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a b s t r a c t

This paper reports estimates of the economic impact of changes in weather variables on sub-Saharan
African pearl millet yield based on panel data for 1970–2016. We control for spatial effects in all the com-
ponents of our exposure–response function, plus a lag in time of the covariates through spatio-temporal
econometrics techniques. Our results indicate own-location weather variables have significant contem-
poraneous impacts on millet yield. Specifically, we find that vapor pressure deficit, wet day frequency
and temperature are important determinants of millet yield. In addition, accounting for spatial and tem-
poral spillovers exacerbates and attenuates wet day cumulative effect, respectively, and local crop pro-
duction is affected by neighboring countries’ production. The results are robust to several sensitivity
checks, including accounting for adaptation using long-term averages, and are consistent across
country-income groups. We also use our estimates to forecast how crop production would respond to cli-
mate change in the mid-future.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

‘‘everything is related to everything else, but near things are more
related than distant things” Tobler (1970), p. 236 - Tobler’s first law
of Geography.

Given the consensus of a shift in earth’s climatic status by the
end of this century (IPCC, 2018), there are national, regional, and
international concerns about the impacts of climate change on
agriculture in the short-, medium-, and long-run. These concerns
have led to a surge in empirical investigations into the nexus
between climate change and agriculture. Most of the pioneering
works in this respect are focused on the United States.1 However,
developing regions, such as sub-Saharan Africa (SSA), are more vul-
nerable to climatic shifts because of the agriculture-dependent
structure of the economy, poverty, credit constraint, dearth of adap-
tive technology, and the rain-fed character of farm products (Allen
et al., 2014). Burke, Hsiang, and Miguel (2015) differ in these
respects by attributing the cause of economic loss emanating from

climate change to the already hot condition of developing regions
(including SSA). Whichever is the case, it is important to provide
estimates of the impacts of climate change in these regions to aid
policymakers to comprehend the potential effects of climate vari-
ability, as well as to support them in making relevant decisions that
will either alleviate its magnitude or stimulate adaptation.

One area that has not been explored in the SSA climate change-
agriculture is how spatial influences affect crop production in a
country. For example, spatial correlations occur due to incidental
commonalities and agro-climatic conditions or geographical char-
acteristics (Miao, Khanna, & Huang, 2015; Di Falco & Chavas, 2009).
Moreover, significant spatial correlations arise due to the use of
gridded weather datasets generated via extrapolation means
(Auffhammer, Hsiang, Schlenker, & Sobel, 2013; Baylis, Paulson,
& Piras, 2011). The impact of these spatial influences has not been
addressed in previous studies focusing on climate change and
Africa. Although Ward, Florax, and Flores-Lagunes (2013),
Schlenker and Lobell (2010) make an attempt to correct for spatial
correlation among the error terms, none use formal spatial panel
methodology. This study intends to show evidence that adjusting
for these potential spatial influences will affect the impact analysis
of weather fluctuations on crop yield in sub-Saharan Africa.

This paper contributes to the existing literature on the SSA cli-
mate change-agriculture nexus in three major forms: methodol-
ogy, weather measures and dataset.

https://doi.org/10.1016/j.worlddev.2022.105967
0305-750X/� 2022 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: Department of Economics, Policy and International
Business, Business School Building, Manchester Metropolitan University, M15 6BH
Manchester, UK.

E-mail address: l.emediegwu@mmu.ac.uk (L.E. Emediegwu).
1 See Mendelsohn et al. (1999) for a review of these earlier works. Recent empirical

studies on the impact of climate change on the US economy include Yu, Miao, and
Khanna (2021), Rudebusch (2019), Hsiang et al. (2017), among others.
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In terms of methodology, we use a spatio-temporal panel data
model to control for the effect of space and time. Specifically, our
technique includes spatial lags of the dependent variable and
regressors with errors clustered at location level to control for
the possibility of spatial correlation of yields, weather measures
and idiosyncratic shocks, respectively. Besides, temporal lags of
the regressors are added since the effect of weather shocks may
persist over time, a concept labeled in the literature as the delayed
effects of weather shocks (see Hsiang (2016), for example). The
importance of using such sophisticated tools is to disentangle local
effects (impacts from own units) from spillover effects (impacts
from neighboring units) (see e.g., Harari & Ferrara, 2018). Focusing
on agricultural economics, Baylis et al. (2011) examine the impor-
tance of spatial influences in agricultural production by modifying
the climate impact work of Schlenker, Hanemann, and Fisher
(2006) to account for spatial interactions. They find that estimates
from spatial models differ from their non-spatial counterparts.

Part of the methodological contribution is to disentangle the
effects of weather fluctuations on yields across country-level
income class. Following Burke et al. (2015), Dell, Jones, and Olken
(2012), we examine whether the effect of weather shocks on crop
yield is dissimilar across countries by country-income group, as
well as whether the spatial and temporal effects are driven by spa-
tial and temporal lags.

The empirical analysis is applied to pearl millet because of its
economic importance. Millet is a major cereal for SSA and essential
for food security (see e.g., Eriksson et al., 2018). Previous research
has shown that millet possesses inherent properties that make it
a good choice for adapting to climate change. For example, Wang,
Vanga, Saxena, Orsat, and Raghavan (2018) explain that the millet
crop’s nutritional requirements are minimal and require no fertil-
izer or irrigation, as it can adapt to various soil types. Moreover, it
has good disease and pest resistant traits that reduce its proneness
to disease and pests (Manners & van Etten, 2018; Goron & Raizada,
2015). The above properties are the basis for our choice of millet.

Our second contribution is in terms of the weather measures we
use. We use wet day frequency rather than precipitation, which is
the conventional rainfall measure. Wet day frequency is significant
because it captures better the dynamics in within-growing season
rainfall. Fishman (2016), Carleton and Hsiang (2016), for example,
show that the impact of rainfall on economic activity in the same
location will be similar for two different periods if their aggregate
values are same: however, these impacts may differ significantly if
the spread over time is considered. Another contribution of this
work is the introduction of a newweather measure, vapor pressure
deficit (VPD), into SSA studies. The inclusion of VPD is important to
crop physiology as it denotes drought sensitivity of crops (Urban,
Sheffield, & Lobell, 2015; Lobell et al., 2013; Roberts, Schlenker, &
Eyer, 2012).

Our third contribution is regarding the geo-biophysical and
temporal details, which are elaborated in turn. Whereas prior
SSA panel studies use weather data averaged at country level, this
study uses weather observations from each country’s main produc-
tion area (MPA, hereafter). This improvement is significant given
that agricultural production does not occur in all parts of a country.
If areas where most of the agricultural production takes place have
farming-friendly weather, then aggregating with or averaging over
hotter (or colder) areas would result in estimates that rise (or fall)
when the total or mean weather measure increases. Furthermore,
such spatial averaging can attenuate significant nonlinearities
(Auffhammer & Schlenker, 2014).

Still on the geo-biophysical and temporal details, the growing
season used here is specific to each country. The use of country-
specific growing season is important because, unlike previous SSA
studies that assume a uniform growing season across countries,
we recognize that growing seasons differ across countries. For

example,whereas the growing season formillet is November to June
in Botswana (a country in the southernpart of the region), it is July to
November in Mauritania (a country in the North-Western part).

Lastly, this paper contributes to the existing literature on the
SSA climate change-agriculture nexus by using the most recent
millet yield and weather dataset (2016).2 The updated dataset can
be appreciated in light of noticeable rise in food insecurity and
adverse weather shocks in the region over the last decade (FAO,
IFAD, UNICEF, WFP & WHO, 2018). Although our analysis focuses
on millet due to its economic importance, we, however, extended
the analysis to other cereal crops. The results are available on
requests from the authors.

Our empirical results provide evidence of a significant contem-
poraneous relationship between weather shocks and millet yield in
SSA. Specifically, an increase in temperature and VPD is associated
with yield loss, respectively. On the other hand, an increase in wet
day frequency improves output. Further, the introduction of spatial
and temporal lags only affects wet day frequency. However, local
yield levels are affected by the millet yield production in neighbor-
ing regions. We also find that the effect of temperature on millet
yield differs between poor and rich SSA countries, with poor coun-
tries at the receiving end of the adverse effects of weather shocks.
We find no such differential effect for wet day frequency. Lastly,
future projections of weather changes from an ensemble of climate
models when integrated into our estimated model indicate that,
for a temperature increase of 2.3oC in the region, millet yield will
go down by an additional 20% if all other aspects of the state of
the world persist to 2070.

Ourwork can be fitted into three branches of literature. First, this
study relates to a new wave of overview papers (e.g., Hsiang, 2016;
Dell, Jones, & Olken, 2014) and recent empirical studies (e.g.,
Emediegwu, 2021; Harari & Ferrara, 2018; Burke et al., 2015; Dell
et al., 2012) that outline the importance of identifying the influence
of past or neighbors’ meteorological events. The argument is that
the use of time-series identification of weather shocks necessitates
accounting for these ripple/delayed effects in space and time so that a
local transient impact is not misrepresented as a persistent
response. These effects are not captured by a standard panel data
model since it models a contemporaneous relationship with units
of observations assumed to be spatially independent (Baltagi, 2011).

Regarding spatial effects, Kumar (2011) argues that the values of
agricultural variables are, in reality, also defined by conditions in
neighboring countries. For example, agricultural activities in a loca-
tion can benefit from rainfall in neighboring locations if they share
rivers, tributaries and dams, as evidenced in Zouabi and Peridy
(2015).Moreover, the error terms couldbe serially correlated,which
maybias the truevariance–covariancematrix;hence standard infer-
ence procedures are invalid and robust methods must be used
(Baltagi, 2011). Similarly, Dell et al. (2014) are of the view that
neglecting such significant spillovers in a standard panel analysis
could bias the resultant estimates, therefore accounting for such
spillovers could be of first-order importance (see also, Nijkamp &
Poot (2004)). Such spatial dependence can be captured econometri-
cally via spatial panel data models, as done in this paper.3

Second is the literature on climate change and crop yield in SSA.
To further this literature, we employ a more disaggregated
approach by identifying where these productions occur and isolat-
ing the weather components that matter for millet development in
each location.

Finally, our paper relates to a sparse literature that considers
the effect of water stress or drought on crop yield. Previous studies

2 Previous SSA studies such as Blanc (2012), Schlenker and Lobell (2010) use data
up to 2002.

3 Spatial panels, according to Elhorst (2003), refer to georeferenced point data over
time of geographical units or (although less common) economic agents.
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like Urban et al. (2015), Lobell et al. (2013), Roberts et al. (2012)
have investigated these effects on maize yield in the United States.
We add to their evidence by assessing these impacts on SSA millet
yield because millet crops are more resistant to drought and water
stress than maize (Wang et al., 2018; Manners & van Etten, 2018).
This difference is appreciated if we consider that countries in SSA
are already prone to warming, and investing in drought-resistant
crops may be one policy response to climate change.

The rest of the paper is structured as follows. Some spatial con-
cepts and processes are considered in the next section. Section 3
describes the data and specifies the estimation model. The main
and robustness results are discussed in Section 4, climatic projec-
tions in Section 5, and finally, Section 6 summarizes the paper with
some policy implications.

2. Spatial processes and mechanisms

Following the methodological contributions of Cliff and Ord
(1973), Cliff and Ord (1981), spatial models became popular in spe-
cialized fields such as regional science, urban and real estate eco-
nomics, economic geography, and related fields.4 Further works
by Anselin (2001, 2004, 2011) popularize the application of spatial
econometrics in standard fields of economics, such as development,
agricultural and environmental economics.5 It is important to state
that the use of spatial models is necessitated if there are reasons
to think that a location’s agricultural production may be affected
by its neighbor’s activities.

Spatial interactions can occur in one or a combination of the fol-
lowing: error terms, regressors and dependent variables. For our
analysis, we will be interested in all spatial interactions for a cou-
ple of reasons. First, we suspect the errors to be spatially correlated
based on Miao et al. (2015), Di Falco and Chavas (2009), who give
us reasons to believe that crop yields across countries can be spa-
tially correlated in their disturbances if they share similar soil or
geographic attributes. Carleton, Cornetet, Huybers, Meng, and
Proctor (2020), Auffhammer and Schlenker (2014) also posit that
such dependence could result from confounding variation in omit-
ted climatic measures such as wind speed, solar irradiation, etc.

Second, Auffhammer et al. (2013) show that there exists signif-
icant spatial correlation of weather measures because of the under-
lying data generating process and the extrapolation methods
employed in generating gridded weather datasets.6 They further
assert that spatial correlation of the regressors is problematic since
most models cannot completely and correctly account for all rele-
vant weather variables. In the same vein, Harari and Ferrara (2018)
believe that the use of gridded weather dataset can introduce signif-
icant cross-grid spillovers. Also, certain natural/climatic occurrences
could impact bordering countries. Hossain and Ahsan (2018) find
that greater amount of rainfall in neighboring units has adverse
effect on own-unit economic outcomes because patches of rainfall
span several geographic units.

Moreover, rainfall could be channeled through rivers, tributaries
and dams to impact positively or negatively (in the advent of flood-
ing or drought) on agricultural activities in neighboring countries.
For example, Frenken (1997) reveals that the Zambezi river7 enter-

ing Zambia from Angola in the north has an annual discharge of
18 km3, doubling the volume needed to irrigate Angola. Hence, the
amount of rainfall in the Zambezi basin affects the volume of water
in the basin and, therefore, the water available to crops in the tribu-
taries: Angola, Botswana, Malawi, Mozambique, Namibia, Tanzania,
Zimbabwe and Zambia. In a similar twist, Zouabi and Peridy (2015)
find that groundwater positively affects agricultural production for
irrigated crops with interesting spillover effects with neighboring
regions in Tunisia. A further climatic occurrence that travels spatially
is related to temperature. There is evidence that heat travels horizon-
tally from low to high latitudes due to pressure differences stemming
from temperature disparities (Budyko, 1969).

Lastly, Hsiang (2016) reveals that crop yields could be displaced
across space following meteorological events. In essence, weather
conditions can affect economic activities in neighboring countries
via price, trade (market) or conflict (Harari & Ferrara, 2018; Dell
et al., 2014). For example, using panel data of over 20 years from
271 districts, Kumar (2011) estimates the spatial effect of climate
change on farm-level net revenue in India. The study finds a signif-
icant spatial autocorrelation between the dependent variables.
More recently, Lim et al. (2021) find that farmers can adapt to
changing environments due to interacting with and learning from
other farmers.

Given the preceding reasons, the standard model ought to be
the general nesting spatial (GNS) model because it controls for spa-
tial interactions in all the components of a dose–response function
(see Table F2 in the Appendix for a brief description of the several
types of spatial models). However, Elhorst (2014) provides two
reasons why this model is seldom used in applied research. One
is the unavailability of a formal proof to obtain conditions under
which the parameters are identified, hence the GNS model suffers
from the well-known Manski reflection problem. The second rea-
son is the problem of overfitting. Elhorst (2014), on the other hand,
argues that the parameters of the other specific spatial models,
such as the spatial Durbin model (SDM), are identifiable and free
from the problem of overfitting. Consequently, we follow Harari
and Ferrara (2018) and Hossain and Ahsan (2018) by controlling
for spatial correlation in the regressors and dependent variable
using the spatial Durbin model (SDM) and accounting for spatial
dependence in the residuals via clustering standard errors by
MPAs.

According to Gibbons and Overman (2012), OLS provides con-
sistent estimates of the parameters if the spatial correlation occurs
only through the exogenous attributes (spatial lag of X (SLX)
model); unbiased but inefficient estimates if the error terms are
spatially correlated (spatial error model (SEM)); biased and incon-
sistent estimates in the presence of spatial dependencies in the
dependent variable (spatial autoregressive (SAR) model). However,
Lee and Yu (2010) prove that bias-corrected maximum likelihood
(ML) estimation provides efficient estimators for all spatial mod-
els.8 Consequently, we employ Lee and Yu’s (2010) bias-corrected
ML estimation strategy to estimate our model.

3. Data and model specification

3.1. Data description and sources

We use annual panel data from 1970 to 2016 for various millet-
producing countries in SSA.9 See Table F1 and Figure F1 of the
Appendix for list of countries and locations, respectively.

4 See reviews in these fields from Paelinck and Klaassen (1979), Cliff and Ord
(1981).

5 Recent applications of spatial models in development and agricultural economics
include Lim, Wichmann, and Luckert (2021), Leiva, Vasquez-Lavín, and Oliva (2020),
Ho, Wang, and Yu (2018).

6 The use of gridded weather datasets has been popularized due to paucity of
weather stations, especially in developing regions. There are two basic methods of
obtaining gridded weather datasets: spatial extrapolation and data assimilation (see,
Auffhammer et al. (2013) for better insight).

7 The Zambezi basin ranks as the fourth largest basin in Africa, following Congo,
Nile and Niger basins

8 The bias is a creation of the incidental parameter problem, which is briefly
discussed in the Appendix, subsection B.2.

9 For robustness and computational reasons, only countries with complete dataset
are used because spatial panel models can only be estimated for balanced panel data.

L.E. Emediegwu, A. Wossink and A. Hall World Development 158 (2022) 105967

3



3.1.1. Yield data
Data for our dependent variable, country-level millet average

yield (ton/ha), come from FAOSTAT database ( http://www.fao.
org/faostat/en/). The Food and Agriculture Organization (FAO)
obtained these figures from various sources: governments through
national publications and FAO questionnaires (both paper and
electronic); unofficial sources; national and international agencies
or organizations. The original data from FAO online database are
expressed in hectogram per hectare (hg/ha), but to keep with the
standard unit in agricultural economics, we convert them to ton/
ha by dividing the observations by 10000.

3.1.2. Weather data
Our main variables of interest are average temperature

(TEMP), wet day frequency (WDF) and vapor pressure deficit
(VPD). The first two datasets are sourced from CRU TS v4.02, a
dataset developed by the Climate Research Unit (CRU) of the
University of East Anglia. This dataset (released 18th November
2018) provides gridded time series data for several monthly
weather measures, including average temperature and wet day
count for all land areas in the world (excluding Antarctica) at
0.5o resolution (approx. 56 km � 56 km across the equator) for
the period January 1901 to December 2017.10

Although average temperature is appropriate for our work,
agronomists have shown that crop development depends on
cumulative heat exposure. Hence the use of degree units - cooling
degree units (CDU), growing degree units (GDU), and killing degree
units (KDU) - tends to be more appealing to climate scientists
(Auffhammer & Schlenker, 2014; Lobell, Bänziger, Magorokosho,
& Vivek, 2011; Schlenker & Roberts, 2009). Degree unit (or day)
calculates cumulative exposure to heat and is a better predictor
of climate change impact than average temperature. GDU and
KDU are the two complementary measures popularly used in agro-
nomic studies, and of these two, the consensus among researchers
is that KDU is a better predictor of climate change.1112 However, we
are incapable of using it in this current study due to scanty KDU
observations or little exposure to temperatures above 30 - 32oC in
our data (see, Figure F2 of the Appendix).13 For example, less than
1 percent of our millet data - a heat-tolerant cereal crop - reached
the maximum temperature. It is obvious, at sight, that most MPAs
have very low numbers of KDU observations14. The scanty observa-

tions of KDU in the region are unsurprising given there is less varia-
tion in the tropics than in temperate regions from where the use of
degree units was generated and mainly utilized (Auffhammer &
Schlenker, 2014; Guiteras, 2009).15 Consequently, in the absence of
KDU observations, the second-best alternative is to use average tem-
perature. One drawback of averaging temperature over time is that it
masks nonlinearities; nevertheless, these can be recovered by the
inclusion of a quadratic term which is the convention in the litera-
ture (Schlenker & Roberts, 2009).

The wet day frequency (or count) (WDF) dataset, likewise
sourced from CRU TS v4.02, provides gridded time series data on
the counts of days per month where precipitation is above
0.1 mm for all land areas in the world (excluding Antarctica) at
0.5o resolution for the period January 1901 to December 2017.
Recent works like Lobell and Asseng (2017), Fishman (2016) have
found WDF to be more relevant in predicting yield changes than
the conventional aggregate precipitation used in existing SSA liter-
ature. For example, Fig. 1 shows a country (Benin) with the same
aggregate rainfall over the same growing season for millet (March
- September) for two years but with differing distribution. Given
the above example, Fishman (2016) argues that rainfall will pro-
duce the same impact if modeled with the aggregate value but dif-
ferent effects for both years when distributional properties are
taken into account. Furthermore, for optimal growth and develop-
ment, water needs must be sustained over a period. For example,
Brouwer, Prins, Kay, and Heibloem (1988) show that millet
requires at least an assured precipitation of 450–650 mm annually.
Using total rainfall does not account for when the rainfall occurs,
which WDF remedies.

To our knowledge, vapor pressure deficit (VPD) is a new
weather measure that we introduce into the empirical literature
of climate change impacts in SSA.16 VPD (in Kilopascal, kPa) drives
water loss from plants via evapotranspiration. In essence, it is asso-
ciated with daily temperature, cloud cover and precipitation; thus, it
is a significant determinant of crop yields, as it measures the drought
sensitivity of plants. Given the several weather measures related to
VPD, it follows that it can impact crop yields in different directions.
On the one hand, high VPD may reduce yields by increasing the
water requirements of crops (Lobell et al., 2013). On the other hand,
high VPD can also benefit plants since it is associated with less cloud
cover allowing for much solar radiation, a sine qua non for crop
growth via photosynthesis (Roberts et al., 2012). In sum, the overrid-
ing effect will be determined by the moisture content of the soil.17

The VPD data were obtained from the TerraClimate monthly dataset
of climate and climatic water balance for global terrestrial surfaces
at a 0.05o spatial resolution (approx. 4 km � 4 km across the
equator).18

We exploit the grid feature of our datasets to obtain historical
weather observations of millet MPAs in all countries in our sample,
thus weather data are unique to each MPA. We achieve this by tak-
ing a simple average of all the grid cells overlaying the MPAs. To
account for heteroskedasticity, we weigh the weather data by the
proportion of area harvested for each crop relative to the country’s
total land area. The choice of main producing area (MPA) for each
country was based on information from the country’s Ministry of

10 See Harris, Jones, Osborn, and Lister (2014) for a complete description of the
dataset.
11 This appeal, perhaps, comes from the econometric ability to capture possible
nonlinear impacts of extreme heat using KDU.
12 Formally, GDU is defined

GDU ¼
X
d

DUðtdÞ

where DUðtdÞ ¼
0 if t 6 jlow

t � jlow if jlow < t 6 jhigh

jhigh � jlow if jhigh < t

8><
>:

where td is average daily temperature in day d, jlow , baseline temperature, but jhigh is

the temperature ceiling beyond which crops are hurt. In the same vein,

KDU ¼
X
d

DUðtdÞ

where DUðtdÞ ¼
0 if t 6 jhigh

t � jhigh if jhigh < t

�

13 Earlier works by Miao et al. (2015), Lobell et al. (2011), Schlenker and Roberts
(2009) volleyed harmful temperature for most cereals between 29oC and 32oC.
However, they admitted that the bad temperature might be higher for climate-
resilient crops like millet.
14 This occurrence may first seem counter-intuitive given the hot nature of SSA;
however, following works by the World Bank and FAO, Auffhammer and Schlenker
(2014) affirm that developing countries (including SSA) have soils and climate that
are conducive for agriculture.

15 This may be why existing SSA studies use average temperature instead of degree
units. An exception is Lobell et al. (2011), who use growing and harmful degree days
to estimate the impact of weather on maize trials in SSA. However, Lobell et al. (2011)
focused on areas where maize trials were done, which for most parts, are not where
actual crop production takes place.
16 Also known as vapor pressure demand, thus indicating plant’s water demand,
while precipitation is likened to the supply side.
17 It is equally important to state that previous studies such as Lobell et al. (2013)
have found VPD to be a better predictor of cumulative evaporative demand than KDU,
especially during the hottest months of the growing season.
18 See, Abatzoglou, Dobrowski, Parks, and Hegewisch (2018) for dataset description
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Agriculture database, FAO (2018), Monfreda, Ramankutty, and
Foley (2008), with the length of growing seasons taken from the
various reports of FAO Global Information and Early Warning Sys-
tem (GIEWS)19 and HarvestChoice (2018) (see, Table F1 of the
Appendix for list of millet MPAs in each country, as well as the dif-
ferent growing seasons). One important observation from Figure F1
in the Appendix is the location of most MPAs - proximity to borders
- making our assessment of spatial interactions relevant.

It is essential to state that each area is the largest producer (in
tonnes) of millet crop in a country. Where there is more than one
producing area in a country, we follow the advice of Moore, Baldos,
and Hertel (2017) by choosing the area with the highest produc-
tion of the associated cereal. Moreover, we admit that we cannot
discountenance the possibility of a shift of main production areas
over the period covered (1970–2016). Whereas we do not have
any empirical proof to justify the non-occurrence of such displace-
ments, several annual bulletins from FAO GIEWS do not indicate
shift of MPAs over the period considered.

Countries in SSA are divided between North and South of the
equator, as shown in Figure F1 of the Appendix; therefore, coun-
tries in the region do not experience similar seasons. The alterna-
tive favored in the literature (e.g., Dell et al., 2014) is growing
seasons (the period from planting to harvesting). The use of grow-
ing season provides spatially disaggregated estimates that measure
weather impacts during periods that are germane to plant growths.
Growing seasons differ among countries: for example, although
Nigeria and South Africa grow millet, they have different growing
seasons. Ergo this study defines growing seasons by country (see
Table F1 in the Appendix for a list of the growing seasons per coun-
try). To the best of our knowledge, this is the first SSA study to use
such specific growing seasons as prior SSA studies use a general-
ized form of growing season across countries. It is important to
note that in the event of more than one growing season, the pri-
mary growing season is selected.20 Table 1 presents the summary

statistics of the data used in this study, whereas Fig. 2 shows a sub-
stantial variation in weather measures across the MPAs.

3.2. Model specification

Our dependent variable is country-specific millet average yield
(tons/ha), yct , in country c and year t. Our baseline model contains
weather measures specific to the MPA, their spatial and temporal
lags, and the lag of the endogenous variable in space. The model
is specified as

Yt ¼ WYtcþ CtbþWCt#þ Rtxþ qþ et ð1Þ
where Yt is an N � 1 vector of (log of) millet yield observations in
the cross-section of N countries at time t; Ct are N � K matrix of cli-
matic variables; et is an N � 1 vector of unobservable random vari-
ables capturing the (idiosyncratic) errors. The time trend matrix Rt
includes linear and squared terms to capture overall technological
progress; q is an N � 1 vector of country-level fixed effects which
capture the influence of any unobserved, time-invariant country
and agro-ecological zone (AEZ) features. The inclusion of fixed
effects implies that our estimates are identified from within-MPA
variation in own weather measures and neighbor’s from its long-
term mean. In spatial econometric terms,W is an N � N matrix of
spatial weights (or connectivity)21, WY represents spatially autocor-
related outcomes, while WC represents spatial autocorrelation of the
covariates (weather measures). In terms of parameter notations,
b;x, c and # are vectors of parameters to be estimated, the last
two being spatial parameters.22

The weather variables C in Eq. (1) includes average tempera-
ture (TEMP), wet day frequency (WDF) and vapor pressure def-
icit (VPD) over growing season by MPA; the squared terms to
capture the nonlinear effects of these weather variables on crop
yield; temporal lags; and monthly deviation in temperature to
account for variability in temperature. Monthly deviation in tem-

Fig. 1. Benin (Millet) MPA Monthly Precipitation for Two Years (1999 & 2003).

19 http://www.fao.org/giews/en/
20 Although there is evidence of change in planting season in some years, such
changes are short-term (in response to weather events) rather than long-term (in
response to climate). Our choice can, therefore, be likened to the modal growing
season for each crop in the period under review.

21 These weights can be different based on the spatial processes underlying the
research.
22 The introduction of spatially lagged variables makes our model specification
similar to Baylis et al. (2011), except for the choice of location, agricultural outcome,
weather variables, and spatial weights.
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perature is calculated as the ratio of the standard deviation to the
mean. Besides, we checked the effect of an alternative method,
monthly maximum minus monthly minimum temperature, and
find no significant difference.

We do not include the squared and temporal lag terms of VPD
as we do not find any evidential reason to do so. Moreover, we
do not include other controls for the following reasons. First,
important edaphic factors such as soil quality are fixed over time
and cannot be distinguished from country-specific effects.23

Hsiang (2016) and Dell et al. (2014) further argue that the addition
of more controls will not necessarily move the climate change
impact estimate closer to its true value if the controls (such as
GDP and institutional measures) are outcomes of climate. Rather,
such addition will induce an ‘‘over-controlling problem”. Conse-
quently, the standard practice in climate change applied studies
using panel data is to exclude other time-varying controls.24

In general, certain challenges confront the causal relationship in
this setting. For a given MPA, meteorological conditions tend to
trend throughout a growing season. Since crop output also trends,
such temporal dependence may confound the estimated effect of
weather fluctuations of millet yields with other determinants of
crop outputs that are evolving gradually. Besides, several weather
variables are strongly correlated, and these correlations can con-
found the causal relationship if important weather variables are

omitted. These potential challenges are addressed in this study
by including time trend, country fixed effects, and several weather
measures in the equation. Addressing these confounding chal-
lenges enables us to isolate the effect of random variation across
our selected weather variables.

Concerning the choice of spatial weights, there is no unanimity
in the literature on the most appropriate or a ‘‘one-fits-all” spatial
weight (Anselin, 2001). In selecting spatial weights, we follow Ho
et al. (2018) and Kumar (2011) in using inverse distance spatial
weights matrix in the analysis with cutoff at 910 km. In essence,
we assign the value 1 to MPAs within the cutoff distance from
the centroid of the MPA of interest and 0 to others. The choice of
the cutoff ensures that every MPA has at least one neighbor. It is
important to note that LeSage and Pace (2009) emphasize that
the trueW is generally unknown, therefore, to further our analysis,
we use a couple of other spatial weights matrix to check the
robustness of results. Specifically, we re-estimate the model using
4-nearest neighbor (4-NN) spatial weights and spatial weights
based on the prevailing economic network. To create these weight
matrices, we construct shapefiles from the ArcGIS 10.3 software.25

Thereafter, we cascade the shapefile into Anselin, Syabri, and Kho
(2006) GeoDa 1.10 software to create any spatial weights matrix of
our choice.26 For ease of interpretation, spatial matrices based on
inverse distance are usually not row-normalized (Anselin, 1988):
however, we row-normalize other spatial weight matrices used in
our robustness analysis. More explanation on spatial weight matri-
ces can be found in the supplementary section (Appendix A).

Our baseline specification corrects for spatial interactions in the
dependent and independent variables via spatial weight matrices,

Table 1
Summary Statistics of Dataset for Millet Yield Model.

Variables Mean SD Min Max

Millet Yield (ton/ha) 0.714 0.360 0.04 1.951
Average Temp (oC) 24.9 3.74 15.8 31.5
Average WDF 11.51 5.20 0.03 23.60
Average VPD (kPa) 1.286 0.619 0.392 3.307

Note: SD denotes standard deviation. All variables (except millet yield) are calculated over growing season. Observations
= 1457; Countries = 31; Years = 47.

Fig. 2. Spatial Variation of Average Weather Measures (1970–2016).

23 Deschênes and Greenstone (2007), Schlenker, Hanemann, and Fisher (2005) show
that the effect of weather fluctuations on irrigated areas differs from nonirrigated
areas. While we recognize that irrigation can be an important determinant of crop
yield, we are limited by the lack of comprehensive irrigation data for SSA. Moreover,
agriculture in SSA is mostly rain-fed with evidence of low capacity for crop
management such as irrigation (FAO, IFAD, UNICEF, WFP & WHO, 2018; Dingkuhn,
Singh, Clerget, Chantereau, & Sultan, 2006).
24 This conventional practice is evidenced in empirical studies like Hsiang and Meng
(2015), Schlenker and Lobell (2010) (agricultural production); Emediegwu (2021),
Deschênes and Greenstone (2011) (mortality); Kalkuhl and Wenz (2020), Dell et al.
(2012) (economic growth), and Hsiang, Burke, and Miguel (2013), Hsiang, Meng, and
Cane (2011) (conflict).

25 The ArcGIS is a geographic information system (GIS) for working with maps and
geographic information developed by the Environmental Systems Research Institute
(ESRI).
26 GeoDa is a free software program developed by Anselin and his team that acts as
an introduction to spatial analysis.

L.E. Emediegwu, A. Wossink and A. Hall World Development 158 (2022) 105967

6



resulting in a so-called spatial Durbin model (SDM) (Elhorst, 2014).
Spatially-dependent errors are accounted for through clustering at
MPA level. We present the likelihood of the SDM in Section B of the
Appendix. Following Elhorst (2014) and Anselin, Le Gallo, and Jayet
(2008), we implement maximum likelihood estimation (MLE)
using a package in R developed by Millo and Piras (2012), known
as splm to estimate the attendant spatial models.27 However, for
comparative purposes, we will be contrasting estimates from our
baseline spatial model with those from a non-spatial (NS, hereafter)
model by excluding the spatial effects mentioned above, that is, by
estimating Eq. (1) with c and # in Eq. (1) set to zero.

In addition to the baseline estimation, we employ different
strategies to (1) ascertain the robustness of our estimates, and
(2) account for adaptation possibilities. For sensitivity analysis,
we re-estimate Eq. (1) with alternative time trends; additional
time lags; exclusion of outlier country; different spatial weight.
We also use long differences approach developed in Burke and
Emerick (2016) and flexible long differences approach by Yu
et al. (2021) to check whether or not SSA countries adapted to
changing climate within our sample period.28

4. Results and discussion

4.1. Baseline estimates

Let us begin by looking at the broad outline of the results in
Table 2. The existence of spatial dependence in our model specifi-
cation is ascertained via the classical Lagrange multiplier (LM) test
by Anselin (1988) and its robust version developed in Anselin, Bera,
Florax, and Yoon (1996). The results in Table 2 show that the LM
test and robustness are significant at 5% level, indicating the pres-
ence of neglected spatial effects in our model specification.

By way of comparison, Table 2 shows that the non-spatial (NS)
specifications’ coefficient estimates have the same sign and statis-
tical significance as the SDM for all weather measures. Generally,
the signs of the weather estimates follow a priori expectations
and are statistically significant in both models. The estimates on
temperature and WDF are shown to be negatively and positively
related to yield, respectively. In contrast, the estimate on temper-
ature deviation is insignificant in all the models, which is unsur-
prising given the small within variation in temperature over the
growing period. Temperatures in the tropics exhibit similar values
across growing seasons resulting in little within variation in tem-
perature (Auffhammer & Schlenker, 2014; Guiteras, 2009), thereby
leading to insignificant estimates. The squared term for WDF is
negative and significant across specifications, whereas the quadra-
tic term for temperature is positive and significant in all models,
ergo reflecting the nonlinear relationship between weather
changes and crop outputs.

VPD is significantly and negatively related to millet yield signi-
fying that millet yield can be affected by water loss from the crops.
Besides, the time trend and its squared term are positive, as
expected, showing technological and agronomic progress over
time.

4.1.1. Spatial lag effects
Caution must be exercised in an attempt to compare the esti-

mates from spatial models (SDM, for example) to non-spatial mod-
els (NS), as the coefficients from the spatial models do not
represent marginal effects, unlike its non-spatial companion. In
terms of interpretation, the estimates of NS models represent

direct and total effects, as NS models do not produce spillover
effects by construction. Hence, using point estimates to inform
comparative or inferential judgments tend to be erroneous
(Elhorst, 2014). On the other hand, the (non)existence of spatial
spillovers in an SDM should be ascertained from the estimated
indirect effects of the regressors, rather than the coefficient esti-
mates (and standard errors) of the spatially lagged regressors. Said
differently, the statistical significance of the estimated coefficient
of a spatially lagged explanatory variable can differ from its esti-
mated indirect effect. To achieve this aim, we use the impacts com-
mand in R package ‘‘splm” to derive the direct, spillover (indirect)
and total effects and report them in Table 3.29

The existence of spatial interactions has vital economic implica-
tions. Any change in spatially lagged variables has both direct and
indirect consequences to which we now focus attention. Whereas
the estimates of NS models represent direct and total effects, the
estimates of the SDM can be split into direct and indirect effects.
Table 3 shows that the direct effects of the spatial specification dif-
fer from those of the NS specification. For example, the direct effect
of VPD is �0.21 in the SDM and �0.27 in the NS specification. On
the other hand, only the estimate of the indirect effect WDF
appears to be moderately significant. However, the estimate of
the indirect effects are relatively small compared to those of the
direct effects, reinforcing the notion that most of the effects ema-
nate from the home country, thus are local effects. Furthermore,
the indirect effects associated with the temperature and VPD vari-
ables are statistically insignificant in our spatial models, however,
we included them in our models to have a full specification with
lagged exogenous variables.

In all, the respective estimated total effects of temperature and
WDF are largely negative for the NS models, although these effects
increase marginally when we correct for spatial influences. We also
find that the signs of the total (direct plus indirect) effects of
TEMPsq and WDFsq are significantly negative and positive, respec-
tively. As a result, the overall total effect of temperature depends
on the level of temperature itself, and the overall total effect of
WDF depends on the level of WDF. When calculated at their

Table 2
Model Comparison of the Estimation Results of Millet Yield (Yield is in log).

NS SDM

TEMP �0.2034*** (0.0904) �0.2177*** (0.0521)
WDF 0.0227*** (0.0023) 0.0201*** (0.0016)
VPD �0.2704*** (0.1082) �0.1968*** (0.0311)
TEMPsq 0.0107*** (0.0036) 0.0035** (0.0016)
WDFsq �0.0031*** (0.0009) �0.0007*** (0.0002)
TEMP. dev. �0.0131 (0.0101) �0.0071 (0.0065)
Time trend 0.0114*** (0.0031) 0.0144*** (0.0033)
Time trend squared 0.0001*** (0.0000) 0.0001*** (0.0000)
W*TEMP �0.0086 (0.0092)
W*WDF 0.0063** (0.0026)
W*VPD 0.0083 (0.0112)
W*TEMPsq �0.0021 (0.0033)
W*WDFsq 0.0004 (0.0051)
TEMPt�1 �0.0028* (0.0014) �0.0020 (0.0008)
TEMPt�2 0.0052 (0.0036) 0.0015 (0.0040)
WDFt�1 �0.0026** (0.0010) �0.0026** (0.0011)
WDFt�2 0.0073 (0.0061) 0.0007 (0.0064)
Gamma �0.0419*** (0.0052)
LM spatial lag 13.67***
Robust LM spatial lag 4.18**
R2 0.21 0.60

Notes:Standard errors (in parentheses) are clustered at MPA level. W = inverse
distance matrix, cutoff = 910 km. ***p < 0.01, **p < 0.05, *p < 0.1.

27 We use the spml commandin R package ‘‘splm” with options for robust inferential
statistics, bias correction and spatial diagnostics.
28 Thanks to an anonymous reviewer that directed us to these approaches.

29 In the face of significant spillovers, it is expected that the direct effects of the
explanatory variables differ from their estimated coefficients.
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respective means, the overall total effect of temperature is �0.158,
while that of WDF is 0.023. Therefore, a temperature rise is associ-
ated with a fall in millet yield. On the other hand, millet yield
changes in the same direction as WDF in SSA. Overall, our result
suggests that controlling for spatial effects provides larger esti-
mates of the impacts of temperature and WDF on millet yield than
those of non-spatial effects. This result is in line with earlier find-
ings by Hossain and Ahsan (2018), Kumar (2011) that rainfall
patches span longer periods and travel as underground water
and through river channels to positively affect agricultural produc-
tion in neighboring units.

The estimation results in Table 3 further show that VPD is neg-
atively related to millet yield. This finding, supported by plant
physiological understanding and previous empirical studies
(Lobell et al., 2013; Barnabás, Jäger, & Fehér, 2008), signifies that
water loss or high water demand can be disastrous for plant devel-
opment. Further, the strong adverse effect of VPD depicts that our
model is more sensitive to heat than water gain, which is consis-
tent with previous studies such as Urban et al. (2015), Lobell
et al. (2013), Roberts et al. (2012). However, these impacts are
entirely local as we find no evidence of any spatial effect arising
from VPD, as the estimated indirect impacts are minimal and
insignificant.

Spatial lag of millet yield (gamma in Table 3) is negative and sig-
nificant for the spatial model. This means that reduction in millet
production in one country would induce a rise in output in the sur-
rounding countries. The implication of this finding is in tandem
with previous empirical studies (e.g., Cai, Feng, Oppenheimer, &
Pytlikova, 2016; Bohra-Mishra, Oppenheimer, & Hsiang, 2014;
Gray & Mueller, 2012) that find that households use migration as
a risk management strategy against climatic shocks.

In summary, it is clear that the direct effects stochastically
dominate the indirect effects in our model since the direct effect
of WDF is several times higher than its indirect counterpart. Nev-
ertheless, regardless of how small the indirect effect may seem in
magnitude, it is not negligible, signifying that changes in one
country’s parameters, especially WDF, translate to small but sig-
nificant changes in nearby countries. Therefore, their inclusion
in statistical analysis is of first-order importance, as Dell et al.
(2014) suggested.

4.1.2. Temporal lag effects
The results in Table 4 indicate that the impacts of time lags are

dissimilar in the NS model and the SDM. From the NS model, high
temperature values reduce millet output marginally in the follow-
ing year, but not the year after: however, this weak effect becomes
insignificant when spatial influences are accounted for. This weak
effect implies that the impact of a hot year does not persist into the
following year. On the flip side, one-year lag of WDF is negatively
related to yield, but such persistence fades away in the second
year. This sustained effect is unsurprising as a very wet year may
lead to flooding, the impact of which may spill over to the next
year, thus bringing on an adverse effect on crop development the
following growing season.30 The findings here differ with the use
of precipitation instead of WDF, as explained in the supplementary
section (Appendix C).

The above results reflect the delayed effect or the temporal per-
sistence of weather shocks cited in several studies (Hsiang, 2016;
Burke et al., 2015; Dell et al., 2012). Accounting for these ripple ef-
fects is significant if economic activities, such as agriculture, still
catch up or degenerate further after contemporaneous impacts.
In sum, for WDF, the impact of weather shocks continues into
the next time period but fizzles out in the third time period. How-
ever, these delayed effects attenuate rather than dominate con-
temporaneous effects.

4.2. Sensitivity analysis

We employ different strategies to check the robustness of our
baseline estimates. The results of the robustness checks are pre-
sented in Table 5. We truncate the results due to space by present-
ing only estimates for direct and spillover effects and the total
effects of one-period temporal lags of the weather measures. Put
another way, we exclude the estimates of the quadratic terms,
the spatial lag of Y, the second-period temporal lags, and time
trend with its square.

Column 2 in Table 5 shows that including only linear time trend
produces analogous estimated spatial effects of the weather vari-
ables, both in spatial and temporal terms. In like manner, column
3, which utilizes no time trend produces similar results, although
at the expense of a marginal decrease in the coefficients in some
cases. Removing outlier country, South Africa, which reports high
millet yield, does not change our benchmark estimates, as seen
in column 4, implying that outliers do not drive our results. Intro-
ducing more time lags (using three lags instead of two) does not
significantly alter the baseline estimates, as seen in column 5,
although some weather estimates like temperature reduced in
significance.31

We also confirm whether our results are robust to different
weighting schemes by using another spatial weight matrix, k-

Table 3
Direct and Spillover Effects based on the Models’ Estimates from Table 2.

NS SDM

Direct Effecta

TEMP �0.2034*** (0.0904) �0.2187*** (0.0533)
WDF 0.0227*** (0.0023) 0.0210*** (0.0058)
VPD �0.2704*** (0.1082) �0.2106*** (0.0336)
TEMPsq 0.0107*** (0.0036) 0.0031** (0.0016)
WDFsq �0.0031*** (0.0009) �0.0007*** (0.0001)
Indirect Effecta

TEMP �0.0041 (0.0055)
WDF 0.0069** (0.0028)
VPD 0.0042 (0.0096)
TEMPsq �0.0018 (0.0040)
WDFsq 0.0005 (0.0053)
Total Effecta

TEMP �0.2034*** (0.1096) �0.2228*** (0.0436)
WDF 0.0227*** (0.0023) 0.0279*** (0.0011)
VPD �0.2704*** (0.1082) �0.2064*** (0.0412)
TEMPsq 0.0107*** (0.0036) 0.0013** (0.0006)
WDFsq �0.0031*** (0.0009) �0.0002*** (0.0000)
Gamma �0.0419*** (0.0047)

Notes:aThe overall effects with respect temperature depend on the figures reported
here for TEMP and TEMPsq, and the overall effects with respect to WDF depend on
the figures reported here for WDF and WDFsq; see text.Standard errors (in paren-
theses) are clustered at MPA level. W = inverse distance matrix, cutoff 910 km.
***p < 0.01, **p < 0.05, *p < 0.1.

Table 4
Total Effect of Temporal Lags based on the Models’ Estimates from Table 3.

Dependent Variable log (yield) NS SDM

TEMPt�1 �0.0028* (0.0014) �0.0035 (0.0024)
TEMPt�2 0.0052 (0.0036) 0.0032 (0.0041)
WDFt�1 �0.0026** (0.0010) �0.0029** (0.0014)
WDFt�2 0.0073 (0.0061) 0.0019 (0.0011)

Notes:Standard errors (in parentheses) are clustered at MPA level. W = inverse
distance matrix, cutoff = 910 km. ***p < 0.01, **p < 0.05, *p < 0.1.

30 Most SSA countries are already susceptible to flooding (see,http://floodlist.com/
africa) due to natural and anthropogenic causes such as prolonged and heavy rainfall,
deforestation, improper waste disposal, lack of crop management procedures, etc.
31 Additionally, we also checked whether using levels (instead of logs) of yields will
affect the results considerably and find it not to.
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nearest neighbor where k = 4, and weight ‘‘1” is assigned to the four
nearest MPAs to MPA i, and ‘‘0” to others. In the spirit of LeSage
(2014), we do not expect a properly specified spatial model to be
sensitive to the choice of spatial weight.It is possible that the spil-
lover effects do not emanate from just the border countries but dis-
tant countries as well. The results presented in column 6 show that
the direct and indirect effects’ estimates are not significantly dif-
ferent from those following the inverse distance matrix in baseline
estimates, except that the indirect effect of temperature became
slightly significant. Summarily, we evidence that our baseline esti-
mates are broadly similar across a range of empirical
specifications.

4.3. Disaggregating the impacts

Do poor and rich countries react similarly to weather changes?
This debate has been ongoing in the last few years. On the one
hand, Dell et al. (2012) find no difference in climate response
between rich and poor countries, concluding that countries are
affected adversely by temperature increase because they are
already hot and not due to poverty. On the other hand, Burke
et al. (2015) argue that poor and rich countries respond differently
to weather shocks when nonlinearities in weather measures are
included. We want to contribute to the debate by ascertaining
whether our lags’ estimates will differ on account of income differ-
entiation. We examine the impact of weather shocks on millet
yield while controlling for each country’s income class. Using the
income classification of SSA countries from World Development
Indicators, we interact poor countries with temperature and WDF
separately, where a country is labeled as ‘poor’ if it falls in the
low-income category as of 2018 (see, Figure F4 of the Appendix
for income classification of countries).

The results in Table 6 show that the main variables maintained
their signs and significance, but the spatial and temporal lags’
effects reduced in significance. For example, Column 3 shows that
the indirect and temporal lag effects of WDF decreased signifi-
cantly. Moreover, similar to the findings of Burke et al. (2015), tem-
perature increase would adversely affect poor countries more than
rich countries, although the significance is weak. On the contrary,
we find no such effect on interacting with WDF.

4.4. Accounting for adaptation

The most critical challenge of panel model analysis is adapta-
tion. In particular, the use of country fixed effects and time-
trends absorbs long-run atmospheric conditions, which are impor-
tant for understanding how agents adapt to climate change. Said

differently, the panel data model assumes that the relationship
modeled remains unchanged or stationary, even in the face of cli-
mate change. Hence it rules out the possibility of farmers taking
adaptive measures (such as use of weather-resistant cultivars) to
alleviate the adverse effects of climate change, thus presenting a
pessimistic view of its impacts.32 Different methods have been pro-
posed to take account of the possibility of adaptation to climate
change within a panel data setting. For example, Burke and
Emerick (2016) use estimates based on a long differences (LD)
approach to identify how US farmers adapt to climate change.

More recently, Yu et al. (2021) extend the LD approach by
developing a flexible long differences (FLD) technique to estimate
the responsiveness of crop yields to gradual changes in climate.
Unlike the LD approach, the FLD technique allows for time-
varying agricultural adaptation between two periods by interact-
ing a period dummy with climate variables. The parameter esti-
mates from these methods can be argued to provide a better

Table 5
Main Estimates and Robustness Results

(1) Baseline (2) Linear Time (3) No Trend (4) No ZAF (5) 3 Lags (6) 4-NN

Direct effects
TEMP �0.2187*** (0.0533) �0.1923*** (0.0512) �0.2170*** (0.0531) �0.2258*** (0.0651) �0.1224* (0.0930) 0.2281*** (0.0555)
WDF 0.0210*** (0.0058) 0.0205*** (0.0078) 0.0227*** (0.0057) 0.0244*** (0.0077) 0.0108*** (0.0066) 0.0270*** (0.0061)
VPD �0.2106*** (0.0336) �0.226*** (0.0466) �0.2380*** (0.0316) �0.2032*** (0.0433) �0.2451*** (0.0270) 0.2079*** (0.0321)
Indirect effects
TEMP �0.0041 (0.0055) �0.0031 (0.0073) �0.0036 (0.0072) �0.0014 (0.0083) �0.0020 (0.0114) �0.0026* (0.0012)
WDF 0.0069** (0.0028) 0.0063** (0.0030) 0.0063** (0.0032) 0.0059** (0.0027) 0.0030* (0.0014) 0.0046** (0.0020)
VPD 0.0042 (0.0096) 0.0047 (0.0055) 0.0051 (0.0050) 0.0032 (0.0027) 0.0054 (0.0061) 0.0061 (0.0063)
Temporal Effects
TEMPt�1 �0.0035 (0.0024) �0.0024 (0.0047) �0.0026 (0.0047) �0.0030 (0.0035) �0.0011 (0.0053) �0.0032 (0.0046)
WDFt�1 �0.0029** (0.0014) �0.0025* (0.0013) �0.0025* (0.0013) �0.0031 ** (0.0014) �0.0019 (0.0015) �0.0047** (0.0020)
R2 0.60 0.59 0.60 0.58 0.40 0.61

Except stated, all models include time trend and its quadratic term, spatial weight is inverse distance, with errors clustered at the MPA level. Temperature is measured inoC
and VPD in kPa. Columns: (1) baseline specification from Table 2, (2) as in column 1 but only linear time trend, (3) as in column 1 but no time trend, (4) as in column 1 but
dropping South Africa, (5) as in column 1 but adding 3 temporal lags of TEMP and WDF, (6) as in column 1 but using4-NNas spatial weights. ***p < 0.01, **p < 0.05, *p < 0.1.

Table 6
Effects by Income Classification of SSA Countries.

(1) Baseline (2) TEMP (3) WDF

Direct Effect
TEMP �0.2187***

(0.0533)
�0.1942***
(0.0484)

�0.2103***
(0.0510)

WDF 0.0210***
(0.0058)

0.0207***
(0.0051)

0.0197***
(0.0060)

VPD �0.2106***
(0.0336)

�0.2209***
(0.0340)

�0.1918***
(0.0342)

Indirect Effect
WDF 0.0069** (0.0028) 0.0057** (0.0023) 0.0059* (0.0030)
Gamma �0.0419***

(0.0047)
�0.0415***
(0.0046)

�0.0418***
(0.0046)

Temporal Effect
TEMPt�1 �0.0035 (0.0024) �0.0023 (0.0048) �0.0031 (0.0071)
WDFt�1 �0.0029**

(0.0014)
�0.0027*
(0.0015)

�0.0031*
(0.0016)

Interaction
Effect

TEMP*Poor �0.0008*
(0.0004)

WDF*Poor �0.0006 (0.0009)
R2 0.60 0.61 0.61

32 Auffhammer and Schlenker (2014) attenuate this claim by suggesting that the
introduction of nonlinear weather measures introduces cross-sectional variation in
climate, hence the estimated parameters, at least, partially captures long-run
adaptation. However, the extent to which the adaptation effect is captured is still a
subject for debate as it depends on the size of the cross-sectional variation vis-a-vis
location-specific weather variation (see, Carter, Cui, Ghanem, & Mérel (2018) for more
intuition).
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basis for predictions of the impact of future climate changes on
yields because the estimates take account of adaptations by farm-
ers to past climate changes. This argument is premised on the
assumption that there has been sufficient variation in climate vari-
ables in the estimation sample for adaptation to be adequately
captured.

Here, we employ both models to check whether adaptation
occurred within the period of our estimation. We only present
the results here, the construction of the associated model is given
in the supplementary section (Appendix D). The results of both
models are summarized in Table 7. We compare the results from
the LD and FLD approaches to the non-spatial analogue of Eq. (1)
for two reasons. One is for ease of identifying the presence or
otherwise of adaptation using the LD and FLD approaches devoid
of spatial complications. The second is following the specific-to-
general modeling procedure, where we only proceed to a more
complex model if we find evidence of adaptation in the non-
spatial model. The results from Columns 2–3 in the Table 7 show
that the estimates are insignificant across all model specifications.
Consequently, this study does not find evidence that millet yield in
SSA is affected by changes in 5-year and 10-year average weather
conditions.

Furthermore, previous studies like Burke et al. (2015), Dell et al.
(2012) find no evidence that SSA countries adapt during the period
under review, either by way of technological advancement or
knowledge accumulation. Summarily, neither the LD nor the FLD
approach provides evidence of adaptation in SSA countries over
the period considered in this study. The scope of this result could
differ if a more disaggregated dataset (e.g., household or farm
level) is considered. For example, using farm-level dataset, Di
Falco, Doku, and Mahajan (2020), Di Falco (2014) find that local
farmers adapt to climate change in some parts of SSA. Conse-
quently, our result here should not be interpreted to imply the
absence of adaptation to climate change in SSA but, rather, should
be interpreted cautiously with the observational unit in mind.

4.5. Trade mechanism

Weather shocks in an MPA can affect other MPAs’ yields if free
trading exists among contiguous MPAs. Earlier studies have high-
lighted that where free trade exists among countries, the principle
of comparative advantage could re-align countries to focus on
products where they are more efficient and import those products
where they are less efficient.33 Weather is one of the factors that
determine which crop a country is (in)efficient at, thus such country
can (dis)invest in such crop at which it is (in)efficient. Alternatively,
where crop production takes place at border areas (which is the case

for many MPAs as seen in Figure F1 in the Appendix) and given that
most SSA countries’ borders are porous, countries with much harvest
tend to attract resources (including potential farm labor) away from
neighboring countries.

We re-examine our baseline equation using spatial weights to
account for free trade.34 As outlined in Corrado and Fingleton
(2012), Ullah (1998), spatial weight matrices can be created to
reflect spatial interactions based on economic (or regional market)
network. To create this special spatial weights matrix, we subdivide
the entire SSA region into seven economic blocs as specified by the
United Nations Economic Commission for Africa (UNECA) (see,
Table F3 of the Appendix for the list of these blocs and the con-
stituent countries). Among the aims of these blocs is free movement
of persons and goods among member states. Free trade might be
made easier given that most of the MPAs are at border areas, in addi-
tion to the porous nature of these borders. We proceed by assigning
the value 1 to MPAs within the same economic bloc and 0 to others.

The results are displayed in Table 8. Since we are interested in
the spatial effects, the results are truncated to exclude temporal
lags. A look at the weather variables in column 2 shows a qualita-
tive similarity to our baseline estimates in column 1, although
some weather coefficients change noticeably. For instance, the
indirect effect of WDF gained significance, while the indirect
impact of temperature rose marginally. Additionally, the impact
of spatial lag of yields became stronger in the new spatial model.
The result is expected as the spatial weights matrix used for our
baseline analysis may group MPAs who do not trade freely.

Table 7
Alternative Estimation Procedures.

1 (Baseline) 2a (LD) 2b (LD) 3a (FLD) 3b (FLD)

TEMP �0.2034*** (0.0904) �0.1422 (0.1121) �0.1770 (0.2941) �0.1401 (0.1226) �0.1572 (0.2031)
WDF 0.0227*** (0.0023) 0.0165 (0.0318) 0.0096 (0.0167) 0.0131 (0.0364) 0.0104 (0.0177)
VPD �0.2704*** (0.1082) �0.1153 (0.2012) �0.1539 (0.2331) �0.1271 (0.1952) �0.1321 (0.1962)
Db � TEMP 0.0631 (0.0724) 0.0472 (0.0532)
Db �WDF �0.0091 (0.0138) �0.0025 (0.0109)
Db � VPD 0.0818 (0.1749) 0.0596 (0.0839)

Notes:Column (1) is the results of the non-spatial version of Eq. (1). Columns (2a) and (2b) are long differences model estimates of the impact of a change in 5-year (1970–
1974 and 2012–2016) and 10-year (1970–1979 and 2007–2016) average weather conditions on millet yield. Columns (3a) and (3b) are flexible long differences model
estimates of the impact of a change in 5-year (1970–1974 and 2012–2016) and 10-year (1970–1979 and 2007–2016) average weather conditions on millet yield. Tem-
perature is measured inoC and VPD in kPa. ***p < 0.01, **p < 0.05, *p < 0.1.

Table 8
Direct and Spillover Effects using Economic Networks as Spatial Weights.

1 (Baseline) 2 (Economic network)

Direct Effect
TEMP �0.2187*** (0.0533) �0.1919*** (0.0431)
WDF 0.0210*** (0.0058) 0.0258*** (0.0012)
VPD �0.2106*** (0.0336) �0.2581*** (0.0476)
Indirect Effect
TEMP �0.0041 (0.0055) �0.0025* (0.0014)
WDF 0.0069** (0.0028) 0.0076** (0.0030)
Total Effect
TEMP �0.2228*** (0.0436) �0.1944*** (0.0457)
WDF 0.0279*** (0.0011) 0.0334*** (0.0041)
Gamma �0.0419*** (0.0047) �0.0580*** (0.0037)
R2 0.60 0.62

Notes:Except stated otherwise, all models include time trend and its quadratic term,
spatial weight is inverse distance, with errors clustered at the MPA level. Tem-
perature is measured in oC and VPD in kPa. Models: (1) estimates from baseline
specification, (9) as in model 1 but using economic networks (blocs)as spatial
weights. ***p < 0.01, **p < 0.05, *p < 0.1.

33 Earlier studies on comparative advantage, free trade and non-agricultural sector
include Doku and Di Falco (2012), Redding (1999), Leamer and Levinsohn (1995),
Krugman (1987), among others; while works such as Matsuyama (1992), Goldin
(1990) discussed the agricultural sector.

34 We would have preferred to use trade indicators such as price, import or export
indices, but they are either unavailable or incomplete.
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5. Mid-future climate projections (2040–2069)

This section considers the contemporaneous, spillover, and
temporal effects of millet yield to future changes in SSA climatic
events. The conventional method of estimating the potential
impacts is to combine the regression estimates from the baseline
model with forecasted climatic changes derived from global cli-
mate models (GCMs). However, this method, which is the norm
for previous African studies (with exception of Schlenker & Lobell
(2010)) produces point estimates that neglect two crucial sources
of uncertainty - climate and statistical sources. Two exercises are
essential to incorporating these uncertainties - derive projected
changes in relevant weather variables under three climate change
models and re-calibrate the baseline model with inputs from boot-
strapped runs.

5.1. Global climate models (GCMs)

To tackle the first exercise, we use projected daily weather mea-
sures from the following global climate models (GCMs) at a 0.5o

spatial resolution belonging to the CMIP535: the Canadian Center
for Climate (CCC) model (Flato et al., 2000), the Center for Climate
Systems Research (CCSR) model (Sakamoto et al., 2004) and the Par-
allel Climate Model (PCM) (Washington et al., 2000). The choice of
these GCMs against the use of a single model or multi-model predic-
tions is predicated on two factors. One, the selected GCMs predict a
varied range of outcomes, which is in tandem with the expectations
for the sub-Saharan African region as documented in African climate
literature.36 These heterogeneous outcomes amplify the number of
potential scenarios typical of the region under study. The second
and perhaps most important reason for using several GCMs is to cap-
ture climate uncertainty to some degree. Given that there are no per-
fect or best models, the use of a single GCM introduces significant
uncertainty in climate forecast since we do not know for sure what
the future state of the world will be. Although several studies (Moore
et al., 2017; Auffhammer & Schlenker, 2014; Knutti, 2010) have pro-
moted the use of CMIP5 average against the use of a single model
because predictions from this multi-model approach have been con-
sistently shown to outperform those from individual models, Knutti
(2010) notes that this method may smoothen out important hetero-
geneity in individual models, thereby leading to loss of important
information. In spirit of Burke et al. (2015), we employ individual
forecasts from the three GCMs, rather than a single GCM or multi-
model average.37

Also, we employ the business-as-usual scenario (RCP 8.5) from
the GCMs. The decision to use the RCP8.5 scenario is justified by
previous studies like Burke et al. (2015), Dell et al. (2012) that find
no evidence that SSA countries adapt during the period under
review, either by way of technological advancement or knowledge
accumulation. Our results in subsection 4.4 also corroborate their
findings. Moreover, Figure F5 of the Appendix finds little variation
in the weather measures-yield relationship between 1970–2000
and 2001–2017.

We derive the change in weather variables at the end of a future
period (2040–2069, in our case) by differencing the GCMs pro-
jected average weather measures over 2040 to 2069 for a given
grid cell over that of a relevant historical (baseline) period
(1981–2010). This downscaling method helps to remove the bias
introduced by global climate models (GCMs) for current climate
in some locations.38 We recognize that averaging these GCMs tends
to smooth out heterogeneous spatial patterns.

We use MPA-level daily mean precipitation forecasts from the
respective GCMs to construct our projected WDF values for each
MPA, where WDF is the number of days with rainfall above
0.1 mm. For projected future VPD changes, we obtain daily MPA-
level maximum temperature (Th) and minimum temperature (Tl)
and thereafter derive VPD using the conventional formula from
Roberts et al. (2012)

VPD ¼ 0:6107ðeð
17:269Th
227:2þTh

Þ � eð
17:269Tl
227:2þTl

ÞÞ ð2Þ
Given the already hot nature of SSA, there is a high prospect of

regional warming, making it unlikely to obtain a positive effect on
yield from the current projection trend. In like manner, VPD fol-
lows the warming trend because both maximum and minimum
temperatures are projected to increase over time if future socio-
economic conditions mimic past conditions. On the contrary, there
is no unanimity on the future trend of rainfall (wet day). For exam-
ple, Allen et al. (2014) show that for A1B scenario, projected rain-
fall change across the West African coast by 2090 ranges from �9%
to 13% for different GCMs. However, temperature change is antic-
ipated to eclipse rainfall changes (Lobell & Asseng, 2017; Lobell
et al., 2013). Notwithstanding, there is a decline in regional WDF
on average. It is significant to note that one key assumption in
the use of climate models for future predictions is the ceteris pari-
bus assumption, plus the belief that climate will continue to affect
agriculture in the future.

The summary statistics for the projected values of our weather
measures are found in Table 9, and Fig. 3 show the spatial variation
of the predicted changes in weather measures. Suggestively, there
is evidence of future regional warming from the GCMs, although
CCC seems to predict the highest increase by 2069. The trend in
predicted WDF varies across the GCMs. While PCM predicts an
increase in wet day frequency, others report a decrease in WDF.

5.2. Predicted impact from climate change projections

To fulfill the second exercise, we have to integrate the predicted
climatic changes into the response function from Eq. (1) while con-
trolling for statistical (or regression) uncertainty as noted by Burke
et al. (2015). To sidestep statistical (or regression) uncertainty, we
re-estimate Eq. (1) using data from bootstrapped predicted yields
from 1000 bootstrapped residuals and historical climate data to
generate bootstrapped coefficients (this is to control for regression
uncertainty). After that, we obtain bootstrapped estimates of aver-
age predicted impact by varying climate. Finally, a bootstrapped
prediction interval with 95% of projected estimates will be con-
structed from the 2.5th and 97.5th percentiles: hence, distributions
are for 3000 (1000 bootstrapped runs � 3 GCMs) predicted
impacts. The construction of the bootstrapped prediction interval
is detailed in the supplementary section (Appendix E).

The distributions of predicted impacts from the GCMs’ scenarios
spanning 2040–2069 are displayed in Fig. 4. Assuming that present
socio-economic conditions persist, Fig. 4 reveals that the median

35 The fifth phase of the Coupled Model Intercomparison Project (CMIP5) is an
umbrella that contains multi-model datasets. In lieu of presenting detailed descrip-
tion of the simulation processes of these global climate models (GCMs), readers are
referred to Taylor, Stouffer, and Meehl (2012), whereas the dataset can be retrieved
from the CMIP5 websitehttps://pcmdi.llnl.gov/?cmip5.
36 Examples of papers on African agriculture and climate change that use a
combination of these GCMs are Kurukulasuriya and Rosenthal (2013), Blanc (2012),
Schlenker and Lobell (2010), Mendelsohn and Dinar (2009).
37 In principle, climate uncertainty cannot be totally eliminated, no matter the
number of GCMs used, because the influence of climate on aerosols is complex
(Hawkins & Sutton, 2009). At best, uncertainty can be reduced by using forecasts from
several GCMs.

38 Using observed data against climate model’s historical data for the same period
will introduce bias into our predicted estimates because both data may have
dissimilar observations. For more on this form of bias, see Burke et al. (2015),
Auffhammer et al. (2013).
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impacts under the baseline specification are �0.46, �0.43, �0.37,
and �0.44 for the CCC, the CCSR, the PCM and aggregated models,
respectively. Unsurprisingly, the effect from the CCC model is more

severe, given it has the highest temperature rise among the
selected GCMs. The 2.5th percentile, which images a worst-case
scenario, shows dire losses in regional millet yields, ranging

Fig. 4. Projections of Climate Change Effects on Millet Yields across GCMs under RCP8.5 Scenario by Mid-Century (2040–2069), Relative to a 1981–2010 Baseline.

Table 9
Summary Statistics of Projected Climate Change.

Variables Baseline (1981–2010) (1) PCM (2) CCSR (3) CCC

Average Temperature (oC) 25.7 26.2 27.5 28.3
Average WDF 15.6 17.43 14.9 12.14
Average VPD (kPa) 1.431 1.451 1.521 1.586

Notes: All variables are calculated over growing season. The entries in columns 2–4 reflect projections from the GCMs under RCP8.5 scenario for 2040–2069.

Fig. 3. Spatial Variation in Projected Climate Change.
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between 48% to 55% for all climate models by the middle of the
Century. These figures signify an additional 26% to the estimates
derived from observational data.

Overall, unless there is a positive change in carbon emission tra-
jectory, SSA might experience an overall negative impact in millet
output given the amplified damage from warming and the dimin-
ished benefits from reduced rainfall in the near future. However,
accounting for adaptation possibilities and the beneficial effect of
CO2 on crop fertilization will likely dampen this negative impact.

6. Summary

This paper uses a formal spatio-temporal panel data model to
estimate the effect of annual weather fluctuations on millet yield
in sub-Saharan Africa (SSA) for 1970–2016. In addition to using
updated data, this paper is the first to utilize region-specific
weather realizations frommajor production areas of millet produc-
ing countries to analyze the impact of weather variation on millet
yields in SSA. Generally, in tandem with weather-agronomic stud-
ies for the region, we find that a rise in regional warming reduces
millet yield, which is not unexpected since warming increases
plant’s respiration leading to an increase in carbon metabolism
and resulting in a decrease in yields. On the other hand, wet day’s
increase improves millet output. Our work contributes to African
climate studies by revealing that weather changes can indirectly
affect cereal production in bordering countries. The omission of
such spatial effects could bias the impact of climate change on
agriculture in SSA.

By way of comparison, we showed that the estimates from the
spatial models differ significantly from those of non-spatial mod-
els. For example, accounting for spatial effects amplifies the effect
of wet day frequency. The finding is not unexpected since spatial
models have both direct effect within the country, as well as spil-
lovers coming from the spatially lagged covariates, thereby moder-
ating or aggravating the direct effect. On the other hand, we find no
such indirect effects for temperature and vapor pressure deficit.
Furthermore, the effect of wet day frequency on millet yield spills
over time, unlike temperature. Although VPD has no transferred
effect, either in time or space, the significant contemporaneous
relationship suggests that water demand is vital for crop develop-
ment, and ignoring this weather measure could bias the estimated
impact. This finding is robust to several alternative empirical spec-
ifications such as use of more lags, different weight matrix, etc. Fur-
ther, we do not find any evidence of adaptation to gradual changes
in climate over the period considered using national data and long
differences approaches. Consequently, there is a call for nations
within the region to put efforts together to mitigate and adapt to
the harsh effects of climate change on agriculture.

Furthermore, accounting for the temporal effects of weather
measures is necessary for generating a better estimate of the
impact of climate change on agriculture in SSA. Given that several
SSA countries are prone to flooding, many wet days tend to have an
adverse spillover effect in next year’s millet yield. Consequently,
national governments must intensify their efforts in the fight
against flooding by, among others, facilitating land use planning
measures that reduce predisposition to future flooding, educating
citizens on the causes, consequences, and effective means of check-
mating flooding.

The findings in this paper also reinforce the need for interna-
tional research and policy coordination in the fight against climate
change. Such collaborations are pertinent to overcoming climate
change since weather outcomes in a location can affect economic
activities in near-by countries. In addition to forging inter-
continental partnerships to tackle such a global challenge, Africa
needs effective local think-tanks to develop and drive Africa-

centric mitigation and adaptation actions and policies. For exam-
ple, an analogue of the European’s Union’s research and innovation
program, Horizon Europe (2021–2027), which proposes mission
areas on adaptation to climate change, including societal transfor-
mation, should be founded and funded by the African Union (AU)
leaders. Collaborative programs of this sort will help maximize
the impact of the AU’s support for research and innovation in cli-
mate change science and demonstrate its relevance for the African
society and citizens. Such regional institutions would also address
the problems of data availability, accessibility, and quality that
have bedeviled the study of climate change impact analysis in SSA.

Finally, if future socio-economic conditions mimic past experi-
ences in the mid-century, unmitigated warming will likely prevail,
and yield will go down by an additional 26% (assuming land use
remains the same). This drop in millet production accompanied
by a projected increase in the region’s future population necessi-
tates urgent attention in SSA.39

Some caveats are noteworthy in this study: first, we did not
account for the beneficial effect of CO2 on crop fertilization which
will likely attenuate this negative impact. However, the non-
inclusion of CO2 might not significantly impact our results as CO2

fertilization effect might not be that important for millet (see,
McGrath & Lobell (2013)). Second, the processes involved in the
computation of GCMs leave much to be desired as there is no una-
nimity on the trajectory path weather measures will follow in the
future. For example, while some GCMs project a future increase in
rainfall on the West African coasts, others forecast a decrease, and
even the extent of the change differs massively. Summarily, in uti-
lizing the interpretation of results generated from uncertain mod-
els, caution must be exercised. Regardless of how cautious the
results may be, efforts must be combined at different government
strata to adapt to and mitigate these climatic influences. One
strong proposal, among others, is to increase the production area
of tolerant cereal crops such as millet.
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