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A B S T R A C T   

Iron ore feed-load control is one of the most critical settings in a mineral grinding process. It has direct impact on 
the quality of final iron products. The setting of the feed load heavily replies the characteristics of the ore pellets. 
However, such characteristics are challenging to acquire in many production environments, requiring speical 
equipments and complicated modelling process with a high cost. To provide an low-cost and easier-to-implement 
solution, in this paper, we present our work on using deep learning models for direct ore feed load estimation 
from ore pellet images. To address the challenges caused by the large size of ore images and the shortage of 
accurately annotated data, we proposed to use a weakly supervised learning apporach with a two-stage model 
training algorithm and two neural network architectures developed. The experiment results show competitive 
model performance, and the trained models can be used for real-time feed load estimation for grind process 
optimisation.   

1. Introduction 

The ball mill grinding circuit (GC) plays an essential role in pro
duction in the mineral industry. The low-grade iron ores must go 
through a beneficiation process for further concentration (Fig. 1). 

The quality of the product depends on the control of a range of set
points within a GC process, such as ore load (feed load), mill pressure, 
water level, and pump pressure, as shown in Table 1. 

In mineral industries in China, the GC control practices are manually 
designed based on the laboratory analysis result of the product as 
feedbacks for adjusting those setpoints. Amongst all possible setpoints, 
the feed load setpoint needs to be modified as the others’ adjustments 
require a highly knowledgeable and experienced human operator. Also, 
frequent change of those setpoints considerably reduces the lifetime and 
stability of the equipment. In other words, the product quality largely 
depends on the ore characteristics and the feed load settings. For 
example, for ore pellets that are hard to grind, the feed load is set low to 
ensure the product quality, and that is set higher for easier-grinding ore 
for better product throughput. 

Even with this simplified mechanism (single setpoint feedback con
trol), the current practice often leads to volatile product quality or 

inefficient productivity due to the considerable latency between the 
actual control operation and the lab result generation. The laboratory 
analysis is usually conducted every four hours because of the resources 
required and the chemical process involved. This interval is much longer 
than the time needed for a single GC-cycle (20–30 min, from ore feed to 
final product). Before the latest lab test results arrive, human operators 
must use their experience to set feed load for a better-quality product. 
However, as a more typical case, inexperienced human operators often 
use the latest lab test result as the only indicator for feed load adjustment 
for the upcoming ore pellets. It is not surprising to see that such practices 
lead to poor production performance. Therefore, there is a need for 
methods that either provide instant feedback on product qualities or 
provide real-time guidance on tuning the feed load to ensure acceptable 
product quality. 

The mainstream methods/equipment deployed are based on ray 
sensors such as XRT and XRF (Donskoi, Suthers, Fradd, Young, Camp
bell, Raynlyn, & Clout, 2007; Donskoi, Raynlyn, & Poliakov, 2018; Li, 
Klein, Sun, & Kou, 2020; Robben, Condori, Pinto, Machaca, & Takala, 
2020) to the ore’s characteristics to provide real-time information. 
Although ray-sensors come with high classification accuracies, their cost 
and radiation are very high. In recent years, as alternatives, vision/ 
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image-based approaches have attracted significant interest from both 
academia and industry because of their low cost, easy/flexible instal
lation and maintenance process, and competitive performance 
compared to the other solutions. Many attempts have been made to 
apply machine learning or deep learning-based methods for ore image 
analysis. These early works primarily focus on the tasks of ore sorting 
(Singh & Mohan Rao, 2005; Liu, Zhang, Liu, Wang, et al. 2021b; Gülcan 
& Gülsoy, 2017), ore grade estimation (Perez, Estévez, Vera, Castillo, 
Aravena, Schulz, & Leonel, 2011a; Maitre, Bouchard, & Paul Bédard, 
2019; Donskoi et al. 2007; Liu, Zhang, Liu, Lei, et al. 2021) and particle/ 
blast fragment size estimation (Dong & Jiang, 2014; Hamzeloo, Massi
naei, & Mehrshad, 2014; Donskoi et al. 2007; Donskoi et al., 2018; Liu, 
Zhang, Liu, Wang, et al. 2021a). Despite the promising results, there 
exist significant differences between the GC process and the other ore 
production processes. For instance, for ore sorting based analysis, the 

Fig. 1. The single state ball mill grinding circuit process.  

Table 1 
Setpoints for a Grinding Circuit.  

Symbol Setpoints 

s1 Feed load (range from 120 tons to 146 tons). This setpoint controls how 
much ore pellets are fed onto the conveyor 

s2 Ball mill water level. Water is regularly injected into the ball mill to ensure 
the grinding operation does not damage the ball mill. 

s3 Hydraulic inlet pressure. When the hydraulic pressure of the hydro- 
cyclone is lower than the stable value, the fine slurry cannot be separated, 
and it causes a pulp overflow. 

s4 Dilution water level setpoint for the pump pool. 
s5 Slurry density setpoint  

Fig. 2. Example images of ore pellets on the conveyor. The top row shows the ore pellets under normal lighting conditions, while the bottom row shows the ore 
pellets under different lighting conditions. 

L. Guo et al.                                                                                                                                                                                                                                      



Expert Systems With Applications 202 (2022) 117469

3

size of ore rock is usually bigger. Also, in the early reported work, ore 
rocks are often arranged on a conveyor or testbench sparsely with no 
overlap for image capturing. Images are then fed into a machine learning 
model for extracting remarkable features of each rock. In addition, ore 
images are all manually annotated to ensure the best-quality training 
samples are used. The above conditions, especially the last one, barely 
hold in practice in a grinding process. There are a few GC specific 
challenges that cannot be easily addressed with the existing methods. 

First, in a grinding process, the ore is crushed and stir-mixed as an 
initial step. The ore pellets produced should have no significant differ
ence in size and are much smaller than that from the ore sorting stage. 
They are then transited to the ball mill through the conveyor in heaps 
with random occlusion, as shown in Fig. 2 (top row). This makes it hard 
for a simple model to extract individual pellet features or directly predict 
ore characteristics. In other work, microscopy images are often used for 
ore particles with small sizes instead of from commodity cameras. Sec
ond, apart from the lab test result, there is no ground truth of the ore 
characteristics (ore hardness, ore types) available in the GC production 
environment. The ore type data from the upstream stock are often 
inaccurate or wrong due to many uncontrolled operations. Third, as only 
a single lab test result is generated every 4 h, it is costly and time- 
consuming to collect enough accurately annotated training samples, 
covering various types of ore pellets under different conditions, such as 
lighting (Fig. 2, bottom row) feed load. Furthermore, knowing ore 
characteristics does not optimise the grinding process directly, as such 
information must be transferred into executable operations through 
additional modelling. 

To address the above challenges, in this paper, we present an image- 
based approach for real-time ore feed load estimation using deep 
learning models and weakly supervised learning methods. Our work’s 
fundamental hypothesis is that it is possible to directly infer the optimal 
feed load settings from ore pellet images without explicitly modelling 
the ore characteristics (latent variables). 

The main contributions of this work are as follows.  

1> To the best of our knowledge, this work is the first attempt that 
applies image-based methods for direct ore load estimation in the 
ball mill grinding process. Due to its low cost and easy deploy
ment/maintenance, it has clear potential for improving the pro
ductivity of a grinding process, thus having direct economic 
benefits for mineral industries.  

2> We propose to use a new two-stage modelling algorithm, with 
which two neural network architectures are designed for both 
patch-image level feature extraction and global classification.  

3> We propose treating the problem as a weakly supervised learning 
problem and demonstrating how smaller patch images with 
wrong labels can be utilised directly for model training with 
theoretical and empirical studies. 

4> We conduct a series of experiments and provide empirical evi
dence, showing that the proposed work not only perform well 
with the testing data but also yields a significant economic boost 
in actual production. 

The remainder of this paper is organised as follows. Section 2 ex
plains our methodology, including problem formulation, the main al
gorithm, the network architectures and their design rationales. 
Experiments and results analysis are presented in Section 3. Section 4 
discusses challenges and restrictions for evaluation and demonstrates 
how this work is evaluated in a real production environment. Conclusion 
and future work are discussed in Section 5. 

2. Methodology 

2.1. Problem analysis and formulation 

In the literature, the optimal control of a GC process is usually 
modelled as a dynamic system either through direct dynamic system 
modelling (Chen, Zhai, Li, & Fei, 2007; Herbst, Pate, & Oblad, 1992; 
Yianatos, Lisboa, & Baeza, 2002) or data-driven models (Guo, Wang, & 
Zhang, 2019; Lu, Kiumarsi, Chai, Lewis, & Control Theory, 2016; Yin, 
Gao, & Kaynak, 2014), since many setpoints determine the production 
performance together. For this work, as explained earlier, only the feed 
load setpoint is considered for production performance (as required by 
the production process). Hence the whole GC process can be formulated 
as a probability distribution: P(Qt+n|st ,Ot), where st is the feed load 
setting at the time t, Ot is a set of latent variables that denote the ore 
pellets’ characteristics (type, hardness, sizes) at time t, and P(Qt+n|st ,Ot)

denotes the probability measure of final product quality values at a later 
time t + n, given st and Ot. In addition, a GC process typically has a 
product quality threshold (qm), which governs the whole process. It is 
the most important constraint of the system that has substantial eco
nomic impacts. Other production performance indicators, such as 
product throughput, get measured only when the qm constraint is 
satisfied. Putting everything together, we can write the objective as: 

argmaxst (st*P(Qt+n = qm|st,Ot) ) (1) 

Eq. (1) can be rewritten to: 

argmaxst

(

st*
P(st,Ot|Qt+n = qm)*P(Qt+n = qm)

p(st,Ot)

)

(2) 

As qm is the constraint that must be satisfied, to maximise the Eq. (2), 
we could make P(Qt+n = qm) = 1. The denominator, P(st ,Ot) can also be 
ignored as it is for the normalisation purpose. Therefore, Eq. (2) is 
simplified to: 

argmaxst (st*P(st,Ot|Qt+n = qm) ) (3) 

We still need to work out the value of Ot and this is where the ore 

Fig. 3. The amounts of ore pellets required for a single product result.  
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pellet images come into play. The assumption made here is that Ot can 
be approximated by a function w(It) ≈ Ot, where It denotes the image 
captured at the time t. After substituting Ot with w(It), we drive the final 
objective function: 

argmaxst (st*P(st,w(It)|Qt+n = qm) ) (4) 

Maximising Eq. (4) is equivalent to maximising P(st ,w(It)|Qt+n = qm), 
as after being normalised, the variance of the component st is small and 
has little impact on the result of the whole equation. 

It is not difficult to imagine using a neural network model for esti
mating this distribution. However, the key challenge for implementing 
P(st ,w(It)|Qt+n = qm) arises from the difficulties in collecting enough 
and appropriate (st , It) samples that make statistical sense. We have 
briefly discussed this issue earlier. Qt+n is generated every 4 h, which 
means, maximumly, only six image samples can be collected. It should 
be noted that even for these six images, their corresponding Qt+n values 
might be smaller than the qm threshold and therefore cannot be used for 
solving Eq. (4). 

Furthermore, another more challenging issue is from the potential 
size of an image sample (It). The product generated at t+n is ground 
from a cluster of ore pellets, which requires a huge image receptive field 
(much more than 20 m long) to cover (shown in Fig. 3). It is practically 
infeasible to use a single image as a representation for the involved ore 
samples. Sequence analysis of a video clip neither suits this application, 
as there is no actual temporal relation between the ore pellets from each 
video frame. 

To address the above two issues, we propose to use a set of smaller 
images P t =

[
p i|pt− m,⋯, p t+m

]
to replace It. The P t can be understood as 

subsamples of It 2 (a set of small patches from a large image). In this way, 
we can also collect substantially more images (2 m times more per day) 
for later training. After substituting It with P t , the w(It) becomes 

w(It) = w1(wp(p i)), st becomes st ≈

∑i=t+m
i=t− m

si

2m and the Eq. (4) becomes: 

argmaxst

(
st*P(st,w1

(
wp(p i)

)
|Qt+n = qm)

)
(5) 

which can then be transformed to: 

argmaxst *ω(P
(
s1t,wp(p i)|Qt+n = qm)

)
(6) 

We can see, in Eq. (6), ω(P(st ,wp(p i)|Qt+n = qm) is used to replace the 
P(st ,w1(wp(p i))|Qt+n = qm) in Eq. (5). We believe there exists a function 
ω, which approximates the probability of P(st ,w1(wp(p i))|Qt+n = qm)

using a list of joint probabilities of P(st ,wp(p i)|Qt+n = qm). 
At last, since we are unable to find the value of P

(
st ,wp(p i

)
|Qt+n = qm)

for each p i, we first assume they share the same probability with It as a 
starting point. 

P
(
st ,wp(p i

)
|Qt+n = qm) = P(St , It |Qt+n = qm)(asm. 1). 

This assumption gets refined in the next step of our work with weakly 
supervised learning methods. 

2.2. Training models with Weakly-Supervised learning 

To solve the function ω, we could use a convolutional neural network 
(CNN) (Lecun & Bengio, 2021) model. In the ideal situation, to train 
such a model, we can collect enough small images patches (p i) and label 
each of them with a st. All unique st values (generally under 20 in the 
actual production line) can be considered as classes that the model tries 
to classify. A SoftMax function is then used to generate a probability for 
each st class, and we only need to choose the one with the maximum 
value. However, because of the assumption (asm. I) made, the training 
sample (pi, st) may not satisfy Qt+n = qm, or in other words, the pi has an 
incorrect annotation. Training a model using data with wrong labels 

surely degrades the model performance. In the machine learning com
munity, there have been many efforts in training a deep learning model 
with incorrectly labelled or unlabelled samples with weakly supervised 
learning approaches(Zhou, 2018; Li, Guo, and Zhou 2021; Oquab, Bot
tou, Laptev, & Sivic, 2015; Engelen, 2019; Zhai, Oliver, Kolesnikov, & 
Beyer, 2019). Such methods fit nicely into our situation. 

We can define the training process formally as a weakly supervised 
learning problem. The task is to learn two functions: 

τ : p i,t→si,t ; θ and.ω : [τ
(
p i,t

)
]→st ; θ̂ 

(θandθ̂ denotes model parameters) from a training dataset: 

D =
{
(It1 , st1 )⋯, (Itn , stn )

}
,

whereIt =
{
p1,t, p2,t,⋯, p i,t

}

It is defined as a bag and p i,t are the instances from this bag. It is a 
positive bag, i.e., ω(It) = st, if the fusion of all its instances p i,t is positive 

(ω
(
τ(p i,t)

)
= st). The goal is to learn model parameters θ and θ̂ that 

maximise the data likelihoods: 

τ = argmax
θ

∏

p i,t ,si,t∈D

P
(
p i,t, si,t

⃒
⃒θ
)

(7a)  

ω = argmax
θ̂

∏

p i,t ,st∈D

P
(
τ
(
p i,t

)
, st

⃒
⃒θ̂
)

(7b) 

To update θ and ̂θ, we propose an algorithm that is based on the other 
two algorithms, namely, the expectation–maximisation (EM) algorithm 
(Moon, 1996) and the k-means++ clustering algorithm (Arthur & Vas
silvitskii, 2006). The k-means++ algorithm is applied first to find out 
the correct classes in stage one, followed by the EM algorithm for 
updating θ̂ values in stage two. 

2.3. The algorithm: stage one 

Human operators tend to use rough numbers for setting the feed load 
value, such as 125,130 and 145. Although these settings may satisfy the 
product quality constraint (qm), there may exist better values which, 
although not being reflected in the training data, can maximise the Eq. 
(7a) better. To verify this, we first apply a k-means algorithm to find the 
best possible clusters/classes .

1 Initial E Step: At the initial step, we initialise all the instance labels 
with the bag’s label (It , st) from D , and form the dataset :

D 1 = {
(

pi,t , st

)

t
,
(

pi,t1 , st1

)

t1
,⋯,

(
pi,tn , stn

)

tn
} for all possible.It ∈ [It1 ,

It2 , It3 ,⋯, Itn ]

M Step: We then update the parameter θ to maximise Eq. (7a) using 
the data from D 1 till convergence. 
E step: Through applying τ(p i; θ), we extract features fi for each p i; 
store them with p i’s original label and form a new dataset: 

D k =
{(

fi,t, si,t
)

t,
(
fi,t, si,t1

)

t1
,⋯,

(
fi,tn , s1i

)

tn

}

The k-means++ algorithm is then applied to D k to form clusters 
with a range of initial k values. 
We use the k-elbow method to select the best k value and perform k- 
means++ with this value to form clusters, C k. 

For each cluster, c i ∈ Ck, we update the corresponding 
(
p i,t , si,t

)
in 

D 1 with the mode value and generate the relabelled dataset :

D1 =

{(
pi,t, s∧i,t

)

t
,
(

pi,t, s∧i,t1
)

t1
,…,

(
pi,t, s∧i,tn

)

tn

}
2 Unless otherwise indicated, in the rest of the paper, It refers to the “virtual 

large image”, which is a collection of patch-images taken by the camera. 
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We iterate back to step 2 till convergence. It should be noted, if new 
classes are generated in step 6, θ needs to be re-initialised. 

The main goal for stage one is to regenerate labels for image patches 
pi,t automatically using their structural similarity and discover new la
bels that do not exist in the original dataset. In addition, a model is 
trained for making patch level predictions. 

2.4. The Algorithm: stage two 

In stage two, we start with a new CNN model instance, ω(st ; τ(p i,t), θ̂)
that is trained using outputs from τ(p i,t). 

We use the model, τ, from stage one to transform all p i,t into τ
(
p i,t

)

and form a new dataset D t: 

D t =
{( {

τ
(
p1,t

)
,⋯, τ

(
p i,t

) }
, st1

)
,⋯

}

We update the parameter θ̂ to maximise Eq. (7b) using the data from 
D t . 

The second function ω fuses the representations of all instances (p i,t)

for a bag It . The representation format it takes depends on the outputs of 
the first model τ. If the outputs of τ are target labels (st), the ω function 
can be as simple as a weighted average function or even a max-pooling 
function. The τ function, on the other hand, can produce more 
comprehensive representations of p i,t . In this case, ω acts as a proper 
fusion model that combines all features derived from (p i,t) and makes 
predictions. 

2.5. Model architectures 

Unlike the other classification/segmentation tasks, ore pellet images 

do not contain straightforward features that a model can easily learn. 
For a task like this, significant amounts of training data are required for 
the model to pick up useful features. Although augmented data can be 
used, the number of final training samples still depends on the number of 
images collected before augmentation. Another approach for increasing 
training data size, especially image data, is using image segments 3 (Oga 
et al., 2020). This approach naturally fits our application. It is reason
able to assume that for a single ore pellet image patch, its segments have 
a similar distribution to the whole image. Also, training a model using 
overlapped segments has good augmentation and regularisation effects. 
A possible side-effect is that we may lose some global features at the 
image level. However, this can be overcome by combining feature maps 
from all segments to form global feature maps. 

Fig. 4 shows the complete network architecture that we used for 
approximating function τ. The boxes in lime are data passed into/out 
from each network layer, and the boxes in blue are network layers. The 
network’s input is a set of patch image segments, and the network’s 
output is one-hot-encoded classification results. The network has three 
main blocks: the encoder block, the feature aggregation block, and the 
multi-head classification block. 

2.6. CNN architecture for patch prediction (Function τ)

We use 121 layers DenseNet (Huang, Liu, van der Maaten, & Wein
berger, 2016) block as the encoder for feature extraction for each input 
segment. We choose DenseNet over the other popular network archi
tectures such as ResNet (He, Zhang, Ren, & Sun, 2015) because, with 
DenseNet, low-level features are pushed to the top of the network and 
the high-level ones. We find this property important for this work, as the 
size and colour of individual ore pellet may be key factors for making 
classification decisions. On the other hand, we still need filters with 

Fig. 4. Network architecture of the patch prediction model.  

3 We use the term “segment” here to distinguish ourselves from the “patch” 
term used in the previous section. It refers to the image patch concept in others’ 
work. 
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larger receptive fields that provide global views of the segment. 
It is important to point out that the DenseNet block is applied to all 

the incoming segments simultaneously. There is only one DenseNet 
block instance in our network. During the training process, the weights 
of the DenseNet block get updated using all the gradients 

backpropagated from its next layer. Unlike that with a sequence model, 
no specific order is required for the input image segments. This can be 
understood as: the DenseNet block is trained N times in one back
propagation iteration with N data samples. Similarly, the same filters 
from the DenseNet block are applied to all segments for feature 

Fig. 5. Enforcement of class-specific feature maps.  

Fig. 6. Network architecture of the image (It) prediction model.  
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extraction and generate their feature maps separately during the feed
forward phrase. 

The feature maps of segments are aggregated into a global feature 
map (Global Feature Map1), which then goes through a 2D convolu
tional (conv2d) layer with (1,1) kernel. The conv2d layer combines filter 
(1024) activations at different scales into the global ones for each 
receptive view (Global Feature Map2). Afterwards, the final global 
feature map2 is reshaped to multi-head feature maps, with each one 
corresponding to a classifier. 

Fig. 5 gives an in-depth look at the multi-head classification block. 
There are two design rationales behind this. First, the features contrib
uting to a particular class are aggregated together, which helps later 
model interpretability analysis through visualisation. Second, multi- 
head structure helps with the model generalisation and robustness. We 
observed that the multi-head classifier yields better classification results 
than a single classifier through our experiments. 

2.7. CNN architecture for It prediction (Function ω)

The second network is for approximating the function ω (shown in 
Fig. 6). It takes multiple global feature map2 that are output by the first 
network and fuses them into one feature map for It . Due to the size of 
global feature map2 and the number of patch images involved (must be 
big enough to cover the whole It receiptive field), we further reduce the 
feature map’s size before they are combined into the final “It feature 
map” through a convolutional layer. 

There are two main reasons for using features maps from multiple 
patch images. First, although the first network predicts a class label for 
each patch image, the prediction results cannot be combined with 
mechanisms like voting or average pooling (Cruz-Roa et al., 2014; Poria, 
Cambria, & Gelbukh, 2015; Seff, Le, Cherry, Roth, Liu, Wang, Hoffman, 
Turkbey, & Ronald, 2014) g, as some class labels are generated from the 
clustering analysis and do not represent any real production setting. 

This is illustrated in more detail in the following sub-section. Also, 
patch level predications contain errors, which are brought to the final 
prediction if used directly. At last, the patch level model might be biased 
due to the smaller receptive field adopted, and the image level model 
may learn to correct the biased cases that occurred at the patch level. 

3. Experiments 

We evaluate our method through experiments in a real production 
environment. We use the Tensorflow (Abadi, Barham, Chen, Chen, 
Davis, Dean, & Devin, 2016) framework for our model implementation, 
and the training of both models are performed on an Nvidia RTX 3090 
GPU. Fig. 7 shows the basic experimental setup. 

3.1. Data collection and pre-processing 

To train the two models, we collected three types of data in 14 
months between June 2020 and August 2021. The first type of data is the 
lab test result (Qt+n) of the final product quality, the second type is the 
feed load data (st) extracted from the equipment sensor readings, and 
the third type is the image (p i,t) data taken by an industrial camera 
mounted perpendicularly to the conveyor belt. 

All three types of data are timestamped. Based on the minimum 
product quality requirements, the lab test results that are below 66 are 
dropped. It ensures the condition Qt+n = qm = 66 in Eq. (6). For each 
filtered test result Q at time t + n, we find its corresponding feed load 
data at time t with the value of n set to 90 min. It is worth mentioning 
that the data stamped at time t is not a single sample reading but an 
average reading of a collection of samples. The sampling rate of the feed 
load sensor is one minute, but it takes around 20 to 30 min for the 
conveyor to transmit ore pellets for producing the final product at the 
time Qt+n. Therefore, we aggregated all feed load sensor readings within 
that 20-minutes window into a single reading st. The same principle 
applies to the image data. Our camera captures ore pellet images (1024 
× 400 × 3) with the same sampling rate as the feed load sensor. All 
images (p i,t) in the same 20-minutes window are grouped to form the 
virtual image (It), and are all annotated with a label st initially. 

In total, we collected 29,952 samples ((p i,t , st)) as the dataset D1 for 
training/validating the first model. From the datasets, we extracted 17 
classes (0, 120, 125, 130, 132,135, 136, 137, 138, 139, 140, 141, 142, 
143, 144, 145, 146) using unique st values. The class ‘0′ indicates no ore 
pellets on the conveyor, while each of the rest represents a possible feed 
load setting value. The patch images are all downsized to 573x224x3. 
Seven segments of size 224 × 224 × 3 are then extracted from each 
patch image with a stride value of 56 pixels. For the data augmentation 
purposes, segments are randomly flipped either horizontally or verti
cally, and the brightness and contrast values of the segments are also 

Fig. 7. Experiment setup for data collection.  
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randomly adjusted between 0.5 and 1. 80% of data are sampled uni
formly for training, with the remaining 20% for testing. It should be 
noted that we have applied the 10-fold cross validation approach to this 
work as well. Due to the paper space limit and the very closed result for 
each fold, we only take one fold as an illustration example in this paper. 
The process discussed in the following subsections has been applied to 
all folds. 

3.2. Training the first model 

Following the proposed algorithm, we start with training the model 
using the initial dataset D1. The Stochastic Gradient Descent (SGD) 
(Bottou, 2010) is used as our optimiser with an initial learning rate of 
10− 2 and the momentum value of 0.9. The learning rate is gradually 
reduced to 10− 4 with a deduction rate of 0.7, given that there has been 
no improvement in the past five epochs. The batch size used for training 
is 32. The training process converged around epoch 80, with the best 
validation accuracy of 87.82%. We then used this provisional model for 
extracting features from all patch images in D1 and performed the 
principal component analysis[30] for feature reduction. We choose to 
keep the first 250 components as they explain 95% variance of the 
original feature space (Fig. 8. a). 

A series of k-means++ clustering analysis were applied afterwards 
with the value of k ∈ [10,31]. The k-elbow method shows the best k value 

is 18 (Fig. 8. b), which indicates there exist one additional possible class 
on top of the 17 initial classes from our dataset. 

Fig. 9 shows that for the first 17 clusters (C1-C17), most of their 
members have consistent class labels corresponding to the original ones. 
However, for cluster C18, the class labels of its members are diverse. 
Such facts suggest that the patch images inside the C18 cluster have 
significant structural differences with the images from the other clusters; 
hence the initial class labels assigned to them may be inaccurate. 
Therefore, we reconstructed another dataset D1u via regrouping the 
patch images based on their clusters and used the cluster labels as their 

class labels. D1u = {
(
p1,t ,C1

)
,⋯,

(
p i,t ,Cn

)
}. 

We trained and validated a new network model using the D1u dataset 
(with 80%/20% split) in four iterations. This model is like the first one, 
apart from being used for an 18-classes classification task. After each 
iteration, we relabelled the patch images using the predicated class la
bels and updated the dataset D1u for the next iteration. The training 
accuracy for every class reached 100% after the fourth iteration, and the 
overall validation accuracy of the model increased from 88.12% (after 
the first iteration) to 96.45% (after the fourth iteration). We tried to 
conduct clustering analysis between each iteration using the latest 
model, but the number of generated clusters remained 18, and the 
cluster members did not vary significantly. 

Fig. 8. The PCA and K-Elbow analysis results.  

Fig. 9. Number of class instances within each cluster.  
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3.3. Training the second model 

For the second model, we grouped patch images (p(i,t)) from the 
dataset D1 into (It , st) pairs for five different datasets D2 = {D2,15mins, 
D2,20mins,D2,25mins,D2,30mins D2,35mins}. In practice, only a rough estimation 

is instructed on how long a ball mill is filled from empty to full. The ball 
mill is filled quicker for higher feed-load settings, while it takes longer 
for the lower feed-load settings. Therefore, we must try different win
dow sizes to determine the best size for It . It also should be noted that 
using datasets with different input sizes has little impact on the first 
model, as such differences only cause small vibrations in the sample size 
of D1. It is reasonable to assume that the performance of the first model 
at the patch image level remains the same for different D2 s. We trained 
five instances of the second model, each using a different D2 dataset. The 
same hyper-parameter values for training the first model are used for 
training all five instances. 

Fig. 10 shows no significant difference between the instances’ per
formance, with the best test accuracy (96.44%) achieved for the 30-mi
nutes window and the worst (95.67%) for the 20-minutes window. 

We also used the precision, recall, and F1 score to measure each 
class’s model’s performance. The results (only for the best model due to 
the paper space limits) are shown in Table 2. It also shows the proportion 
of most misclassified class instances against each ground-truth class, 
from which we can see that the worst two recall values are from the 
classes 145 (79%) and 146 (0.89%). 13.7% of the testing 145 class are 
misclassified as class 144 (7%) and class 141 (6.7%), while 6.75% of 
class 146 are misclassified as class 144. 

There are three possible reasons for the descending performances of 
these three classes (144,145,146). First, the dataset may be unbalanced, 
which is not our case. Second, the features of these three classes are too 
close to be differentiated. If this is the case, further refinements (model 
architecture change, parameter turning) may be necessary for better 
feature extractions. However, as the precision values of these classes are 
high, which indicates the number of false positive cases is low, we have 
reasons to believe that the features used for classification are well learnt. 

Another possible reason is the wrong data labelling, which is more 
likely to be our case. In the production environment for our work, it is 
not an unusual case that a human operator leaves the feed load un
changed even if the final product quality is a lot better than the quality 
threshold (Qt+n> 66). For such circumstances, the data labelling 
((P i,t , st)) is incorrect, as there should exist a larger feed load (s’

t > st) 
that can be used as the correct label for P i,t. Unfortunately, it is not 

Fig. 10. Test accuracies for model instances trained with five different win
dow sizes. 

Table 2 
Classification results of the best model.  

Classes Precision Recall F1 Most Misclassified 

0  1.00  1.00  1.00 – 
120  0.96  0.99  0.98 143: 0.1% 
125  1.00  0.98  0.99 137: 0.67% 
130  0.95  0.98  0.96 135: 0.54% 
132  0.97  0.97  0.97 120: 1.2% 
135  0.95  0.97  0.96 130: 1.56% 
136  0.96  0.96  0.96 139: 0.56% 
137  0.96  0.96  0.96 139: 0.61% 
138  0.97  0.97  0.97 139: 2.31% 
139  0.95  0.94  0.94 138: 1.06% 
140  0.91  0.98  0.95 130: 0.63% 
141  0.92  0.98  0.95 136: 1.15% 
142  0.96  0.94  0.95 140: 1.74% 
143  0.96  0.97  0.96 135: 0.69% 
144  0.89  0.96  0.92 141: 0.82% 
145  0.98  0.79  0.87 144: 7%, 141: 6.7% 
146  1.00  0.89  0.94 144: 6.75%  

Fig. 11. Visualisation of samples in the global feature Map2.  
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possible to find the value of s’
t as it is never set in the system. 3.4. Model interpretability and visualisation 

Even though the model shows promising classification results with 
the testing datasets, it is still essential to understand what the model has 

Fig. 12. Saliency maps for the best true positive class samples. The top image is the saliency map for each class, and the bottom is the ore pellet image. All the 
saliency map images are adjusted for their sharpness to give better visibility. 

Fig. 13. Saliency maps for seven random samples of five classes.  
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learnt and how it makes its decision. To visualise what the model has 
learnt, we adopt the activation maximisation method (Bengio, Courville, 
Erhan, Bengio, & Vincent, 2009). We first visualise the “global feature 
map2” from the first model, as it aggregates all features learnt before 
they get enforced into class-specific feature maps. 

From sampled feature maps shown in Fig. 11, we can see that, to 
make a prediction, the model considers several factors at both ore pellet 
level and patch image level. The top row shows that the model focuses 
on the ore pellets level regarding their colour, sizes, and overall quan
tities, whereas the feature maps in the second row focus more on global 
shapes at the patch image level. Those shown in the third row are mainly 
colour channels. Since the following layers combine all these different 
features from the network for making predictions, it is reasonable to 
conclude that these are the key factors that affect the final classification 
result. It is consistent with the knowledge from experienced mineralo
gists who can tell ore’s characteristics via looking at their sizes and 
colours. 

To give a more intuitive impression of what the model looks at for the 
final classification, we have also used the saliency map(Simonyan, 
Vedaldi, & Zisserman, 2013) to outline the model’s attention areas 
(shown in Figs. 12, 13). For each class in Fig. 12, we selected the best 
true positive sample (the image with the correct and the highest clas
sification score) for maximising the saliency map. The image channels 
(RGB) are kept for this visualisation task. For all saliency maps, image 
areas/channels with significant contributions to the classification are 
highlighted. To show consistency of the enacted features for each class, 
in Fig. 13, we show the significant activations of seven randomly 
sampled images for each class. Due to the paper space limit, we only use 
five classes for the illustration purpose, as they are more friendly for 
human-eyes interpretation. The different colours in the maps potentially 

highlight different types of ores (hematite: red/purple, chlorite: green, 
limonite: brown and magnetite: dark). As hematite and limonite are 
easier to grind and contain higher amounts of iron, the feed load can be 
set higher for ore pellets mainly of these two types. In contrast, for 
chlorite (containing less iron) and magnetite (hard to grind), the feed 
load needs to be set lower to ensure the same product quality as the 
other two ore types. The generated saliency maps are aligned with such 
facts. For ore pellet images with lower feed load settings (from 120 to 
132), a good proportion of highlighted areas are coloured green, while 
for middle and high range feed load settings (from 135 to 146), red/ 
purple/pink colours become dominant. 

At last, we show how the model makes classification decisions based 
on the learnt features. We plot the distribution of its “enforced class- 
specific feature map” for each class, using the best and the worst true 
positive samples, respectively. For the best cases (Fig. 14), there are 
clear decision boundaries between the feature distributions of the 
predicated class and the other classes, whereas, for the worst cases 
(Fig. 15), such decision boundaries are less determinate. 

4. Evaluation 

The difficulties in evaluating this work stem from several facts. First, 
there is no standard bench-test dataset available. Image datasets from 
the literature (Perez et al. 2011a; Tessier, Duchesne, & Bartolacci, 2007) 
are taken of ore rocks before crushing. Comparing our work with those 
does not lead to meaningful conclusions. Second, to the best of our 
knowledge, our work is the first of its kind that estimates feed load 
setting for the optimisation purpose. Most of the existing work (Dong & 
Jiang, 2014; Donskoi et al. 2007; Donskoi et al., 2018; Mukherjee, 
Potapovich, Levner, & Zhang, 2009; Mustafa, Zhao, Liu, Zhang, & 

Fig. 14. Distributions of the enforced class-specific feature maps activated by the best true positive samples.  
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Wenxian, 2020; Perez et al., 2011; Tessier et al., 2007) are focused on 
classification or segmentation of ore grade, ore shape and ore charac
teristic, hence are neither directly comparable. Third, it is infeasible to 
use our model in a separate production line and compare its 

performance with that from a human-operated environment due to the 
risk of potential economic loss if the model fails to work. This restriction 
makes it hard to carry statistical tests. Finally, in the actual production 
environment, the feed load adjusted by human operators are often less 

Fig. 15. Distributions of the enforced class-specific feature maps activated by the worst true positive samples.  

Fig. 16. Comparison result between the model prediction and the true feed load setting.  
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optimal. Comparing the model prediction results with actual feed load 
settings may lead to confusion. For instance, a feed load setting of 125 
tons may produce a satisfiable product quality (Qt+n≥ 66). A higher feed 
load setting may also meet this condition but is never set by human 
operators. In this case, our model may give a correct optimal estimation 
with a higher feed load setting but is different from the ground truth 
label. 

Due to the above issues and restrictions, we have to use a compro
mised evaluation strategy. Between 7th and 30th September 2021, we 
ran our model in parallel with the existing grinding production system 
and collected 23 days of data for evaluation. For every lab test result, we 
compare the actual feed load and our model prediction (both are from 2 
h earlier before the lab test time). For lab test results that meet the 
minimal product quality requirement (≥ 66), if our model prediction 
value is equal or greater than the true feed load setting, we consider it as 
a correct (MPc) or possible correct prediction (MPc+ ), as if the actual feed 
load was adjusted higher, we may still achieve the same product quality 
but with better productivity. For lab test results that miss the minimal 
quality requirement, if our model prediction value is smaller than the 
true feed load setting, it is also considered as a possible correct predic
tion (MPc− ) as lowering the feed load may lead to better product quality. 
All other cases are considered as wrong predictions (MPw). 

Fig. 16 shows the comparison results between our model and the 
actual feed load setting for a single working day. For the first two lab test 
results (Qt1 > 66,Qt2> 66), our model agreed with the human operator’s 
feed load setting at 125. For the third lab test results (Qt3> 66), the 
model believed the feed load should be set to 142, while the human 
operator left it to 125. Interestingly, the human operator lifted the feed 
load to 130 after the third lab test result was generated, as he probably 
noticed that all the last three Qts are satisfactory hence trying to increase 
the throughput. Unfortunately, such a change led to poor product 
quality, as reflected by the lab test results Qt4 < 66. The model, however, 
suggested setting the feed load lower at 125 for that period. ForQt5 

greater than 66, there could be a throughput increment based on the 
model’s output (set feed load to 144), but the actual operation just left 
everything untouched. 

In summary, for the whole evaluation period (24 days), we collected 
144 lab test results, with 89 of them greater than 66 and the rest 55 are 
less. It indicates that the human operators were only able to keep the 
product quality qualified in 61.8% of the time, not talking about 
whether the throughputs for these qualified products are optimal. In 
total, human operators made 67 changes to the feed load setting, which 
is on average 2 to 3 times a day. In contrast, our model suggested 577 
feed load changes (if two consecutive predictions have the same value, it 
is not counted as a change) that is averagely 24 times a day or once an 
hour. The MPC,MPC+ ,MPC− and MCw values are 23.2%, 43.7%, 29.1% 
and 4% respectively. The total throughputs of qualified products are 
11,419 tons based on humans’ operations, and 12,827 tons should 
follow the model’s predictions. It yields 12.3% throughput boosting for 
qualified products, which potentially has a huge economic impact on the 
organisation. 

5. Conclusions 

This paper presented an image-based solution for direct feed load 
estimation in grinding production in the mineral industry. Deep learning 
models and weakly supervised learning methods are the primary tools 
used. We proposed to use a two-stage training algorithm that first uti
lises inaccurately labelled patch images for feature extraction and then 
fuses extracted features for optimal feed load estimation in real-time. 
Through experiments, we showed a detailed demonstration of how the 
proposed algorithm works and provided comprehensive visualisation 
and discussion, showing what the model has learned and aligned with 
mineralogists’ knowledge. We also discussed our evaluation approach 
and demonstrated the performance gain with the proposed work, 
comparing to human operators. Putting it all together, we are confident 

that this proposed work makes the whole grinding process much more 
productive and potentially brings substantial economic benefits to the 
mineral organisations. 

We will seek methods that could generalise and transfer a learnt 
model to other production lines in the future. Due to the geographical 
distribution, the ore characteristics at different production lines vary 
significantly. A model trained on one production line is unlikely to scale. 
It requires large amounts of time for data collection and repetitive model 
training for such circumstances, which may become a barrier for the 
broader deployment of this work. We also plan to investigate the 
lightweight model architectures of the first model. Although the first 
model is used for feature extractions in this work, it outputs feed load 
prediction for a single patch image. The result will help provide instant 
feedback in production if the model can be deployed on portable devices 
in the environment without a network connection. It is not practical due 
to the current size and complexity of the model at present. Therefore, a 
mobile-friendly network architecture that does not compromise with too 
much performance. 
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