Intelligent assistive technology devices for persons with dementia: A scoping review

Shakila Dada, Charene van der Walt, Adele A. May & Janice Murray

ABSTRACT

Assistive technology (AT) with context-aware computing and artificial intelligence capabilities can be applied to address cognitive and communication impairments experienced by persons with dementia (PwD). This paper aims to provide an overview of current literature regarding some characteristics of intelligent assistive technology devices (IATDs) for cognitive and communicative impairments of PwD. It also aims to identify the areas of impairment addressed by these IATDs.

A multi-faceted systematic search strategy yielded records. Predefined criteria were applied for inclusion and data extraction. Thereafter data was thematically analysed and synthesised. This review demonstrates that almost all of the research involving IATDs has focused on cognitive impairments of PwD and has not yet evolved past the conceptual or prototype stages of development. Summaries of commercially available IATDs for PwD and relevant prototypes are provided at the end of this review.

This research concluded that IATDs for PwD targeting cognition and communication problems primarily focus on social robots, and that they address cognitive impairments of attention, affect, and social-pragmatic communicative impairments. Future research endeavours concerning AT for PwD should explore collaboration between computer engineering and health practitioners to address the identified gaps. This may contribute to the available information for evidence-based decision making for PwD.

Introduction

Assistive technology is an umbrella term for devices or product systems that could be customised or modified to enable, improve, simplify or maintain the functional capabilities and independence of persons with disabilities, thus advancing their well-being and participation in various areas of their lives (Gibson et al., 2016; van Niekerk et al., 2018; WHO, 2018).

The main goal of assistive technology (AT) for persons with dementia (PwD) is to enable them to maximise their mental, physical and social functions to continue leading independent and purposeful lives and to continue participating in social networks (Mokhtari et al., 2012). The integration of technology into care for PwD is a significant opportunity, as it can potentially reshape dementia care (Hung, Gregorio, et al., 2019). Innovations in the technological field can slow the onset of symptoms by keeping PwD cognitively active in the domains of complex attention, executive function, language, learning and memory, perceptual-motor or social cognition and lengthening their independent living (American Psychiatric Association, 2013; Evans et al., 2011; Klimova et al., 2018).

Communication difficulties are a common symptom of dementia (Hickey & Bourgeois, 2018). The communication challenges associated with dementia reflect underlying impairments in memory, attention and executive functioning (Mahendra et al., 2018). PwD often experience difficulty with auditory comprehension of abstract language. Although PwD often retain sound and speech production, expressive language difficulties are noted in word-meaning and word retrieval (Banovic et al., 2018). Progressively, the ability to initiate or maintain conversational topics regresses and PwD may withdraw from social interaction which increases isolation and loneliness (Hickey & Bourgeois, 2018).
Augmentative and alternative communication (AAC) is beneficial to support the degenerative cognitive-communication difficulties experienced by PwD (Fried-Oken et al., 2015). As a scientific field of clinical practice, AAC applies evidence-based techniques and strategies that offer communication support through unaided or aided systems (American Speech-Language-Hearing Association [ASHA], n.d.). Unaided systems do not require any tools, devices or technology but the use of one’s body (e.g. manual signs, facial expressions) (ASHA, 2019). Aided systems are tools or devices, which are further categorised as either non-electronic, paper-based solutions (e.g. picture communication books) or electronic, technologically dependent devices (e.g. computer technology) (ASHA, n.d.; Waller, 2019). AAC may also include assistive devices to augment natural communication abilities and to support communication and companionship, promote relationships and thereby reduce social isolation of PwD (Evans et al., 2011; Goodall et al., 2020).

AAC interventions for PwD compensate for, maintain, or enhance memory, communication functions and participation in life activities for PwD. For instance, AAC interventions focus on the strengths of the PwD (e.g. reading skills) to support memory (e.g. pictures with written labels as visual aids/reminders) (Lanzi et al., 2017). The majority of AAC interventions for PwD still involve the use of non-electronic systems. However, there is a shift to exploring technology with natural language processing (computer algorithms that can analyse, adapt, supplement, or generate human language) in AAC devices for PwD (Higginbotham et al., 2012; May et al., 2019). PwD are being involved in the collaborative development of conversational topics on non-electronic aids, as well as in the development of electronic aids to promote independence and personal agency, as advised by the person-centred care approach. The evidence in this regard is still emerging (May et al., 2019).

New AAC technologies, for example artificial intelligence, may benefit individuals with degenerative conditions who use AAC (Light et al., 2019). Trends in assistive devices have moved toward context-aware computing and the use of artificial intelligence. Systems that are context-aware can sense information about a person and remember the information to reduce cognitive effort and facilitate computer-user communication (Mihailidis & Fernie, 2002). Technologies that amplify or augment human abilities have proliferated as service robots and home automation equipment with artificial intelligence and are becoming more commonplace in users’ lives (McMurray et al., 2017). Sennott et al. (2019) defined artificial intelligence as a machine’s capability to mimic human intelligence with the goal to develop machines that are able to use human intelligence characteristics. These traits include emotion, creativity, language, self-awareness, learning, logic, planning, and reasoning to solve problems and to adapt to changing environments. The ultimate goal of AAC devices and systems with artificial intelligence capabilities is to provide enhanced methods to solve the challenges of participation when the communication needs of persons with complex communication needs are hampered by their speech or language abilities (Sennott et al., 2019).

Artificial intelligence (AI), a relatively new field in science and engineering, has brought about intelligent assistive technology devices (IATDs). IATDs have the ability to support or increase human abilities or activities, while sensing and responding to the user’s needs and adapting to the changing environment (McMurray et al., 2017; Russel & Norvig, 2014). IATDs employ algorithms for mobile and ambient activity recognition, context modelling, anomaly detection, location and identity distinguishing, and automatic planning and scheduling (Rashidi & Mihailidis, 2013).

Recently, there has been emerging interest in IATDs for PwD. This has been noted in a synopsis of research by Ienca et al. (2017), which indicated that distributed systems such as smart home systems dominated the largest portion of indexed technologies for PwD, followed by assistive robots and mobility aids (Liddle & Smith, 2017). Furthermore, researchers inspected augmented reality applications for people with cognitive impairments and found that these provide customised
directions, cues and supplemental information to PwD (Zanwar et al., 2018). Context-aware and augmented reality technology have also been applied to support people with cognitive impairments, including PwD, with performance of tasks that require multiple steps (Lancioni et al., 2021).

Klimova et al. (2016) examined assistive technologies that are broadly applied to the language disorders of PwD and concluded that especially AAC technologies can significantly improve and substitute the spoken and written communication of PwD. May et al. (2019) specifically reviewed current AAC interventions for PwD and noted that electronic aids for memory and communication impairments include technology such as wearable computing devices, just-in-time programming and natural language processing. Similarly, a systematic mapping study indicated that academic research on software-based assistive devices focused on providing assistance to cope with socialisation, leisure and cognitive difficulties (Asghar et al., 2016). However, the study highlighted that commercially available software-based assistive devices for health and activity monitoring and cognitive difficulties receive more attention (Asghar et al., 2016).

More recently, the application of IATDs expanded to communication and socio-contextual use (McMurray et al., 2017). Bemelmans et al. (2012) reviewed studies on socially assistive robotic systems used for the care of elderly persons, of which many were PwD.

While the use of IATDs has shown positive psycho-social and physiological outcomes, their adoption rate by PwD remains lower than expected (Bemelmans et al., 2012). Possible reasons for this may be the inadequate information transfer and dissemination between technology development and medical implementation, the lack of clinical validation of IATDs, and clinicians being unaware of new IATDs and their applicability in dementia care (Ienca et al., 2017). Although previous reviews such as by Bharucha et al. (2009) encompassed many technologies, only a few IATDs have been investigated with PwD (Gagnon-Roy et al., 2017).

A review of currently available IATDs to support communication and cognition in PwD has the potential to increase knowledge on the availability of technologies for PwD. This information may possibly contribute towards an improvement in the adoption rates of IATDs for PwD. The clinical significance of IATD uptake provides the rationale for the current review. By considering a wide scope of record types, this review aims to identify the cognitive and communicative domains addressed by IATDs, the availability of these IATDs to the general public, and the diagnostic subgroups of PwD who have been exposed to the IATDs in research. This is an attempt to synthesise information from the technology development and medical fields for the benefit of PwD.

Methodology

The aim of this paper is to synthesise the current research evidence of available IATDs to address the impaired cognitive and communicative functions of PwD by identifying the following as sub-aims:

1. The diagnostic subgroup and severity of dementia of the populations exposed to IATDs
2. The cognitive and communicative domains targeted by the IATDs
3. The availability for purchase of the IATDs to the public for the care of PwD

A scoping study and analytical reinterpretation of the literature is able to map the key concepts, main sources and types of evidence available in the relatively new field of IATDs (Arksey & O’Malley, 2005; Levac et al., 2010). Qualitative data analysis was applied through the process of inductive analysis, where specific data was synthesised into general categories and patterns (McMillan & Schumacher, 2014). These procedures summarised research findings and identified
research gaps in the existing literature to guide further research (Arksey & O’Malley, 2005). The PRISMA-ScS (Preferred Reporting Items for Systematic reviews and Meta-Analysis extension for Scoping Reviews) checklist (Tricco et al., 2018) was followed to increase methodological transparency.

Pilot searches tested technical adequacy, feasibility of the search terms and applicability of the inclusion and exclusion criteria, and determined whether any changes to the protocol were required (Brereton et al., 2007).

Information sources

Data was compiled from a multi-faceted search strategy to avoid a biased yield (Schlosser et al., 2005). A combination of search methods was utilised. These included electronic database platform searches (i.e., EBSCOhost and ProQuest), single electronic database searches (i.e., IEEE Xplore DL and ACM Digital Library) and hand searches of electronic journals identified through literature readings for the period 2010 to 2020. These search methods are specified as follows:

Firstly, electronic database platform searches included: Scopus platform, EBSCOhost platform (including databases Academic Search Complete, The Cumulative Index to Nursing and Allied Health Literature [CINAHL], E-Journals, Education Resources Information Center [ERIC], Family & Society Studies Worldwide, Health Source: Nursing/Academic Edition, MEDLINE, PsycARTICLES, and PsycINFO), ProQuest platform (including databases Humanities Index, ProQuest Dissertations & Theses Global, Science Database, Advanced Technologies & Aerospace Collection, ERIC, Linguistics and Language Behavior Abstracts [LLBA], Linguistics Database and Social Science Database).

Secondly, electronic database searches included IEEE Xplore DL database and ACM Digital Library database. The electronic database platform and single electronic database searches contained search terms and publication requirements, namely published in English in the period 2010–2020. To ensure that any articles added to the platforms or databases after the systematic search date are also sourced, the RSS (Really Simple Syndication) feeds of the searches were applied. This feature allowed updates concerning the search yields from the library databases. Where RSS feeds were not possible, searches were repeated, and duplicates were removed to identify new additions.

Thirdly, hand searches of electronic journals identified through literature readings for the period of 2010–2020 were also included in the systematic search, namely Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, Assistive Technology, and Augmentative and Alternative Communication. Figure 1 illustrates the yields from above search strategies.

Figure 1. PRISMA flow diagram of selection process
Eligibility criteria

To collate a set of records that would provide accurate answers to the research question, a set of inclusion and exclusion criteria was based on the framework recommended for qualitative research reviews, i.e. Population, Exposure and Outcome (PEO) (Butler et al., 2016). By applying the inclusion and exclusion criteria, irrelevant records were excluded, and only primary research of PwD who were exposed to IATDs and which reported cognitive and communicative outcomes of the PwD, were included. Two reviewers independently performed a screening protocol for each record by reading the title and abstract. Each reviewed the total number of records using Covidence software (Veritas Health Innovation, n.d.). To conduct the screening conservatively, any records with disagreements between the reviewers were escalated to full-text screening. Eligibility criteria included the following:

- **POPULATION**: Adults (18 years +) with degenerative mild to severe primary dementia, with insidious onset, as well as gradual progression of impairment affecting one or more cognitive domains (American Psychiatric Association, 2013), including dementia due to Alzheimer’s disease, frontotemporal dementia (e.g. primary progressive aphasia), dementia with Lewy bodies.
• **EXPOSURE:** Assistive technologies with artificial intelligence for cognitive and communicative impairments, thus IATDs that respond to the user’s needs and adapts to changing environments (McMurray et al., 2017).

• **OUTCOME:** Results related to performance of any of the cognitive domains that experience decline due to dementia: Complex attention, executive function, learning and memory, language, perceptual-motor, or social cognition (American Psychiatric Association, 2013). Other outcomes related to cognitive faculties such as memory, communication, orientation, reasoning and decision making (Ienca et al., 2017), and outcomes related to social and emotional faculties (Ienca et al., 2017).

• **DESIGN:** Quantitative experimental, quantitative non-experimental, qualitative, mixed method design (McMillan & Schumacher, 2014).

• **RECORD TYPE:** Primary/original research published as peer-reviewed journal articles, unpublished dissertations and theses, conference proceedings, conference abstracts available through the University of Pretoria Library and databases.

• **TIME AND LANGUAGE:** Published in English, publication dated 2010–2020.

Source selection

Additional records were identified through updated feeds and second searches of above electronic database platforms, single electronic databases and journals (n = 1557). Duplicates were removed and the records went through an initial screening based on the Population and Exposure elements of the eligibility criteria. A full-text screening identified the records that met all the eligibility criteria. Figure 1 illustrates the eligible records for data extraction (n = 99). Figure 1 also contains the numbers of excluded records, together with some reasons why these records were not eligible for inclusion.

The percentage of agreement between raters, namely intrarater agreement (IRA), was measured at full-text screening level (McHugh, 2012). Disagreements between raters were discussed until agreement to either include or exclude the references had been reached. IRA was calculated as 98.6%.

Data extraction and synthesis

Data extraction occurred through the categorisation and verbatim transcription of parameters from the included records. Transcribed data was sorted and charted according to key issues and themes based on the specific research sub-aims (Arksey & O’Malley, 2005). Categories and themes were then synthesised and interpreted. The prescribed PRISMA-ScS items of reporting were followed for transparent reporting (Tricco et al., 2018).

A strategy to enhance reliability of data extraction is verification by independent member checking (McMillan & Schumacher, 2014). A speech-language therapist with a Master’s degree in AAC scrutinised the data extracted from 40% of the records, as deemed appropriate for interobserver or intrarater agreement data in AAC (Schlosser, 2003). The above also contributed to internal validity of the review by minimising subjective bias, as personal opinions and beliefs could not influence the outcomes. The level of evidence and validity of a review is also regard higher than individual studies (Schlosser & Raghavendra, 2009) and the prescribed PRISMA-ScS items of reporting are followed for transparent reporting (Tricco et al., 2018).

Results
Diagnostic and severity grouping of PwD

The results indicated that a quarter (n = 25, 25.3%) of the records involved participants with a mix of diagnoses. Some (n = 13, 13.1%) of these records also involved participants with dementia and participants with no cognitive impairment or mild cognitive impairment, and some (n = 12, 12.1%) of the records reported on persons with subgroups of dementia that did not fit the inclusion criteria. The majority of records (n = 76, 76.8%) did not specify with which subgroups of dementia the involved participants had been diagnosed.

Persons with mild dementia (n = 17, 17.2%) were more often the subject of investigation than those with moderate (n = 14, 14.1%) and severe (n = 10, 10.0%) stage dementia. Wider ranges of stages, such as mild to moderate or moderate to severe stage dementia, were reported by some (n = 28, 28.3%) of the records. Some records also included PwD of all severities, i.e. mild to severe dementia (n = 11, 11.1%). The subgroup of dementia diagnosis and the stage of dementia diagnosed in the PwD appear not to be recognised as important factors to investigate, as more than half of the records (n = 52, 52.5%) did not report on the severity of dementia of the study participants. It should be noted that the predominant fields of research that were identified emanated from engineering and technology databases.

Cognitive and communicative domains targeted by the IATDs

The results indicate that IATDs have been developed predominantly to address cognitive domains of impairment. These domains are complex attention, the ability to disengage and shift attention (n = 76, 72.4%), as well as emotion or affect (n = 77, 73.3%). An example is the RAMCIP robotic assistance device that provides support for activities and recognises emotions (Antona et al., 2019; Mahendra et al., 2018). Fewer of the IATDs that were examined assisted with executive function (n = 37, 35.2%), learning and memory (n = 20, 19.0%) and perceptual-motor difficulties (n = 11, 10.5%).

IATDs that address communication difficulties were mentioned less than those that address cognitive difficulties due to dementia. Some IATDs (n = 22, 21.0%) attend to receptive language difficulties by creating positive interactions (Chu et al., 2017). The PaPeRo social robot is another example of an IATD assisting with receptive language by providing information and prompts (Inoue et al., 2012). More IATDs (n = 33, 31.4%) address expressive language difficulties, such as Ryan Companionbot and other conversational social robots, which can interpret and react to the linguistic utterances and facial expressions of PwD (Abdollahi, Mollahosseini, Lane, & Mahoor, 2017). Few records (n = 7, 6.7%) reported on automatic communication functionality, where messages are sent to caregivers automatically, without being initiated by the PwD. The majority of the IATDs (n = 72, 68.6%) provided social-pragmatic skill assistance via companion social robots such as Pleo, CuDDler and PARO. These devices are autonomous robots with sensors interacting with artificial intelligence software, which enables the devices to respond to the environment and the user with its own movements, eye contact and responses to voice, thus taking turns and eye contact is prompted and reinforced (Hendrix et al., 2019; Moyle et al., 2017, 2015).

Availability for purchase

This review further aimed to identify IATDs that are available for purchase to the public for the care of PwD. The results indicate that a large portion of the IATDs (n = 41, 38.7%) took the form of prototypes that were still under development and not commercially available. Prototyping is necessary for researchers to develop, refine and assess human-computer interaction concepts and systems (Odom et al., 2016). Although prototyping is a positive outcome of an expanding human-computer interaction research field, prototypes are mere references or placeholders of future
systems, services or products that are not yet available outside of the involved research settings (Odom et al., 2016). Table 1 provides identifying information of the included records that reported on prototype IATDs.

Table 1. Summary of Prototype IATDs

<table>
<thead>
<tr>
<th>IATDs</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online ordering</td>
<td>45 (42.5%)</td>
</tr>
<tr>
<td>Retail</td>
<td>8 (7.5%)</td>
</tr>
<tr>
<td>Research purposes</td>
<td>6 (5.7%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>6 (5.7%)</td>
</tr>
</tbody>
</table>

The majority of the IATDs (n = 45, 42.5%) were reported to be available to the public through online ordering. These products could be purchased via the respective manufacturers’ websites, and many social robots were available for online ordering. The results, however, provide a skewed view of the availability of IATDs for PwD or their caregivers. The IATDs research field is dominated by research concerning PARO, the robotic seal pup. When the records that report solely on PARO (n = 29) were separated from the rest, significantly fewer records reported on other IATDs (n = 16) that were available through online ordering.

Furthermore, a total of eight (7.5%) of the IATDs were commercially available in retail. The research involving these IATDs often combined various off-the-shelf devices or used specific software to create IATDs for PwD. The devices rarely functioned as IATDs in isolation. The two remaining portions of IATDs examined in the collection of records were reported as only available for research purposes (n = 6, 5.7%) or as unknown (n = 6, 5.7%).

Table 2 provides a summary of IATDs that address cognitive and communicative areas for PwD and that are available in retail or via online ordering.

Table 2. Summary of Available IATDs

<table>
<thead>
<tr>
<th>IATDs</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive and communicative</td>
<td>Available</td>
</tr>
</tbody>
</table>

Discussion

This review aimed to synthesise current research evidence of available IATDs applied to the impaired cognitive and communicative functions of PwD. It also focused on identifying trends and gaps in the evidence. In the studies reviewed, it is notable that the subgroup of dementia diagnosis and severity of communicative impairment in the PwD are often not specified in the research records. A reason for this could be that researchers in the computer science and engineering fields do not assign as much importance to these details as those who conduct research in the health and non-pharmacological intervention fields. The latter focus on cognitive and behavioural difficulties such as activity and communication impairments (Livingston et al., 2017). The unavailability of information regarding the subgroups and severity of dementia leads to difficulty in matching IATDs to PwD who might benefit from the devices. This correlates with recommendations of authors from included records that suggested that research should aim to examine IATD interaction of different user groups to determine patterns of outcomes in relation to severity of impairment (Hebesberger et al., 2017; Heerink et al., 2013). The first trend was identified by the high number of records that
were excluded at full-text level. The trend revealed that the field of IATDs for PwD is heavily dominated by research that has unfortunately not evaluated the devices developed for PwD with PwD. This does not align with the current interest in user-centered design of IATDs that follow the processes of analysing the needs of PwD, designing solutions according to information and communication technology design guidelines and then evaluating the solutions specifically with PwD (Ceccacci et al., 2017). The prospects of improving the lives of PwD with successfully implemented IATDs are well-reported (Ienca et al., 2018). However, in order to achieve this benefit for PwD their views and opinions, as well as those of relevant stakeholders, in the development stages of IATDs are crucial. The trend noted in this current review contributes to the recent discourse which advocates that technology designers should include PwD in the development of IATDs to assess prospective clinical and technical challenges (Ienca et al., 2018; Wangmo et al., 2019). Notwithstanding the benefits of involving PwD, designers should be mindful of the ethical challenges (e.g., informed consent for PwD) associated with the technological complexities of developing IATDs with PwD (Wangmo et al., 2019).

Furthermore, the review indicates a paucity of research underpinned by intervention theory or the interpretation of results from a theoretical framework. In fact, a recurrent theme in reviews of IATDs, including social robots, is a distinct paucity of research grounded in intervention theory. Accordingly, there is insufficient mapping of IATD features onto measurable outcomes, particularly those related to psychosocial outcomes for PwD. As such, factors contributing to the acceptance and adoption of such technologies by PwD and their caregivers remain poorly understood.

Moreover, the review highlighted that much of the research has not assessed the cognitive and communicative outcomes of PwD following implementation of an IATD. This further emphasises a need to include PwD as research participants of IATDs studies. In doing so, and as aligned with evidence-based practice, this will ensure that the perspectives of PwD are included in the assessment of social validity, and in determining measurable cognitive and communicative outcomes of these interventions (Schlosser & Raghavendra, 2003). Lastly, it is noteworthy that a weakness in the reviewed literature is a distinct lack of reported efficacy studies.

Where cognitive and communicative domains were considered the records eligible for inclusion demonstrated that a large proportion of evidence in the field is concerned with the cognitive areas of attention and emotion/affect. Communicative areas are addressed less. Within communication areas, social robots for PwD – especially PARO – form a definite trend. The review also showed how little attention is given to research intelligent AAC communication devices for PwD, even though communication difficulties form a substantial part of the symptoms experienced by PwD.

Additionally, this review endeavoured to report on the availability of IATDs for PwD or their caregivers. It seems that IATDs are not easily accessible to the public, as many are only prototypes under research, and are, therefore, not yet available outside of the involved research settings. Furthermore, those IATDs that are available for ordering are costly and prohibitive. Although authors reported many limitations of IATDs due to their early phase of development, the review showed that this field is filled with potential for future IATDs for PwD.

Conclusion

The strengths of this review lie in its scope and in the types of sources from the computer engineering as well as medical research fields that were used to collect eligible records.

Limitations of this review include the possibility of reviewer bias, although reviewers were blinded to each other’s inclusion or exclusion votes. Unfortunately, linguistic and access bias also played a role,
as only English records available through the University of Pretoria’s library were included. Another limitation was posed by the fact that some records (n = 61) could not be accessed for the eligibility process.

Technological advances such as adaptable, context-aware and artificially intelligent computing have opened up many possibilities for non-pharmacological treatment of the impairments experienced by PwD. The bulk of research focused on social robots to address interaction, leisure and social-pragmatic communication skills of the PwD, and especially featured the PARO seal pup robot. Furthermore, prototypes featuring in the research detailed here have not yet progressed to commercially available products, thus limiting their potential for clinical use. As communication difficulties are prevalent in PwD, IATDs for AAC purposes and outcomes also require further development and research.

Translating research evidence into practice requires dissemination of information, policy considerations and workforce training (Gitlin et al., 2015). The outcomes of this scoping review can therefore inform clinicians or caregivers of PwD who are exploring IATD procurement, and the outcomes might be used in policy or training development. Information about the IATDs mentioned in this review that are available for purchase or ordering appears in Table 2 to assist informed decision making.

It is highly recommended that future research regarding cognitive and communicative IATDs (including AAC devices) for PwD should focus on developing technology and involve these persons as collaborators and participants in research studies (Moulam et al., 2020). The subsequent cognitive and communicative outcomes should be evaluated to contribute to evidence-based decision making and practice (Schlosser & Raghavendra, 2009). Populations falling under the umbrella term of dementia diagnoses should be specified to identify outcome patterns more explicitly. Furthermore, the development of intelligent communication devices could benefit from additional focus on receptive and expressive language abilities to assist PwD to communicate with familiar and unfamiliar persons, and not only to enhance social-pragmatic skills as indicated by this research.

The review found that research concerning social robots other than PARO, other types of IATDs and IATDs with other functions, especially communication, is limited. Evidence-based decision making regarding AAC technology will further benefit from research that investigates natural language processing and its applications for different areas of communicative impairment.

Lastly, this review recommends increased research collaboration between computer engineering and health practitioners. The collated evidence will be greatly beneficial for clinical application and for advancement from a prototypical stage to commercial availability.

Acknowledgements

The authors would like to extend special notes of thanks to Prof. Parimala Raghavendra for her advice on source records and to Sannette Potgieter for her research assistance.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Ethical Statement

All procedures followed were in accordance with the ethical standards for conducting a review. Ethical approval was obtained from the Ethics Committee University of Pretoria 26131481 (HUM26/09/19).
Additional information

Funding

The authors received no financial support for the research, authorship, and/or publication of this article. No funding to report

References

improve dementia symptoms: A cluster-randomized controlled trial. *Journal of the American Medical Directors Association*, 18(9), 766–773. doi:https://doi.org/10.1016/j.jamda.2017.03.018

125. van Niekerk, K., Dada, S., Tönsing, K., & Boshoff, K. (2018). Factors perceived by rehabilitation professionals to influence the provision of assistive technology to children: A

130. Wang, P., Chen, C.-S., & Chuan, -C.-C. (2016). Location-aware fall detection system for dementia care on nursing service in Evergreen Inn of Jianan Hospital. IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE) Taichung, Taiwan (IEEE) (pp. 309–315). doi:https://doi.org/10.1109/BIBE.2016.70

