year 2000 (A). Fraction of forest cover in the NCA in the years 2000 (B) and 2020 (C).

Forest cover change according to the linear trend analysis between 1985 and 2020 in the southeast of the NCA (D).
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(Table 1), and a discrete land cover map shown in Fig-

ure 4B was estimated from the fractional map of 2020

(Fig. 3). We were able to identify transitional areas with

highly heterogeneous land cover (Fig. 3). For instance,

most of the NCA is dominated by grassland (Fig. 3),

which transitions into shrubland around the centre. The

Highland area (Fig. 1A) is dominated by woody classes

(bushland, woodland, forest). Figure 4A shows a red-

green-blue composite of the land cover layers aggregated

into three main components of savannah landscapes:

trees (forest and woodland), shrubs (bushland and

shrubland) and grasses (grassland). For bushland and

forest, there are areas of clear separation (Fig. 4A) but

there is also some degree of mixture (Fig. 3). The West

side of the NCA mostly comprises grassland (e.g. the

Serengeti Plain) with some patchy shrubland around the

Ang’ata Salei plain.

Validation statistics for the fractional land cover maps

of 2010 and 2020 (MAE and R2) are shown in Table 2

(full statistics in Tables S1 and S2 and scatterplots in

Figs. S5 and S6). Most classes performed well, achieving

accuracies between R2 0.61 and 0.95 (Figs. S5 and S6).

The lowest absolute errors occurred in the bareland class

with an MAE of 2.8 for 2010 and water with an MAE of

1.63 for 2020. Cropland had the highest relative errors

with R2 of 0.43 and 0.33 for 2010 and 2020, respectively.

Most cross-class confusion occurred in transition eco-

zones between grassland-bareland and grassland-

Figure 8. (A–C) and respective plots (A1 to C2): linear trend changes in forest, bushland, and woodland in the Lerai Forest (this area is the

example Location 1 shown in Fig. 4).
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shrubland. This was expected due to the highly heteroge-

neous nature of these regions.

Linear trends

Linear trends for the NCA

Figure 5 shows the statistically significant (p < 0.05) linear

trends for each individual and cover type. Areas with <5%
cover in the respective class for 2020 were masked. There

were notable increases and decreases for all land cover types

with most of the change in the �25% range (Fig. 6) The

most common change in the NCA was decreasing forest by

~25% coverage, which affected roughly 900 km2 (Figs. 5

and 6). The second most common change was grassland

coverage declining by 25%, which affected roughly 782 km2

(Figs. 5 and 6). A sizeable amount of grassland also experi-

enced a decline of up to 50% (~493 km2), mostly in the Ser-

engeti plains (Figs. 5 and 6).

A majority of forest cover is located in the eastern part

of the NCA. Figures 7B and C show a clear reduction in

fractional cover, particularly visible around Mount Old-

eani, throughout the highlands and on the south-east side

of the Crater rim (Fig. 7D). There is also some patchy

increase in forest cover, ranging between 25% and 75%

cover in the highlands, outside the NCA border near

Mount Oldeani and in the montane areas (Fig. 7D).

Linear trends: the case of Lerai Forest

Contrarily to its name, the Lerai Forest mostly comprises

low woodland and bushland with some forest and shrub-

land. According to our findings, there were both increases

and decreases in the fractional cover of forest, bushland

and woodland (Figs. 8A and C). The most obvious

change in the Lerai Forest was the decrease in bushland

cover, ranging between �25% and � 75% (covering

1.6 km2), and the increase in woodland (+25% covering

1 km2; Figs. 8B and C). However, the expansion of

woody vegetation, specifically forest and woodland

occurred mostly in the southwest side of the Lerai Forest

(Fig. 8A and C; Figure S7).

BFAST trends

BFAST trends in the NCA

Most of the forest change detected by BFAST consisted of

monotonic increases and decreases (Fig. 9A). Forest loss

was widespread with some focal points in the rim of the

Crater, around Mount Oldeani and Empakai Crater.

Throughout the highlands, there was also a reversal where

forest cover increased but then started to decrease. These

shifts in the vegetation occurred mostly between 2004 and

2009 (Fig. 9B).

Figure 9. (A) BFAST trend analysis results for the southeast side of the NCA showing the type of change in forest cover; (B) the year of change

in forest cover.
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BFAST trends: the case of Lerai Forest

The change map produced using BFAST for the Lerai For-

est is shown in Figure 10. In the northeast side of the Lerai

Forest, BFAST detected a consistent monotonic decrease in

forest cover (Fig. 10). Additionally, a large cluster that

experienced a monotonic increase occurred on the south-

west side of the Forest (Fig. 10). Although significant, some

of those changes were subtle (<25%; Fig. 10, location A2)

when compared to others (Fig. 10, location A1). For

instance, in location A2 (Fig. 10) there was a consistent

increase in cover which remained low. In A1, forest cover

increased until 2008, when it started to decrease but the

changes were more pronounced than in A2.

Discussion

Understanding land cover dynamics is increasingly impor-

tant to improve habitat monitoring, preserve biodiversity

and ensure sustainable development (Reed et al., 2009).

Over the last 30 years, the NCA has undergone consider-

able changes but these remain poorly understood due to

lack of robust information and detailed maps. Here, we

demonstrate a Landsat-based monitoring strategy, com-

bining synthetic unmixing, machine learning regression

and time-series analysis, to quantify sub-pixel change in

nine land cover classes. Our fractional cover maps for

2010 and 2020 achieved high accuracies for most land

cover types (Table 2, Tables S1 and S2 and Figs. S5 and

S6), distinguishing the nine main land cover classes but

also identifying transitional areas with heterogeneous veg-

etation (Figs. 3 and 4A). Out of our nine land cover

types, only cropland scored low accuracies (R2 0.43 and

0.33 for 2010 and 2020, respectively), while the other

classes high accuracies (R2 > 0.6, Table 2). Souverijns

et al. (2020) and Senf et al. (2020) achieved similar accu-

racies for comparable land cover types, but Nabil

et al. (2020) reported low accuracies for cropland in the

Sahel regions. Using fractional cover maps has proven

advantageous, as it allows for the detection of more subtle

land cover variability and changes that cannot be cap-

tured by discrete classifications (Senf et al., 2020; Souveri-

jns et al., 2020; Suess et al., 2018).

Between 1985 and 2020, we identified significant land

cover changes; in particular, declines in forest and

grassland cover (Figs. 5–7). The most common change

using the linear trend analysis was a decrease in forest

coverage by ~25%, which affected roughly 900 km2

(Fig. 6). BFAST also detected a similar trend in the

highlands, with a monotonic decrease in forest through-

out the period (Fig. 9A). Contrarily, there was an

increase in bushland cover by 25%, covering 440 km2

(Fig. 6). These changes are consistent with field studies

Figure 10. Outcome of the trend analysis using BFAST for the Lerai

Forest (A). Locations A1–A3 are used as examples of time-series plots

at the individual pixel level.

ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 13

J. Borges et al. Land Cover Dynamics in the Ngorongoro, Tanzania



that have identified forest conversion into bushland due

to the removal of larger trees (Amiyo, 2006; Masao

et al., 2015; TAWIRI & NCAA, 2020). A report by the

Tanzania Wildlife Research Institute (TAWIRI) and the

Ngorongoro Conservation Area Authority (NCAA) in

2020 also found a decrease in forest cover between

1978 and 2018. These changes were linked to human

disturbances namely clearing for settlement or cultiva-

tion and searching for thatching materials and fuel

wood (Kija et al., 2020; Masao et al., 2015; TAWIRI &

NCAA, 2020). In addition (Mills, 2006), studied the

dieback of Acacia xanthophloea (commonly known as

fever tree which can reach 25 metres) in Ngorongoro

Crater identified natural disturbances, specifically her-

bivory (mainly by elephants, Loxodonta africana), dis-

ease and salinity as contributors for the demise of large

trees.

Forest degradation has been reported across Africa and

is a common indicator of land degradation (Ahrends

et al., 2021; Bukombe et al., 2018; McNicol et al., 2018).

In addition, forests promote carbon sequestration and

therefore, directly affect global carbon budgets and cli-

mate change (McNicol et al., 2018; Venter et al., 2018).

In the NCA, degradation of forests threatens the avail-

ability of good habitat for wildlife species adapted to

such particular forest type. Souverijns et al. (2020)

mapped 30 years of land cover changes over the Sudano-

Sahel and detected forest degradation based on fractional

land cover maps. Meanwhile, McNicol et al. (2018), used

radar data to study losses in carbon in savannahs, identi-

fying deforestation and degradation proximate to roads

and urban areas but gains in remote regions. Our results

support those findings and show that Landsat data and

fractional cover maps can be used to detect and monitor

forest degradation. The use of Landsat to map forest

degradation processes is highly beneficial, due to the

temporal length of the Landsat archive relative to radar

data.

Serengeti plains

The loss of palatable grasses has been identified as a

threat to wildlife, the Maasai pastoralists and the NCA

ecosystem as a whole (Amiyo, 2006; Mills et al., 2006).

We found that grassland cover decreased in the NCA

during the study period (Figs. 5 and 6). Figure 6 shows

between 25% and 50% decrease in grassland cover

(493 km2 to 782 km2), mostly located in the Serengeti

plains (Figs. 5 and 6). In the same area, the increase in

shrubland (~345 km2) and woodland cover (~497 km2)

is also visible (Figs. 5 and 6). Previous research

reported a decline in grassland and woody encroach-

ment in the NCA which supports our findings

(Amiyo, 2006; Masao et al., 2015; Niboye, 2010). The

no-burning policy imposed in the 1980s was identified

as the main driver for land cover changes, specifically

woody encroachment in the NCA (Amiyo, 2006; Home-

wood et al., 2001). In addition, grazing pressure, by

wildlife and livestock, also facilitates the development of

woody plant communities by removing fine fuels and

reducing fire frequency and intensity (Archer

et al., 2017; Smit et al., 2010).

Shrub encroachment, often linked to grassland decline

and land degradation, is a serious threat to ecosystem

services and biodiversity (Higginbottom & Symeon-

akis, 2020; Symeonakis et al., 2018). Previous research

found an increasing trend of woody cover throughout

Africa (Higginbottom et al., 2018; Ludwig et al., 2019;

Symeonakis et al., 2018). Venter et al. (2018) reported

that encroachment is accelerating over time and that

African savannahs are at high risk of widespread vegeta-

tion change. Stevens et al. (2016) measured woody cover

change between 1940 and 2010 and found similar results

in areas with low rainfall (<650 mm). Contrarily to forest

degradation, shrub encroachment can have a positive

impact on aboveground carbon storage (McNicol

et al., 2018). However, the loss of grassland areas raises

issues for wildlife, the Maasai pastoralists and their live-

stock (Niboye, 2010). In the Serengeti plains, densifica-

tion and encroachment of woody cover can have a

negative effect on groundwater recharge, grazing potential

(Angassa & Baars, 2000; Stevens et al., 2017), tourism

(Gray & Bond, 2013), and is related to increase costs for

woody vegetation clearing (Grossman & Gandar, 1989).

Woody encroachment into grasslands can potentially be

reversed by a combination of management (frequent

fires) and climatic events (drought; Roques et al., 2001).

In these areas using fire as a management strategy can

decrease shrub and invasive species, and has been suc-

cessfully employed throughout the continent (Sankaran

et al., 2005; Venter et al., 2018). Additionally, reducing

grazing pressure by decreasing livestock numbers can

positively affect grassland areas (Archer et al., 2017). As

such, given the infeasibility of reducing livestock num-

bers, trailing fire management to assess the potential for

limiting encroachment and improving rangeland condi-

tion may be beneficial.

Lerai Forest

The earliest records of change in the NCA date back to the

1960s when the dieback of the Lerai forest was first sug-

gested (Amiyo, 2006; Mills, 2006). Our results show con-

trasting trends: a significant decline in woody cover within

the original range of Lerai Forest (Fig. S7) and an overall

increase in forest cover in the periphery (Figs. 8A and 10).
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These results suggest that Lerai Forest is re-establishing

outside its original range (Amiyo, 2006). Historically,

mature fever trees Acacia xanthophloea, which can reach

heights up to 25 meters and require high water tables

(Homewood et al., 2001), dominated the Lerai Forest,

however since their decline they have not been replaced by

young Acacia xanthophloea trees (Amiyo, 2006). The

decrease in groundwater availability, due to a higher influx

of tourism and diversion of streams, as well as floods of the

salt lake, Lake Magadi, contributed to an increase in soil

salinity, which negatively affects vegetation (Amiyo, 2006;

Boone et al., 2007; Mills, 2006). Mills (2006) suggested

that sodicity (e.g. the accumulation of sodium salt in the

soil) can exacerbate salinity-induced drought stress in vege-

tation, by limiting entry of rainwater into the soil, which

was already low due to a reduced rainfall (Fig. S1). Further-

more, sodicity can promote sodium concentrations in trees,

which has an additional detrimental effect by attracting ele-

phants and other herbivores (Homewood et al., 2001;

Mills, 2006). Management strategies were implemented

and in 2006, the stream was diverted back to supplying the

Forest (Mills, 2006, Fig. 10, location A1). This increased

the freshwater supply to the area and promoted the flush-

ing of salts from the soil (Mills, 2006). The southwest side,

closer to the Crater rim, is more fertile and has a lower soil

salinity due to its proximity to the stream, which explains

the increase in forest and woodland cover (Fig. 8A and C;

10 location A1; Elisante et al., 2013, Mills, 2006). Exclusion

of elephants from Lerai was considered in 2006 but was

never implemented (Mills, 2006). The dieback in Lerai may

be jeopardising the long-term conservation of the black rhi-

noceros Diceros bicornis michaeli population in the caldera

(Mills, 2006). Historically, the Lerai Forest was used for

shelter and browse by the rhinos and it has been suggested

it was also critical for hiding newborn rhinos from preda-

tors (Goddard, 1967, 1968). Consequently, the recovery of

the Lerai Forest is an essential priority for the success of

black rhino population in the NCA (Mills et al., 2006).

Conclusion

Mapping and quantifying land cover change is important

to support habitat monitoring, preserve biodiversity and

ensure sustainable development (Reed et al., 2009). Savan-

nah landscapes, such as the NCA, however, are complex

heterogeneous combinations of vegetation. Here we

demonstrate that a regression-based unmixing with syn-

thetic training data-based approach is effective in the frac-

tional mapping of spectrally similar land cover types. In

addition, the combination of linear trend and BFAST

time-series analysis provided highly detailed and compli-

mentary insights into land cover change dynamics

throughout the 35-year study period. We identified two

dominant land change dynamics: the degradation of

uplands forest into bushland, and a transition from grass-

land to shrubland in the Serengeti Plains. These changes

threaten the wellbeing of livestock, and consequently the

livelihoods of pastoralists but also grazing dependent wild-

life. These changes are likely due to a combination of cli-

mate change, shifting rainfall patterns, herbivory; and

human activities, namely, management policies, tourism

and increasing human populations and livestock. In con-

clusion, we provide much needed and highly accurate

information on long-term land cover changes in the NCA,

which can support sustainable management and conserva-

tion. In addition, our methodological approach can be

applied elsewhere to understand savannah landscape

changes.
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Figure S1 Rainfall in The Ngorongoro between January

1985 and June 2020.

Figure S2. Example of spectral data using near-infrared,

green and red bands for bushland, forest, montane heath,

shrubland and woodland for the year 2020.

Figure S3. Example of spectral data using SWIR, red and

green bands for bushland, forest, montane heath, shrub-

land and woodland for the year 2020.

Figure S4. Grid used for validation.

Figure S5. Validation 2010.

Figure S6. Validation 2020.

Figure S7. Lerai Forest range: (A) Landsat imagery in

December 1985; (B) Landsat imagery in February 2020;

(C) CNES/Airbus in January 2020.

Table S1. Full validation statistics 2010.

Table S2. Full validation statistics 2020.
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