
Federated Deep Learning for Botnet
Attack Detection in IoT Networks

S I POPOOLA

PhD 2022

Federated Deep Learning for Botnet
Attack Detection in IoT Networks

SEGUN ISAIAH POPOOLA

A thesis submitted in partial fulfilment of the requirements of

Manchester Metropolitan University

for the degree of Doctor of Philosophy

Department of Engineering

Manchester Metropolitan University

in collaboration with Cyraatek Ltd

2022

i

Declaration of Authorship

I, Segun Isaiah POPOOLA, declare that this thesis titled, “Federated Deep
Learning for Botnet Attack Detection in IoT Networks” and the work
presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a
research degree at this University.

• Where any part of this thesis has previously been submitted for a
degree or any other qualification at this University or any other
institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

ii

Abstract

THE wide adoption of the Internet of Things (IoT) technology in various
critical infrastructure sectors has attracted the attention of cyber

attackers. They exploit the vulnerabilities in IoT to form a network of
compromised devices, known as botnet, which is used to launch
sophisticated cyber attacks against the connected critical infrastructure.
Recently, researchers have widely explored the potentials of Machine
Learning (ML) and Deep Learning (DL) to detect botnet attacks in IoT
networks. However, there are still some challenges that need to be
addressed in this area, which include the determination of optimal model
hyperparameters, low classification performance due to imbalanced sample
distribution in the training set, high memory space requirement for network
traffic data storage, inability to detect zero-day attacks, and lack of data
privacy. In order to address these problems, a Federated Deep Learning
(FDL) method is developed for botnet attack detection in IoT-enabled
critical infrastructure.

First, a hyperparameter optimisation method is developed for DL-based
botnet attack detection in IoT networks to achieve high classification
performance. The effectiveness of the method is evaluated using the Bot-IoT
and N-BaIoT datasets, and the DL models achieved 99.99± 0.02% accuracy,
97.85 ± 3.77% precision, 98.72 ± 2.77% recall, and 97.72 ± 4.51% F1 score.
Then, an oversampling algorithm is combined with DL models to improve
the classification performance when the training data is highly imbalanced,
without any significant increase in the overall computation time. This
method improved the precision, recall, and F1 score of the DL models by
1.66− 13.23%. Furthermore, a hybrid DL method is developed to reduce the
amount of memory space required to store the network traffic data. This
method reduced the memory space requirement for DL-based botnet attack
detection by 86.45− 98.26%. Finally, a FDL method, which also employed
the hyperparameter optimisation, class balance, and memory space
reduction methods, is developed to detect zero-day botnet attacks in IoT
edge nodes, while preserving the data privacy of IoT users. The FDL models
achieved high classification performance, and they had low communication
overhead and low network latency.

iii

Acknowledgements

First and foremost, all praise to God, the Father of my Lord Jesus Christ, for
the privilege of formal education from primary school to the level of
pursuing a doctoral degree. When natural circumstances were working
against me and my back was against the wall, He made ways for me where
there was no way. I am an embodiment of His mercies, grace, favour,
provision, and faithfulness. His hands provided all that I needed for a
successful completion of my studies. He gave me supernatural wisdom,
knowledge, and understanding of deep things in my subject areas. To God
alone be all the glory!

Special thanks to my supervisory team for their immense contributions to the
successful completion of my study. My principal supervisor, Prof Bamidele
Adebisi, connected me to the opportunities that funded my research as well
as collaborations that improved the quality and international reputation of
the work. My first supervisor, Prof Mohammad Hammoudeh, connected
me to potential employability opportunities for my future career. The team
provided an excellent academic and administrative leadership, mentorship,
encouragement, inspiration, support, and insightful comments throughout
the journey.

I want to express my sincere appreciation to the management of Cyraatek
Ltd UK and the Faculty of Science & Engineering at the Manchester
Metropolitan University for the full-time scholarship to carry out this study.
The directors of Cyraatek Ltd UK, Mr Akinbami Ande and Dr Ruth Ande,
provided the required technical and financial resources as well the
conducive work environment for the research work. Also, I appreciate the
technical support of Mr Fatai Batatunde Kassim; he setup and configured
the high-performance computer and the software that was used for the
research.

Finally, I would like to thank my parents, family, and friends for their
understanding and support all the way. I appreciate all the support,
contributions, and encouragement of my father, Mr Sunday Popoola, my

iv

mother, Mrs Olanike Popoola, my sister, Mrs Oluwatosin Nwaubani, and
my brother, Oluwafunso Popoola. Also, I appreciate the family of Mr & Dr
Olamide Jogunola for hosting me in their apartment on my arrival in the
UK. I would like to also acknowledge the support of the Overseas
Fellowship of Nigerian Christians (OFNC), especially the Manchester
Branch. Special thanks to Dr Victor Nwegbu and his wife for their love and
support for my family when we needed a bigger accommodation and when
my wife was pregnant.

v

To my lovely family,

Inioluwa and Toluwanimi
I want to thank you so much for your love, prayers, encouragement, support, and
understanding. You both sacrificed so much to enable me to reach this point and I
could not have done it without you. I love you dearly You are the best.

vi

Contents

Abstract ii

Acknowledgements iii

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Research Questions . 4
1.2 Research Aim . 5
1.3 Research Objectives . 5
1.4 Main Contributions . 6
1.5 Thesis Organisation . 8
1.6 List of Publications . 10

1.6.1 Journal Papers . 10
1.6.2 Conference Paper . 10
1.6.3 Book Chapter . 10
1.6.4 Submitted Journal Papers (Under review) 11

2 Concepts and Literature Review 12
2.1 Internet of Things and Botnet Attacks 12
2.2 Datasets for Botnet Detection in IoT Network 14
2.3 Centralised Learning for Botnet Detection 17

2.3.1 Model Hyperparameter Selection 18
2.3.2 Class Imbalance in the Training Set 19
2.3.3 Feature Dimensionality Reduction 21

2.4 Federated Learning for Botnet Detection 27
2.5 Research Gaps . 28
2.6 Chapter Summary . 34

vii

3 Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection 35
3.1 Introduction . 35
3.2 Model Hyperparameter Optimisation Method 36
3.3 Model Development and Experiment 41
3.4 Result Analysis and Discussion 45

3.4.1 Optimal Numbers of Hidden Layers and Hidden Units 45
3.4.2 Optimal Learning Rates 53
3.4.3 Optimisers . 55
3.4.4 Optimal Activation Functions 58
3.4.5 Optimal Batch Sizes . 60
3.4.6 Optimal Number of Epochs 61

3.5 Chapter Summary . 66

4 SMOTE-DL: An Algorithm for Imbalanced Network Traffic
Classification 68
4.1 Introduction . 68
4.2 SMOTE-DL for Imbalanced Network Traffic Classification . . 69

4.2.1 Synthetic Minority Oversampling Technique 69
4.2.2 Recurrent Neural Network 70
4.2.3 Long Short-Term Memory 71
4.2.4 Gated Recurrent Unit 72

4.3 Model Development and Experiment 73
4.4 Result Analysis and Discussion 75

4.4.1 Generation of Synthetic Network Traffic Data 75
4.4.2 Robustness against Under-fitting and Over-fitting . . . 76
4.4.3 Performance of the DL and SMOTE-DL Models 78

4.5 Chapter Summary . 80

5 Hybrid Deep Learning for Memory-Efficient Botnet Detection 82
5.1 Introduction . 82
5.2 Hybrid Deep Learning Framework 83

5.2.1 LSTM Autoencoder . 83
5.2.2 Bidirectional LSTM . 86

5.3 Model Development and Experiment 87
5.4 Result Analysis and Discussion 88

5.4.1 Feature Dimensionality Reduction 89
5.4.1.1 The Original Bot-IoT Dataset 89
5.4.1.2 The Balanced Bot-IoT Dataset 90

viii

5.4.1.3 The N-BaIoT Dataset 92
5.4.2 Classification Performance of the LAE-BLSTM Models 93

5.4.2.1 Binary Classification: The Original Bot-IoT
Dataset . 93

5.4.2.2 Binary Classification: The N-BaIoT Dataset . 96
5.4.2.3 5-Class Classification: The Original Bot-IoT

Dataset . 98
5.4.2.4 10-Class Classification: The N-BaIoT Dataset 101
5.4.2.5 11-Class Classification: The Original Bot-IoT

Dataset . 102
5.5 Chapter Summary . 105

6 Federated Deep Learning for Zero-Day Botnet Attack Detection 106
6.1 Introduction . 106
6.2 Zero-Day Botnet Attack Scenarios 107
6.3 Federated Deep Learning Method 108
6.4 Results Analysis and Discussion 111

6.4.1 Centralised Deep Learning Models 111
6.4.2 Localised Deep Learning Models 113
6.4.3 Federated Deep Learning Models 119

6.5 Chapter Summary . 124

7 Conclusion and Future Work 125
7.1 Conclusion . 125

7.1.1 Model Hyperparameter Optimisation 125
7.1.2 Imbalanced Network Traffic Classification 126
7.1.3 Memory-Efficient Botnet Attack Detection 126
7.1.4 Zero-Day Botnet Attack Detection 127

7.2 Recommendations for Future Work 127
7.2.1 Implementation of FDL on Real IoT Hardware 127
7.2.2 Advanced Aggregation Methods for Robust FDL . . . 128
7.2.3 Securing FDL Models against Adversarial Attacks . . . 128

Bibliography 129

ix

List of Figures

1.1 Critical national infrastructure sectors in the United Kingdom 1
1.2 Thematic organisation of the thesis 9

2.1 Basic architecture of IoT . 12
2.2 Basic architecture of a botnet . 14

3.1 DNN model architecture . 37
3.2 Framework for the development of an optimal DNN-based

botnet detection model . 41
3.3 Confusion matrix of binary DNN model with optimal

numbers of hidden layers and hidden units based on the
Bot-IoT dataset . 47

3.4 Training and validation losses of binary DNN model with
optimal numbers of hidden layers and hidden units based on
the Bot-IoT dataset . 47

3.5 Confusion matrix of 5-class DNN model with optimal
numbers of hidden layers and hidden units based on the
Bot-IoT dataset . 48

3.6 Training and validation losses of 5-class DNN model with
optimal numbers of hidden layers and hidden units based on
the Bot-IoT dataset . 49

3.7 Confusion matrix of 11-class DNN model with optimal
numbers of hidden layers and hidden units based on the
Bot-IoT dataset . 50

3.8 Training and validation losses of 11-class DNN model with
optimal numbers of hidden layers and hidden units based on
the Bot-IoT dataset . 51

3.9 Confusion matrix of binary DNN model with optimal
numbers of hidden layers and hidden units based on the
N-BaIoT dataset . 52

x

3.10 Training and validation losses of binary DNN model with
optimal numbers of hidden layers and hidden units based on
the N-BaIoT dataset . 52

3.11 Confusion matrix of 10-class DNN model with optimal
numbers of hidden layers and hidden units based on the
N-BaIoT dataset . 54

3.12 Training and validation losses of 10-class DNN model with
optimal numbers of hidden layers and hidden units based on
the N-BaIoT dataset . 54

3.13 Confusion matrix of binary DNN model with Nadam
optimiser based on the Bot-IoT dataset 57

3.14 Training and validation losses of binary DNN model with
Nadam optimiser based on the Bot-IoT dataset 57

3.15 Confusion matrix of 10-class DNN model with Nadam
optimiser based on the N-BaIoT dataset 59

3.16 Training and validation losses of 10-class DNN model with
Nadam optimiser based on the N-BaIoT dataset 59

3.17 Confusion matrix of 5-class DNN model with 10 epochs based
on the Bot-IoT dataset . 63

3.18 Training and validation losses of 5-class DNN model with 10
epochs based on the Bot-IoT dataset 63

3.19 Confusion matrix of 11-class DNN model with 15 epochs
based on the Bot-IoT dataset . 64

3.20 Training and validation losses of 11-class DNN model with 15
epochs based on the Bot-IoT dataset 64

3.21 Confusion matrix of 10-class DNN model with 15 epochs
based on the Bot-IoT dataset . 65

3.22 Training and validation losses of 11-class DNN model with 15
epochs based on the Bot-IoT dataset 65

4.1 Framework for the development of SMOTE-DL model 74
4.2 Sampling time of the SMOTE method 76
4.3 Cross-entropy loss of DL models during training and validation 77
4.4 Cross-entropy loss of SMOTE-DL models during training and

validation . 78
4.5 Confusion matrix of the SMOTE-LSTM model 79
4.6 Training time of DL and SMOTE-DL models 80
4.7 Testing time of DL and SMOTE-DL models 81

xi

5.1 Framework for the development of the LAE-BLSTM models . 88
5.2 Training loss of the LAE model based on the original Bot-IoT

dataset . 89
5.3 Validation loss of the LAE model based on the original Bot-IoT

dataset . 90
5.4 Encoding time of the LAE model based on the original Bot-IoT

dataset . 91
5.5 Training loss of the LAE model based on the balanced Bot-IoT

dataset . 91
5.6 Validation loss of the LAE model based on the balanced Bot-

IoT dataset . 92
5.7 Encoding time of the LAE model based on the balanced Bot-

IoT dataset . 92
5.8 Training loss of the LAE model based on the N-BaIoT dataset 93
5.9 Validation loss of the LAE model based on the N-BaIoT dataset 94
5.10 Encoding time of the LAE model based on the N-BaIoT dataset 94
5.11 Training loss of the binary LAE-BLSTM model based on the

original Bot-IoT dataset . 95
5.12 Validation loss of the binary LAE-BLSTM model based on the

original Bot-IoT dataset . 96
5.13 Training loss of the binary LAE-BLSTM model based on the

N-BaIoT dataset . 97
5.14 Validation loss of the binary LAE-BLSTM model based on the

N-BaIoT dataset . 98
5.15 Training loss of the 5-class LAE-BLSTM model based on the

original Bot-IoT dataset . 99
5.16 Validation loss of the 5-class LAE-BLSTM model based on the

original Bot-IoT dataset . 100
5.17 Training loss of the 10-class LAE-LSTM model based on the

N-BaIoT dataset . 101
5.18 Validation loss of the 10-class LAE-LSTM model based on the

N-BaIoT dataset . 102
5.19 Training loss of the 11-class LAE-BLSTM model based on the

balanced Bot-IoT dataset . 103
5.20 Validation loss of the 11-class LAE-BLSTM model based on the

balanced Bot-IoT dataset . 104

6.1 FDL architecture for zero-day botnet attack detection in IoT
edge nodes . 110

xii

6.2 Training time of the LDL models based on the Bot-IoT dataset 115
6.3 Testing time of the LDL models based on the Bot-IoT dataset . 115
6.4 Memory sizes of the Bot-IoT dataset in the IoT edge nodes . . 116
6.5 Training time of the LDL models based on the N-BaIoT dataset 117
6.6 Testing time of the LDL models based on the N-BaIoT dataset 118
6.7 Memory sizes of the N-BaIoT dataset in the IoT edge nodes . . 118
6.8 Classification performance of the FDL model based on the Bot-

IoT dataset . 119
6.9 Training time of the FDL models based on the Bot-IoT dataset 120
6.10 Testing time of the FDL models based on the Bot-IoT dataset . 121
6.11 Classification performance of the FDL model based on the N-

BaIoT dataset . 121
6.12 Training time of the FDL models based on the N-BaIoT dataset 122
6.13 Testing time of the FDL models based on the N-BaIoT dataset 123

xiii

List of Tables

2.1 Total network traffic samples in the Bot-IoT dataset 16
2.2 Total network traffic samples in the N-BaIoT dataset 16
2.3 Sample distribution of network traffic data in the training set

of Bot-IoT dataset . 20
2.4 Dimensionality Reduction of Network Traffic Features Based

on AE method . 23
2.5 Dimensionality Reduction of Network Traffic Features in Bot-

IoT Dataset . 23
2.6 Review of dimensionality reduction and class balance methods 25
2.7 Review of related works . 28

3.1 Distribution of the network traffic samples in the Bot-IoT dataset 43
3.2 Distribution of the network traffic samples in the N-BaIoT

dataset . 43
3.3 DNN Model Hyperparameters 44
3.4 Binary classification performance for different hidden layers

and hidden units based on the Bot-IoT dataset 46
3.5 5-class classification performance for different hidden layers

and hidden units based on the Bot-IoT dataset 48
3.6 11-class classification performance for different hidden layers

and hidden units based on the Bot-IoT dataset 49
3.7 Binary classification performance for different hidden layers

and hidden units based on the N-BaIoT dataset 51
3.8 10-class classification performance for different hidden layers

and hidden units based on the N-BaIoT dataset 53
3.9 Classification performance of DNN models for different

learning rates . 55
3.10 Classification performance of DNN models for different

optimisers based on the Bot-IoT dataset 56
3.11 Classification performance of DNN models for different

optimisers based on the N-BaIoT dataset 58

xiv

3.12 Classification performance of DNN models for different
activation functions . 60

3.13 Classification performance of DNN models for different batch
sizes . 61

3.14 Classification performance of DNN models for different
number of epochs . 62

3.15 Optimal sets of hyperparameters for DNN models 66
3.16 Classification performance of the optimal DNN models 66

4.1 Class-imbalance ratio of 11-Class Bot-IoT dataset 75
4.2 New training set for 11-class classification 76
4.3 Classification performance of the DL and SMOTE-DL models 79

5.1 Performance of the binary LAE-BLSTM model based on the
original Bot-IoT dataset . 96

5.2 Performance of the binary LAE-BLSTM model based on the
N-BaIoT dataset . 98

5.3 Performance of the 5-class LAE-BLSTM model based on the
original Bot-IoT dataset . 100

5.4 Performance of the 10-class LAE-BLSTM model based on the
N-BaIoT dataset . 103

5.5 Performance of the 11-class LAE-BLSTM model based on the
original Bot-IoT dataset . 105

6.1 Sample distribution of the zero-day botnet attack traffic data
based on the Bot-IoT dataset . 108

6.2 Sample distribution of the zero-day botnet attack traffic data
based on the N-BaIoT dataset 108

6.3 Classification performance of the CDL model based on the
Bot-IoT dataset . 111

6.4 Classification performance of the CDL model based on the N-
BaIoT dataset . 112

6.5 Classification performance of the LDL models based on the
Bot-IoT dataset . 114

6.6 Classification performance of the LDL models based on the N-
BaIoT dataset . 116

6.7 Summary of research findings 123

xv

List of Abbreviations

5G Fifth Generation

6G Sixth Generation

Adam Adaptive Moment Estimation

ADSYN Adaptive Synthetic

AE Autoencoder

AI Artificial Intelligence

ANN Artificial Neural Network

AUC Area Under Curve

BDS Botnet Detection System

BLSTM Bidirectional Long Short-Term Memory

BNN Binarised Neural Network

BPTT Back Propagation Through Time

C&C Command and Control

CAE Convolutional Autoencoder

CDL Centralised Deep Learning

CNN Convolutional Neural Network

xvi

CPBR Consumer Privacy Bill of Rights

CPS Cyber Physical System

DBM Deep Boltzmann Machine

DBN Deep Belief Network

DDoS Distributed Denial of Service

DeAE Denoising Autoencoder

DE Data ex-filtration

DL Deep Learning

DNN Deep Neural Network

DoS Denial of Service

DQN Deep Q-Network

DRL Deep Reinforcement Learning

DT Decision Tree

ELU Exponential Linear Unit

FDI False Data Injection

FDL Federated Deep Learning

FL Federated Learning

FNN Feedforward Neural Network

FN False Negative

FP False Positive

FTP File Transfer Protocol

xvii

GBDT Gradient Boosted Decision Tree

Gbps Gigabit per second

GDPR General Data Protection Regulation

GRU Gated Recurrent Unit

GR Gain Ratio

GWO Grey Wolf Optimisation

HTTP Hypertext Transfer Protocol

ICS Industrial Control System

IEEE Institute of Electrical and Electronics Engineers

IFG Information Gain

IIoT Industrial Internet of Things

IoHT Internet of Healthcare Things

IoMT Internet of Medical Things

IoT Internet of Things

IRC Internet Relay Chat

KL Keylogging

kNN k-Nearest Neighbour

LAE Long Short-Term Memory Autoencoder

LAN Local Area Network

LDL Local Deep Learning

LR Logistic Regression

xviii

LSTM Long Short-Term Memory

MDPI Multidisciplinary Digital Publishing Institute

MEC Mobile Edge Computing

MLP Multilayer Perceptron

ML Machine Learning

NB Naive Bayes

OCSVM One-Class Support Vector Machine

OSELM Online Sequential Extreme Learning Machine

OSF Operating System Fingerprinting

P2P Peer-to-Peer

PCA Principal Component Analysis

PCC Pearson Correlation Coefficient

PCE Pearson Correlation and Entropy

PSO Particle Swarm Optimisation

PV Photovoltaic

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit

RFMDA Random Forest Mean Decrease Accuracy

RF Random Forest

RMSprop Root Mean Squared Propagation

RNN Recurrent Neural Network

xix

RO Random Over-sampling

RT Random Tree

RU Random Under-sampling

SAE Stacked Autoencoder

SGD Stochastic Gradient Descent

SIoT Satellite Internet of Things

SMOTE Synthetic Minority Oversampling Technique

SNN Self-normalising Neural Network

SSAE Stacked Sparse Autoencoder

SS Service Scanning

SVM Support Vector Machine

t-SNE t-distributed Stochastic Neighbour Embedding

Tbps Terabit per second

TCP Transmission Control Protocol

TN True Negative

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution

TP True Positive

UAV Unmanned Aerial Vehicles

UDP User Datagram Protocol

VAE Variational Autoencoder

VIoT Vehicular Internet of Things

xx

XGBoost Extreme Gradient Boosting

XMP X-Mean clustering with Particle Swarm Optimisation

xxi

Nomenclature

Φ Trainable model parameters

ψ Optimiser

σh Hidden layer activation function

σy Output layer activation function

θ Cross-entropy loss function

ỹ Predicted class label vector

b Bias vector

c Number of unique class labels

c number of class labels in a data set

d Feature dimensionality

e Number of epochs

h Hidden state vector

L Cross-entropy loss

lh Hidden layer of a neural network

li Input layer of a neural network

lo Output layer of a neural network

n Total number of samples in a data set

nb Batch size

xxii

r Learning rate

u Hidden units in a neural network

W Weight matrix

X Network traffic feature matrix

x Network traffic sample

Xma Network traffic feature matrix of a majority class

Xmi Network traffic feature matrix of a minority class

y True class label vector

Chapter 1

Introduction

The Internet of Things (IoT) paradigm enables physical objects in critical
infrastructure1 to connect and exchange useful information via the Internet
for intelligent decision making with little or no human intervention. The IoT
technology enables smart operations in critical national infrastructure
sectors shown in Figure 1.1 [1]–[3]. For instance, in modern healthcare
systems, IoT facilitates activity recognition, fitness assistance, vital sign
monitoring, daily dietary tracking, and sleep monitoring [4]. Also,
IoT-based solutions have been developed to combat the current COVID-19
pandemic [5], [6]. In smart grids, IoT facilitates a bidirectional flow of

FIGURE 1.1: Critical national infrastructure sectors in the
United Kingdom

1Critical infrastructure are the national infrastructure whose loss or compromise could
affect the integrity or availability of essential services and national security [1].

1

Chapter 1. Introduction

electricity and data for efficient power delivery and energy management [7].
Electricity distribution companies install smart meters in buildings to
measure energy consumption and the data is automatically transmitted to a
cloud server. On the other hand, electricity consumers can manage their
energy usage more efficiently. In agriculture, IoT enables livestock farmers
to: monitor diseases, stress, feed intake, rumination, and weather condition;
track and control of wildlife and whole herd; and automate milking as well
as food and water supply [8]. In logistics, IoT facilitates the transportation,
warehousing, loading, unloading, carrying, packaging, processing, and
distribution [9]. In near future, the sixth generation (6G) wireless
communication technology will expand the real-life deployment of
emerging IoT applications such as Internet of Healthcare Things (IoHT),
Vehicular IoT (VIoT) and autonomous driving, Unmanned Aerial Vehicles
(UAV), Satellite IoT (SIoT), and Industrial IoT (IIoT) [10], [11].

Unfortunately, the increased inter-connectivity and the use of Industrial
Control Systems (ICS) renders smart critical infrastructures vulnerable to
cyber attacks. Most of the IoT devices that are in use today were developed
with little or no consideration for cyber security [12]. Meanwhile, security
breaches in IoT networks may lead to wider network congestion, loss of
confidential information, corruption of sensitive data, financial loss,
application downtime or even loss of lives in critical use cases [13]–[15].
Nowadays, hackers form a network of compromised IoT devices, known as
botnet, to launch different types of cyber-attack against Internet-enabled
infrastructures [16]–[21]. ICS and IoT devices have been proven to be easily
hackable and remotely controllable to form IoT-based botnets [22], [23].
Successful exploitation of a single vulnerable IoT device can lead to leakage
of sensitive information and serious security breaches in the wider
IoT-enabled system [24]. This makes them an attractive target to diverse
botnet attacks, especially when they are deployed in critical environments.
In September 2016, Mirai botnet compromised several IoT devices to launch
Distributed Denial of Service (DDoS) attack traffic of up to 620 Gigabit per
second (Gbps) against a web server [25]. Also, in October 2016, a web-host
and cloud service provider, Dyn, was hit with DDoS attack traffic of about
1.1 Terabit per second (Tbps). Mozi botnet was first discovered in October
2019. It accounted for close to 90% of the total IoT network traffic monitored
by IBM Security X-Force from that time through June 2020; this incidence
has increased IoT attack volume by 400%, compared to the total IoT attack
cases in the last two years [26]. Cybercriminals can manipulate the energy

2

Chapter 1. Introduction

market for a significant payoff of up to $24 million if they have access to
50,000 high-wattage IoT devices for just three hours a day, 100 days a year
[27], [28]. With the on-going COVID-19 pandemic, corporate and IoT
networks have become more vulnerable to botnet attacks because these
networks are now being accessed remotely more often than before [29], [30].
Most recently, a new IoT Peer-to-Peer (P2P) botnet, named HEH, exploited
insecure Telnet services on ports 23 and 232 to wipe out all the data in IoT
devices using the brute force method [31]. Therefore, IoT-enabled critical
infrastructure must be properly monitored and protected to detect and
prevent botnet attacks.

Information and network protection mechanisms such as encryption,
authentication, and access control may not be strong enough to protect
IoT-enabled critical infrastructure against botnet attacks [32], [33].
Therefore, an efficient Botnet Detection System (BDS) is needed to
complement existing security mechanisms. BDS will scan and monitor all
the network traffic traces generated within IoT networks to detect botnet
attacks. This system can be developed and installed at the gateways of IoT
networks to alert network administrators and prevent botnet attacks.
Machine Learning (ML) has become a popular method for intrusion
detection in IoT networks [34]–[38]. Popular ML methods include Random
Forest (RF), Support Vector Machine (SVM), Decision Tree (DT), k-Nearest
Neighbour (kNN), Random Tree (RT), and Naive Bayes (NB) [39]. However,
shallow neural networks cannot process big data effectively because they
have a limited number of trainable parameters. Deep Learning (DL) is an
advanced ML method that has more than one hidden layer in its neural
network, and it learns the feature representation of training data using
multiple levels of abstraction [40]. Common DL architectures include Deep
Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent
Neural Network (RNN), Deep Belief Network (DBN), Autoencoder (AE),
and Restricted Boltzmann Machine (RBM) [41]. However, traditional
DL-based BDS employ a centralised approach, where all the IoT edge nodes
transmit their network traffic data to a central cloud server for model
training. This approach does not preserve the privacy of the network device
owners because it involves the aggregation of private network data from
multiple sources. On the other hand, the classification performance of a DL
model that is trained locally is limited to the network traffic data within a
specific application.

3

Chapter 1. Introduction

Recently, strict laws such as the General Data Protection Regulation
(GDPR)2 and the Consumer Privacy Bill of Rights (CPBR)3 were enacted to
address data privacy concerns. Unfortunately, Centralised DL (CDL)
method does not guarantee the privacy and security of IoT devices because
it involves the transmission of network traffic features from all participating
IoT devices to a central cloud server. Specifically, the use of a third-party
cloud server for CDL will introduce a high risk of privacy leakage in IoT
systems because the network traffic features may contain sensitive
information about the owners of the IoT devices [42]–[45]. The violation of
data privacy protection regulations can lead to a serious penalty. In the case
of GDPR, the fine of data privacy breach could be as high as €10 million4.
Federated Learning (FL) is an advanced Artificial Intelligence (AI)
technique which seeks to protect the privacy of participating nodes without
a significant compromise in the classification performance and the
generalisation ability of the DL models [46]–[49]. Basically, this concept
involves the training of Local DL (LDL) models with private data sets, and
the aggregation of their parameters in a central cloud server. Therefore, this
research seeks to explore the potentials of Federated Deep Learning (FDL)
for privacy-preserving botnet attack detection in IoT-enabled critical
infrastructure.

1.1 Research Questions

This thesis contributes to the current research efforts that seek to develop
efficient methods for botnet attack detection in IoT-enabled critical
infrastructure by answering the following questions:

(a) What are the state-of-the-art ML, DL, and FL methods that have been
proposed for botnet attack detection in IoT networks? What are the
current research gaps in the ML, DL, and FL-based botnet attack
detection methods?

(b) How can the right set of hyperparameters (the number of hidden
layers, the number of hidden units, the learning rate, the optimiser, the
activation function, the batch size, and the number of epochs) be
determined for efficient DL-based botnet attack detection in

2https://gdpr.eu/data-privacy/
3https://www.congress.gov/bill/116th-congress/senate-bill/2968/text
4https://gdpr-info.eu/issues/fines-penalties/

4

Chapter 1. Introduction

IoT-enabled critical infrastructure? Considering both binary and
multi-class classification scenarios, what are the optimal sets of
hyperparameters when the Bot-IoT and N-BaIoT data sets are used for
DL model development? What is the classification performance of the
optimal DL models based on accuracy, precision, recall, and F1 score?
What is the computational efficiency of the optimal DL models in
terms of training time and testing time?

(c) How can the classification performance of the DL-based botnet
detection method be improved when the IoT network traffic data that
is available for training is highly imbalanced?

(d) How can the memory space required for network traffic data storage
in IoT central cloud server be reduced without compromising the
classification performance of the DL-based botnet detection models?

(e) How can zero-day botnet attacks be detected with high classification
performance, low communication overhead, low memory requirement,
and low latency without compromising the data privacy of IoT network
users? How can such an efficient intrusion detection be achieved in an
heterogeneous network environment?

1.2 Research Aim

The aim of this research is to develop FDL method for efficient botnet attack
detection in IoT-enabled critical infrastructure.

1.3 Research Objectives

The specific objectives of this research are to:

(a) conduct a comprehensive literature review to identify and understand
the recent classes of botnet attacks, the most relevant network traffic
data sets, and the state-of-the-art ML and DL methods that researchers
have proposed for botnet attack detection in IoT networks;

(b) develop a hyperparameter optimisation algorithm for DL-based botnet
attack detection models to improve their classification performance i.e.
accuracy, precision, recall, and F1 score;

5

Chapter 1. Introduction

(c) develop an oversampling algorithm to improve the classification
performance of DL-based botnet attack detection models when the
training data is highly imbalanced, without any significant increase in
the overall computation time;

(d) develop a hybrid DL algorithm to reduce the feature dimensionality of
network traffic data, consequently reducing the size of network
bandwidth required to transmit the data from the IoT edge nodes to
the central cloud server, and also reducing the amount of memory
space required to store the data on the central cloud server;

(e) develop a FDL algorithm to detect zero-day botnet attacks in
IoT-enabled critical infrastructure with high classification
performance, low communication cost, low network latency, and data
privacy preservation guarantee.

1.4 Main Contributions

The main contributions of this thesis are summarised as follows:

(a) a hyperparameter optimisation method is proposed to determine the
most appropriate combination of the numbers of hidden layers and
hidden units, the learning rate, the optimiser, the activation function,
the batch size, and the number of epochs for DL-based botnet attack
detection models to achieve an optimal classification performance.
The proposed method helps in choosing the best sets of
hyperparameters that are most suitable to train efficient DNN-based
botnet attack detection models to perform binary, 5-class, 10-class, and
11-class classification of network traffic data using the Bot-IoT and
N-BaIoT data sets. In all the classification scenarios, the models
achieved 99.99 ± 0.02% accuracy, 97.85 ± 3.77% precision,
98.72± 2.77% recall, and 97.72± 4.51% F1 score. This contribution was
published as chapter in Springer’s book [50] and another research
paper is currently under peer-review for publication in IEEE Internet
of Things Journal;

(b) a framework, which combines Synthetic Minority Oversampling
Technique (SMOTE) with a DL architecture, is proposed to improve
the classification performance of DL-based botnet attack detection
models when the network traffic data in the training set is highly

6

Chapter 1. Introduction

imbalanced. Considering the highly imbalanced Bot-IoT data set, the
proposed oversampling method helps in generating a total of 52139
synthetic minority samples in less than 950 milliseconds. This
improved the precision, recall, and F1 score of DNN, RNN, Long
Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) models
by 2.07− 13.23%, 1.66− 10.56%, and 2.66− 12.43%, respectively. This
contribution was published in Elsevier’s Computers & Electrical
Engineering journal [51] and MDPI’s Sensors journal [52];

(c) a hybrid DL method, which employs LSTM Autoencoder (LAE) and a
Bidirectional LSTM (BLSTM) architectures, is proposed to reduce the
feature dimensionality of the network traffic data without any
significant adverse effect on the classification performance.
Consequently, the amount of memory space required to store the data
on the central cloud server is reduced. The hybrid DL model reduced
the feature dimensionality of the Bot-IoT data set by 72.97 − 78.38%,
and the memory space requirement reduced by 86.45 − 89.19%. For
the binary, 5-class, and 11-class classification scenarios, the hybrid DL
model achieved 99.90 ± 0.16% accuracy, 99.07 ± 0.62% precision,
98.25± 1.11% recall, and 98.63± 0.63% F1 score. The hybrid DL model
reduced the feature dimensionality of the N-BaIoT data set by
93.04 − 96.52%, and the memory space requirement reduced by
96.52− 98.26. For the binary and 10-class classification scenarios, the
hybrid DL model achieved 99.94 ± 0.05% accuracy, 99.71 ± 0.29
precision, 99.69 ± 0.34% recall, and 99.70 ± 0.32% F1 score. This
contribution was published in IEEE Internet of Things journal [53] and
MDPI’s Electronics journal [54];

(d) a FDL method, which combines FL and DL algorithms, is proposed for
zero-day botnet attack detection in IoT edge devices to reduce data
transmission cost, reduce network latency, and preserve the privacy of
IoT network users. FDL models are developed with the 11-class
BoT-IoT and 10-class N-BaIoT datasets to evaluate the effectiveness of
the proposed method. The FDL model achieves high classification
performance, preserves the data privacy of critical infrastructure users,
has low communication overhead, requires low memory space for the
storage of network traffic data in the edge nodes, and has low network
latency. The FDL model outperformed the CDL and LDL models. This
contribution was published in IEEE Internet of Things journal [55] and

7

Chapter 1. Introduction

IEEE Vehicular Technology conference proceeding [56].

1.5 Thesis Organisation

The remaining parts of this thesis are organised as follows: In Chapter 2, the
overview of the concepts of IoT and botnet is presented. Then, the
state-of-the-art ML, DL, and FL methods that were proposed for botnet
attack detection in IoT networks were reviewed. Furthermore, the network
traffic data sets that were used to develop ML-based, DL-based, and
FL-based botnet attack detection in IoT networks are reviewed. Finally, the
current research gaps in this area of research are identified and discussed. In
Chapter 3, a model hyperparameter optimisation algorithm is proposed for
DL-based botnet attack detection in IoT-enabled critical infrastructure.
Optimised DNN models are developed with the Bot-IoT and N-BaIoT
dataset to evaluate the effectiveness of the optimisation method in binary
and multi-class classification scenarios. In Chapter 4, a framework named
SMOTE-DL is proposed to improve the classification performance of
DL-based botnet attack detection in IoT-enabled critical infrastructure
whenever the network traffic data in the training set is highly imbalanced.
SMOTE-DNN, SMOTE-RNN, SMOTE-LSTM, and SMOTE-GRU models are
developed with the highly imbalanced 11-class network traffic data in the
Bot-IoT dataset to evaluate the effectiveness of the proposed framework.
The performance of these models is compared with that of the DNN, RNN,
LSTM, and GRU models. In Chapter 5, a hybrid DL algorithm named
LAE-BLSTM is proposed for memory-efficient botnet attack detection in
IoT-enabled critical infrastructure. LAE method reduces the feature
dimensionality of network traffic data in a central cloud server or an IoT
edge node, while BLSTM method learns the feature representation of the
low-dimensional network traffic data to classify benign network traffic and
botnet attack traffic correctly. LAE-BLSTM models are developed with the
Bot-IoT and N-BaIoT datasets to evaluate the effectiveness of the proposed
algorithm. In Chapter 6, a FDL method is proposed for zero-day botnet
attack detection in IoT-enabled critical infrastructure. Zero-day botnet
attack scenarios are modelled with the Bot-IoT and N-BaIoT datasets. The
LAE-BLSTM method is used to train local models with private network
traffic data in multiple IoT edge nodes. In a model parameter cloud server,
Federated Averaging (FedAvg) algorithm aggregates the local model
updates from all the IoT edge nodes to form a global FDL model that

8

Chapter 1. Introduction

preserves the data privacy of IoT-enabled critical infrastructure users. In
Chapter 7, the major findings of the research is summarised, and
recommendations are proposed for future work.

FIGURE 1.2: Thematic organisation of the thesis

Figure 1.2 shows the connection and the flow of the chapters in the thesis.
The method proposed in Chapter 3 is used for model hyperparameter
optimisation in Chapters 4, 5, and 6. The framework proposed in Chapter 4
is used to improve the classification performance of DL models in Chapters
5 and 6 when the network traffic data in the training set is highly
imbalanced. The hybrid DL algorithm in Chapter 5 is used to achieve
memory-efficient botnet attack detection in Chapter 6. All the main findings
in Chapters 3, 4, 5, and 6 are summarised in Chapter 7.

9

Chapter 1. Introduction

1.6 List of Publications

1.6.1 Journal Papers

1. Popoola, S. I., Ande, R., Adebisi, B., Gui, G., Hammoudeh, M.,
Jogunola, O. "Federated Deep Learning for Zero-Day Botnet Attack
Detection in IoT Edge Devices", IEEE Internet of Things Journal, 9(5),
3930-3944, 2022.

2. Popoola, S. I., Adebisi, B., Hammoudeh, M., Gui, G., Gacanin, H.
"Hybrid Deep Learning for Botnet Attack Detection in the
Internet-of-Things Networks", IEEE Internet of Things Journal, 8(6),
4944-4956, 2021.

3. Popoola, S. I., Adebisi, B., Ande, R., Hammoudeh, M., Anoh, K.,
Atayero, A. A. "SMOTE-DRNN: A Deep Learning Algorithm for
Botnet Detection in the Internet-of-Things Networks", Sensors, 21(9),
2985, 2021.

4. Popoola, S. I., Adebisi, B., Ande, R., Hammoudeh, M., Atayero, A. A.
"Memory-Efficient Deep Learning for Botnet Attack Detection in IoT
Networks", Electronics, 10(9), 1104, 2021.

5. Popoola, S. I., Adebisi, B., Hammoudeh, M., Gacanin, H., Gui, G.
"Stacked recurrent neural network for botnet detection in smart
homes", Computers & Electrical Engineering, 92, 107039, 2021.

1.6.2 Conference Paper

1. Popoola, S. I., Gui, G., Adebisi, B., Hammoudeh, M., Gacanin, H.
"Federated Deep Learning for Collaborative Intrusion Detection in
Heterogeneous Networks", 2021 IEEE 94th Vehicular Technology
Conference: VTC 2021-Fall, 2021, pp. 1-6, doi:
10.1109/VTC2021-Fall52928.2021.9625505.

1.6.3 Book Chapter

1. Popoola, S. I., Ande R., Kassim, B. F., Adebisi, B. "Deep Bidirectional
Gated Recurrent Unit for IoT Botnet Detection in Smart Homes”,
Machine Learning and Data Mining for Emerging Trend in Cyber Dynamics:
Theories and Applications; Springer: Cham, Switzerland, 2021; p. 29.

10

Chapter 1. Introduction

1.6.4 Submitted Journal Papers (Under review)

1. Popoola, S. I., Adebisi, B., Hammoudeh, M. "Optimizing Deep
Learning Hyperparameters for Botnet Attack Detection in IoT
Network", IEEE Internet of Things Journal.

2. Popoola, S. I., Ande, R., Atayero, A. A., Badejo, J. A., Hammoudeh,
M., Gui, G., Adebisi, B., Gui, G. “Optimized Lightweight Federated
Learning for Botnet Detection in Smart Critical Infrastructure", IEEE
Transactions on Industrial Informatics.

11

Chapter 2

Concepts and Literature Review

2.1 Internet of Things and Botnet Attacks

IoT is one of the main technologies in the fourth industrial revolution
(Industry 4.0) [57]–[59]. It connects homes, industries, government, and
businesses to a large-scale of computers, smart devices, sensors, vehicles,
and industrial machines in smart cities. Figure 2.1 shows the basic
architecture of IoT, which comprised the perception layer, the network layer,
and the application layer. Smart sensors and actuators are deployed at the
perception layer to collect relevant information. The network layer
transmits the data from the perception layer to the application layer, where
it is processed for intelligent decision making. A comprehensive survey on
the enabling technologies, protocols, and applications of IoT can be found in
[60].

FIGURE 2.1: Basic architecture of IoT

12

Chapter 2. Concepts and Literature Review

According to Cisco’s Annual Internet Report, 14.7 billion IoT devices will be
connected to the Internet by 2023 [61]. More than 25.4 billion IoT devices will
be connected to the Internet in 2030 [62], and IoT market is expected to worth
about $1.6 trillion by 2025 [63]. The maturity of IoT and its wide adoption
in critical infrastructure make it an attractive target for cyber-attackers. IoT
networks and devices are subject to high security risks due to the lack of
IoT standardization and interoperability, irregular security updates in many
legacy IoT devices, low priority for security in the development cycle of IoT
devices, inability to implement strong encryption mechanism due to power
and memory constraints in IoT devices, weak login credentials, availability
of open ports and lack of IoT-optimised intrusion detection and prevention
systems [64], [65].

IoT has become the primary target of malicious botnet operators due to their
proliferation and distributed nature [66]–[68]. Cyber attackers use this
complex hacking technique to propagate malware and launch cyber attacks
against IoT-enabled systems. The first malicious botnet, named Eggdrop,
uses the concept of Internet Relay Chat (IRC) technology to launch Denial of
Service (DoS) and DDoS attacks against IRC users and servers [69]. GTbot is
another example of an IRC-based botnet [70]. Botnets became a major threat
to Internet security when AgoBot [71] and SDBot [72], which employ a
complex communication protocol, emerged. Other sophisticated botnets
have been reported in recent times including Mirai [24], [25] and BASHLITE
[73], [74].

In a typical botnet, a cyber attacker, also known as a botmaster, controls the
activities of the bots remotely using a Command and Control (C&C)
communication channel, as shown in Figure 2.2. The life cycle of a botnet
involves five phases, namely initial injection, secondary injection,
connection, malicious activities, and maintenance and upgrading [67]. First,
the botmaster infect IoT devices with malware. Then, the infected devices
download malware binary files from a specific network database using IRC,
File Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP) or P2P
communication protocols. The new bots establish connections with the C&C
server to receive instructions and updates. The botmaster instructs the bots
to perform malicious activities. Finally, the botmaster maintains its hold on
the bots by updating the malware frequently. Advanced botnets employ
P2P and hybrid C&C architectures to avoid single point of failure and evade
detection [75], [76]. A P2P botnet has no dedicated C&C server, while a

13

Chapter 2. Concepts and Literature Review

FIGURE 2.2: Basic architecture of a botnet

hybrid botnet combines both centralised and P2P architectures. Botnets
have significantly widened the attack vulnerability landscape of IoT [77].

2.2 Datasets for Botnet Detection in IoT Network

Although several datasets are available for network intrusion detection,
they have various challenges, including lack of reliable labels, low attack
diversity, redundancy of network traffic, and missing ground truth. For
instance, KDD Cup99 and NSL-KDD datasets are popularly used, but they
are outdated, and they do not reflect current normal and attack scenarios
[78], [79]. The application of the DEFCON-8 dataset is limited because of the
low number of benign traffic samples [78]. The attack scenarios in the
UNIBS dataset are limited to DoS; the network traffic data are presented in
packets with no extracted features, and the labels were not provided [80].
CAIDA datasets have no ground truth information about the attack samples
[80]. Network traffic samples in the LBNL dataset were not labeled, and the
features were not extracted from the packet files [80]. Attack samples in the
UNSW-NB15 dataset were generated in a synthetic environment [81]. ISCX
and CICIDS2017 datasets were generated based on the concept of profiling,
and this can be due to their innate complexity. Also, the ground truth of

14

Chapter 2. Concepts and Literature Review

these datasets is not available to enhance the labeling process. Not much
information is given about the botnet scenarios that were used in most
datasets [78], [80]–[82]. Also, IoT network traffic data was not included in
related datasets [78], [81], [83]–[86].

Bot-IoT dataset [87] is publicly and freely available for cyber security
research. It contains benign IoT network traffic and four botnet attack
scenarios including DoS, DDoS, reconnaissance (Recon), and data theft
(Theft). The testbed that generated the benign IoT network traffic data
comprised a weather station, a smart fridge, motion-activated lights, a
remote-controlled garage door, and a smart thermostat. Koroniotis et al. [87]
proposed a method for network packet capturing and feature extraction. In
this method, network packets were captured using Tshark1 while network
traffic features were extracted using Argus2. Also, new features were
generated based on transaction flows of network connections over a sliding
window of 100. Forty-three features were extracted from a network packet
to describe the behaviour of a network traffic sample. The list and
description of these features are available in [87]. This data set has 477
benign IoT network traffic samples and 3,668,045 botnet attack samples.
Figure 2.1 shows the total network traffic samples in the Bot-IoT dataset.
These samples can be categorised into binary classes, 5 classes, or 11 classes.
In the binary classification scenario, the samples are categorised as benign
(Norm) or malicious (Attack) traffic. In the 5-class classification scenario, the
samples are categorised as DDoS, DoS, Norm, Recon, or Theft traffic. In the
11-class classification scenario, the samples are categorised as DDoS-HTTP
(DD-H), DDoS-TCP (DD-T), DDoS-UDP (DD-U), DoS-HTTP (D-H),
DoS-TCP (D-T), DoS-UDP (D-U), Norm, Operating System Fingerprinting
(OSF), Service Scanning (SS), data ex-filtration (DE), or keylogging (KL)
traffic.

N-BaIoT dataset [74] is also publicly and freely available for cyber security
research. The IoT testbed that generated this data set comprised two
doorbells, a thermostat, a baby monitor, four security cameras, and a
webcam. These commercial IoT devices were infected with Mirai and
BASHLITE botnets, and 115 statistical features that represent the behaviour
snapshots of the network traffic were extracted from the network packets
over several temporal windows. The details of the data collection and the

1https://www.wireshark.org/docs/man-pages/tshark.html
2https://openargus.org/

15

Chapter 2. Concepts and Literature Review

TABLE 2.1: Total network traffic samples in the Bot-IoT dataset

Type Class Number of samples

2-class Norm 477
Attack 3668045

5-class

DDoS 1926624
DoS 1650260
Norm 477
Recon 91082
Theft 79

11-class

DD-H 989
DD-T 977380
DD-U 948255
D-H 1485
D-T 615800
D-U 1032975
Norm 477
OSF 17914
SS 73168
DE 6
KL 73

feature extraction can be found in [74]. This data set contains benign IoT
network traffic and IoT botnet scenarios. Figure 2.2 shows the total network
traffic samples in the N-BaIoT dataset. These samples can be categorised
into binary classes or 10 classes. In the binary classification scenario, the
samples are categorised as Norm or Attack traffic. In the 10-class
classification scenario, the samples are categorised as Norm, g_combo,
g_junk, g_scan, g_udp, m_ack, m_scan, m_syn, m_udp, or m_udpp traffic.

TABLE 2.2: Total network traffic samples in the N-BaIoT
dataset

Type Class Number of samples

2-class Norm 555932
Attack 5646824

10-class

Norm 555932
g_combo 515156
g_junk 261789
g_scan 255111
g_udp 946366
m_ack 643821
m_scan 537979
m_syn 733299
m_udp 1229999
m_udpp 523304

16

Chapter 2. Concepts and Literature Review

Therefore, all the models in this thesis are trained, validated, and tested with
the network traffic data in the Bot-IoT and N-BaIoT datasets.

2.3 Centralised Learning for Botnet Detection

Botnet attack detection in IoT networks can be formulated as a classification
problem. For binary classification, each sample in a network traffic packet is
classified as either benign or malicious based on certain pre-defined
features. On the other hand, the specific category of botnet attack is
identified in multi-class classification. Different ML and DL models have
been developed to classify network traffic data in IoT networks. These
models learn the discriminating features of benign traffic and malicious
traffic using different architectures. With the advent of cloud computing,
each IoT device transmits its data to a central server on the Cloud, where
different pre-processes and analyses can be performed on the aggregated
data. In view of this, CDL method has been extensively proposed for
network-based botnet attack detection in large IoT network traffic data with
good classification performance. For example, Apruzzese et al [88]
proposed a method that can prevent adversarial attacks using Deep
Reinforcement Learning (DRL). Also, Zhao et al [89] proposed a lightweight
dynamic AE network method for network intrusion detection in
resource-constrained devices of a wireless sensor network. Shafiq et al [90]
proposed a bijective soft set method to select the most effective ML
algorithm among BN, DT, NB, RF, and RT for binary classification. Ferrag et
al [91] combined REPTree, JRip, and Forest PA algorithms to produce a
hybrid model. The first two models were trained to perform binary
classification. The outputs of these models were combined with the original
feature set to train the third model for 11-class classification. It took 195.5
seconds to train the model with the samples in the training set, and it spent
2.27 seconds to classify the samples in the testing set. The hybrid model
achieve good classification performance. However, 22.53% of the samples in
the D-H class were misclassified.

However, there are still some challenges that need to be addressed, which
include the determination of optimal model hyperparameters, low
classification performance due to imbalanced sample distribution in the
training set, high memory space requirement, inability to detect zero-day
attacks, and lack of data privacy.

17

Chapter 2. Concepts and Literature Review

2.3.1 Model Hyperparameter Selection

The classification performance of a ML/DL model largely depends on the
selection of the right set of hyperparameters [50]. For a neural network, the
hyperparameters include the numbers of hidden layers and the hidden units,
the learning rate, the optimiser, the activation function, the batch size, and
the number of epochs.

Koroniotis et al [87] developed RNN and LSTM models, each of which
comprised four hidden layers with 20, 60, 80, and 90 hidden units,
respectively. The models employed tanh activation function at the hidden
layers, and they were trained using a batch size of 100 and 4 epochs.
However, the authors did not report the learning rate and the optimiser that
were used for the training. Koroniotis et al [92] developed DNN model,
which had six hidden layers with 20, 40, 60, 80, 40, and 10 hidden units,
respectively. The model was trained with a learning rate of 0.0015, Rectified
Linear Unit (ReLU) activation function, a batch size of 732, and 12 epochs.
However, the authors did not report the optimiser that was used for the
training.

Ibitoye et al [93] developed Feedforward Neural Network (FNN) and
Self-normalising Neural Network (SNN) models, which had three hidden
layers with 16 hidden units each. The FNN model employed ReLU
activation function, while the SNN model employed Scaled Exponential
Linear Unit (SELU) activation function. However, the authors did not report
the learning rate, optimiser, batch size, and the number of epochs. Susilo
and Sari [94] trained DNN and CNN models with ReLU activation function
and Adam optimiser. The authors investigated the effectiveness of different
batch sizes (32, 64, and 128) and different number of epochs (10, 30, and 50).
However, there was no clear information about the number of hidden layers
and the learning rate.

Ferrag et al [41] developed three deep discriminative models (DNN, RNN,
and CNN) and four generative models (RBM, DBN, DBM, and AE). Each of
the models had a single hidden layer with 100 hidden units. The models were
trained using sigmoid activation function, a learning rate of 0.5, a batch size
of 1000, and 100 epochs. However, the authors did not report the optimiser
that was used for the training. In another work, Ferrag et al [95] developed
RNN model, which comprised a single hidden layer with 60 hidden units.
The model was trained using a batch size of 100 and 5 epochs. However,

18

Chapter 2. Concepts and Literature Review

the details of the learning rate, optimiser, and activation function were not
provided. Alkadi et al [96] developed BLSTM model, but the information
about the hyperparameters was not provided.

Ge et al [97] developed DNN model, which had three hidden layers with 512
hidden units each. The model was trained with ReLU activation function,
Adam optimiser, a batch size of 500, a learning rate of 0.001, and 20 epochs.
However, ten different binary classification scenarios were considered,
where the Attack class contained only one class of botnet attack in each
scenario. Also, in the multi-class classification scenario, the DDoS and DoS
attack samples were grouped together to form a four-class classification
scenario.

Currently, there is no definite procedure to justify the selection of an optimal
set of hyperparameters for DL-based botnet attack detection in IoT
networks. Therefore, in Chapter 3, a hyperparameter optimisation method
is developed to determine the most appropriate combination of the
numbers of hidden layers and hidden units, the learning rate, the optimiser,
the activation function, the batch size, and the number of epochs for
DL-based botnet attack detection models to achieve an optimal classification
performance. The proposed method will help in choosing the best sets of
hyperparameters that are most suitable to train efficient DNN-based botnet
attack detection models to perform binary, 5-class, 10-class, and 11-class
classification of network traffic data using the Bot-IoT and N-BaIoT datasets.

2.3.2 Class Imbalance in the Training Set

Similar to most real-life classification tasks [98], [99], network traffic data
follows a long tail distribution [87]. For instance, samples of network traffic
generated by botnets will be far more than those generated by real IoT
devices in case of DDoS attack. In such case, the combined network traffic
data available for ML and DL model training will be imbalanced. In ML and
DL methods, training data is considered to be highly imbalanced when the
class imbalance ratio3 is greater than 10:1 [100]. Class imbalance problem
affects the effectiveness of state-of-the-art ML and DL methods such that the
models are biased in favour of class(es) with majority samples [101]. That is,
a large percentage of samples in the minority class(es) may not be correctly
classified. Therefore, the traditional ML/DL models may not be able to

3Class imbalance ratio of a given class is the number of samples in the class divided by
the total number of samples in the remaining classes

19

Chapter 2. Concepts and Literature Review

handle class imbalance problem in the network traffic data generated by
IoT-enabled critical infrastructure.

TABLE 2.3: Sample distribution of network traffic data in the
training set of Bot-IoT dataset

Ref. Class
DD-H DD-T DD-U D-H D-T D-U Norm OSF SS DE KL

[102] 594 498602 484127 942 317899 526487 4000 9002 36700 102 106
[41] 1582 1563808 1517208 2376 985280 1652759 7634 28662 117069 94 1175
[91] 1582 1563808 1517208 2376 985280 1652759 7634 28662 117069 94 1175
[103] 786 781468 759163 1191 492581 826475 385 14101 51351 5 66
This thesis 588 586393 568760 906 369965 619414 290 10795 43949 4 48

Table 2.3 shows the degree of class imbalance in the training data used for
model development. Class imbalance is the ratio of the total number of
samples in a particular class to the total number of samples in all other
classes. Although the methods in related works considered the effect of
class imbalance on classification performance, the degree of class imbalance
was limited to 1 : 25528 and 1 : 62527 in 5-class and 11-class classification
scenarios, respectively. In this thesis, the models handle high-class
imbalance in 5-class and 11-class classification scenarios with class
imbalance ratio of 1 : 45049 and 1 : 641967. Also, the effectiveness of these
methods was not assessed in all the three classification scenarios (i.e. binary,
5-class, and 11-class). In this thesis, the models’ performance was evaluated
in all three classification scenarios.

SMOTE is a method that can effectively handle class imbalance problem in
training data, but it must be combined with the right classifier. Pokhrel et al
[104] proposed SMOTE-kNN to address the class imbalance problem in
botnet detection. However, the study focused on binary classification, and
the IR in the training data was 1:208. Bagui and Li [105] studied the effects
of Random Under-sampling (RU), Random Over-sampling (RO), RU-RO,
RU-SMOTE, and RU with Adaptive Synthetic (ADSYN) methods on the
performance of the ANN model. Qaddoura et al [106] combined
SVM-SMOTE with DNN to handle a class imbalance in binary classification.
Derhab et al [107] employed the combination of SMOTE and temporal CNN
to address the class imbalance in 5-class classification. However, SMOTE
method has not been previously combined with the RNN, LSTM, and GRU
models. Also, previous applications of SMOTE focused on binary and
5-class classification, but none of them applied it to solve the 11-class
classification problem.

20

Chapter 2. Concepts and Literature Review

Table 2.3 shows that the distribution of network traffic samples in the
training set is highly imbalanced across the 11 classes. The numbers of
samples in the minority classes (DD-H, D-H, Norm, DE, and KL) are
relatively fewer than those in the majority classes (DD-T, DD-U, D-T, D-U,
OSF, and SS). For majority classes, high class imbalance in the training set
degraded the classification performance of state-of-the-art ML and DL
models. Therefore, state-of-the-art ML and DL models may not detect
DD-H, D-H, Norm, DE, and KL correctly in IoT networks. In this thesis, the
numbers of samples in the Norm, DE, and KL classes are relatively few
compared to those in the previous studies. So, the class imbalance problem
in the present study is more challenging. Also, in the previous related works
[41], [91], [96], [102], the recall values for the Norm class were not reported,
and the authors did not present the accuracy, precision, and F1 score of the
ML/DL models for each of the 11 classes.

Therefore, in Chapter 4, a framework, which combines SMOTE with each of
the DNN, RNN, LSTM, and GRU architectures, is proposed to improve the
classification performance of DL-based botnet attack detection models when
the network traffic data in the training set is highly imbalanced.

2.3.3 Feature Dimensionality Reduction

DL is an efficient method for botnet attack detection. In order to develop an
efficient DL method for botnet detection in IoT networks, sufficiently large
network traffic information is needed to guarantee efficient classification
performance [108]. However, the volume of network traffic data and
memory space required is usually large. Therefore, it is almost impossible to
implement the DL method in memory-constrained IoT devices. Processing
and analyzing high-dimensional network traffic data can lead to curse of
dimensionality [109]. High-dimensional data processing is complex and
requires huge computational resources and storage capacity [110], [111]. IoT
devices do not have sufficient memory space to store big network traffic
data required for DL. Given a high feature dimensionality in the training
data, high network bandwidth and a large memory space will be needed to
transmit and store the data, respectively in IoT back-end server or cloud
platform for DL. For example, the memory sizes of the training data in the
Bot-IoT and N-BaIoT datasets are more than 600 MB and 3 GB, respectively.
Therefore, there is a need for end-to-end DL-based botnet detection method
that will reduce high dimensionality of big network traffic features and also

21

Chapter 2. Concepts and Literature Review

detect complex and recent botnet attacks accurately based on
low-dimensional network traffic information.

Feature dimensionality reduction is mostly achieved by applying either
linear or non-linear transformation technique to high-dimensional feature
set. Principal Component Analysis (PCA) [112] is one of the common linear
transformation methods while kernel methods [113], spectral methods [114]
and DL methods [115] employ non-linear transformation techniques. AE is
an unsupervised DL method that produces latent-space representation of
input data at the hidden layer. Different AE architectures have been
proposed to reduce the feature dimensionality in most popular network
intrusion datasets. These methods were implemented and evaluated with
the network traffic data in publicly available datasets which include
KDD-Cup99 [116]–[123], NSL-KDD [116], [124]–[127], UNSW-NB15 [117],
[126], [128] and CICIDS2017 [129]. Table 2.4 shows the AE-based feature
dimensionality reduction techniques in the literature. The original feature
dimensionality, feature reduction method, new feature dimensionality,
classifier and classification scenarios were provided. LSTM is a variant of
RNN, and it has the capacity to learn long-term dependencies in network
traffic features [130]–[132]. However, none of the proposed AE-based
methods in Table 2.4 was implemented and validated with the Bot-IoT and
N-BaIoT dataset.

Different feature selection methods have been proposed to reduce the
dimensionality of network traffic features. Table 2.5 presents an overview of
state-of-the-art feature dimensionality reduction methods that are related to
botnet attack detection in IoT networks. Koroniotis et al. [87] employed
Pearson Correlation and Entropy (PCE) method for feature selection. The
authors reported that 10 optimal network traffic features were selected.
SVM, RNN and LSTM models were trained with the optimal features to
perform binary classification in general and specific attack detection
scenarios. Asadi et al. [133] identified optimal feature clusters and
eliminated outliers using X-Mean clustering with Particle Swarm
Optimisation (XMP) technique. Most relevant network traffic features were
selected based on the XMP method. The best binary classification
performance was recorded when SVM, DNN and DT classifiers were
trained with 10 network traffic features. Khraisat et al. [134] selected 13
network traffic features using Information Gain (IFG) method. An ensemble
classifier, which comprised of DT and One-Class SVM (OCSVM) models,

22

Chapter 2. Concepts and Literature Review

TABLE 2.4: Dimensionality Reduction of Network Traffic
Features Based on AE method

Dataset Ref. Input Method Output Classifier Classification
scenarios

KDD-Cup99

[116] 41 SAE 28 RF Binary, multi-class
[117] 41 SAE 10 Softmax Binary, multi-class
[118] 122 AE 100 CNN Multi-class
[119] 41 AE - k-means Binary
[120] 41 SAE 13, 5 DT Binary
[121] 41 VAE 20 Dictionary Binary
[122] 41 AE 18 k-means Multi-class
[123] 39 AE 3 k-means Binary

NSL-KDD

[116] 41 SAE 28 RF Binary, multi-class
[124] 122 SSAE - SVM Binary, multi-class
[125] 115 SSAE 10 Logistic Binary, multi-class
[126] 41 AE 3 DNN Binary, multi-class
[127] 52 AE 2 - Multi-class

UNSW-B15
[117] 42 SAE 10 Softmax Binary, multi-class
[128] 207 AE 2 DT Binary, multi-class
[126] 41 AE 3 DNN Binary, multi-class

CICIDS2017 [129] 81 SSAE 64 RF Binary, multi-class

TABLE 2.5: Dimensionality Reduction of Network Traffic
Features in Bot-IoT Dataset

Ref. Method Feature
size Classifier Classification

scenarios

[87] PCE 10
SVM
RNN
LSTM

Binary

[133] XMP 10
SVM
DNN
DT

Binary

[134] IFG 13 DT,
OCSVM Multi-class

was trained with the selected network traffic features to perform multi-label
classification.

Most of the feature dimensionality reduction methods that have been
applied to botnet attack detection were based on feature selection
techniques. These techniques include the filter method with PCE [87], XMP
[133], and (IFG) [134]. Soe et al. [135] did not consider the DoS attack
scenario. Also, the performance of the method in detecting benign network
traffic was not reported. In a similar work [136], the authors did not

23

Chapter 2. Concepts and Literature Review

evaluate the performance of the proposed method. In another work [137],
Guerra-Manzanares et al. did not evaluate the performance of the proposed
method with the network traffic data in the Bot-IoT dataset.

The state-of-the-art methods in the related work focused on the selection of
specific features from available network traffic information. However, this
approach may likely affect the efficiency of botnet attack detection in IoT
networks because the classifiers will not have access to some relevant
network information during training, validation, and testing. Consequently,
the feature selection approach may lead to low botnet attack detection
accuracy and a high false alarm rate in IoT networks. On the other hand,
LAE reduces the dimensionality of big IoT network traffic data and
produces a low-dimensional latent-space feature representation at the
hidden layer without loosing useful intrinsic network information. There
are different variants of AE including Stacked AE (SAE), Variational AE
(AE), Stacked Sparse AE (SSAE), Convolutional AE (CAE), Denoising AE
(DeAE), and Long Short-Term Memory AE (LAE). Unlike other variants of
AE and similar to RNN, LAE uses LSTM to account for long-term
dependencies among features while learning their representation and
reducing the dimensionality. So, LAE is a good fit for feature dimensionality
reduction in the botnet detection task.

Table 2.6 presents a summary of the state-of-the-art feature dimensionality
reduction methods and class balance methods proposed for botnet detection
in IoT networks. Koroniotis et al. [87] used PCE method to select the 10
most relevant features. SVM, RNN, and LSTM models were trained with
these features to perform binary classification. The reduction in the number
of features shortened the time taken to train the ML and DL models, but the
classification performance was lower than when the full features were used
for model training. Furthermore, the authors did not evaluate the
performance of the feature selection method in a multi-class classification
scenario. The same set of features was also used for ML-based intrusion
detection in [93], [138]–[143].

Kumar et al. [144] proposed a hybrid feature selection method, which
combined Pearson Correlation Coefficient (PCC) with Random Forest Mean
Decrease Accuracy (RFMDA) and Gain Ratio (GR), to select the 10 most
important features. RF, kNN, and Extreme Gradient Boosting (XGBoost)
models were trained with these features to perform 5-class classification.
Kumar et al. [145] used a mutual information-based feature selection

24

Chapter 2. Concepts and Literature Review

TABLE 2.6: Review of dimensionality reduction and class
balance methods

Dimensionality
Reduction Method

Class
Balance
Method

References

Feature selection None [87], [92], [93], [133],
[138]–[147]

PCA None [148]–[150]
t-SNE None [151]
None Up-sampling [152]
None SMOTE [52], [105], [107], [153]
Feature selection Focal loss [154]

method to select the 10 most relevant features. RF and XGBoost models
were trained with these features for the 5-class classification task. Shafiq et
al. [146], [147] proposed a new feature selection algorithm based on the
wrapper technique and Area Under Curve (AUC) metric. Then, DT, NB, RF,
and SVM models were trained for 8-class classification. Koroniotis et al. [92]
developed Multilayer Perceptron (MLP) and RNN models using 13 network
traffic features. Asadi et al [133] proposed Particle Swarm Optimisation
(PSO) algorithm to select 10 outstanding features. These features were used
to train ML/DL models for binary classification. Other feature
dimensionality reduction methods include Principal Component Analysis
(PCA) in [148]–[150], and t-distributed Stochastic Neighbour Embedding
(t-SNE) in [151].

Khan and Kim [155] proposed a hybrid intelligent model using both
anomaly-based and misuse-based network intrusion detection approaches.
At the first stage, Logistic Regression (LR) and XGBoost algorithms were
used to develop anomaly-based network intrusion detection, while the LAE
algorithm was used for misuse-based network intrusion detection in the
second stage of the system. The effectiveness of the hybrid model was
evaluated with the ISCX-2012 data set. Roopak et al. [156] investigated the
effectiveness of MLP, CNN, LSTM, and CNN-LSTM models for DDoS attack
detection in IoT networks. The authors simulated these models with the
CICIDS2017 data set. Liaqat et al. [152] used the up-sampling method to
increase the number of benign samples in the training data set. In [52], [105],
[107], [153], SMOTE method was used to generate additional samples for
the minority classes. Mulyanto et al. [154] performed feature selection to
reduce dimensionality while focal loss function was used to address class

25

Chapter 2. Concepts and Literature Review

imbalance problem. Similarly, Injadat et al. [157] selected the most relevant
features and additional minority samples were generated using SMOTE.

Koroniotis et al [87] selected the best 10 features using two statistical
analysis techniques, namely Pearson correlation coefficient and Shannon
entropy. The feature selection method reduced the memory size of the
network traffic data by 72.97%. SVM, RNN, and LSTM models were trained
with the selected features. The SVM model classified all the benign samples
correctly, but 11.63% of the malicious samples were misclassified as benign
network traffic. SVM model is a traditional ML method, and it has very
limited number of trainable parameters. Although each of the RNN and
LSTM models classified 99.75% of the malicious samples correctly, they
misclassified 68.76% and 73.38% of the benign samples, respectively. The
authors could not determine the optimal sets of hyperparameters for the
RNN and LSTM models. It took 1270.48− 10482.19 seconds to train each of
the models, but the authors did not report the time taken to classify the
samples in the testing set.

Khraisat et al [134] selected thirteen features using information gain method.
The feature selection method reduced the memory size of the network
traffic data by 64.87%. An ensemble of DT and OCSVM was trained with
the selected features to produce a hybrid model, which achieved high
accuracy and high recall of more than 97%. Almost all the samples in the
DoS, Norm, Recon, and Theft classes were classified correctly. However, the
precision and the F1 score of the model were less than 86%. About 12% of
the DDoS attack samples were misclassified as reconnaissance attack. Also,
the authors did not evaluate the computation efficiency of the model.

Shafiq et al [146], [147] proposed a feature selection method named
CorrAUC, which is based on the combination of correlation attribute
evaluation and AUC metric. A bijective soft set is applied to validate the
selected features using Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS) and Shannon entropy. DT, SVM, NB, and RF
models with the selected features. However, the DD-H, DD-T, and DD-U
classes of botnet attack were not included. Therefore, the validity of the
method is limited to eight classes instead of eleven. Soe et al [135] proposed
correlated-set thresholding on gain-ratio algorithm for feature selection.
Tree-based classifiers were trained with the selected features, but the
authors did not include the DoS attack samples in the study.

26

Chapter 2. Concepts and Literature Review

LAE is an effective DL method that produces a low-dimensional
latent-space feature representation of a high-dimensional feature set at its
hidden layer. To the best of our knowledge, this DL method has not been
previously applied to reduce the dimensionality of the feature set in the
Bot-IoT dataset. Deep Bidirectional Long Short-Term Memory (BLSTM) is a
DL method that learns hierarchical feature representations and long-term
inter-related changes directly from raw data using multiple hidden layers.
Therefore, in Chapter 5, a hybrid DL method, which employs LAE and
BLSTM architectures, is proposed to reduce the feature dimensionality of
the network traffic data without any significant adverse effect on the
classification performance. Consequently, the amount of memory space
required to store the data on the central cloud server will be reduced.

2.4 Federated Learning for Botnet Detection

Modern IoT networks are fast becoming highly scalable. Therefore, due to
network constraints, it may be difficult to offload massive distributed IoT
network traffic data to a remote central cloud server for data processing in
real-life use cases. Also, centralised ML/DL method takes longer time to
train, it has high communication overhead, and its memory space
requirement for data storage is high. Furthermore, Cloud data centers are
often located far away from where IoT devices are deployed. This causes
high latency in centralised botnet detection method. Without appropriate
encryption, centralised method does not guarantee the privacy and security
of IoT devices because it involves the transmission of network traffic
features from all participating IoT devices to a central cloud server.
Specifically, the use of a third-party cloud server for ML/DL will introduce
a high risk of privacy leakage in IoT systems because the network traffic
features may contain sensitive information about the owners of the IoT
devices [42]–[45].

FL is an advanced AI technique which seeks to protect the privacy of
participating nodes without a significant compromise in the classification
performance and the generalisation ability of the DL models [46]–[49]. In
FL, multiple distributed edge nodes collaboratively develop a robust DL
model for botnet attack detection in IoT-enabled critical infrastructure
without data privacy concerns. Participating edge nodes request and
receive the global model parameters from a central cloud server. Each of the

27

Chapter 2. Concepts and Literature Review

edge nodes trains a local DL model with its private network traffic data
based on the global model parameters, and sends the model updates back to
the central cloud server for model aggregation. In this way, all the
participating nodes benefit from each other’s experience without disclosing
any private information. The FL method requires lower latency, power, and
memory requirements since there is no need to transmit network traffic data
to the central cloud server [158].

2.5 Research Gaps

The most recent FL methods that were proposed for cyber-attack detection
in IoT and IoT-enabled critical infrastructure. Table 2.7 shows that none of
the previous works addressed all the four challenges namely the
determination of optimal model hyperparameters, class imbalance in the
training data, high memory space requirement for network traffic data
storage in resource-constrained edge nodes, and zero-day botnet attack
scenarios.

TABLE 2.7: Review of related works

Ref. Model Dataset(s) Hyperparameter
Optimisation

Class
Balance

Feature
Dimensionality
Reduction

Zero-Day
IoT Botnet
Attacks

[42] ANN NSL-KDD ✗ ✗ ✗ ✗

[159] CNN-GRU GPWST ✗ ✗ ✗ ✗

[160] DNN, RNN,
CNN

Bot-IoT,
MQTTset,
TON_IoT

✗ ✗ ✗ ✗

[161] CNN NSL-KDD,
UNSW-NB15 ✗ ✗ ✗ ✗

[162] LAE-GRU ToN_IoT ✗ ✗ ✓ ✗

[163] ANN UNSW-NB15 ✗ ✓ ✗ ✗

[164] ANN-RF MQTT ✗ ✗ ✗ ✗

[165] CNN Private ✗ ✗ ✗ ✗

[166] Transformer ToN_IoT ✗ ✗ ✗ ✗

[167] DNN Edge-IIoTset ✓ ✓ ✗ ✗

[168] GRU-SVM
KDD-Cup99,
CICIDS2017,
WSN-DS

✗ ✗ ✗ ✗

[169] AE-ANN GPWST ✗ ✗ ✓ ✗

[170] LR ToN_IoT ✗ ✗ ✗ ✗

[171] ANN Bot-IoT ✗ ✗ ✓ ✗

[172] GRU-RF Modbus ✗ ✗ ✗ ✗

[173] DQN, DNN CICIDS2017 ✗ ✗ ✗ ✗

This
Thesis LAE-BLSTM Bot-IoT,

NBaIoT ✓ ✓ ✓ ✓

Rahman et al [42] proposed a FL method for intrusion detection in IoT. This
method uses ANN model architecture, which has a single hidden layer with
288 hidden units, for binary classification. However, the authors did not
provide any provable justification for the choice of the numbers of hidden

28

Chapter 2. Concepts and Literature Review

layers and the hidden units. Also, there was no information about the
learning rate, the activation function at the hidden layers, the batch size, and
the number of epochs. The effectiveness of the FL method was evaluated
with the NSL-KDD dataset, and three use cases were considered namely
data distribution per attack type, equal data distribution of attack types, and
random data distribution of attack types. However, the authors did not
consider class imbalance problem, high memory requirement for data
storage, and zero-day botnet attack scenarios.

Li et al [159] proposed a FDL method for intrusion detection in industrial
CPS. A hybrid of CNN and GRU architectures were used for local model
training in multiple industrial agents. The CNN model comprised three
convolutional blocks, while the GRU model had two hidden layers. The
outputs of the two models were concatenated and fed into an MLP module,
which comprised two hidden layers. The hybrid DL model employed
Adam optimiser to ensure the convergence of the loss function. However,
the authors did not provide any provable justification for the choice of the
model’s hyperparameters. Also, the number of hidden units in the hidden
layers, the learning rate, the activation function, the batch size, and the
number of epochs were not specified. Paillier public-key cryptosystem was
used to establish a secure communication channel between the cloud server
and the industrial agents. However, the authors did not propose any
method to handle high class imbalance problem as well as the high memory
space that the industrial agents would need to store the private training
data locally. The performance of the FDL method was evaluated with the
GPWST dataset, which contains neither IoT network traffic data nor botnet
attack traffic data.

Ferrag et al [160] proposed a FDL method for cyber-attack detection in IoT.
In this method, DNN, RNN, and CNN model architectures were used for
local model training. The DNN model had two hidden layers with 25-60
hidden units each, and the RNN model had two LSTM layers with 22-60
hidden units each. The CNN model comprised two convolutional layers,
18-26 filters, a kernel size of 3, a pooling layer, and two hidden layers with
39-60 hidden units each. Each of the DL models was trained using a batch
size of 1000, a single epoch, a learning rate of 0.01-0.5, a ReLU activation
function, and Adam optimiser. However, there was no verifiable procedure
to justify the selection of the models’ hyperparameters. The performance of
the FDL method was evaluated with the Bot-IoT, MQTTset, and ToN_IoT

29

Chapter 2. Concepts and Literature Review

datasets. The authors trained the DL models using the original
dimensionality of the network traffic features in the datasets, and this
implies that a large memory space would be required to store the training
data. The class imbalance ratios in the training sets of these datasets were
1:2371, 1:270, and 1:66, respectively. For the Bot-IoT dataset, the authors
focused on the 5-class scenario, which only provides a general description
of the botnet attacks. On the other hand, the 11-class scenario gives specific
details about the botnet attacks. Also, the class imbalance ratio of the
Bot-IoT dataset in 11-class scenario is 1:154854. This gives a better
representation of a highly imbalance classification scenario. Although the
authors considered both IID and non-IID data distribution cases, they did
not consider zero-day attack scenario.

Cheng et al [161] proposed a federated transfer learning method for
intrusion detection in mobile edge computing. Transfer learning was
employed in FL to speed up the model training, reduce computational cost,
increase communication efficiency, and improve classification performance.
This involves selecting a well-trained model in a particular source domain
and transferring it to the edge server in the target domain. A CNN model
architecture, which comprised three convolutional layers, two max-pooling
layers, a batch normalisation layer, a dropout layer, and two dense layers,
was used for binary classification. The CNN model was trained using a
batch size of 8, a learning rate of 0.00005, sigmoid activation function, and
100 epochs. However, the authors did not provide any provable justification
for the choice of the model’s hyperparameters. Reinforcement learning,
based on Q-learning algorithm, was used to select only useful clients, while
unreliable, low-quality, and malicious clients while exluded from
participating in model training to achieve the highest accuracy and save
costs. To evaluate the performance of the method, the NSL-KDD dataset
was used for model training in the source domain, while the UNSW-NB15
dataset was used to complete the training in the target domain. However,
the authors did not consider class imbalance problem, high memory
requirement for data storage, and zero-day botnet attack scenarios.

Kumar et al [162] proposed a deep privacy-encoding-based FL framework
for data security and privacy in smart agriculture. In this method, a
perturbation-based encoding (feature mapping and feature normalisation)
and an LAE-based transformation technique were used to prevent inference
attacks. The LAE model has two hidden layers with 256 and 128 hidden

30

Chapter 2. Concepts and Literature Review

units, and a latent layer with 12 hidden units. On the other hand, a GRU
model, which comprised two hidden layers with 16 and 8 hidden units, was
employed for the classification of the encoded data. However, the authors
did not provide any provable justification for the choice of the numbers of
hidden layers and the hidden units. Also, there was no information about
the learning rate, the activation function at the hidden layers, the batch size,
and the number of epochs. The performance of the method was evaluated
with the ToN_IoT dataset, but the authors did not consider class imbalance
problem, high memory requirement for data storage, and zero-day botnet
attack scenarios.

Attota et al [164] proposed an ensemble multi-view FL method for intrusion
detection in IoT. For each client, three ANN models are trained with the
bidirectional flow, unidirectional flow, and packet views of the network
traffic features. Grey Wolf Optimization (GWO) technique is used to select
the best set of network traffic features for the ANN model training. This
reduces the dimensionality of the network traffic features, and consequently
minimises the amount of memory space required to store the training data.
The outputs of the ANN models are fed into a RF model for attack
prediction, but there was no information about the models’
hyperparameters. Also, the method was not designed to handle class
imbalance problem. Furthermore, the effectiveness of this method was
evaluated with the MQTT dataset, which does not contain IoT botnet attack
samples.

Chen et al [168] proposed a FL method for intrusion detection in wireless
edge networks. This method uses the concept of attention mechanism to
calculate the importance of uploaded model parameters, especially when
limited bandwidth is available. This reduces the communication overhead
while ensuring model convergence because selected clients have different
weights. A combination of GRU and SVM model architectures were used
for local training. The GRU model has a single hidden layer with 28 hidden
units. The performance of the method was evaluated with the KDD Cup99
and CICIDS2017 datasets using a learning rate of 0.0001, and 20 epochs.
However, the authors did not provide any provable justification for the
choice of the model’s hyperparameters. Also, the authors did not consider
class imbalance problem, high memory requirement for data storage, and
zero-day botnet attack scenarios.

Sedjelmaci and Ansari [163] proposed a cooperative federated GAN for

31

Chapter 2. Concepts and Literature Review

attack detection in multi-access edge computing. The discriminator and
generator of the GAN model were designed based on the ANN model
architecture, which has five hidden layers. The GAN model was trained
with the UNSW-NB15 dataset using a learning rate of 0.1 and 300 epochs.
Sun et al [165] proposed segmented FL for adaptive intrusion detection in
large-scale local area networks. This method uses a CNN model
architecture, which has two convolutional layers, two max-pooling layers,
and two dense layers with 200 hidden units each. The model was trained
with a private dataset using the RMSprop optimiser, a learning rate of
0.00001, a batch size of 50, and a single epoch. Abdel-Basset et al [166]
proposed a FDL method for security and privacy in heterogeneous
blockchain-based smart transportation systems. A stack of context-aware
transformer networks, which comprised an encoder and a decoder, was
used to learn the spatial-temporal representations of vehicular traffic flows.
Consortium blockchain was used to confirm the distributed local updates
from participating vehicles, thereby stopping unreliable updates from being
part of the FL process. The method was evaluated with the ToN_IoT dataset.

Aouedi et al [169] proposed a federated semi-supervised learning method
for attack detection in industrial IoT. This method uses both labelled and
unlabelled data in federated approach since data labelling is costly and
time-consuming. AE model was used for feature representation learning
and dimensionality reduction to reduce communication overhead. The
encoder of the AE model has three hidden layers with 20, 15, and 10 hidden
units, respectively. An ANN model architecture was used for classification.
The performance of the proposed method was evaluated with the GPWST
dataset using a ReLU activation function, Adam optimiser, a learning rate of
0.001, a batch size of 64, and 100 epochs. The joint-announcement protocol
was used for random client selection to further reduce communication
overhead. Ruzafa-Alcazar et al [13] evaluated the performance of different
differential privacy techniques for FL-based intrusion detection in industrial
IoT. The techniques include Laplace, Laplace truncated, Laplace bounded
domain, Laplace bounded noise, Gaussian, Gaussian analytic, and uniform.
The authors employed LR model for the classification of network traffic
samples. The FL method investigated the effectiveness of FedAvg and Fed+
algorithms using the ToN_IoT dataset.

Huong et al [171] proposed an edge-cloud architecture for attack detection.
To minimize the complexity of the detection model, PCA was employed for

32

Chapter 2. Concepts and Literature Review

feature dimensionality reduction. ANN model, which has a single hidden
layer with 6-46 hidden units, was used for multi-class classification. The
method was evaluated with the 11-class Bot-IoT dataset with a class
imbalance ratio of 1:172162. The results showed that the F1 score of the FL
model in the minority classes (D-H, DD-H, and KL) was less than 80%.
Also, the FL model could not detect any of the DE samples in the testing set
due to class imbalance problem in the training set.

Mothukuri et al [172] proposed a FL method for anomaly detection in IoT.
The combination of GRU and RF models was used for local training. The
performance of the method was evaluated with the Modbus dataset. Wei et
al [173] proposed a FL-based end-edge-cloud cooperative method for attack
detection in 5G heterogeneous networks. The authors employed Deep
Q-Network (DQN) and DNN for local training in the end nodes and edge
nodes, respectively. the effectiveness of the method was evaluated with the
CICIDS2017 dataset. Ferrag et al [167] proposed a FL method for
cyber-attack detection in industrial IoT. They used the SMOTE method to
oversample the minority classes. DNN model, which has two hidden layers
with 90 hidden units each, was used for training. A grid search algorithm
was used for model hyperparameter optimisation. The performance of the
method was evaluated with the Edge-IIoTset dataset using a batch size of
800, ReLU activation function, Adam optimiser, and 25 epochs.

The classification performance of the local models at the edge nodes
depends on the choice of the right set of model hyperparameters, which
vary for different application contexts [50]. These hyperparameters include
the number of hidden layers and their respective hidden units, the learning
rate, the hidden layers’ activation functions, the batch size, the optimiser,
and the number of epochs. However, the hyperparameters of the models in
the previous works were randomly selected with little or no justification.
Therefore, in Chapter 3 of this thesis, a hyperparameter optimisation
algorithm is proposed for DL-based botnet attack detection in IoT-enabled
critical infrastructure.

Huong et al [171] divided the network traffic data in the Bot-IoT dataset
among four IoT edge nodes, but the authors did not provide the details of
the sample distribution of the benign traffic and the botnet attack traffic in
each of the nodes. The class imbalance in the 11-class Bot-IoT dataset
adversely affected the classification performance of the model, especially in
the minority classes. In Chapter 4 of this thesis, a framework, named

33

Chapter 2. Concepts and Literature Review

SMOTE-DL, is proposed to improve the classification performance of the
model when the network traffic data in the training set is highly
imbalanced. Also, the authors employed PCA method [174] to reduce the
feature dimensionality of the network traffic samples in the dataset.
However, they did not investigate and quantify the effects of different
feature dimensionality on the classification performance of the model.
Similarly, Zhang et al [175] and Rey et al [176] used N-BaIoT dataset to
simulate the FL method that was proposed for anomaly detection in IoT.
The authors did not reduce the feature dimensionality of the network traffic
data. So, a large memory space is required to store the data for model
training in resource-constrained IoT edge nodes. In Chapter 5 of this thesis,
a hybrid DL method, named LAE-BLSTM, is proposed to reduce the feature
dimensionality of the network traffic data, and its effects on the
classification performance of the model is extensively investigated and
quantified. Furthermore, zero-day botnet attack scenarios were not
considered in [171], [175], [176]. Therefore, in Chapter 6 of this thesis, a FDL
method is proposed to detect zero-day botnet attacks in IoT edge nodes.

2.6 Chapter Summary

In this chapter, the main concept of botnet was discussed in the context of
IoT-enabled critical infrastructure. Then, an extensive review of the
state-of-the-art ML, DL, and FL methods was conducted to identify current
research gaps. It was established that there is a need to develop an efficient
FDL method for botnet attack detection in IoT-enabled critical
infrastructure. An optimisation algorithm is needed to determine the most
appropriate sets of hyperparameters when the Bot-IoT and N-BaIoT
datasets are used for model development in binary, 5-class, 10-class, and
11-class classification scenarios. Also, a method is required to improve the
classification performance of the FDL-based botnet detection model when
the network traffic data in the training set is highly imbalanced.
Furthermore, a feature dimensionality reduction method is needed to
minimise the amount of memory space required to store network traffic
data in resource-constrained IoT devices. Finally, a privacy-preserving
method is needed to detect zero-day botnet attack in IoT edge nodes.

34

Chapter 3

Model Hyperparameter
Optimisation for Deep
Learning-Based Botnet Detection

3.1 Introduction

DL is an AI technique that can be used to automatically learn the
underlying features of the traffic patterns in IoT networks directly from raw
network data using hierarchical representations. However, the performance
of a DL model largely depends on the set of hyperparameters that is used
for model development, as earlier discussed in Section 2.3.1. Therefore, in
this chapter, an algorithm is developed to determine the optimal set of
hyperparameters (the numbers of hidden layers and hidden units, the
learning rate, the optimiser, the activation function, the batch size, and the
number of epochs) for efficient DL-based botnet detection in IoT networks.
The DL models employ a DNN architecture for binary and multi-class
classification. DNN-based botnet detection models are developed and
experiments are performed with the Bot-IoT and N-BaIoT data sets to test
the effectiveness of the hyperparameter optimisation method. The
classification performance of the DNN-based botnet detection models is
evaluated based on accuracy, precision, recall, and F1 score, while their
computation efficiency is evaluated based on training time and testing time.

The remaining sections of this chapter are organised as follows: in Section 3.2,
the DNN model architecture and the hyperparameter optimsation algorithm
are presented. In Section 3.3, experiments are performed to develop optimal
DNN models for botnet detection in IoT networks. In Section 3.4, the results

35

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

of the experiments are analysed and discussed. Finally, the major findings in
this chapter are summarised in Section 3.5.

3.2 Model Hyperparameter Optimisation Method

DNN is a DL model architecture that is made up of an input layer, li, two
or more densely connected hidden layers, lh, and an output layer, lo. Each
of these layers has u units, which are fully connected. Figure 3.1 shows the
architecture of a DNN model, which has three hidden layers with 12, 10,
and 10 hidden units, respectively. The input layer has eight units, while the
output layer has five units. In this thesis, a boldface upper-case alphabet and
a boldface lower-case alphabet represent a matrix and a vector, respectively.
For a DNN model, the number of units at the input layer is the same as the
feature dimensionality1, d, of the network traffic data, X ∈ Rd×n, where n
is the total number of samples in the training set. On the other hand, the
number of units at the output layer depends on the type of classification task
at hand. For binary classification, a single unit is required at the output layer,
while the number of units at the output layer is equal to the number of unique
class labels, c, in multi-class classification. For instance, in order to classify
a network traffic sample as either DDoS, DoS, Recon, Theft, or Norm traffic,
the output layer must have five units at the output layer.

A DNN model is trained with X and a corresponding class label vector,
y ∈ Rn, using a supervised learning approach. A set of features
representing a network traffic sample, x ∈ X, is propagated forward from
the input layer to the output layer through the units in the hidden layer(s).
A forward propagation through a single hidden unit is given by:

hout = σh

[d

∑
i=1

(wixi) + b
]
, (3.1)

where hout is the output of the hidden unit, σh is the activation function of
the hidden unit, wi is the weight associated with the network traffic feature,
xi, and b is the bias associated to the network traffic sample, x. The
activation function introduces non-linearity to the weighted sum of the
input by transforming real numbers into a bounded output, and this helps
to approximate arbitrarily complex functions. On the other hand, the bias
term helps to shift the activation function either to the left or to the right,

1Feature dimensionality is the total number of features in a given network traffic data

36

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

FIGURE 3.1: DNN model architecture

regardless of the value of x. The forward propagation can be represented as:

hout = σh(wx + b), (3.2)

where w = [w1, w2, . . . , wd] and x = [x1, x2, . . . , xd]
T.

At the first hidden layer, the DNN learns the representation of a mini-batch
of the network traffic features, X ∈ Rd×nb by transforming the input data
with an initial random weight matrix, W1 ∈ Ru1×d, and the bias vector, B1 ∈
Ru1×nb , as:

H1 = σh(W1X + B1), (3.3)

where nb is the batch size, H1 ∈ Ru1×nb is the first hidden state vector, u1 is
the number of hidden units at the first hidden layer, W1 is the weight matrix
of the first hidden layer, and B1 is the bias matrix of the first hidden layer. For
any successive hidden layer, Hi+1, the output of the current hidden layer, Hi,
is transformed as:

Hi+1 = σh(WiHi + Bi), (3.4)

where Wi is the weight matrix of the current hidden layer, and Bi is the bias
matrix of the current hidden layer.

37

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

The predicted class label, ỹ, is obtained by transforming the output of the last
hidden layer, Hj:

ỹ = σy(Hj), (3.5)

where σy is the activation function at the output layer, and j is the number
of hidden layers. In a binary classification scenario, σy is a sigmoid function,
which is defined as:

σy,binary(Hj) =
1

1 + e−Hj
. (3.6)

On the other hand, a softmax activation function is used for multi-class
classification, and it is defined as:

σy,multi(Hj) =
eHj

c

∑
τ=1

eHτ

, (3.7)

where eHj is the standard exponential function for the input hidden vector,
and eHτ is the standard exponential function for the output hidden vector.
The difference between the probability distribution of ỹ and y is measured
using a cross-entropy loss function θ. In a binary classification scenario, θ is
a binary cross-entropy function, which is defined as:

Lbinary = θbinary(y, ỹ) = − 1
n

n

∑
τ=1

[
yτ log(ỹτ) + (1− yτ) log(1− ỹ)], (3.8)

where Lbinary is the binary cross-entropy loss. For multi-class classification, θ

is a categorical cross-entropy loss function, and it is defined as:

Lmulti = θmulti(y, ỹ) = − 1
n

n

∑
τ=1

c

∑
ω=1

[
yτ,ω log(ỹτ,ω)

]
, (3.9)

where Lmulti is a categorical cross-entropy loss. The performance of the DNN
model is validated with an entirely different network traffic feature matrix
and its corresponding class label vector in the validation set. An optimiser,
ψ, is used to minimise the cross-entropy loss, L, of the DNN model over e
epochs based on gradient descent algorithm [177]:

W←W− r
∂θ(W)

∂W
, (3.10)

W∗ = ψ(W, L) = argmin
W

L, (3.11)

38

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

where W∗ is the set of weight matrices that achieved the lowest L.
Meanwhile, the classification performance of the DNN model depends on
the learning rate r of the backpropagation2 process [179]. For each epoch,
the optimizer, ψ, updates W to minimize L.

As earlier discussed in Section 2.3.1, there is often no definite procedure to
justify the selection of an optimal set of hyperparameters for DL-based
botnet attack detection in IoT networks. Therefore, an algorithm is
developed to determine the optimal number of hidden layers, lho, and their
respective hidden units, uho, the learning rate, ro, the optimiser, ψo, the
activation function at the hidden layer, σho, the batch size, nbo, and the
number of epochs, eo, as shown in Algorithm 1. First, a set of values is
defined for each model hyperparameter. The sets of hyperparameters
include LH = [lh1, lh2, . . . , lhn] for the number of hidden layers,
UH = [uh1, uh2, . . . , uhn] for the number of hidden units, R = [r1, r2, . . . , rn]

for the learning rate, Ψ = [ψ1, ψ2, . . . , ψn] for the optimiser,
ϵH = [σh1, σh2, . . . , σhn] for the activation function, NB = [nb1, nb2, . . . , nbn] for
the batch size, and E = [e1, e2, . . . , en] for the number of epochs. From these
sets of hyperparameters, rd, ψd, σhd, nbd, ed are randomly chosen as the
default values of learning rate, optimiser, activation function, batch size,
and number of epochs, respectively.

Given the default values, DNN models are developed with the different
numbers of hidden layers in LH and the different numbers of hidden units
in UH. The combination of the number of hidden layers and the number of
hidden units that produce the DNN model with the best classification
performance is selected as lho and uho, respectively. Given lho, uho, ψd, σhd,
nbd, and ed, DNN models are developed with the different learning rates in
R. The learning rate that produce the DNN model with the best
classification performance is selected as ro. Given lho, uho, ro, σhd, nbd, and ed,
DNN models are developed with the different optimisers in Ψ. The
optimiser that produce the DNN model with the best classification
performance is selected as ψo. Given lho, uho, ro, ψo, nbd, and ed, DNN models
are developed with the different activation functions in ϵH. The activation
function that produce the DNN model with the best classification
performance is selected as σho. Given lho, uho, ro, ψo, σho, and ed, DNN
models are developed with the different batch sizes in NB. The batch size
that produce the DNN model with the best classification performance is

2Backpropagation refers to the backward propagation of the cross-entropy loss [178].

39

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

Algorithm 1: Hyperparameter Optimisation Algorithm
Input: X, y
Output: lho, uho, ro, ψo, σho, nbo, eo
Initialization: rd, ψd, σhd, nbd, ed

1 function DNN(X, y):
2 for e in E do
3 for nb in NB do
4 H1 = σh(W1X + B1)
5 Hi+1 = σh(WiHi + Bi)
6 ỹ = σy(Hj)

7 L← θ(y, ỹ)
8 end
9 W∗, L∗ ← ψ (W, L)

10 end
11 return metrics
12 end function
13 for lh in LH do
14 for uh in UH do
15 Metrics← DNN(X, y)
16 end
17 end
18 lho, uho ← best ∈ Metrics
19 for rinR do
20 Metrics← DNN(X, y)
21 end
22 ro ← best ∈ Metrics
23 for ψ in Ψ do
24 Metrics← DNN(X, y)
25 end
26 ψo ← best ∈ Metrics
27 for σh ∈ ϵH do
28 Metrics← DNN(X, y)
29 end
30 σho ← best ∈ Metrics
31 for nb in NB do
32 Metrics← DNN(X, y)
33 end
34 nbo ← best ∈ Metrics
35 for e in E do
36 Metrics← DNN(X, y)
37 end
38 eo ← best ∈ Metrics

selected as nbo. Given lho, uho, ro, ψo, σho, and ed, DNN models are developed
with the different batch sizes in NB. The batch size that produce the DNN

40

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

model with the best classification performance is selected as nbo. Given lho,
uho, ro, ψo, σho, and nbo, DNN models are developed with the different
number of epochs in E. The number of epochs that produce the DNN model
with the best classification performance is selected as eo.

3.3 Model Development and Experiment

The framework for the development of an optimal DNN-based botnet
detection model involves data pre-processing and hyperparameter
optimisation, as shown in Figure 3.2. For the pre-processing of the network
traffic data, feature selection, feature normalisation, label encoding, and
data splitting were performed to prepare the data for model development.
Then, the method that was earlier proposed in Section 3.2 is used to
determine the optimal sets of hyperparameters for binary and multi-class
classification using the Bot-IoT and N-BaIoT data sets.

FIGURE 3.2: Framework for the development of an optimal
DNN-based botnet detection model

The Bot-IoT dataset, which was previously described in Section 2.2, contains
43 network traffic features and three categories of label for binary, 5-class, and
11-class classification, respectively. Six redundant features (pkSeqID, saddr,
daddr, proto, state, and flgs) were identified and removed from the data set.
Specifically, pkSeqID is the sequence identification number that the network

41

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

traffic capturing tool, Argus, assigned to each sample in the network packet;
saddr and daddr are device-specific; while proto, state, and flgs give the same
information as proto_number, state_number, and flgs_number. Therefore, in this
thesis, the remaining 37 features were used to characterise a network traffic
sample in a typical IoT network. On the other hand, the N-BaIoT data set
contains 115 network traffic features and two categories of label for binary
and 10-class classification, respectively. The details of this data set was earlier
discussed in Section 2.2.

For all the features to contribute equally to the classification outcomes of the
DNN models, their values were scaled to numbers between 0 and 1 using
min-max normalisation [180], [181] given by:

xnorm =
x− xmin

xmax − xmin
, (3.12)

where x is a network traffic feature vector, while xmin and xmax are the
minimum and maximum values of x respectively. Feature normalisation
eliminates any form of bias in favour of a particular feature. On the other
hand, the categorical labels were encoded with numbers for ease of
computation. For binary classification, the Norm and Attack classes were
represented by 0 and 1, respectively. Similarly, the labels in the 5-class,
10-class, and 11-class categories were represented by 0− 4, 0− 9, and 0− 10
respectively.

The hold-out validation method was employed to evaluate the classification
performance of the DNN-based botnet detection models. The complete
network traffic data was randomly split into training set (60%), validation
set (20%), and testing set (20%). Tables 3.1 and 3.2 present the distribution of
network traffic samples in the Bot-IoT and N-BaIoT data sets, respectively.
In the Bot-IoT data set, there were 2201112 samples in the training set,
733705 samples in the validation set, and 733705 samples in the testing set.
On the other hand, in the N-BaIoT data set, there were 3721653 samples in
the training set, 1240551 samples in the validation set, and 1240552 samples
in the testing set. The samples in the training set were used to train
DNN-based botnet detection models. The samples in the validation set were
used to evaluate the robustness of the model against under-fitting and
over-fitting based on the cross-entropy loss. The samples in the testing set
were used to evaluate the generalisation ability of the models based on the

42

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

TABLE 3.1: Distribution of the network traffic samples in the
Bot-IoT dataset

Type Class Training Validation Testing

2-class Norm 290 86 101
Attack 2200822 733619 733604

5-class

DDoS 1155741 385317 385566
DoS 990285 329944 330031
Norm 290 86 101
Recon 54744 18343 17995
Theft 52 15 12

11-class

DD-H 588 197 204
DD-T 586393 195713 195274
DD-U 568760 189407 190088
D-H 906 311 268
D-T 369965 122861 122974
D-U 619414 206772 206789
Norm 290 86 101
OSF 10795 3537 3582
SS 43949 14806 14413
DE 4 1 1
KL 48 14 11

TABLE 3.2: Distribution of the network traffic samples in the
N-BaIoT dataset

Type Class Training Validation Testing

2-class Norm 333390 111133 111409
Attack 3388263 1129418 1129143

10-class

Norm 333390 111133 111409
g_combo 308666 103471 103019
g_junk 156937 52590 52262
g_scan 153146 51061 50904
g_udp 567451 189423 189492
m_ack 386965 128166 128690
m_scan 322833 107336 107810
m_syn 440419 146858 146022
m_udp 738149 245529 246321
m_udpp 313697 104984 104623

accuracy (A), precision (P), recall (R), and F1 score (F1) given by:

A =
TP + TN

TP + TN + FP + FN
× 100%, (3.13)

P =
TP

TP + FP
× 100%, (3.14)

43

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

R =
TP

TP + FN
× 100%, (3.15)

F1 =
2× TP

(2× TP) + FP + FN
× 100%, (3.16)

where TP is the number of the samples in the positive class that are correctly
classified, FP is the number of samples in the positive class that are
misclassified, TN is the number of samples in the negative class that are
correctly classified, and FN is the number of samples in the negative class
that are misclassified. Accuracy (A) is the ratio of the number of samples
correctly classified as either positive or negative to the total number of
samples in all classes. Precision (P) is the ratio of the number of samples in
the positive class that are correctly classified as positive to the total number
of samples that are either correctly classified or misclassified as positive.
Recall (R) is the ratio of the number of samples in the positive class that are
correctly classified as positive to the total number of samples in the positive
class. F1 score (F1) refers to the harmonic mean of precision and recall. It is
also known as F-measure.

TABLE 3.3: DNN Model Hyperparameters

Hyperparameter Values
Hidden layer(s) 1, 2, 3, 4
Hidden units 16, 32, 64, 128
Learning rate 0.1, 0.01, 0.001, 0.0001

Optimiser Adam, SGD, RMSprop, Adadelta,
Adagrad, Adamax, Nadam

Activation function ReLU, tanh, SELU, ELU
Batch size 64, 128, 256, 512, 1024
Epochs 5, 10, 15, 20

The proposed method in Section 3.2 was implemented to evaluate its
effectiveness for botnet attack detection in IoT networks. The set of
hyperparameters and their elements are presented in Table 3.3. Only the
most popular optimisers - Adam [182], SGD [183], Root Mean Squared
Propagation (RMSprop) [184], Adadelta [185], Adagrad [186], Adamax
[182], Nadam [177] - and the advanced activation functions - ReLU [187],
tanh [188], SELU [189], ELU [190] - were considered. The default
hyperparameters include a learning rate of 0.001, Adam optimiser, ReLU
activation function, a batch size of 512, and 5 epochs.

44

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

3.4 Result Analysis and Discussion

In this section, the effectiveness of the proposed hyperparameter
optimisation method in binary and multi-class classification scenarios is
evaluated with the Bot-IoT and N-BaIoT datasets. The classification
performance of the models is analysed based on accuracy, precision, recall,
and F1 score. F1 score is the harmonic mean of precision and recall, and it
accounts for both detection rate and false alarm rate. Therefore, the optimal
classification performance is determined based on the F1 score. The
robustness of the optimal models against under-fitting and over-fitting is
evaluated based on the cross-entropy losses during training and validation.
Also, the computation efficiency of the optimal models is evaluated based
on the time spent on training and testing the models.

3.4.1 Optimal Numbers of Hidden Layers and Hidden Units

The optimal numbers of hidden layers and hidden units in binary and
multi-class classification scenarios are determined when the DNN models
were developed with the Bot-IoT and N-BaIoT datasets. For each
classification scenario, sixteen DNN models were developed with different
numbers of hidden layers and hidden units, while the default values of the
other hyperparameters (a learning rate of 0.001, Adam optimiser, ReLU
activation function, a batch size of 512, and 5 epochs) were maintained.

Table 3.4 presents the performance in binary classification scenario when the
sixteen DNN models were tested with the network traffic samples in the
testing set of the Bot-IoT dataset. Three DNN models achieved the highest
F1 score of 99.03%. However, the DNN model architecture which comprised
two hidden layers with 128 and 16 hidden units, respectively was
considered the optimal among the three models because it had the least total
number of hidden units. The smaller the number of hidden units in the
model architecture, the smaller the number of trainable parameters, and the
lesser the computational complexity. The model achieved 100% accuracy,
98.1% precision, and 100% recall. Figure 3.3 shows that all the benign
samples in the Norm class were correctly classified, and only four out of
733604 malicious samples in the Attack class were misclassified as benign
network traffic. This implies that the model had a good classification
performance. Figure 3.4 shows that the training loss of the model reduced
by 99.52%, while the validation loss reduced by 61.47%. This implies that

45

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

TABLE 3.4: Binary classification performance for different
hidden layers and hidden units based on the Bot-IoT dataset

Hidden Units Classification Performance (%)
HL1 HL2 HL3 HL4 A P R F1
16 - - - 100.00 98.90 94.06 96.35
32 - - - 100.00 98.95 96.04 97.45
64 - - - 100.00 98.97 97.03 98.97

128 - - - 100.00 98.98 97.52 98.24
128 16 - - 100.00 98.10 100.00 99.03
128 32 - - 100.00 98.10 100.00 99.03
128 64 - - 100.00 97.64 100.00 98.79
128 128 - - 100.00 97.60 99.01 98.29
128 128 16 - 100.00 98.10 100.00 99.03
128 128 32 - 100.00 97.20 100.00 98.56
128 128 64 - 100.00 98.10 100.00 99.03
128 128 128 - 100.00 96.76 100.00 98.33
128 128 128 16 100.00 96.76 100.00 98.33
128 128 128 32 100.00 97.64 100.00 98.79
128 128 128 64 100.00 97.64 100.00 98.79
128 128 128 128 100.00 96.76 100.00 98.33

the model neither under-fitted nor over-fitted the network traffic data in the
training set. It took 39.25 seconds to train the model with the network traffic
samples in the training set, and the model spend 441 milliseconds to classify
the network traffic samples in the testing set. This implies that the model
was computationally efficient. Therefore, in binary classification scenario,
two hidden layers with 128 and 16 hidden units, respectively are
recommended for developing DNN-based botnet detection model with the
Bot-IoT dataset.

Table 3.5 presents the performance in 5-class classification scenario when
the sixteen DNN models were tested with the network traffic samples in the
testing set of the Bot-IoT dataset. The DNN model architecture which
comprised four hidden layers with 128, 128, 128, and 16 hidden units,
respectively has the highest F1 score of 98.81%. The model achieved 99.97%
accuracy, 99.95% precision, and 97.79% recall. Figure 3.5 shows that the
model correctly classified all the samples in the Recon and Theft classes,
more than 99.85% of the samples in the DDoS and DoS classes, and 89.11%
of the samples in the Norm class. This shows that the model had a good
classification performance. Figure 3.6 shows that the training loss of the
model reduced by 91.73%, while the validation loss reduced by 96.95%. This
shows that the model neither under-fitted nor over-fitted the network traffic

46

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

100.0%

101

0.0%

0

0.0%

4

100.0%

733600

Normal Attack

True label

Normal

Attack

P
re

d
ic

te
d

 l
a

b
e

l

FIGURE 3.3: Confusion matrix of binary DNN model with
optimal numbers of hidden layers and hidden units based on
the Bot-IoT dataset

1 2 3 4 5

Number of epochs

0

1

2

3

4

5

C
ro

s
s
-e

n
tr

o
p

y
 l
o

s
s

10
-3

Training

Validation

FIGURE 3.4: Training and validation losses of binary DNN
model with optimal numbers of hidden layers and hidden
units based on the Bot-IoT dataset

data in the training set. It took 32.59 seconds to train the model with the
network traffic samples in the training set, and the model spend 585
milliseconds to classify the network traffic samples in the testing set. This
shows that the model was computationally efficient. Therefore, in 5-class
classification scenario, four hidden layers with 128, 128, 128, and 16 hidden
units, respectively are recommended for developing DNN-based botnet
detection model with the Bot-IoT dataset.

Table 3.6 presents the performance in 11-class classification scenario when
the sixteen DNN models were tested with the network traffic samples in the

47

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

TABLE 3.5: 5-class classification performance for different
hidden layers and hidden units based on the Bot-IoT dataset

Hidden Units Classification Performance (%)
HL1 HL2 HL3 HL4 A P R F1
16 - - - 98.89 78.80 71.15 74.05
32 - - - 99.19 76.40 74.21 75.23
64 - - - 99.43 78.94 77.06 77.94

128 - - - 99.68 98.81 86.24 90.11
128 16 - - 99.95 78.61 76.77 77.64
128 32 - - 99.96 99.12 93.18 95.78
128 64 - - 99.95 99.01 93.05 95.78
128 128 - - 99.96 98.55 93.37 95.61
128 128 16 - 99.98 99.37 95.66 97.36
128 128 32 - 99.87 97.70 95.92 96.62
128 128 64 - 99.98 99.17 97.32 98.21
128 128 128 - 99.98 99.56 97.13 98.30
128 128 128 16 99.97 99.95 97.79 98.81
128 128 128 32 99.98 99.53 96.13 97.76
128 128 128 64 99.93 99.50 96.47 97.92
128 128 128 128 99.99 97.25 98.30 97.64

99.9%

385004

0.1%

562

0.0%

0

0.0%

0

0.0%

0

0.0%

58

100.0%

329972

0.0%

0

0.0%

1

0.0%

0

0.0%

0

0.0%

0

89.1%

90

10.9%

11

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

17995

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

12

 DDoS DoS Norm Recon Theft

True label

 DDoS

 DoS

Norm

Recon

 Theft

P
re

d
ic

te
d

 l
a

b
e

l

FIGURE 3.5: Confusion matrix of 5-class DNN model with
optimal numbers of hidden layers and hidden units based on
the Bot-IoT dataset

testing set of the Bot-IoT dataset. The DNN model architecture which
comprised four hidden layers with 128, 128, 128, and 64 hidden units,
respectively has the highest F1 score of 88.06%. The model achieved 99.99%
accuracy, 88.59% precision, and 87.55% recall. Figure 3.7 shows that 99.6% of
the samples in the DD-T, DD-U, D-T, D-U, OSF and SS classes were

48

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

1 2 3 4 5

Number of epochs

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C
ro

s
s
-e

n
tr

o
p

y
 l
o

s
s

Training

Validation

FIGURE 3.6: Training and validation losses of 5-class DNN
model with optimal numbers of hidden layers and hidden
units based on the Bot-IoT dataset

TABLE 3.6: 11-class classification performance for different
hidden layers and hidden units based on the Bot-IoT dataset

Hidden Units Classification Performance (%)
HL1 HL2 HL3 HL4 A P R F1
16 - - - 99.46 78.18 61.95 64.39
32 - - - 99.65 72.98 67.01 69.20
64 - - - 99.77 82.25 78.53 79.82

128 - - - 99.85 84.43 78.90 80.79
128 16 - - 99.95 83.97 78.39 80.36
128 32 - - 99.98 75.79 73.55 73.85
128 64 - - 99.99 84.95 83.30 83.52
128 128 - - 99.96 85.46 83.92 83.74
128 128 16 - 99.97 85.48 79.47 81.32
128 128 32 - 99.98 86.79 80.43 82.13
128 128 64 - 99.99 86.44 84.58 84.88
128 128 128 - 99.99 88.08 84.79 86.09
128 128 128 16 99.99 85.71 83.69 83.62
128 128 128 32 99.99 87.85 85.87 86.76
128 128 128 64 99.99 88.59 87.55 88.06
128 128 128 128 99.99 86.33 86.55 86.29

classified correctly. However, less than 96% of the samples in the DD-H,
D-H, Norm, DE, and KL classes were classified incorrectly due to the high
class imbalance in the training set, as shown in Table 3.1. Figure 3.8 shows
that the training loss of the model reduced by 91.55%, while the validation
loss reduced by 95.10%. This shows that the model neither under-fitted nor
over-fitted the network traffic data in the training set. It took 36.14 seconds

49

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

to train the model with the network traffic samples in the training set, and
the model spend 638 milliseconds to classify the network traffic samples in
the testing set. This shows that the model was computationally efficient.
Therefore, in 11-class classification scenario, four hidden layers with 128,
128, 128, and 64 hidden units, respectively are recommended for developing
DNN-based botnet detection model with the Bot-IoT dataset.

87.3%

178

4.9%

10

0.0%

0

7.8%

16

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

99.9%

195119

0.0%

1

0.0%

0

0.1%

154

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

190071

0.0%

0

0.0%

0

0.0%

17

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

4.9%

13

3.4%

9

0.0%

0

90.3%

242

0.4%

1

0.7%

2

0.0%

0

0.4%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

25

0.0%

1

0.0%

0

100.0%

122946

0.0%

2

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

19

0.0%

0

0.0%

0

100.0%

206769

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

95.0%

96

0.0%

0

5.0%

5

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

99.7%

3571

0.3%

10

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

2

0.0%

0

100.0%

14411

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

9.1%

1

0.0%

0

0.0%

0

90.9%

10

D
D
-H

D
D
-T

D
D
-U

D
-H

D
-T

D
-U

N
o
rm

O
S
F

 S
S

 D
E

 K
L

True label

DD-H

DD-T

DD-U

D-H

D-T

D-U

Norm

OSF

 SS

 DE

 KL

P
re

d
ic

te
d

 l
a

b
e

l

FIGURE 3.7: Confusion matrix of 11-class DNN model with
optimal numbers of hidden layers and hidden units based on
the Bot-IoT dataset

Table 3.7 presents the performance in binary classification scenario when the
sixteen DNN models were tested with the network traffic samples in the
testing set of the N-BaIoT dataset. The DNN model architecture which
comprised three hidden layers with 128, 128, and 16 hidden units,
respectively has the highest F1 score of 99.98%. The model achieved 99.99%
accuracy, 99.97% precision, and 99.98% recall. Figure 3.9 shows that nearly
all the samples in the Norm and Attack classes were classified correctly.
This implies that the model had a good classification performance. Figure
3.10 shows that the training loss of the model reduced by 86.75%, while the
validation loss reduced by 49.98%. This shows that the model neither
under-fitted nor over-fitted the network traffic data in the training set. It
took 39.68 seconds to train the model with the network traffic samples in the

50

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

1 2 3 4 5

Number of epochs

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C
ro

s
s
-e

n
tr

o
p

y
 l
o

s
s

Training

Validation

FIGURE 3.8: Training and validation losses of 11-class DNN
model with optimal numbers of hidden layers and hidden
units based on the Bot-IoT dataset

TABLE 3.7: Binary classification performance for different
hidden layers and hidden units based on the N-BaIoT dataset

Hidden Units Classification Performance (%)
HL1 HL2 HL3 HL4 A P R F1
16 - - - 99.97 99.91 99.90 99.90
32 - - - 99.97 99.93 99.91 99.92
64 - - - 99.98 99.96 99.95 99.95

128 - - - 99.99 99.96 99.95 99.96
128 16 - - 99.99 99.96 99.95 99.96
128 32 - - 99.99 99.95 99.97 99.96
128 64 - - 99.98 99.91 99.97 99.94
128 128 - - 99.99 99.97 99.96 99.96
128 128 16 - 99.99 99.97 99.98 99.98
128 128 32 - 99.99 99.97 99.97 99.97
128 128 64 - 99.99 99.96 99.98 99.97
128 128 128 - 99.98 99.91 99.97 99.94
128 128 128 16 99.99 99.96 99.97 99.97
128 128 128 32 99.98 99.96 99.95 99.95
128 128 128 64 99.99 99.97 99.96 99.97
128 128 128 128 99.98 99.92 99.98 99.95

training set, and the model spend 1.02 seconds to classify the network traffic
samples in the testing set. This shows that the model was computationally
efficient. Therefore, in 11-class classification scenario, three hidden layers
with 128, 128, and 16 hidden units, respectively are recommended for
developing DNN-based botnet detection model with the N-BaIoT dataset.

Table 3.8 presents the performance in 10-class classification scenario when

51

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

100.0%

111363

0.0%

46

0.0%

52

100.0%

1129091

Normal Attack

True label

Normal

Attack
P

re
d
ic

te
d
 l
a
b
e
l

FIGURE 3.9: Confusion matrix of binary DNN model with
optimal numbers of hidden layers and hidden units based on
the N-BaIoT dataset

0 1 2 3 4 5

Number of epochs

0

0.5

1

1.5

2

2.5

3

C
ro

s
s
-e

n
tr

o
p

y
 l
o

s
s

10
-3

Training loss

Validation loss

FIGURE 3.10: Training and validation losses of binary DNN
model with optimal numbers of hidden layers and hidden
units based on the N-BaIoT dataset

the sixteen DNN models were tested with the network traffic samples in the
testing set of the N-BaIoT dataset. The DNN model architecture which
comprised two hidden layers with 128 and 32 hidden units, respectively has
the highest F1 score of 99.87%. The model achieved 99.98% accuracy, 99.86%
precision, and 99.89% recall. Figure 3.11 shows that nearly all the samples in
each of the 10 classes were classified correctly. This implies that the model
had a good classification performance. Figure 3.12 shows that the training
loss of the model reduced by 94.01%, while the validation loss reduced by
87.54%. This shows that the model neither under-fitted nor over-fitted the
network traffic data in the training set. It took 144.46 seconds to train the

52

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

TABLE 3.8: 10-class classification performance for different
hidden layers and hidden units based on the N-BaIoT dataset

Hidden Units Classification Performance (%)
HL1 HL2 HL3 HL4 A P R F1
16 - - - 99.76 98.48 98.09 98.27
32 - - - 99.75 98.69 98.57 98.63
64 - - - 99.88 99.25 99.08 99.16

128 - - - 99.94 99.58 99.63 99.60
128 16 - - 99.94 99.70 99.54 99.62
128 32 - - 99.98 99.86 99.89 99.87
128 64 - - 99.98 99.85 99.79 99.82
128 128 - - 99.98 99.85 99.77 99.81
128 128 16 - 99.95 99.71 99.49 99.59
128 128 32 - 99.98 99.86 99.86 99.86
128 128 64 - 99.96 99.72 99.55 99.63
128 128 128 - 99.96 99.77 99.63 99.70
128 128 128 16 99.96 99.76 99.68 99.72
128 128 128 32 99.97 99.83 99.75 99.79
128 128 128 64 99.97 99.81 99.71 99.76
128 128 128 128 99.94 99.66 99.43 99.54

model with the network traffic samples in the training set, and the model
spend 2.01 seconds to classify the network traffic samples in the testing set.
This shows that the model was computationally efficient. Therefore, in
10-class classification scenario, three hidden layers with 128 and 32 hidden
units, respectively are recommended for developing DNN-based botnet
detection model with the N-BaIoT dataset.

3.4.2 Optimal Learning Rates

The optimal learning rates in binary and multi-class classification scenarios
are determined when the DNN models were developed with the Bot-IoT
and N-BaIoT datasets. For each classification scenario, four DNN models
were developed with learning rates of 0.1, 0.01, 0.001, and 0.0001,
respectively. The optimal numbers of hidden layers and hidden units in
Section 3.4.1 and the default values of the other hyperparameters (Adam
optimiser, ReLU activation function, a batch size of 512, and 5 epochs) were
maintained.

Table 3.9 presents the performance in binary and multi-class classification
scenarios when DNN models are developed with different learning rates
and tested with the Bot-IoT and N-BaIoT datasets. In all use cases, the

53

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

99.9%

111315

0.0%

10

0.0%

16

0.0%

4

0.1%

62

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

1

0.0%

7

99.8%

102765

0.2%

241

0.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

5

0.0%

0

0.0%

0

0.0%

6

1.0%

500

99.0%

51746

0.0%

3

0.0%

0

0.0%

0

0.0%

0

0.0%

7

0.0%

0

0.0%

0

0.0%

10

0.0%

1

0.0%

3

100.0%

50887

0.0%

2

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

66

0.0%

0

0.0%

4

0.0%

0

100.0%

189422

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

2

0.0%

0

0.0%

0

0.0%

0

0.0%

2

99.8%

128386

0.0%

0

0.0%

0

0.2%

283

0.0%

17

0.0%

9

0.0%

0

0.0%

0

0.0%

23

0.0%

33

0.0%

0

99.9%

107742

0.0%

3

0.0%

0

0.0%

0

0.0%

0

0.0%

12

0.0%

6

0.0%

0

0.0%

3

0.0%

0

0.0%

3

100.0%

145998

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

19

0.0%

6

0.0%

0

0.0%

0

100.0%

246294

0.0%

2

0.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

5

0.0%

0

0.0%

0

0.4%

395

99.6%

104221

N
or

m

g_
co

m
bo

g_
ju
nk

g_
sc

an

g_
ud

p

m
_a

ck

m
_s

ca
n

m
_s

yn

m
_u

dp

m
_u

dp
p

True label

Norm

g_combo

g_junk

g_scan

g_udp

m_ack

m_scan

m_syn

m_udp

m_udpp

P
re

d
ic

te
d

 l
a

b
e

l

FIGURE 3.11: Confusion matrix of 10-class DNN model with
optimal numbers of hidden layers and hidden units based on
the N-BaIoT dataset

1 2 3 4 5

Number of epochs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C
ro

s
s
-e

n
tr

o
p

y
 l
o

s
s

Training

Validation

FIGURE 3.12: Training and validation losses of 10-class DNN
model with optimal numbers of hidden layers and hidden
units based on the N-BaIoT dataset

default learning rate of 0.001 produced the DNN model that had the highest
F1 score. Therefore, this learning rate is recommended for developing
DNN-based botnet detection model with the Bot-IoT and N-BaIoT datasets.

54

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

TABLE 3.9: Classification performance of DNN models for
different learning rates

Dataset Scenario Learning rate Classification Performance (%)
A P R F1

Bot-IoT

Binary

0.1 100.00 98.85 92.08 95.21
0.01 100.00 95.05 99.50 97.17

0.001 100.00 98.10 100.00 99.03
0.0001 100.00 100.00 90.59 94.81

5-class

0.1 81.02 10.51 20.00 13.78
0.01 99.94 59.80 59.94 59.87

0.001 99.97 99.95 97.79 98.81
0.0001 99.60 79.52 70.50 73.66

11-class

0.1 86.94 2.56 9.09 4.00
0.01 99.98 74.86 74.12 74.48

0.001 99.99 88.59 87.55 88.06
0.0001 99.88 76.21 70.16 72.25

N-BaIoT

Binary

0.1 91.02 45.51 50.00 47.65
0.01 99.98 99.93 99.97 99.95

0.001 99.99 99.97 99.98 99.98
0.0001 99.98 99.96 99.95 99.95

10-class

0.1 89.84 41.74 36.08 29.54
0.01 99.83 98.82 99.29 99.04

0.001 99.98 99.86 99.89 99.87
0.0001 99.71 98.34 97.99 98.16

3.4.3 Optimisers

The most appropriate optimisers in binary and multi-class classification
scenarios are determined when the DNN models were developed with the
Bot-IoT and N-BaIoT datasets. For each classification scenario, seven DNN
models were developed with Adam, SGD, RMSprop, Adadelta, Adagrad,
Adamax, and Nadam optimisers, respectively. The optimal numbers of
hidden layers and hidden units in Section 3.4.1, the optimal learning rates in
Section 3.4.2, and the default values of the other hyperparameters (ReLU
activation function, a batch size of 512, and 5 epochs) were maintained.

Table 3.10 presents the performance in binary and multi-class classification
scenarios when DNN models are developed with different learning rates
and tested with the Bot-IoT dataset. In the binary classification scenario,
Nadam optimiser produced the DNN model that had the highest F1 score of
99.27%. The model achieved 100% accuracy, 98.56% precision, and 100%
recall. Figure 3.13 shows that all the benign samples in the Norm class were
correctly classified, and only three out of 733604 malicious samples in the

55

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

TABLE 3.10: Classification performance of DNN models for
different optimisers based on the Bot-IoT dataset

Scenario Optimiser Classification Performance (%)
A P R F1

Binary

Adam 100.00 98.10 100.00 99.03
SGD 99.99 49.99 50.00 50.00
RMSprop 100.00 98.35 93.56 95.83
Adadelta 99.99 49.99 50.00 50.00
Adagrad 99.99 49.99 50.00 50.00
Adamax 100.00 98.84 91.58 94.92
Nadam 100.00 98.56 100.00 99.27

5-class

Adam 99.97 99.95 97.79 98.81
SGD 94.39 54.40 42.00 44.93
RMSprop 99.93 79.92 77.54 78.66
Adadelta 89.02 29.04 29.56 29.24
Adagrad 97.04 56.92 56.39 56.57
Adamax 99.84 78.30 74.48 76.17
Nadam 99.99 99.35 90.07 93.60

11-class

Adam 99.99 88.59 87.55 88.06
SGD 96.67 29.52 30.46 29.86
RMSprop 99.97 86.94 82.24 84.28
Adadelta 94.94 26.44 27.29 26.49
Adagrad 98.51 40.96 42.41 41.59
Adamax 99.91 76.51 72.90 73.89
Nadam 99.99 85.23 83.72 84.10

Attack class were misclassified as benign network traffic. This implies that
the model had a good classification performance. Figure 3.14 shows that the
training loss of the model reduced by 99.52%, while the validation loss
reduced by 62.02%. This implies that the model neither under-fitted nor
over-fitted the network traffic data in the training set. It took 33.49 seconds
to train the model with the network traffic samples in the training set, and
the model spend 433 milliseconds to classify the network traffic samples in
the testing set. This implies that the model was computationally efficient.
Therefore, in binary classification scenario, Nadam optimiser is
recommended for developing DNN-based botnet detection model with the
Bot-IoT dataset. In the 5-class and 11-class classification scenarios, the
default Adam optimiser produced the DNN model that had the highest F1
score of 98.81% and 88.06%, respectively. Therefore, the default Adam
optimiser is recommended for developing 5-class and 11-class DNN-based
botnet detection models with the Bot-IoT dataset.

Table 3.11 presents the performance in binary and multi-class classification

56

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

100.0%

101

0.0%

0

0.0%

3

100.0%

733601

Normal Attack

True label

Normal

Attack

P
re

d
ic

te
d

 l
a

b
e

l

FIGURE 3.13: Confusion matrix of binary DNN model with
Nadam optimiser based on the Bot-IoT dataset

1 2 3 4 5

Number of epochs

0

1

2

3

4

5

C
ro

s
s
-e

n
tr

o
p

y
 l
o

s
s

10
-3

Training

Validation

FIGURE 3.14: Training and validation losses of binary DNN
model with Nadam optimiser based on the Bot-IoT dataset

scenarios when DNN models are developed with different learning rates
and tested with the N-BaIoT dataset. In the binary classification scenario,
the default Adam optimiser produced the DNN model that had the highest
F1 score of 98.81% and 88.06%, respectively. Therefore, the Adam optimiser
is recommended for developing binary DNN-based botnet detection model
with the Bot-IoT dataset. In the 10-class classification scenario, Nadam
optimiser produced the DNN model that had the highest F1 score of 99.92%.
The model achieved 99.99% accuracy, 99.92% precision, and 99.93% recall.
Figure 3.15 shows that nearly all the samples in each of the 10 classes were
classified correctly. This implies that the model had a good classification
performance. Figure 3.16 shows that the training loss of the model reduced
by 94.97%, while the validation loss reduced by 89.68%. This implies that

57

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

TABLE 3.11: Classification performance of DNN models for
different optimisers based on the N-BaIoT dataset

Scenario Optimiser Classification Performance (%)
A P R F1

Binary

Adam 99.99 99.97 99.98 99.98
SGD 99.80 99.26 99.54 99.40
RMSprop 99.98 99.95 99.94 99.94
Adadelta 99.80 99.25 99.54 99.40
Adagrad 99.83 99.36 99.60 99.48
Adamax 99.98 99.96 99.95 99.95
Nadam 99.99 99.98 99.96 99.97

10-class

Adam 99.98 99.86 99.89 99.87
SGD 96.08 79.07 74.97 74.90
RMSprop 99.48 97.66 98.41 97.90
Adadelta 95.65 68.56 70.25 67.77
Adagrad 96.23 80.63 76.39 76.51
Adamax 99.95 99.72 99.71 99.72
Nadam 99.99 99.92 99.93 99.92

the model neither under-fitted nor over-fitted the network traffic data in the
training set. It took 191.46 seconds to train the model with the network
traffic samples in the training set, and the model spend 1.11 seconds to
classify the network traffic samples in the testing set. This implies that the
model was computationally efficient. Therefore, in binary classification
scenario, Nadam optimiser is recommended for developing DNN-based
botnet detection model with the Bot-IoT dataset. In the 5-class and 11-class
classification scenarios, the default Adam optimiser produced the DNN
model that had the highest F1 score of 98.81% and 88.06%, respectively.
Therefore, the default Adam optimiser is recommended for developing
5-class and 11-class DNN-based botnet detection models with the Bot-IoT
dataset.

3.4.4 Optimal Activation Functions

The optimal activation functions in binary and multi-class classification
scenarios are determined when the DNN models were developed with the
Bot-IoT and N-BaIoT datasets. For each classification scenario, four DNN
models were developed with ReLU, tanh, SELU, and ELU activation
functions, respectively. The optimal numbers of hidden layers and hidden
units in Section 3.4.1, the optimal learning rates in Section 3.4.2, the most
appropriate optimisers in Section 3.4.3, and the default values of the other

58

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

99.9%

111348

0.0%

2

0.0%

9

0.0%

11

0.0%

35

0.0%

0

0.0%

0

0.0%

0

0.0%

4

0.0%

0

0.0%

6

98.7%

101673

1.3%

1333

0.0%

1

0.0%

3

0.0%

0

0.0%

0

0.0%

3

0.0%

0

0.0%

0

0.0%

5

0.2%

104

99.8%

52146

0.0%

2

0.0%

3

0.0%

0

0.0%

0

0.0%

2

0.0%

0

0.0%

0

0.0%

5

0.0%

0

0.0%

2

100.0%

50895

0.0%

2

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

42

0.0%

0

0.0%

2

0.0%

0

100.0%

189448

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

2

0.0%

0

0.0%

0

0.0%

2

100.0%

128671

0.0%

0

0.0%

0

0.0%

2

0.0%

12

0.0%

10

0.0%

0

0.0%

0

0.0%

22

0.0%

25

0.0%

0

99.9%

107753

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

6

0.0%

12

0.0%

0

0.0%

3

0.0%

0

0.0%

27

100.0%

145974

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

20

0.0%

14

0.0%

0

0.0%

0

100.0%

246259

0.0%

28

0.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

2

0.0%

20

0.0%

0

0.0%

0

0.1%

118

99.9%

104482

N
or

m

g_
co

m
bo

g_
ju
nk

g_
sc

an

g_
ud

p

m
_a

ck

m
_s

ca
n

m
_s

yn

m
_u

dp

m
_u

dp
p

True label

Norm

g_combo

g_junk

g_scan

g_udp

m_ack

m_scan

m_syn

m_udp

m_udpp

P
re

d
ic

te
d

 l
a

b
e

l

FIGURE 3.15: Confusion matrix of 10-class DNN model with
Nadam optimiser based on the N-BaIoT dataset

1 2 3 4 5

Number of epochs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

C
ro

s
s
-e

n
tr

o
p

y
 l
o

s
s

Training

Validation

FIGURE 3.16: Training and validation losses of 10-class DNN
model with Nadam optimiser based on the N-BaIoT dataset

hyperparameters (a batch size of 512, and 5 epochs) were maintained.

Table 3.12 presents the performance in binary and multi-class classification
scenarios when DNN models are developed with different activation
functions and tested with the Bot-IoT and N-BaIoT datasets. In all use cases,
the default activation function, ReLU, produced the DNN model that had

59

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

TABLE 3.12: Classification performance of DNN models for
different activation functions

Dataset Scenario Activation function Classification Performance (%)
A P R F1

Bot-IoT

Binary

ReLU 100.00 98.56 100.00 99.27
tanh 100.00 98.92 95.05 96.91

SELU 100.00 98.92 95.05 96.91
ELU 100.00 98.02 98.02 98.02

5-class

ReLU 99.97 99.95 97.79 98.81
tanh 99.99 99.97 97.01 92.05

SELU 99.97 97.86 96.23 90.75
ELU 99.97 96.75 95.74 93.82

11-class

ReLU 99.99 88.59 87.55 88.06
tanh 99.99 88.16 82.08 84.03

SELU 99.99 87.28 85.35 86.20
ELU 99.99 85.40 85.28 85.18

N-BaIoT

Binary

ReLU 99.99 99.97 99.98 99.98
tanh 99.99 99.96 99.96 99.96

SELU 99.99 99.95 99.97 99.96
ELU 99.99 99.95 99.97 99.96

10-class

ReLU 99.99 99.92 99.93 99.92
tanh 99.97 99.78 99.85 99.82

SELU 99.97 99.76 99.82 99.78
ELU 99.98 99.85 99.86 99.85

the highest F1 score. Therefore, this learning rate is recommended for
developing DNN-based botnet detection model with the Bot-IoT and
N-BaIoT datasets.

3.4.5 Optimal Batch Sizes

The optimal batch sizes in binary and multi-class classification scenarios are
determined when the DNN models were developed with the Bot-IoT and
N-BaIoT datasets. For each classification scenario, five DNN models were
developed with batch sizes of 64, 128, 256, 512, and 1024, respectively. The
optimal numbers of hidden layers and hidden units in Section 3.4.1, the
optimal learning rates in Section 3.4.2, the most appropriate optimisers in
Section 3.4.3, the optimal activation functions in Section 3.4.5, and the
default number of epochs (i.e. 5 epochs) were maintained.

Table 3.13 presents the performance in binary and multi-class classification
scenarios when DNN models are developed with different batch sizes and
tested with the Bot-IoT and N-BaIoT datasets. In all use cases, the default

60

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

TABLE 3.13: Classification performance of DNN models for
different batch sizes

Dataset Scenario Batch size Classification Performance (%)
A P R F1

Bot-IoT

Binary

64 100.00 97.62 99.50 98.54
128 100.00 97.20 100.00 98.56
256 100.00 98.10 100.00 99.03
512 100.00 98.56 100.00 99.27

1024 100.00 99.01 99.01 99.01

5-class

64 99.98 98.98 90.65 93.72
128 99.98 99.97 96.53 98.18
256 99.99 99.77 97.13 98.40
512 99.97 99.95 97.79 98.81

1024 99.71 79.67 76.94 78.20

11-class

64 99.98 86.08 85.53 85.73
128 99.98 87.18 86.38 86.68
256 100.00 88.27 87.64 87.92
512 99.99 88.59 87.55 88.06

1024 99.96 82.76 79.08 80.10

N-BaIoT

Binary

64 99.99 99.96 99.96 99.96
128 99.99 99.96 99.98 99.97
256 99.99 99.96 99.97 99.97
512 99.99 99.97 99.98 99.98

1024 99.99 99.96 99.96 99.96

10-class

64 99.99 99.89 99.92 99.91
128 99.99 99.89 99.93 99.91
256 99.99 99.89 99.92 99.90
512 99.99 99.92 99.93 99.92

1024 99.97 99.79 99.84 99.82

batch size of 512 produced the DNN model that had the highest F1 score.
Therefore, this batch size is recommended for developing DNN-based botnet
detection model with the Bot-IoT and N-BaIoT datasets.

3.4.6 Optimal Number of Epochs

The optimal number of epochs in binary and multi-class classification
scenarios are determined when the DNN models were developed with the
Bot-IoT and N-BaIoT datasets. For each classification scenario, four DNN
models were developed with 5, 10, 15, and 20 epochs, respectively. The
optimal numbers of hidden layers and hidden units in Section 3.4.1, the
optimal learning rates in Section 3.4.2, the most appropriate optimisers in
Section 3.4.3, the optimal activation functions in Section 3.4.5, and the

61

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

optimal batch sizes in Section 3.4.5 were maintained.

TABLE 3.14: Classification performance of DNN models for
different number of epochs

Dataset Scenario Batch size Classification Performance (%)
A P R F1

Bot-IoT

Binary

5 100.00 98.56 100.00 99.27
10 100.00 98.10 100.00 99.03
15 100.00 98.10 100.00 99.03
20 100.00 98.10 100.00 99.03

5-class

5 99.97 99.95 97.79 98.81
10 99.99 99.23 99.98 99.60
15 100.00 99.20 99.20 99.20
20 100.00 99.22 99.79 99.50

11-class

5 99.99 88.59 87.55 88.06
10 99.96 87.23 87.15 86.90
15 100.00 92.60 96.29 92.19
20 100.00 89.65 94.51 89.48

N-BaIoT

Binary

5 99.99 99.97 99.98 99.98
10 99.99 99.98 99.98 99.98
15 99.99 99.96 99.99 99.98
20 99.99 99.98 99.99 99.98

10-class

5 99.99 99.92 99.93 99.92
10 99.99 99.91 99.94 99.92
15 99.99 99.93 99.92 99.93
20 99.99 99.91 99.88 99.89

Table 3.14 presents the performance in binary and multi-class classification
scenarios when DNN models are developed with different number of
epochs and tested with the Bot-IoT and N-BaIoT datasets. In the binary
classification scenarios, the default number of epochs produced the DNN
models that had the highest F1 score of 98.27% and 99.98%, respectively.
Therefore, this number of epoch is recommended for developing
DNN-based botnet detection model with the Bot-IoT and N-BaIoT datasets
in binary classification scenarios.

In 5-class classification scenario, 10 epochs produced the DNN model that
had the highest F1 score of 99.60%. The model achieved 99.99% accuracy,
99.23% precision, and 99.98% recall. Figure 3.17 shows that the model
correctly classified nearly all the samples in all the five classes. This shows
that the model had a good classification performance. Figure 3.18 shows
that the training loss of the model reduced by 93.39%, while the validation
loss reduced by 98.77%. This shows that the model neither under-fitted nor
over-fitted the network traffic data in the training set. It took 65.22 seconds

62

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

100.0%

385442

0.0%

124

0.0%

0

0.0%

0

0.0%

0

0.0%

80

100.0%

329950

0.0%

0

0.0%

1

0.0%

0

0.0%

0

0.0%

0

100.0%

101

0.0%

0

0.0%

0

0.0%

1

0.0%

0

0.0%

4

100.0%

17990

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

12

 DDoS DoS Norm Recon Theft

True label

 DDoS

 DoS

Norm

Recon

 Theft

P
re

d
ic

te
d

 l
a

b
e

l

FIGURE 3.17: Confusion matrix of 5-class DNN model with 10
epochs based on the Bot-IoT dataset

1 2 3 4 5 6 7 8 9 10

Number of epochs

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C
ro

s
s
-e

n
tr

o
p

y
 l
o

s
s

Training

Validation

FIGURE 3.18: Training and validation losses of 5-class DNN
model with 10 epochs based on the Bot-IoT dataset

to train the model with the network traffic samples in the training set, and
the model spend 604 milliseconds to classify the network traffic samples in
the testing set. This implies that the model was computationally efficient.
Therefore, in 5-class classification scenario, 10 epochs are recommended for
developing DNN-based botnet detection model with the Bot-IoT dataset.

In 11-class classification scenario, 15 epochs produced the DNN model that
had the highest F1 score of 92.19%. The model achieved 100% accuracy,

63

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

91.7%

187

2.9%

6

0.0%

0

4.4%

9

1.0%

2

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

195266

0.0%

1

0.0%

0

0.0%

7

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

190088

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.7%

2

0.7%

2

0.0%

0

97.8%

262

0.4%

1

0.0%

0

0.0%

0

0.4%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

12

0.0%

1

0.0%

0

100.0%

122961

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

4

0.0%

0

0.0%

1

100.0%

206783

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

97.0%

98

0.0%

0

3.0%

3

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

3582

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

2

0.0%

0

100.0%

14411

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

27.3%

3

72.7%

8

D
D
-H

D
D
-T

D
D
-U

D
-H

D
-T

D
-U

N
o
rm

O
S
F

 S
S

 D
E

 K
L

True label

DD-H

DD-T

DD-U

D-H

D-T

D-U

Norm

OSF

 SS

 DE

 KL

P
re

d
ic

te
d

 l
a

b
e

l

FIGURE 3.19: Confusion matrix of 11-class DNN model with
15 epochs based on the Bot-IoT dataset

2 4 6 8 10 12 14

Number of epochs

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

C
ro

s
s
-e

n
tr

o
p

y
 l
o

s
s

Training

Validation

FIGURE 3.20: Training and validation losses of 11-class DNN
model with 15 epochs based on the Bot-IoT dataset

92.60% precision, and 96.29% recall. Figure 3.19 shows that nearly all the
samples in the DD-T, DD-U, D-T, D-U, OSF, SS, and DE classes were
classified correctly. However, less than 98% of the samples in the DD-H,
D-H, Norm, DE, and KL classes were classified incorrectly due to the high
class imbalance in the training set, as shown in Table 3.1. Figure 3.20 shows
that the training loss of the model reduced by 96.94%, while the validation
loss reduced by 98.33%. This shows that the model neither under-fitted nor

64

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

over-fitted the network traffic data in the training set. It took 106.82 seconds
to train the model with the network traffic samples in the training set, and
the model spend 638 milliseconds to classify the network traffic samples in
the testing set. This implies that the model was computationally efficient.
Therefore, in 5-class classification scenario, 15 epochs are recommended for
developing DNN-based botnet detection model with the Bot-IoT dataset.

100.0%

111371

0.0%

0

0.0%

1

0.0%

19

0.0%

12

0.0%

0

0.0%

4

0.0%

0

0.0%

0

0.0%

2

0.0%

12

100.0%

102989

0.0%

17

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

0

0.0%

0

0.0%

9

0.1%

67

99.8%

52180

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

6

0.0%

0

0.0%

0

0.0%

8

0.0%

1

0.0%

0

100.0%

50895

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

24

0.0%

0

0.0%

0

0.0%

1

100.0%

189467

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

2

100.0%

128677

0.0%

0

0.0%

0

0.0%

6

0.0%

5

0.0%

8

0.0%

0

0.0%

0

0.0%

10

0.0%

11

0.0%

0

100.0%

107781

0.0%

0

0.0%

0

0.0%

0

0.0%

8

0.0%

10

0.0%

0

0.0%

0

0.0%

1

0.0%

0

0.0%

5

100.0%

145998

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

17

0.0%

3

0.0%

2

0.0%

0

100.0%

246288

0.0%

11

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

1

0.0%

2

0.0%

0

0.0%

0

0.0%

9

100.0%

104611

N
or

m

g_
co

m
bo

g_
ju
nk

g_
sc

an

g_
ud

p

m
_a

ck

m
_s

ca
n

m
_s

yn

m
_u

dp

m
_u

dp
p

True label

Norm

g_combo

g_junk

g_scan

g_udp

m_ack

m_scan

m_syn

m_udp

m_udpp

P
re

d
ic

te
d

 l
a

b
e

l

FIGURE 3.21: Confusion matrix of 10-class DNN model with
15 epochs based on the Bot-IoT dataset

2 4 6 8 10 12 14

Number of epochs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C
ro

s
s
-e

n
tr

o
p

y
 l
o

s
s

Training

Validation

FIGURE 3.22: Training and validation losses of 11-class DNN
model with 15 epochs based on the Bot-IoT dataset

65

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

In 10-class classification scenario, 15 epochs produced the DNN model that
had the highest F1 score of 99.93%. The model achieved 99.99% accuracy,
99.93% precision, and 99.92% recall. Figure 3.21 shows that nearly all the
samples in each of the 10 classes were classified correctly. This implies that
the model had a good classification performance. Figure 3.22 shows that the
training loss of the model reduced by 98.13%, while the validation loss
reduced by 97.12%. This shows that the model neither under-fitted nor
over-fitted the network traffic data in the training set. It took 168.85 seconds
to train the model with the network traffic samples in the training set, and
the model spend 1.16 seconds to classify the network traffic samples in the
testing set. This implies that the model was computationally efficient.
Therefore, in 10-class classification scenario, 15 epochs are recommended for
developing DNN-based botnet detection model with the N-BaIoT dataset.

TABLE 3.15: Optimal sets of hyperparameters for DNN
models

Data set Type
Hyperparameters

HL HU LR Optimiser AF BS Epoch

Bot-IoT
Binary 2 128, 16 0.001 Nadam ReLU 512 5
5-Class 4 128, 128, 128, 16 0.001 Adam ReLU 512 10
11-Class 4 128, 128, 128, 64 0.001 Adam ReLU 512 15

N-BaIoT
Binary 3 128, 128, 16 0.001 Adam ReLU 512 5
10-Class 2 128, 32 0.001 Nadam ReLU 512 15

TABLE 3.16: Classification performance of the optimal DNN
models

Data set Type Classification Performance (%) Time (s)
A P R F1 Training Testing

Bot-IoT
Binary 100.00 98.56 100.00 99.27 33.49 0.43
5-class 99.96 99.20 99.96 99.57 57.78 0.55
11-class 100.00 92.60 96.29 92.19 168.85 1.16

N-BaIoT 2-class 99.99 99.97 99.98 99.98 39.68 1.02
10-class 99.99 99.91 99.88 99.89 105.80 1.03

3.5 Chapter Summary

In this chapter, an empirical method was proposed to determine the optimal
set of hyperparameters (the numbers of hidden layers and hidden units,
learning rate, optimiser, activation function, batch size, and the number of
epochs) for efficient DL-based botnet detection in IoT networks. DNN
models were trained, validated, and tested with the Bot-IoT and N-BaIoT

66

Chapter 3. Model Hyperparameter Optimisation for Deep Learning-Based
Botnet Detection

data sets to evaluate the performance of the proposed method. The Bot-IoT
data has three label categories (binary, 5-class, and 11-class), while the
N-BaIoT data set has two label categories (binary and 10-class). The optimal
sets of hyperparameters for the DNN model are presented in Table 3.15.
Experiment results showed that the proposed method produced DNN
models that achieved 99.99 ± 0.02% accuracy, 97.85 ± 3.77% precision,
98.72 ± 2.77% recall, and 97.72 ± 4.51% F1 score, as shown in Table 3.16.
Also, it took 14.35 − 260.29 seconds to train the DNN models with the
samples in the training sets, and 0.38− 1.38 seconds to classify the samples
in the testing sets. Therefore, the proposed method will help cybersecurity
experts to develop DNN-based botnet detection models that can detect
cyber attacks in IoT and IIoT networks with high accuracy and low false
alarm rate.

67

Chapter 4

SMOTE-DL: An Algorithm for
Imbalanced Network Traffic
Classification

4.1 Introduction

An optimised DL method was proposed in Chapter 3 to detect botnet
attacks in IoT-enabled critical infrastructure. However, when a DL model
was developed with highly imbalanced network traffic data in the training
set, the classification performance of the model was low i.e. some of the
network traffic samples in the testing set were misclassified. If this model is
deployed in real-life, that means the botnet attack traffic patterns that were
misclassified as benign network traffic will bypass the security system and
invade the IoT-enabled critical infrastructure. On the other hand, the benign
network traffic patterns that were misclassified as botnet attack traffic will
be denied access to the IoT-enabled critical infrastructure because of the
false alarm that was raised by the DL-based security system.

In this chapter, a framework named SMOTE-DL is proposed to improve the
classification performance of DL-based botnet attack detection models when
the network traffic data in the training set is highly imbalanced. First,
SMOTE method generates synthetic network traffic samples for the
minority classes in the training set to achieve class balance. Then, the
optimised DL method, which was proposed in Chapter 3, learns the
hierarchical feature representations of the balanced network traffic data for
a more accurate classification. The DL architectures that were considered in
this chapter include DNN, RNN, LSTM, and GRU. SMOTE-DNN,
SMOTE-RNN, SMOTE-LSTM, and SMOTE-GRU models are developed

68

Chapter 4. SMOTE-DL: An Algorithm for Imbalanced Network Traffic
Classification

with the highly imbalanced network traffic data in the Bot-IoT dataset to
evaluate the effectiveness of the proposed framework. The classification
performance of the models is evaluated and compared with that of DNN,
RNN, LSTM, and GRU models based on accuracy, precision, recall, and F1
score, while their computation efficiency is evaluated and compared based
on sampling time, training time, and testing time.

The rest of the chapter is organised as follows: the details of the SMOTE-DL
framework is presented in Section 4.2; the information about the
development of the SMOTE-DL models is provided in Section 4.3; the
classification performance and the computation efficiency of the models are
analysed and discussed in Section 4.4; and finally, the main findings of the
chapter is summarised in Section 4.5.

4.2 SMOTE-DL for Imbalanced Network Traffic

Classification

In this section, a framework named SMOTE-DL is proposed to improve the
classification performance of DL-based botnet detection models when the
network traffic data that is used for the training is highly imbalanced.
SMOTE-DL framework is a combination of SMOTE method and a DL
method. SMOTE method, which was originally developed by Chawla et al
[191], generates synthetic network traffic samples for the minority classes to
achieve class balance, while the DL method learns the hierarchical
representation of the balanced data in the training set to perform network
traffic classification with the aim of detecting botnet attacks in IoT-enabled
critical infrastructure. Four DL architectures are considered for the
classification of the balanced network traffic data, namely DNN, RNN,
LSTM, and GRU.

4.2.1 Synthetic Minority Oversampling Technique

A highly imbalanced network traffic data comprised a feature matrix X and
a class label vector y. The feature matrices of the majority classes and the
minority classes are represented with Xma and Xmi, respectively. Unlike the
methods in [192], [193], which over-samples the minority classes with
replacement, SMOTE creates synthetic network traffic data Xs ∈ Rns×d for
the minority classes to achieve class balance [191]. The number of samples

69

Chapter 4. SMOTE-DL: An Algorithm for Imbalanced Network Traffic
Classification

in the synthetic data set ns is the Ns% of the number of samples in the
minority classes nmi. If Ns is less than 100%, a proportion of Xmi is selected
randomly to generate Xs. Otherwise, nmi is multiplied by a factor of nmulti

(i.e. Ns/100) to generate ns synthetic samples for a minority class. The
euclidean distance between the samples in Xmi is computed without
considering the nearest neighbour for same sample. One of the k nearest
neighbour is randomly selected, and the difference between two closely
related samples is calculated. Then, ns synthetic samples are created along
the line segments that joined k nearest neighbours to the minority class.

Algorithm 2: SMOTE Algorithm
Input: Xmi, Ns, k
Output: Xs

1 if Ns < 100 then
2 ns = (Ns/100)× nmi
3 Xr = random(Xmi, ns)
4 Ns = 100
5 end
6 if Ns >= 100 then
7 nmult = int(Ns/100)
8 ns = nmult × nmi
9 end

10 for index ← 1 to ns do
11 nn_array = kNN(index, k)
12 end
13 while Ns ̸= 0 do
14 rn = random(1, k)
15 s_index = 0
16 for f eature = 1 to d do
17 var1 = Xmi[nn_array[rn]][f eature]− Xmi[index][f eature]
18 var2 = random(0, 1)
19 Xs[s_index][f eature] = Xmi[index][f eature] + (var1× var2)
20 end
21 s_index = s_index + 1
22 Ns = Ns − 1
23 end

4.2.2 Recurrent Neural Network

Unlike the DNN method that was presented earlier in Section 3.2, RNN uses
an additional hidden state vector, Hr, at the input layer of the neural network
to learn the temporal dynamics among the network traffic features. The mini-
batch of the highly imbalanced network traffic features, xk, and the initial

70

Chapter 4. SMOTE-DL: An Algorithm for Imbalanced Network Traffic
Classification

hidden state Hinit are transformed with trainable parameters as follows:

H1 = σh (WxXk + WhHr + Bh) , (4.1)

where h1k is the new hidden state when RNN is trained with the kth mini-
batch; Wx and Wh are the weights used for linear transformation of Xk and
hinit respectively; and bh is the bias. A complete information about the RNN
algorithm is presented in Algorithm 3.

Algorithm 3: RNN Algorithm
Input: X
Target: y
Output: ỹ

1 h0 = hinit
2 for e = 1 to u do
3 for k = 1 to n do
4 h1k = σh (Wx1xk + Wh1h0 + b1h)
5 for m = 2 to (d + 1) do
6 hmk = σh

(
Whmh(m−1)k + bmh

)
7 end
8 ỹk = σy

(
Wyhmk + by

)
9 Lk = θ(yk, ỹk)

10 end

11 L =
n

∑
k=1

Lk

12 W
′
(·), b

′
(·) = ψ

(
W(·), b(·)

)
13 end

4.2.3 Long Short-Term Memory

LSTM was proposed to address vanishing and exploding gradient problem
in RNN [194]. Input gate (ik), cell state (ck) and output gate (ok) were
introduced to learn long-term dependencies in the temporal dynamics of Xk.
The input gate determines the new information to be stored in the cell state
while the output gate determines the output information based on the cell
state. Forget gate (fk) was added to determine the information to be
removed from the cell state [195]. The performance of LSTM improves as
the bias of the forget gate, b f , increases [196]. LSTM layer is represented by

71

Chapter 4. SMOTE-DL: An Algorithm for Imbalanced Network Traffic
Classification

Eq. 4.2: 

ik = σh (Wixxk + Wihh0 + bi) ,

fk = σh
(
W f xxk + W f hh0 + b f

)
,

c̃k = σh (Wc̃xxk + Wc̃hh0 + bc̃) ,

ck = ik ⊙ c̃k,

ok = σh (Woxxk + Wohh0 + bo) ,

h1k = ok ⊙ σh (ck) .

(4.2)

A complete information about the LSTM algorithm is presented in Algorithm
4.

Algorithm 4: LSTM Algorithm
Input: X
Target: y
Output: ỹ

1 h0 = hinit
2 for e = 1 to u do
3 for k = 1 to n do
4 ik = σh (Wixxk + Wihh0 + bi)
5 fk = σh

(
W f xxk + W f hh0 + b f

)
6 c̃k = σh (Wc̃xxk + Wc̃hh0 + bc̃)
7 ck = ik ⊙ c̃k
8 ok = σh (Woxxk + Wohh0 + bo)
9 h1k = ok ⊙ σh (ck)

10 for m = 2 to (d + 1) do
11 hmk = σh

(
Whmh(m−1)k + bmh

)
12 end
13 ỹk = σy

(
Wyhmk + by

)
14 Lk = θ(yk, ỹk)
15 end

16 L =
n

∑
k=1

θ(yk, ỹk)

17 W
′
(·), b

′
(·) = ψ

(
W(·), b(·)

)
18 end

4.2.4 Gated Recurrent Unit

GRU is an extension of LSTM with a simplified gated mechanism [197]. The
input and forget gates were replaced with an update gate, zk), to reduce the
computational burden without significantly degrading classification
performance. Also, a reset gate, rk, was introduced to control the amount of

72

Chapter 4. SMOTE-DL: An Algorithm for Imbalanced Network Traffic
Classification

information that will be eliminated in h1k before it is combined with xk to
produce a new hidden state vector. The update gate determines the
percentage of h1k and h̃1k that will be in the next hidden state vector. The
outputs of the two gates depend on past hidden states and the current
input, xk. GRU layer is represented by Eq. (4.3):

rk = σh (Wrxxk + Wrhh0 + br) ,

zk = σh (Wzxxk + Wzhhk + bz) ,

h̃k = σh
(
Wh̃xxk + Wh̃h (rk ⊙ hk) + bz

)
,

h1k = (1− zk)⊙ hk + zk ⊙ h̃k.

(4.3)

A complete information about GRU algorithm is presented in Algorithm 5.

Algorithm 5: GRU Algorithm
Input: X
Target: y
Output: ỹ

1 h0 = hinit
2 for e = 1 to u do
3 for k = 1 to n do
4 rk = σh (Wrxxk + Wrhh0 + br)
5 zk = σh (Wzxxk + Wzhhk + bz)

6 h̃k = σh
(
Wh̃xxk + Wh̃h (rk ⊙ hk) + bz

)
7 h1k = (1− zk)⊙ hk + zk ⊙ h̃k
8 for m = 2 to (d + 1) do
9 hmk = σh

(
Whmh(m−1)k + bmh

)
10 end
11 ỹk = σy

(
Wyhmk + by

)
12 Lk = θ(yk, ỹk)
13 end

14 L =
n

∑
k=1

θ(yk, ỹk)

15 W
′
(·), b

′
(·) = ψ

(
W(·), b(·)

)
16 end

4.3 Model Development and Experiment

In this section, the proposed SMOTE-DL framework is implemented with
the highly imbalanced 11-class network traffic data in the Bot-IoT dataset, as

73

Chapter 4. SMOTE-DL: An Algorithm for Imbalanced Network Traffic
Classification

shown in Figure 4.1. The sample distribution of the data and the data pre-
processing procedure were presented earlier in Section 3.3.

FIGURE 4.1: Framework for the development of SMOTE-DL
model

Table 4.1 shows that the DD-H, D-H, Norm, DE, and KL classes have lower
class imbalance ratios (< 1 : 57), compared to the other six classes.
Therefore, these five classes are referred to as the minority classes. The
SMOTE method was used to generate synthetic network traffic data for the
minority classes such that the class imbalance ratio of each of these classes
will increase to at least 1:57. The highly imbalanced network traffic data was
used to train four DL models i.e. DNN, RNN, LSTM, and GRU models. On
the other hand, the balanced network traffic data was used to train four
SMOTE-DL models named SMOTE-DNN, SMOTE-RNN, SMOTE-LSTM,
and SMOTE-GRU models. The optimal set of hyperparameters that were
recommended for 11-class classification scenario in Chapter 3 (Table 3.15)
were used for the model development in this chapter. The robustness of the
DL and SMOTE-DL models was evaluated using the validation set, while
the generalisation ability of these model was evaluated using the testing set.
The sample distribution of the network traffic data in the validation and
testing sets are presented in Table 3.1.

74

Chapter 4. SMOTE-DL: An Algorithm for Imbalanced Network Traffic
Classification

TABLE 4.1: Class-imbalance ratio of 11-Class Bot-IoT dataset

Class No. of Samples Class Imbalance Ratio
DD-H 588 1:1053
DD-T 586393 1:1
DD-U 568760 1:1
D-H 906 1:684
D-T 369965 1:2
D-U 619414 1:1
Norm 290 1:2136
OSF 10795 1:57
SS 43949 1:14
DE 4 1:154854
KL 48 1:12904

4.4 Result Analysis and Discussion

In this section, the results of the model development and the experiment are
analysed to evaluate the evaluate the effectiveness of the proposed
SMOTE-DL algorithm. The sample distribution of the newly generated
network traffic data is presented. The robustness of the models against
under-fitting and over-fitting is evaluated based on the cross-entropy loss
during training and validation. The classification performance of the
models is evaluated based on accuracy, precision, recall, and F1 score.
Finally, the computation efficiency of the models is evaluated based on the
training time and the testing time.

4.4.1 Generation of Synthetic Network Traffic Data

Table 4.2 presents the sample distribution of the highly imbalanced as well
as the balanced network traffic data in the training set of the Bot-IoT dataset.
The SMOTE method generated a total of 52139 synthetic samples to increase
the low class imbalance ratio of the number of samples in a minority class to
the number of samples in the majority class. In the DD-H class, 10207
synthetic samples were generated, and this increased the class imbalance
ratio from 1:1053 to 1:57. In the D-H class, 9889 synthetic samples were
generated, and this increased the class imbalance ratio from 1:684 to 1:57. In
the Norm class, 10505 synthetic samples were generated, and this increased
the class imbalance ratio from 1:2136 to 1:57. In the DE class, 10791 synthetic
samples were generated, and this increased the class imbalance ratio from
1:154854 to 1:57. In the KL class, 10747 synthetic samples were generated,
and this increased the class imbalance ratio from 1:12904 to 1:57. The

75

Chapter 4. SMOTE-DL: An Algorithm for Imbalanced Network Traffic
Classification

increase in the class imbalance ratio helped the SMOTE-DL models to
achieve high classification performance, as discussed later in Section 4.4.3.
The synthetic data generation experiment was performed at four different
times to determine the computation complexity of the process. Figure 4.2
shows that the sampling time for the synthetic data generation was
880 − 930 milliseconds. Therefore, the process will not increase the
computation complexity of the DL-based botnet attack detection models.

TABLE 4.2: New training set for 11-class classification

Class Training data
Original Generated New

DD-H 588 10207 10795
DD-T 586393 0 586393
DD-U 568760 0 568760
D-H 906 9889 10795
D-T 369965 0 369965
D-U 619414 0 619414
Norm 290 10505 10795
OSF 10795 0 10795
SS 43949 0 43949
DE 4 10791 10795
KL 48 10747 10795

1 2 3 4

Experiment serial number

0

0.2

0.4

0.6

0.8

1

S
a
m

p
lin

g
 t
im

e
 (

s
)

FIGURE 4.2: Sampling time of the SMOTE method

4.4.2 Robustness against Under-fitting and Over-fitting

Figure 4.3 shows the cross-entropy losses of DL models during training and
validation. The training and validation losses of the models reduced

76

Chapter 4. SMOTE-DL: An Algorithm for Imbalanced Network Traffic
Classification

significantly as the number of epochs increased from 1 to 15. Specifically, the
training loss of the DNN model reduced by 96.94%, while its validation loss
reduced by 98.33%. The training loss of the RNN model reduced by 95.74%,
while its validation loss reduced by 98.52%. The training loss of the LSTM
model reduced by 97.60%, while its validation loss reduced by 95.64%. The
training loss of the GRU model reduced by 96.56%, while its validation loss
reduced by 95.54%. The significant reduction in the training and validation
losses implies that the DL models neither under-fit nor over-fit the highly
imbalanced network traffic data in the training set.

0 2 4 6 8 10 12 14

Number of epochs

0

0.02

0.04

0.06

0.08

0.1

0.12

C
ro

s
s
-e

n
tr

o
p
y
 l
o
s
s

DNN Training

RNN Training

LSTM Training

GRU Training

DNN Validation

RNN Validation

LSTM validation

GRU Validation

FIGURE 4.3: Cross-entropy loss of DL models during training
and validation

Figure 4.4 shows the cross-entropy losses of SMOTE-DL models during
training and validation. The training and validation losses of the models
reduced significantly as the number of epochs increased from 1 to 15.
Specifically, the training loss of the SMOTE-DNN model reduced by 97.60%,
while its validation loss reduced by 97.26%. The training loss of the RNN
model reduced by 97.23%, while its validation loss reduced by 96.65%. The
training loss of the LSTM model reduced by 97.65%, while its validation loss
reduced by 97.17%. The training loss of the GRU model reduced by 96.45%,
while its validation loss reduced by 98.27%. The significant reduction in the
training and validation losses implies that the SMOTE-DL models neither
under-fit nor over-fit the balanced network traffic data in the training set.

77

Chapter 4. SMOTE-DL: An Algorithm for Imbalanced Network Traffic
Classification

0 2 4 6 8 10 12 14

Number of epochs

0

0.02

0.04

0.06

0.08

0.1

0.12
C

ro
s
s
-e

n
tr

o
p
y
 l
o
s
s

SMOTE-DNN Training

SMOTE-RNN Training

SMOTE-LSTM Training

SMOTE-GRU Training

SMOTE-DNN Validation

SMOTE-RNN Validation

SMOTE-LSTM validation

SMOTE-GRU Validation

FIGURE 4.4: Cross-entropy loss of SMOTE-DL models during
training and validation

4.4.3 Performance of the DL and SMOTE-DL Models

Table 4.3 presents the classification performance of the DL and SMOTE-DL
models. The DL models were trained with the highly imbalanced network
traffic data, while the SMOTE-DL models were trained with the balanced
network traffic data. The SMOTE-DL models achieved a better classification
performance than the DL models. The precision, recall, and F1 score of the
SMOTE-DL models were higher than those of the DL models by
6.4 − 13.48%, 3.12 − 12.81%, and 7.01 − 13.27%, respectively. The
SMOTE-LSTM model achieved the best classification performance with
100% accuracy, 94.20% precision, 98.99% recall, and 95.83% F1 score.

The confusion matrix in Figure 4.5 shows that the SMOTE-LSTM model
correctly classified all the network traffic samples in the testing set, except
very few samples in the D-H and SS classes. In the D-H class, 99.3% of the
attack traffic samples were correctly classified, one sample was misclassified
as D-T attack traffic, and another sample was misclassified as OSF attack
traffic. In the SS class, 99.9% of the attack traffic samples were correctly
classified, and only 0.1% of the samples were misclassified as benign
network traffic.

Figure 4.6 shows the time taken to train the DL and SMOTE-DL models with

78

Chapter 4. SMOTE-DL: An Algorithm for Imbalanced Network Traffic
Classification

TABLE 4.3: Classification performance of the DL and
SMOTE-DL models

Model Classification Performance (%)
A P R F1

DNN 100.00 91.14 93.76 89.67
RNN 99.98 85.17 89.11 86.58
LSTM 100.00 92.13 97.33 93.17
GRU 100.00 91.96 96.73 92.08
SMOTE-DNN 100.00 98.65 99.87 99.23
SMOTE-RNN 100.00 98.40 99.67 99.01
SMOTE-LSTM 100.00 94.20 98.99 95.83
SMOTE-GRU 100.00 98.83 99.79 99.28

100.0%

204

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

195218

0.0%

1

0.0%

0

0.0%

55

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

190088

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

99.3%

266

0.4%

1

0.0%

0

0.0%

0

0.4%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

27

0.0%

1

0.0%

0

100.0%

122945

0.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

7

0.0%

0

0.0%

1

100.0%

206781

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

101

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

3582

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.1%

8

0.0%

0

99.9%

14405

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

100.0%

11

D
D
-H

D
D
-T

D
D
-U

D
-H

D
-T

D
-U

N
o
rm

O
S
F

 S
S

 D
E

 K
L

True label

DD-H

DD-T

DD-U

D-H

D-T

D-U

Norm

OSF

 SS

 DE

 KL

P
re

d
ic

te
d

 l
a

b
e

l

FIGURE 4.5: Confusion matrix of the SMOTE-LSTM model

the highly imbalanced network traffic data and the balanced network traffic
data, respectively. The training of SMOTE-DL models took slightly longer
time than that of DL models. The DL models spent 106.82− 214.59 seconds
to learn the feature representation of 2201112 network traffic samples, while
the SMOTE-DL models spent 109.11 − 220.54 seconds to learn the feature
representation of 2253251 network traffic samples. The DNN model had the
least training time of 106.82 seconds, while the SMOTE-LSTM model had

79

Chapter 4. SMOTE-DL: An Algorithm for Imbalanced Network Traffic
Classification

the slowest training time of 220.54 seconds. SMOTE-DL models took longer
time because the number of samples in the balanced network traffic data is
greater than the number of samples in the highly imbalanced network traffic
data that was used to train DL models.

D
N
N

R
N
N

LS
TM

G
R
U

SM
O
TE-D

N
N

SM
O
TE-R

N
N

SM
O
TE-L

STM

SM
O
TE-G

R
U

Model

0

50

100

150

200

250

T
ra

in
in

g
 t
im

e
 (

s
)

FIGURE 4.6: Training time of DL and SMOTE-DL models

Figure 4.7 shows the time taken by DL and SMOTE-DL models to classify
733705 network traffic samples in the testing set. There is no significant
difference between the testing time of DL and SMOTE-DL models. The DL
models spent 0.64 − 1.3 seconds, while the SMOTE-DL models spent
0.64− 1.31 seconds. Therefore, these models are suitable for near real-time
botnet attack detection in IoT-enabled critical infrastructure.

4.5 Chapter Summary

In this Chapter, a framework named SMOTE-DL was proposed to address
the problem of high class imbalance in the training set that is used to
develop DL-based botnet attack detection models for IoT-enabled critical
infrastructure. The framework was implemented with the 11-class network
traffic data in the Bot-IoT dataset. Four DL models (DNN, RNN, LSTM, and
GRU) were trained with highly imbalanced network traffic data. SMOTE
method was used to generate synthetic network traffic data to increase the

80

Chapter 4. SMOTE-DL: An Algorithm for Imbalanced Network Traffic
Classification

D
N
N

R
N
N

LS
TM

G
R
U

SM
O
TE-D

N
N

SM
O
TE-R

N
N

SM
O
TE-L

STM

SM
O
TE-G

R
U

Model

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
e
s
ti
n
g
 t
im

e
 (

s
)

FIGURE 4.7: Testing time of DL and SMOTE-DL models

class imbalance ratio in the minority classes and achieve class balance. Four
SMOTE-DL models (SMOTE-DNN, SMOTE-RNN, SMOTE-LSTM, and
SMOTE-GRU) were trained with the balanced network traffic data. Results
showed that SMOTE method increased the class imbalance ratio from
1:154854 to 1:57. Also, the DL and SMOTE-DL models were robust against
under-fitting and over-fitting. More importantly, the SMOTE-DL models
achieved a better classification performance than the DL models. The
precision, recall, and F1 score of the SMOTE-DL models were higher than
those of the DL models by 6.4− 13.48%, 3.12− 12.81%, and 7.01− 13.27%,
respectively. Specifically, the SMOTE-LSTM model achieved the best
classification performance with 100% accuracy, 94.20% precision, 98.99%
recall, and 95.83% F1 score. Interestingly, the SMOTE method did not
introduce any significant computation complexity to the DL-based botnet
attack detection process. Therefore, SMOTE-LSTM architecture will be used
for near real-time botnet attack detection in subsequent chapters of this
thesis.

81

Chapter 5

Hybrid Deep Learning for
Memory-Efficient Botnet Detection

5.1 Introduction

In Chapters 3 and 4, optimised DL and SMOTE-DL algorithms were
proposed, respectively for botnet attack detection in IoT-enabled critical
infrastructure. The optimised DL method is suitable for network traffic
classification when the class imbalance ratio is less or equal to 42328, while
the SMOTE-DL method helps to improve the classification performance
when the network traffic data in the training set is highly imbalanced.
However, these methods rely on high-dimensional network traffic data to
train, validate, and test the botnet attack detection models. Consequently, a
large memory space will be needed to store the data either on a central
server or an IoT edge node.

In this chapter, a hybrid DL method, which combines LAE and LSTM
architectures, is proposed for memory-efficient botnet attack detection in
IoT-enabled critical infrastructure. The LAE method is used to produce a
latent-space feature representation of the high-dimensional network traffic
data without loosing useful intrinsic network information, while BLSTM
method is used to learn the hierarchical feature representations and
long-term inter-related changes directly from the low-dimensional data to
distinguish botnet attack traffic from benign traffic in IoT-enabled critical
infrastructure. The hybrid DL method is implemented using the Bot-IoT
and the N-BaIoT datasets to evaluate the effectiveness of the method in
binary, 5-class, 10-class, and 11-class classification scenarios. The robustness
of the LAE-BLSTM models against under-fitting and over-fitting is
evaluated based on cross-entropy loss during training and validation. The

82

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

classification performance of the models is evaluated based on accuracy,
precision, recall, and F1 score. The computation efficiency of the models is
evaluated based on the encoding time, training time, and testing time.

The rest of the chapter is organised as follows: the details of the hybrid DL
framework is presented in Section 5.2; the information about the
development of the LAE-BLSTM models is provided in Section 5.3; the
classification performance and the computation efficiency of the models are
analysed and discussed in Section 5.4; and finally, the main findings of the
chapter is summarised in Section 5.5.

5.2 Hybrid Deep Learning Framework

In this section, a hybrid DL framework, named LAE-BLSTM, is proposed
for efficient botnet attack detection in IoT-enabled critical infrastructure. The
description of LAE and deep BLSTM methods is presented in Algorithms 6
and 7, respectively. In this paper, boldface uppercase alphabets and boldface
lower case alphabets represent matrices and column vectors respectively.

Algorithm 6: LAE algorithm
Input: X
Initialization: h0(j) = x(j), ∀j ∈ [1, k]

hd(0) = x(d), ∀d ∈ [1, n]
Output: X̃

1 for d = 1 to n do
2 for j = 1 to k do
3 ij = σr

(
Wixxj + Wihhj−1 + bi

)
4 fj = σr

(
W f xxj + W f hhj−1 + b f

)
5 c̃j = σh

(
Wc̃xxj + Wc̃hhj−1 + bc̃

)
6 cj = Di ⊙ c̃j + D f ⊙ cj−1
7 x̃j = kϕ(xj, cj−1)

8 end
9 end

10 X̃ =
{{

x̃d,j
}k

j=1

}n

d=1

11 L = θ
(
X, X̃

)
=

[
θ
(
Xd, X̃d

)]n

d=1

5.2.1 LSTM Autoencoder

Autoencoder is an unsupervised DL method which analyses the dynamic
relationships between the features of high-dimensional data and produces a

83

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

Algorithm 7: Deep BLSTM algorithm

Input: X̃
Target: y
Initialization: h0(j) = x(j), ∀j ∈ [1, u]

hd(0) = x(d), ∀d ∈ [1, n]
Output: ỹ

1 for d = 1 to n do
2 for j = 1 to u do
3 %% Forward direction

4
−→
i j = σr

(−→
W ixx̃j +

−→
W ih
−→
h 1,j−1 +

−→
b i

)
5

−→
f j = σr

(−→
W f xx̃j +

−→
W f h
−→
h 1,j−1 +

−→
b f

)
6

−→̃
c j = σh

(−→
W c̃xx̃j +

−→
W c̃h
−→
h 1,j−1 +

−→
b c̃

)
7

−→c j =
−→
i j ⊙

−→̃
c j +

−→
f j ⊙−→c j−1

8
−→o j = σr

(−→
Woxx̃j +

−→
Woh
−→
h 1,j−1 +

−→
b o

)
9

−→
h 1,j =

−→o j ⊙ σh
(−→c j

)
10

−→
h 2,j = σh

(−→
Whx1x̃j +

−→
Whh1

−→
h 1,j +

−→
b h1

)
11

−→
h 3,j = σh

(−→
Whx2x̃j +

−→
Whh2

−→
h 2,j +

−→
b h2

)
12

−→
h 4,j = σh

(−→
Whx3x̃j +

−→
Whh3

−→
h 3,j +

−→
b h3

)
13 end
14 %% Backward direction

15
←−
i j = σr

(←−
W ixx̃j +

←−
W ih
←−
h 1,j−1 +

←−
b i

)
16

←−
f j = σr

(←−
W f xx̃j +

←−
W f h
←−
h 1,j−1 +

←−
b f

)
17

←−̃
c j = σh

(←−
W c̃xx̃j +

←−
W c̃h
←−
h 1,j−1 +

←−
b c̃

)
18

←−c j =
←−
i j ⊙

←−̃
c j +

←−
f j ⊙←−c j−1

19
←−o j = σr

(←−
Woxx̃j +

←−
Woh
←−
h 1,j−1 +

←−
b o

)
20

←−
h 1,j =

←−o j ⊙ σh
(←−c j

)
21

←−
h 2,j = σh

(←−
Whx1x̃j +

←−
Whh1

←−
h 1,j +

←−
b h1

)
22

←−
h 3,j = σh

(←−
Whx2x̃j +

←−
Whh2

←−
h 2,j +

←−
b h2

)
23

←−
h 4,j = σh

(←−
Whx3x̃j +

←−
Whh3

←−
h 3,j +

←−
b h3

)
24 end

25 ỹ = σy

(−→
Wy
−→
h4 +

←−
Wy
←−
h4 + by

)
ỹ =

{
ỹd

}n
d=1

26 θ (y, ỹ) =
[
θ (yd, ỹd)

]n

d=1

low-dimensional latent-space representation. Unlike the conventional
Autoencoder, LAE employs LSTM units to model the long-term

84

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

inter-related changes in network traffic features. In this subsection, LAE
method is developed to reduce feature dimensionality of big IoT network
traffic data and obtain a low-dimensional latent-space feature representation
with minimum reconstruction error.

A sequence of network traffic features is represented by a three-dimensional
matrix, X ∈ Rn×1×k, in Equation 5.1:

X =
{{

xd,j
}k

j=1

}n

d=1
, (5.1)

where {Xd}n
d=1 = X1, X2, . . . , Xn, k ∈ Z+ is the number of network traffic

features, and n ∈ Z+ is the total instances of network traffic available in the
dataset. An instance of network traffic is represented by Equation 5.2:

{xj}k
j=1 = x1, x2, . . . , xk, (5.2)

where xj ∈ Rn is a network traffic feature vector.

The encoder part of a single hidden layered LSTM autoencoder [198] was
used to compress the network traffic feature matrix given by Equation 5.2
with the aim of reducing its dimensionality without loosing the information
contained in the original data. LSTM has the capability to learn long
time-dependencies with its feedback connections and a recurrent memory
unit that is controlled by three gates, namely, input gate, a forget gate and
an output gate [194]. LAE accepts high-dimensional network traffic feature
set, X, and produces a low-dimensional latent-space representation, X̃, at the
hidden layer. The input gate vector (ij), forget gate vector (fj), memory cell
state vector (cj), output gate vector (oj) and hidden state vector (hj) were
formed based on the LAE algorithm presented in Algorithm 6. The
dimension of the column vectors is represented by ij, fj, cj, oj, hj ∈ Ru,
where u is the number of LSTM hidden units that represent the desired
network traffic feature dimensionality.

Weight matrices and bias vectors were obtained by training the LAE using
the Back Propagation Through Time (BPTT) algorithm [199]. The weight
matrices for the connections between the input and the recurrent gates are
given as Wix, W f x, Wc̃x, Wox ∈ Ru×n, and these are the weight matrices of
input-to-input gate connection, input-to-forget gate connection, input-to-cell
connection and input-to-output gate connection respectively. Similarly,
weight matrices for connections between the recurrent gates and the hidden

85

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

state are given as Wih, W f h, Wc̃h, Woh ∈ Ru×u, and these are the weight
matrices of input gate-to-hidden state connection, forget gate-to-hidden
state connection, cell state-to-hidden state connection and output
gate-to-hidden state connection respectively. On the other hand,
bi, b f , bc̃, bo ∈ Ru are the bias vectors of input gate, forget gate, cell state and
output gate respectively. Recurrent activation function is a sigmoid function
and it is represented by σr. Hidden layer activation function is represented
by σh. Diagonal matrices, Di and D f , are formed with input gate vector and
forget gate vectors as represented by Equations 5.3 and 5.4 respectively:

Di = diag(i) =


i1

. . .

ih

 , (5.3)

D f = diag(f) =


f1

. . .

fh

 . (5.4)

For xj, the encoded output is given in Equation 5.5.

x̃j = kϕ(xj, cj−1), (5.5)

where cj−1 is the previous cell state vector and kϕ is the encoding function.
Finally, the low-dimensional network traffic feature matrix is represented by
Equation 5.6:

X̃ =
{{

x̃d,j
}u

j=1

}n

d=1
. (5.6)

5.2.2 Bidirectional LSTM

Conventional LSTM is unidirectional and it can only capture the
dependence of the current state based on previous context [200].
Meanwhile, BLSTM has full access to both past and future sequential
information using two LSTM hidden layers to scan input data sequence in
positive and negative time directions respectively [201]. Therefore, a deep
BLSTM method is developed to efficiently detect IoT botnet attack traffic by
analysing the long-term inter-related changes in low-dimensional features
produced by LAE.

86

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

Reduced network traffic feature set, X̃, and its corresponding target vector,
ỹ, were fed into a deep BLSTM model to produce input gate vectors (

−→
i j,←−

i j), forget gate vectors (
−→
f j,
←−
f j), memory cell state vectors (−→c j,

←−c j),

output gate vectors (−→o j,
←−o j) and hidden state vectors (

−→
h j,
←−
h j) based on

the BLSTM algorithm provided in Algorithm 7. These column vectors are
represented as

−→
i j,
←−
i j,
−→
f j,
←−
f j,
−→c j,
←−c j,
−→o j,
←−o j,
−→
h j,
←−
h j. Weight matrices

(
−→
W(·),

←−
W(·)) and bias vectors (

−→
b (·),

←−
b (·)) were obtained by training the

BLSTM using the BPTT algorithm. Recurrent activation function is a
sigmoid function and it is represented by σr; hidden layer activation
function is represented by σh; while output layer activation function is a
softmax function and it is represented by σy. The parameters of the forward
LSTM hidden layer are computed from the past to the present input data
sequence while those of the backward LSTM hidden layer are calculated
starting from the future to the present input data sequence. The LSTM
hidden layers in the positive and negative time directions are jointly
connected to the output layer. The difference between the predicted output
of LAE-BLSTM, ỹ, and the target output, y, is minimized in Equation 5.7.

θ (y, ỹ) =
[
θ (yd, ỹd)

]n

d=1
, (5.7)

where θ is either a binary cross-entropy loss function for binary
classification or a categorical cross-entropy loss function for multi-class
classification scenarios.

5.3 Model Development and Experiment

In this section, the proposed hybrid DL method is implemented with the
Bot-IoT and the N-BaIoT datasets. Figure 5.1 shows the framework for the
development of the LAE-BLSTM models. The network traffic data is pre-
processed as earlier described in Section 3.3. The SMOTE method is used to
achieve class balance, as earlier described in Section 4.3, when the network
traffic data is highly imbalanced.

The LAE models were developed to reduce the feature dimensionality of the
network traffic data. The original feature dimensionality of the Bot-IoT and
the N-BaIoT datasets are 37 and 115, respectively. Therefore, the number of
hidden units at the input layer of the LAE model was 37 for BoT-IoT dataset
and 115 for N-BaIoT dataset. The network traffic data is fed into the LSTM
encoder, which transformed the data to produce a low-dimensional output

87

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

FIGURE 5.1: Framework for the development of the
LAE-BLSTM models

at the latent space. Then, the LSTM decoder reproduced the original
network traffic data based on the low-dimensional output data from the
LSTM encoder. ReLU activation functions were used for the LSTM encoder
and decoder. The LAE models were trained using the following model
hyperparameters: a learning rate of 0.001, a batch size of 512, and 10 epochs.
Adam optimiser was used to reduce the MSE during model training and
validation.

The LAE-BLSTM models were developed to classify the low-dimensional
network traffic data. The optimal model hyperparameters that were
presented in Table 3.15 were used for binary, 5-class, 10-class, and 11-class
classification. The original feature dimensionality of the network traffic data
was reduced to 2, 4, 6, 8, and 10. Experiments were performed to investigate
the robustness of the models against under-fitting and over-fitting, their
classification performance, as well as their computation efficiency.

5.4 Result Analysis and Discussion

In this section, the results of the experiments are analysed and discussed to
evaluate the effectiveness of the LAE-BLSTM models in binary, 5-class,

88

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

10-class, and 11-class classification scenarios. The robustness of the models
against under-fitting and over-fitting is evaluated based on the MSE during
training and validation. The classification performance of the models is
evaluated based on accuracy, precision, recall, and F1 score. The
computation efficiency of the models is evaluated based on the encoding
time, training time, and testing time.

5.4.1 Feature Dimensionality Reduction

5.4.1.1 The Original Bot-IoT Dataset

Figure 5.2 shows the training loss of the LAE model when it was trained
with the original Bot-IoT dataset. The training loss reduced as the number
of epochs increased from 1 to 10. Specifically, the training loss reduced by
13.59%, 64.97%, 12.34%, 98.58%, and 32.95% when LAE model reduced the
feature dimensionality of the network traffic data from 37 to 2, 4, 6, 8, and
10, respectively. The LAE model achieved the lowest training loss of 7.36×
10−5 when the feature dimensionality of the data was reduced from 37 to 8.
Therefore, the LAE model did not under-fit the network traffic data in the
original Bot-IoT dataset.

0 2 4 6 8 10

Number of epochs

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

T
ra

in
in

g
 l
o
s
s

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.2: Training loss of the LAE model based on the
original Bot-IoT dataset

Figure 5.3 shows the validation loss of the LAE model when it was trained
with the original Bot-IoT dataset. The validation loss reduced as the number
of epochs increased from 1 to 10. Specifically, the validation loss reduced

89

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

by 4.22%, 55.76%, 1.30%, 66.44%, and 1.37% when LAE model reduced the
feature dimensionality of the network traffic data from 37 to 2, 4, 6, 8, and 10,
respectively. The LAE model achieved the lowest validation loss of 7.83×
10−5 when the feature dimensionality of the data was reduced from 37 to
8. Therefore, the LAE model did not over-fit the network traffic data in the
original Bot-IoT dataset. Figure 5.4 shows that the LAE model spent 146.03±
6.08 seconds to reduce the feature dimensionality of the network traffic data
in the original Bot-IoT dataset.

0 2 4 6 8 10

Number of epochs

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

V
a
lid

a
ti
o
n
 l
o
s
s

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.3: Validation loss of the LAE model based on the
original Bot-IoT dataset

5.4.1.2 The Balanced Bot-IoT Dataset

Figure 5.5 shows the training loss of the LAE model when it was trained
with the balanced Bot-IoT dataset. The training loss reduced as the number
of epochs increased from 1 to 10. Specifically, the training loss reduced by
14%, 66.63%, 12.70%, 98.22%, and 31.79% when LAE model reduced the
feature dimensionality of the network traffic data from 37 to 2, 4, 6, 8, and
10, respectively. The LAE model achieved the lowest training loss of
8.85× 10−5 when the feature dimensionality of the data was reduced from
37 to 8. Therefore, the LAE model did not under-fit the network traffic data
in the balanced Bot-IoT dataset.

Figure 5.6 shows the validation loss of the LAE model when it was trained
with the balanced Bot-IoT dataset. The validation loss reduced as the
number of epochs increased from 1 to 10. Specifically, the validation loss

90

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

2 4 6 8 10

Feature Dimensionality

0

20

40

60

80

100

120

140

160

180

E
n

c
o

d
in

g
 t

im
e

 (
s
)

FIGURE 5.4: Encoding time of the LAE model based on the
original Bot-IoT dataset

0 2 4 6 8 10

Number of epochs

0

0.01

0.02

0.03

0.04

0.05

T
ra

in
in

g
 l
o

s
s

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.5: Training loss of the LAE model based on the
balanced Bot-IoT dataset

reduced by 4.72%, 58.42%, 1.19%, 80.14%, and 1.27% when LAE model
reduced the feature dimensionality of the network traffic data from 37 to 2,
4, 6, 8, and 10, respectively. The LAE model achieved the lowest validation
loss of 6.07× 10−5 when the feature dimensionality of the data was reduced
from 37 to 8. Therefore, the LAE model did not over-fit the network traffic
data in the balanced Bot-IoT dataset. Figure 5.7 shows that the LAE model
spent 158.65 ± 8.22 seconds to reduce the feature dimensionality of the
network traffic data in the balanced Bot-IoT dataset.

91

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

0 2 4 6 8 10

Number of epochs

0

0.01

0.02

0.03

0.04

0.05

V
a

lid
a

ti
o

n
 l
o

s
s

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.6: Validation loss of the LAE model based on the
balanced Bot-IoT dataset

2 4 6 8 10

Feature Dimensionality

0

20

40

60

80

100

120

140

160

180

200

E
n

c
o

d
in

g
 t

im
e

 (
s
)

FIGURE 5.7: Encoding time of the LAE model based on the
balanced Bot-IoT dataset

5.4.1.3 The N-BaIoT Dataset

Figure 5.8 shows the training loss of the LAE model when it was trained
with the N-BaIoT dataset. The training loss reduced as the number of
epochs increased from 1 to 10. Specifically, the training loss reduced by
15.89%, 19.65%, 6.79%, 37.74%, and 13.49% when LAE model reduced the
feature dimensionality of the network traffic data from 115 to 2, 4, 6, 8, and
10, respectively. The LAE model achieved the lowest training loss of

92

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

7.52× 10−3 when the feature dimensionality of the data was reduced from
37 to 10. Therefore, the LAE model did not under-fit the network traffic data
in the N-BaIoT dataset.

0 2 4 6 8 10

Number of epochs

0.005

0.01

0.015

0.02

0.025

0.03

0.035

T
ra

in
in

g
 l
o

s
s

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.8: Training loss of the LAE model based on the
N-BaIoT dataset

Figure 5.9 shows the validation loss of the LAE model when it was trained
with the N-BaIoT dataset. The validation loss reduced as the number of
epochs increased from 1 to 10. Specifically, the validation loss reduced by
0.98%, 6.08%, 0.40%, 32.07%, and 0.64% when LAE model reduced the
feature dimensionality of the network traffic data from 115 to 2, 4, 6, 8, and
10, respectively. The LAE model achieved the lowest validation loss of
7.53× 10−3 when the feature dimensionality of the data was reduced from
37 to 10. Therefore, the LAE model did not over-fit the network traffic data
in the N-BaIoT dataset. Figure 5.10 shows that the LAE model spent
325.69 ± 5.99 seconds to reduce the feature dimensionality of the network
traffic data in the N-BaIoT dataset.

5.4.2 Classification Performance of the LAE-BLSTM Models

5.4.2.1 Binary Classification: The Original Bot-IoT Dataset

Figure 5.11 shows the training loss of the LAE-BLSTM model when it was
trained with the low-dimensional network traffic feature sets of the Bot-IoT
dataset for binary classification. The training loss reduced as the number of
epochs increased from 1 to 5. Specifically, the training loss reduced by

93

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

0 2 4 6 8 10

Number of epochs

0.005

0.01

0.015

0.02

0.025

0.03

V
a

lid
a

ti
o

n
 l
o

s
s

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.9: Validation loss of the LAE model based on the
N-BaIoT dataset

2 4 6 8 10

Feature Dimensionality

0

50

100

150

200

250

300

350

400

E
n

c
o

d
in

g
 t

im
e

 (
s
)

FIGURE 5.10: Encoding time of the LAE model based on the
N-BaIoT dataset

89.72%, 97.69%, 98.50%, 98.71%, and 96.93% when LAE-BLSTM model
reduced the feature dimensionality of the network traffic data from 37 to 2,
4, 6, 8, and 10, respectively. The LAE-BLSTM model achieved the lowest
training loss of 2.21× 10−5 when the feature dimensionality of the data was
reduced from 37 to 8. Therefore, the LAE-BLSTM model did not under-fit
the low-dimensional network traffic data in the binary Bot-IoT dataset.

Figure 5.12 shows the validation loss of the LAE-BLSTM model when it was

94

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

1 2 3 4 5

Number of epochs

0

1

2

3

4

5

6

T
ra

in
in

g
 l
o

s
s

10
-3

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.11: Training loss of the binary LAE-BLSTM model
based on the original Bot-IoT dataset

trained with the low-dimensional network traffic feature sets of the Bot-IoT
dataset for binary classification. The validation loss reduced as the number
of epochs increased from 1 to 5. Specifically, the validation loss reduced by
13.70%, 67.88%, 53.87%, 33.24%, and 11.02% when LAE-BLSTM model
reduced the feature dimensionality of the network traffic data from 37 to 2,
4, 6, 8, and 10, respectively. The LAE-BLSTM model achieved the lowest
validation loss of 5.26 × 10−5 when the feature dimensionality of the data
was reduced from 37 to 6. Therefore, the LAE-BLSTM model did not over-fit
the low-dimensional network traffic data in the binary Bot-IoT dataset.

Table 5.1 presents the performance of the binary LAE-BLSTM model based
on the original Bot-IoT dataset. The BLSTM model, which was developed
with the 37-dimensional network traffic data, achieved the best classification
performance with 100% accuracy, 99.03% precision, 100% recall, and 99.51%
F1 score. However, large memory spaces of 651 MB, 217 MB, and 217 MB
are required to store the data on a central server or IoT edge node for model
training, validation, and testing, respectively. On the other hand, the
LAE-BLSTM model, which was developed with 8-dimensional network
traffic data, reduced the memory space requirements by 89.19%, without a
significant decrease in the classification performance. The model achieved
100% accuracy, 98.48% precision, 97.52% recall, and 98% F1 score. It took
59.01 ± 2.72 seconds to train the LAE-BLSTM model, and the model spent
990± 28 milliseconds to classify the network traffic data in the testing set.

95

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

1 2 3 4 5

Number of epochs

0

1

2

3

4

5

6

V
a

lid
a

ti
o

n
 l
o

s
s

10
-4

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.12: Validation loss of the binary LAE-BLSTM model
based on the original Bot-IoT dataset

TABLE 5.1: Performance of the binary LAE-BLSTM model
based on the original Bot-IoT dataset

Metrics Feature Dimensionality
2 4 6 8 10 37

Performance (%)

Accuracy 99.99 100.00 100.00 100.00 100.00 100.00
Precision 84.44 97.47 96.30 98.48 96.00 99.03
Recall 65.35 96.53 99.50 97.52 95.54 100.00
F1 Score 71.23 97.00 97.85 98.00 95.77 99.51

Data Size (MB)
Training 17.61 35.22 52.83 70.43 88.04 651.52
Validation 5.87 11.74 17.61 23.48 29.35 217.18
Testing 5.87 11.74 17.61 23.48 29.35 217.18

Time (s) Training 58.08 57.39 57.53 63.84 58.20 60.89
Testing 1.01 1.01 0.95 1.00 0.96 1.09

5.4.2.2 Binary Classification: The N-BaIoT Dataset

Figure 5.13 shows the training loss of the LAE-BLSTM model when it was
trained with the low-dimensional network traffic feature sets of the N-BaIoT
dataset for binary classification. The training loss reduced as the number of
epochs increased from 1 to 5. Specifically, the training loss reduced by
55.55%, 80.15%, 78.52%, 80.57%, and 76.78% when LAE-BLSTM model
reduced the feature dimensionality of the network traffic data from 115 to 2,
4, 6, 8, and 10, respectively. The LAE-BLSTM model achieved the lowest
training loss of 9.74× 10−4 when the feature dimensionality of the data was
reduced from 115 to 4. Therefore, the LAE-BLSTM model did not under-fit

96

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

the low-dimensional network traffic data in the binary N-BaIoT dataset.

1 2 3 4 5

Number of epochs

0

0.002

0.004

0.006

0.008

0.01

0.012

T
ra

in
in

g
 l
o

s
s

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.13: Training loss of the binary LAE-BLSTM model
based on the N-BaIoT dataset

Figure 5.14 shows the validation loss of the LAE-BLSTM model when it was
trained with the low-dimensional network traffic feature sets of the N-BaIoT
dataset for binary classification. The validation loss reduced as the number
of epochs increased from 1 to 5. Specifically, the validation loss reduced by
23.20%, 62.49%, 61.27%, 59.61%, and 61.95% when LAE-BLSTM model
reduced the feature dimensionality of the network traffic data from 115 to 2,
4, 6, 8, and 10, respectively. The LAE-BLSTM model achieved the lowest
validation loss of 8.47 × 10−4 when the feature dimensionality of the data
was reduced from 115 to 4. Therefore, the LAE-BLSTM model did not
over-fit the low-dimensional network traffic data in the binary N-BaIoT
dataset.

Table 5.2 presents the classification performance of the binary LAE-BLSTM
model based on the N-BaIoT dataset. The BLSTM model, which was
developed with the 115-dimensional network traffic data, achieved the best
classification performance with 99.99% accuracy, 99.97% precision, 99.96%
recall, and 99.96% F1 score. However, large memory spaces of 3.42 GB, 1.14
GB, and 1.14 GB are required to store the data on a central server or IoT
edge node for model training, validation, and testing, respectively. On the
other hand, the LAE-BLSTM model, which was developed with
4-dimensional network traffic data, reduced the memory space
requirements by 98.26%, without a significant decrease in the classification

97

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

1 2 3 4 5

Number of epochs

0

1

2

3

4

5

6

7

8

V
a

lid
a

ti
o

n
 l
o

s
s

10
-3

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.14: Validation loss of the binary LAE-BLSTM model
based on the N-BaIoT dataset

performance. The model achieved 99.97% accuracy, 99.91% precision,
99.93% recall, and 99.92% F1 score. It took 262± 22.78 seconds to train the
LAE-BLSTM model, and the model spent 911 ± 9 milliseconds to classify
the network traffic data in the testing set.

TABLE 5.2: Performance of the binary LAE-BLSTM model
based on the N-BaIoT dataset

Metrics Feature Dimensionality
2 4 6 8 10 115

Performance (%)

Accuracy 99.85 99.97 99.97 99.97 99.97 99.99
Precision 99.36 99.91 99.92 99.94 99.95 99.97
Recall 99.74 99.93 99.89 99.87 99.89 99.96
F1 Score 99.55 99.92 99.91 99.91 99.92 99.96

Data Size (MB)
Training 29.77 59.55 89.32 119.09 148.87 3423.92
Validation 9.92 19.85 29.77 39.70 49.62 1141.31
Testing 9.92 19.85 29.77 39.70 49.62 1141.31

Time (s) Training 297.50 265.7 235.75 260.64 251.49 253.37
Testing 0.91 0.90 0.92 0.91 0.92 6.97

5.4.2.3 5-Class Classification: The Original Bot-IoT Dataset

Figure 5.15 shows the training loss of the LAE-BLSTM model when it was
trained with the low-dimensional network traffic feature sets of the Bot-IoT
dataset for 5-class classification. The training loss reduced as the number of
epochs increased from 1 to 10. Specifically, the training loss reduced by

98

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

26.40%, 85.43%, 68.68%, 91.12%, and 88.82% when LAE-BLSTM model
reduced the feature dimensionality of the network traffic data from 37 to 2,
4, 6, 8, and 10, respectively. The LAE-BLSTM model achieved the lowest
training loss of 1.09× 10−2 when the feature dimensionality of the data was
reduced from 37 to 8. Therefore, the LAE-BLSTM model did not under-fit
the low-dimensional network traffic data in the 5-class Bot-IoT dataset.

2 4 6 8 10

Number of epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

T
ra

in
in

g
 l
o

s
s

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.15: Training loss of the 5-class LAE-BLSTM model
based on the original Bot-IoT dataset

Figure 5.16 shows the validation loss of the LAE-BLSTM model when it was
trained with the low-dimensional network traffic feature sets of the Bot-IoT
dataset for 5-class classification. The validation loss reduced as the number
of epochs increased from 1 to 10. Specifically, the validation loss reduced
by 19.40%, 77.14%, 46.83%, 50.38%, and 78.21% when LAE-BLSTM model
reduced the feature dimensionality of the network traffic data from 37 to 2,
4, 6, 8, and 10, respectively. The LAE-BLSTM model achieved the lowest
validation loss of 1.67 × 10−2 when the feature dimensionality of the data
was reduced from 37 to 10. Therefore, the LAE-BLSTM model did not over-
fit the low-dimensional network traffic data in the 5-class Bot-IoT dataset.

Table 5.3 presents the classification performance of the 5-class LAE-BLSTM
model based on the original Bot-IoT dataset. The BLSTM model, which was
developed with the 37-dimensional network traffic data, achieved the best
classification performance with 99.99% accuracy, 99.58% precision, 99%
recall, and 99.29% F1 score. However, large memory spaces of 651.52 MB,
217.18 MB, and 217.18 MB are required to store the data on a central server

99

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

0 2 4 6 8 10

Number of epochs

0

0.1

0.2

0.3

0.4

0.5

V
a

lid
a

ti
o

n
 l
o

s
s

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.16: Validation loss of the 5-class LAE-BLSTM model
based on the original Bot-IoT dataset

or IoT edge node for model training, validation, and testing, respectively.
On the other hand, the LAE-BLSTM model, which was developed with
10-dimensional network traffic data, reduced the memory space
requirements by 86.45%, without a significant decrease in the classification
performance. The model achieved 99.71% accuracy, 99.71% precision,
97.69% recall, and 98.65% F1 score. It took 131.72± 0.57 seconds to train the
LAE-BLSTM model, and the model spent 1.14± 0.01 seconds to classify the
network traffic data in the testing set.

TABLE 5.3: Performance of the 5-class LAE-BLSTM model
based on the original Bot-IoT dataset

Metrics Feature Dimensionality
2 4 6 8 10 37

Performance (%)

Accuracy 91.99 99.05 98.80 99.40 99.71 99.99
Precision 88.92 99.07 98.41 98.13 99.71 99.58
Recall 60.22 92.75 97.12 97.67 97.69 99.00
F1 Score 65.71 95.57 97.74 97.83 98.65 99.29

Data Size (MB)
Training 17.61 35.22 52.83 70.43 88.04 651.52
Validation 5.87 11.74 17.61 23.48 29.35 217.18
Testing 5.87 11.74 17.61 23.48 29.35 217.18

Time (s) Training 131.81 131.44 131.43 131.26 132.68 123.41
Testing 1.16 1.15 1.14 1.12 1.14 1.23

100

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

5.4.2.4 10-Class Classification: The N-BaIoT Dataset

Figure 5.17 shows the training loss of the LAE-BLSTM model when it was
trained with the low-dimensional network traffic feature sets of the N-BaIoT
dataset for 10-class classification. The training loss reduced as the number of
epochs increased from 1 to 15. Specifically, the training loss reduced by
24.49%, 57.65%, 80.13%, 89.98%, and 91.59% when LAE-BLSTM model
reduced the feature dimensionality of the network traffic data from 115 to 2,
4, 6, 8, and 10, respectively. The LAE-BLSTM model achieved the lowest
training loss of 2.53× 10−2 when the feature dimensionality of the data was
reduced from 115 to 10. Therefore, the LAE-BLSTM model did not under-fit
the low-dimensional network traffic data in the 10-class N-BaIoT dataset.

0 2 4 6 8 10 12 14

Number of epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

T
ra

in
in

g
 l
o

s
s

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.17: Training loss of the 10-class LAE-LSTM model
based on the N-BaIoT dataset

Figure 5.18 shows the validation loss of the LAE-BLSTM model when it was
trained with the low-dimensional network traffic feature sets of the Bot-IoT
dataset for 10-class classification. The validation loss reduced as the number
of epochs increased from 1 to 15. Specifically, the validation loss reduced
by 15.24%, 46.70%, 69.10%, 88.10%, and 89.40% when LAE-BLSTM model
reduced the feature dimensionality of the network traffic data from 115 to
2, 4, 6, 8, and 10, respectively. The LAE-BLSTM model achieved the lowest
validation loss of 1.79× 10−2 when the feature dimensionality of the data was
reduced from 115 to 10. Therefore, the LAE-BLSTM model did not over-fit
the low-dimensional network traffic data in the 10-class N-BaIoT dataset.

101

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

0 2 4 6 8 10 12 14

Number of epochs

0

0.1

0.2

0.3

0.4

0.5

V
a

lid
a

ti
o

n
 l
o

s
s

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.18: Validation loss of the 10-class LAE-LSTM model
based on the N-BaIoT dataset

Table 5.4 presents the classification performance of the binary LAE-BLSTM
model based on the N-BaIoT dataset. The BLSTM model, which was
developed with the 115-dimensional network traffic data, achieved the best
classification performance with 100% accuracy, 99.96% precision, 99.97%
recall, and 99.97% F1 score. However, large memory spaces of 3.42 GB, 1.14
GB, and 1.14 GB are required to store the data on a central server or IoT
edge node for model training, validation, and testing, respectively. On the
other hand, the LAE-BLSTM model, which was developed with
8-dimensional network traffic data, reduced the memory space
requirements by 96.52%, without a significant decrease in the classification
performance. The model achieved 99.90% accuracy, 99.50% precision,
99.45% recall, and 99.47% F1 score. It took 926.57 ± 57.94 seconds to train
the LAE-BLSTM model, and the model spent 900 ± 11 milliseconds to
classify the network traffic data in the testing set.

5.4.2.5 11-Class Classification: The Original Bot-IoT Dataset

Figure 5.19 shows the training loss of the LAE-BLSTM model when it was
trained with the low-dimensional network traffic feature sets of the Bot-IoT
dataset for 11-class classification. The training loss reduced as the number of
epochs increased from 1 to 15. Specifically, the training loss reduced by
35.92%, 84.02%, 88.68%, 94.02%, and 91.63% when LAE-BLSTM model
reduced the feature dimensionality of the network traffic data from 37 to 2,

102

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

TABLE 5.4: Performance of the 10-class LAE-BLSTM model
based on the N-BaIoT dataset

Metrics Feature Dimensionality
2 4 6 8 10 115

Performance (%)

Accuracy 96.30 98.56 99.62 99.90 99.90 100.00
Precision 81.94 94.02 98.34 99.50 99.47 99.96
Recall 80.96 94.27 98.14 99.45 99.15 99.97
F1 Score 80.87 94.13 98.23 99.47 99.30 99.97

Data Size (MB)
Training 29.77 59.55 89.32 119.09 148.87 3423.92
Validation 9.92 19.85 29.77 39.70 49.62 1141.31
Testing 9.92 19.85 29.77 39.70 49.62 1141.31

Time (s) Training 1007.39 869.59 945.42 870.72 939.75 786.00
Testing 0.89 0.92 0.90 0.89 0.89 6.78

4, 6, 8, and 10, respectively. The LAE-BLSTM model achieved the lowest
training loss of 7.81× 10−3 when the feature dimensionality of the data was
reduced from 37 to 8. Therefore, the LAE-BLSTM model did not under-fit
the low-dimensional network traffic data in the 11-class Bot-IoT dataset.

0 2 4 6 8 10 12 14

Number of epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

T
ra

in
in

g
 l
o

s
s

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.19: Training loss of the 11-class LAE-BLSTM model
based on the balanced Bot-IoT dataset

Figure 5.20 shows the validation loss of the LAE-BLSTM model when it was
trained with the low-dimensional network traffic feature sets of the Bot-IoT
dataset for 11-class classification. The validation loss reduced as the number
of epochs increased from 1 to 15. Specifically, the validation loss reduced
by 28.15%, 78.76%, 83.29%, 92.44%, and 87.29% when LAE-BLSTM model
reduced the feature dimensionality of the network traffic data from 37 to 2,

103

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

4, 6, 8, and 10, respectively. The LAE-BLSTM model achieved the lowest
validation loss of 3.79 × 10−3 when the feature dimensionality of the data
was reduced from 37 to 8. Therefore, the LAE-BLSTM model did not over-fit
the low-dimensional network traffic data in the 11-class Bot-IoT dataset.

0 2 4 6 8 10 12 14

Number of epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

V
a

lid
a

ti
o

n
 l
o

s
s

dimension = 2

dimension = 4

dimension = 6

dimension = 8

dimension = 10

FIGURE 5.20: Validation loss of the 11-class LAE-BLSTM
model based on the balanced Bot-IoT dataset

Table 5.5 presents the classification performance of the 11-class LAE-BLSTM
model based on the balanced Bot-IoT dataset. The BLSTM model, which
was developed with the 37-dimensional network traffic data, achieved the
best classification performance with 100% accuracy, 99.32% precision, 99.92%
recall, and 99.61% F1 score. However, large memory spaces of 666.96 MB,
217.18 MB, and 217.18 MB are required to store the data on a central server
or IoT edge node for model training, validation, and testing, respectively.
On the other hand, the LAE-BLSTM model, which was developed with 8-
dimensional network traffic data, reduced the memory space requirements
by 89.19%, without a significant decrease in the classification performance.
The model achieved 99.98% accuracy, 99.03% precision, 99.53% recall, and
99.25% F1 score. It took 212.99± 0.66 seconds to train the LAE-BLSTM model,
and the model spent 1.19± 0.01 seconds to classify the network traffic data
in the testing set.

104

Chapter 5. Hybrid Deep Learning for Memory-Efficient Botnet Detection

TABLE 5.5: Performance of the 11-class LAE-BLSTM model
based on the original Bot-IoT dataset

Metrics Feature Dimensionality
2 4 6 8 10 37

Performance (%)

Accuracy 97.02 99.80 99.91 99.98 99.96 100.00
Precision 71.40 94.31 97.04 99.03 97.80 99.32
Recall 83.97 99.04 98.52 99.53 99.44 99.92
F1 Score 74.93 96.23 97.72 99.25 98.55 99.61

Data Size (MB)
Training 18.03 36.05 54.08 72.10 90.13 666.96
Validation 5.87 11.74 17.61 23.48 29.35 217.18
Testing 5.87 11.74 17.61 23.48 29.35 217.18

Time (s) Training 1007.39 869.59 945.42 870.72 939.75 786.00
Testing 0.89 0.92 0.90 0.89 0.89 6.78

5.5 Chapter Summary

In this chapter, a hybrid DL method, named LAE-BLSTM, is proposed to
reduce the memory space requirements for DL-based botnet attack
detection in IoT-enabled critical infrastructure, without a significant
decrease in the classification performance. LAE-BLSTM models were
developed with the Bot-IoT and N-BaIoT to perform binary and multi-class
classification. Experiment results showed that the models were robust
against under-fitting and over-fitting during training and validation. Also,
the models reduced the sizes of memory space required to store network
traffic data on the central server or IoT edge nodes for training, validation,
and testing by 86.45 − 98.26%. Furthermore, the models achieved high
classification performance with 99.91± 0.12 accuracy, 99.33± 0.57 precision,
98.82 ± 1.13 recall, and 99.06 ± 0.75 F1 score. Therefore, the LAE-BLSTM
method can be used for memory-efficient botnet attack detection in
IoT-enabled critical infrastructure.

105

Chapter 6

Federated Deep Learning for
Zero-Day Botnet Attack Detection

6.1 Introduction

In Chapter 5, a hybrid DL method was proposed for memory-efficient
botnet attack detection in IoT-enabled critical infrastructure. This method
reduces the size of memory space required to store the network traffic data
in a central server or IoT edge nodes for model training, validation, and
testing. However, IoT-enabled critical infrastructure networks are fast
becoming highly scalable. Due to network constraints, it may be difficult to
offload massive distributed network traffic data to a remote central cloud
server for data processing in real-life botnet attack detection scenarios. Also,
the CDL method takes longer time to train, it has high communication
overhead, and its memory space requirement for data storage is high. Cloud
data centers are often located far away from where the IoT edge nodes are
deployed. This causes high latency in the CDL-based botnet attack detection
method. Furthermore, the CDL method does not guarantee users’ privacy
and security because it involves the transmission of network traffic features
from all participating IoT devices to a central cloud server.

Edge computing can be combined with DL to bring intelligence closer to
where data are being generated, thereby addressing the issues of data
privacy, high communication cost, large memory space requirement, short
training time, and high latency [202]. In IoT-enabled critical infrastructure,
the network traffic data that are generated within the same local network
are stored in an IoT edge node. However, IoT edge nodes have limited
memory space for network traffic data storage and low computation
resources for big data analytics. LDL method achieves edge intelligence

106

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

without data aggregation [203]. However, the classification performance of
LDL-based botnet attack detection method is very likely to be low because a
single IoT edge node has limited network traffic samples. On the other
hand, in zero-day botnet attacks, hackers use a network of compromised
computing devices to exploit previously unknown vulnerabilities in IoT
systems. Detecting zero-day cyber attacks is a very difficult task since there
is no prior knowledge of such incidence [204]. Therefore, an efficient botnet
attack detection method must be able to detect zero-day botnet attacks at
edge nodes with high detection rate and low false alarm rate.

FL is a collaborative method for privacy-preserving DL based on the private
data in distributed multiple devices [46]. This method enables collaborative
DL in distributed IoT devices without sharing private network traffic data
with the central cloud server. In this chapter, a FDL method is proposed for
zero-day botnet attack detection in IoT edge nodes of critical infrastructure
networks. The LAE-BLSTM method in Chapter 5 is used to develop local
botnet attack detection models at the edge nodes. The local LAE-BLSTM
models are trained independently in multiple IoT edge devices, while the
FedAvg algorithm is used to aggregate local model updates. A global
LAE-BLSTM model is produced based on the aggregation of local model
updates in the central cloud server, and the model parameters are
transmitted to all the IoT edge nodes. FDL models are developed with the
Bot-IoT and N-BaIoT dataset to evaluate the effectiveness of the proposed
method. The performance of the FDL models is compared with that of the
CDL and LDL models.

The remaining parts of this paper are organised as follows: in Section 6.2,
different zero-day botnet attack scenarios in IoT-enabled critical
infrastructure are presented; in Section 6.3, the FDL method is proposed for
zero-day botnet attack detection in IoT edge nodes; in Section 6.4, the
effectiveness of the FDL method is evaluated and compared with that of the
CDL and LDL methods; and the major findings of the chapter is
summarised in Section 6.5.

6.2 Zero-Day Botnet Attack Scenarios

The network traffic patterns and the nature of botnet attack that is launched
against the IoT edge nodes are usually different. In this study, zero-day

107

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

botnet attack scenarios are modelled using the 11-class Bot-IoT and the
10-class N-BaIoT datasets.

TABLE 6.1: Sample distribution of the zero-day botnet attack
traffic data based on the Bot-IoT dataset

Class Edge Nodes
EN1 EN2 EN3 EN4 EN5 EN6 EN7 EN8 EN9 EN10

DD-H 0 539 1619 863 1295 215 971 1403 1731 2159
DD-T 117278 0 87958 46911 70367 11727 52775 76231 93827 29319
DD-U 113752 28438 0 45500 68251 11375 51188 73938 91004 85314
D-H 2159 539 1619 0 1295 215 971 1403 1731 863
D-T 73993 18498 55494 29597 0 7399 33296 48095 59198 44395
D-U 123882 30970 92912 49553 74329 0 55747 80523 99110 12388
Norm 2159 539 1619 863 1295 215 971 1403 1079 652
OSF 2159 539 1619 863 1295 215 0 1403 1731 971
SS 8789 2197 6592 3515 5273 878 3955 0 7037 5713
DE 2159 539 1619 863 1295 215 971 1403 0 1731
KL 2159 539 1619 863 1295 215 971 1403 1731 0

TABLE 6.2: Sample distribution of the zero-day botnet attack
traffic data based on the N-BaIoT dataset

Class Edge Nodes
EN1 EN2 EN3 EN4 EN5 EN6 EN7 EN8 EN9

Norm 33339 33339 33339 33339 33339 33339 33339 33339 33339
g_combo 37039 0 33953 33953 33953 33953 33953 33953 33953
g_junk 18832 17263 0 17263 17263 17263 17263 17263 17263
g_scan 18377 16846 16846 0 16846 16846 16846 16846 16846
g_udp 68094 62419 62419 62419 0 62419 62419 62419 62419
m_ack 46435 42566 42566 42566 42566 0 42566 42566 42566
m_scan 0 35511 35511 35511 35511 35511 35511 35511 35511
m_syn 52850 48446 48446 48446 48446 48446 0 48446 48446
m_udp 88577 81196 81196 81196 81196 81196 81196 0 81196
m_udpp 37643 34506 34506 34506 34506 34506 34506 34506 0

Table 6.1 presents the sample distribution of the zero-day botnet attack
traffic data in ten IoT edge nodes based on the Bot-IoT dataset, and Table 6.2
presents the sample distribution in nine other IoT edge nodes based on the
NBaIoT dataset. A class of botnet attack traffic was not included in each of
the IoT edge nodes to model zero-day botnet attack scenario. For example,
in Table 6.1, there is no sample of DD-H attack in EN1, and there is no
sample of KL attack in EN10. Similarly, in Table 6.2, there is no sample of
g_junk attack in EN3, and there is no sample of m_syn attack in EN7. In
order to depict a real-life scenario, the distribution of botnet attack samples
was unbalanced and non-identically distributed across the classes of
network traffic and across the IoT edge nodes.

6.3 Federated Deep Learning Method

FDL method is proposed to detect zero-day botnet attacks in IoT-enabled
critical infrastructure based on Algorithm 8. The FDL framework comprised

108

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

of a model parameter server and K IoT edge nodes. The model parameter
server coordinates the training of LAE-BLSTM1 models in the IoT edge
nodes. Also, it determines the number of training iterations/epochs (E), the
batch size of training data (B), and the number of communication rounds
(R). In this method, K LAE-BLSTM models are trained separately with local
training data that are privately held in K IoT edge nodes. After each training
of E epochs, all the edge IoT devices send their local model updates to the
model parameter server for aggregation using FedAvg algorithm [46].
Model aggregation is performed by model parameter server in R
communication rounds.

Algorithm 8: FDL algorithm
Input: R, E, N, B, K
Initialization: W = W0
Output: Wr

1 function localUpdate(W, k):
2 for e = 1 to E do
3 for b = 1 to N

B do
4 Wk,b = Wk,b−1 − γ∆L(b, Wk)
5 end
6 end
7 return Wk
8 end function
9 for r = 1 to R do

10 for k = 1 to K do
11 Wr,k = localUpdate(Wr−1, k)
12 end

13 Wr =
K

∑
k=1

nk
N Wr,k

14 end

The FDL method was simulated with the Bot-IoT and N-BaIoT data sets to
evaluate the effectiveness of this method for zero-day botnet attack
detection in IoT edge nodes, as shown in Fig. 6.1. The network traffic data in
the IoT edge nodes was pre-processed as earlier described in Section 3.3.
The SMOTE method in Chapter 4 was used to achieve class balance when
the network traffic data is highly imbalanced. The LAE-BLSTM method in
Chapter 5 was used for feature dimensionality reduction. The optimisation
method in Chapter 3 was used to select the most suitable set of

1The LAE-BLSTM method was discussed earlier in Chapter 5

109

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

FIGURE 6.1: FDL architecture for zero-day botnet attack
detection in IoT edge nodes

hyperparameters for local model training in the IoT edge nodes. IBM2 FL
framework was used to implement the proposed method. The models were
trained using the Spyder3 Integrated Development Environment (IDE)
running on Ubuntu 16.04 LTS workstation with the following specifications:
Random Access Memory (32 GB), Processor (Intel Core i7-9700K CPU @
3.60GHz × 8), and 64-bit Operating System (OS). The deployment of the
FDL model in IoT edge nodes was simulated using Linux terminals. The
communication between the model parameter server and the IoT edge
nodes was established using the Flask4 web framework.

The performance of the FDL method was compared with that of CDL and
LDL methods. For the CDL method, each of the IoT edge nodes transmitted
its training data to a central server for aggregation. Therefore, the CDL model
was trained with an aggregated data in the cloud. A copy of the CDL model
was sent back to all the IoT edge devices for network traffic classification
on the testing data. For the LDL method, model training was performed
with the local training data in the edge IoT devices. Therefore, a unique LDL
model was developed for each of the IoT edge devices. In the FDL method,
a global LAE-BLSTM model was developed and a copy of this model was
transmitted to all the IoT edge nodes for network traffic classification. The
model parameter server receives further updates from the local models in the

2https://ibmfl.mybluemix.net/
3https://www.spyder-ide.org/
4https://palletsprojects.com/p/flask/

110

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

IoT edge nodes to improve the classification performance of the global FDL
model.

6.4 Results Analysis and Discussion

In this section, the effectiveness of the CDL, LDL, and FDL models is
evaluated with the network traffic data in the testing sets of the Bot-IoT and
N-BaIoT datasets based on the following: (a) classification performance, (b)
computation efficiency, (c) memory efficiency, (d) data privacy preservation,
(e) communication cost, and (f) network latency. The sample distribution of
the testing sets for the Bot-IoT and N-BaIoT datasets was presented earlier
in Tables 3.1 and 3.2, respectively.

6.4.1 Centralised Deep Learning Models

A CDL-based botnet attack detection model, which employed the
LAE-BLSTM architecture, was trained and tested with the Bot-IoT dataset.
Table 6.3 shows that the model achieved a high classification performance
with 99.98 ± 0.04% accuracy, 99.03 ± 2.94% precision, 99.53 ± 0.92% recall,
and 99.25 ± 1.54% F1 score. All the network traffic samples in the DD-T,
D-T, D-U, Norm, DE, and KL classes were classified correctly. This means
that the CDL model can distinctively detect benign network traffic as well as
DD-T, D-T, D-U, DE, and KL attack traffic in IoT-enabled critical
infrastructure with 100% accuracy and zero false alarm rate.

TABLE 6.3: Classification performance of the CDL model
based on the Bot-IoT dataset

Class Classification Performance (%)
Accuracy Precision Recall F1 Score

DD-H 100.00 100.00 98.04 99.01
DD-T 99.99 99.98 99.99 99.99
DD-U 99.89 99.97 99.60 99.78
D-H 100.00 99.62 97.39 98.49
D-T 99.99 99.98 99.98 99.98
D-U 99.89 99.63 99.97 99.80
Norm 100.00 90.18 100.00 94.84
OSF 100.00 99.94 99.92 99.93
SS 100.00 99.99 99.92 99.95
DE 100.00 100.00 100.00 100.00
KL 100.00 100.00 100.00 100.00

111

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

Although the CDL model could not classify all the network traffic samples
in the remaining five classes correctly, the detection rates were very high and
the false alarm rates were very low. In the DD-H class, 98% of the samples
were correctly classified, and 2% were misclassified as DD-T attack traffic. In
the DD-U class, 99.6% of the samples were correctly classified, and 0.4% were
misclassified as D-U attack traffic. In the D-H class, 97.4% of the samples
were correctly classified, 1.1% were misclassified as DD-T attack traffic, 1.1%
were misclassified as D-T attack traffic, and a sample was misclassified as a
benign network traffic. In the OSF class, 99.9% of the samples were correctly
classified, and 0.1% were misclassified as SS attack traffic. In the SS class,
99.9% of the samples were correctly classified, and 0.1% were misclassified
as benign network traffic. Therefore, the CDL model can also distinctively
detect DD-H, DD-U, D-H, OSF, and SS attack traffic in IoT-enabled critical
infrastructure with high accuracy and low false alarm rate. The computation
efficiency of the CDL model was high. It took 212.75 seconds to train the
model with 2253251 network traffic samples in the training set, while the
model spent 1.18 seconds to classify 733705 network traffic samples in the
testing set. However, the CDL method required a high memory space of
72.10 MB to store network traffic data in a central cloud server for model
training.

TABLE 6.4: Classification performance of the CDL model
based on the N-BaIoT dataset

Class Classification Performance (%)
Accuracy Precision Recall F1 Score

Norm 99.97 99.85 99.77 99.81
g_combo 99.88 99.93 98.68 99.30
g_junk 99.88 97.39 99.81 98.59
g_scan 99.99 99.81 99.83 99.82
g_udp 99.98 99.90 99.96 99.93
m_ack 99.57 96.37 99.64 97.98
m_scan 99.98 99.86 99.94 99.90
m_syn 99.98 99.96 99.90 99.93
m_udp 99.73 99.64 99.01 99.33
m_udpp 99.73 99.77 97.06 98.39

Another CDL-based botnet attack detection model was trained and tested
with the N-BaIoT dataset. Table 6.4 shows that the model achieved a high
classification performance with 99.87 ± 0.14% accuracy, 99.25 ± 1.27%
precision, 99.36 ± 0.91% recall, and 99.30 ± 0.73% F1 score. Almost all the
network traffic samples in the ten classes were classified correctly. In the

112

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

Norm class, 99.8% of the samples were classified correctly, and 0.2% were
misclassified as g_udp attack. In the g_combo class, 98.7% of the samples
were classified correctly, and 1.3% were misclassified as g_junk attack. In the
g_junk class, 99.8% of the samples were classified correctly, and 0.2% were
misclassified as g_combo attack. In the g_scan class, 99.8% of the samples
were classified correctly, and 0.2% were misclassified as benign network
traffic. In the g_udp class, all the samples were classified correctly. In the
m_ack class, 99.6% of the samples were classified correctly, 0.2% were
misclassified as m_udp attack, and 0.2% were misclassified as m_udpp attack.
In the m_scan class, 99.9% of the samples were classified correctly, and 0.1%
were misclassified as g_udp attack. In the m_syn class, 99.9% of the samples
were classified correctly, and 0.1% were misclassified as m_scan attack. In
the m_udp class, 99% of the samples were classified correctly, and 1% were
misclassified as m_ack attack. In the m_udpp class, 97.1% of the samples were
classified correctly, 2.3% were misclassified as m_ack attack, and 0.6% were
misclassified as m_udp attack. Therefore, the CDL model can distinctively
detect each class of botnet attack traffic in IoT-enabled critical infrastructure
with high accuracy and low false alarm rate. The computation efficiency of
the CDL model was high. It took 478.63 seconds to train the model with
3721653 network traffic samples in the training set, while the model spent
3.86 seconds to classify 1240552 network traffic samples in the testing set.
Also, the CDL method required a high memory space of 119.09 MB to store
network traffic data in a central cloud server for model training.

The CDL models achieved an excellent classification performance because
they were trained with large and diverse data which covered all the benign
network traffic patterns and all the categories of botnet attacks that were
generated and transmitted from the ten IoT edge nodes to a central cloud
server. However, the aggregation of the network traffic data from multiple
IoT edge nodes will cause data privacy leakage in the IoT-enabled critical
infrastructure. Furthermore, the cost of transmitting large network traffic
data from the IoT edge nodes to a central cloud server is high, and this will
likely increase network latency in the system.

6.4.2 Localised Deep Learning Models

Ten LDL-based botnet attack detection models, which employed
LAE-BLSTM architecture, were trained and tested with the Bot-IoT network
traffic data that are located in ten edge nodes (EN1-EN10), respectively.

113

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

TABLE 6.5: Classification performance of the LDL models
based on the Bot-IoT dataset

Edge Node Classification performance (%)
Accuracy Precision Recall F1 Score

EN1 99.69 78.15 89.89 81.77
EN2 94.27 58.64 84.32 63.13
EN3 94.93 77.84 85.67 80.84
EN4 99.14 72.75 87.88 76.88
EN5 96.77 64.76 85.42 69.61
EN6 94.49 60.57 83.42 66.14
EN7 99.34 67.57 85.87 72.73
EN8 99.10 61.49 85.53 66.19
EN9 99.55 76.39 87.77 80.53

EN10 98.09 69.52 83.38 72.71

Table 6.5 shows that the LDL models achieved a low classification
performance with 97.54 ± 2.23% accuracy, 68.77 ± 7.34% precision,
85.91 ± 2.07% recall, and 73.05 ± 6.77% F1 score. None of the models was
able to detect any of the zero-day botnet attacks at the IoT edge nodes. At
IoT edge node EN1, all the DD-H attack samples were misclassified: 66.7%
as D-H attack, and 33.3% as DD-T attack. At IoT edge node EN2, all the
DD-T attack samples were misclassified: 83.2% as D-T attack, 14.8% as
DD-H attack, and 2% as D-H attack. At IoT edge node EN3, all the DD-U
attack samples were misclassified as D-U attack. At IoT edge node EN4, all
the D-H attack samples were misclassified: 82.8% as DD-H attack, 11.6% as
D-T attack, 5.2% as DD-T attack, and 0.4% as KL attack. At IoT edge node
EN5, all the D-T attack samples were misclassified: 97.7% as DD-T attack,
1.5% as D-H attack, 0.6% as D-U attack, and 0.2% as DD-H attack. At IoT
edge node EN6, all the D-U samples were misclassified: 99.4% as DD-U
attack, 0.5% as benign network traffic, and 0.1% as OSF attack. At IoT edge
node EN7, all the OSF attack samples were misclassified: 98.9% as SS attack,
0.8% as benign network traffic, and 0.3% as DD-U attack. At IoT edge node
EN8, all the SS attack samples were misclassified: 70.3% as OSF attack, and
29.7% as benign network traffic. At IoT edge node EN9, the only DE attack
sample was misclassified as KL attack. At IoT edge node EN10, all the KL
attack samples were misclassified: 63.6% as D-H attack, and 36.4% as DE
attack.

The LDL models, which were developed based on the Bot-IoT dataset, had
a faster training time than the CDL models. Figure 6.2 shows that it took
48.94− 127.88 seconds to train the models with training sets of different sizes,

114

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

EN
-1

EN
-2

EN
-3

EN
-4

EN
-5

EN
-6

EN
-7

EN
-8

EN
-9

EN
-1

0

Edge Nodes

0

20

40

60

80

100

120

140

T
ra

in
in

g
 t

im
e

 (
s
)

FIGURE 6.2: Training time of the LDL models based on the
Bot-IoT dataset

EN
-1

EN
-2

EN
-3

EN
-4

EN
-5

EN
-6

EN
-7

EN
-8

EN
-9

EN
-1

0

Edge Nodes

0

0.5

1

1.5

2

2.5

3

T
e

s
ti
n

g
 t

im
e

 (
s
)

FIGURE 6.3: Testing time of the LDL models based on the
Bot-IoT dataset

as shown in Table 6.1. However, the LDL models spent more time to classify
the network traffic samples in the testing set, compared to the CDL models.
Figure 6.3 shows that the LDL models spent 2.28− 2.54 seconds to classify
733705 network traffic samples in the testing set. Figure 6.4 shows that the
LDL method required a smaller memory space of 2.1− 28.7 MB to store the

115

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

network traffic data in the IoT edge nodes.

EN
1

EN
2

EN
3

EN
4

EN
5

EN
6

EN
7

EN
8

EN
9

EN
10

Edge Nodes

0

5

10

15

20

25

30
M

e
m

o
ry

 s
iz

e
 r

e
q

u
ir
e

d
 (

M
B

)

FIGURE 6.4: Memory sizes of the Bot-IoT dataset in the IoT
edge nodes

Another nine LDL-based botnet attack detection models were trained and
tested with the N-BaIoT network traffic data that are located in nine edge
nodes (EN1-EN9), respectively.

TABLE 6.6: Classification performance of the LDL models
based on the N-BaIoT dataset

Edge Node Classification performance (%)
Accuracy Precision Recall F1 Score

EN1 97.33 81.06 84.03 81.55
EN2 97.61 80.15 86.92 81.86
EN3 98.37 83.31 86.32 84.47
EN4 98.30 81.46 85.16 83.06
EN5 95.58 81.46 82.78 77.65
EN6 97.30 82.57 86.01 83.82
EN7 96.75 76.88 83.74 79.20
EN8 95.59 78.58 86.84 81.23
EN9 97.72 82.62 86.25 83.95

Table 6.6 shows that the LDL models achieved a low classification
performance with 97.17 ± 1.03% accuracy, 80.90 ± 2.07% precision,
85.34 ± 1.49% recall, and 81.87 ± 2.28% F1 score. None of the models was
able to detect any of the zero-day botnet attacks at the nine IoT edge nodes.

116

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

At IoT edge node EN1, all the m_scan attack samples were misclassified:
90.3% as m_syn attack, and 9.5% as g_scan attack. At IoT edge node EN2, all
the g_combo attack samples were misclassified: 98.7% as g_junk attack, and
1.3% as m_syn attack. At IoT edge node EN3, all the g_junk attack samples
were misclassified: 99.5% as g_combo attack, and 0.5% as g_scan attack. At
IoT edge node EN4, all the g_scan attack samples were misclassified: 57% as
m_syn attack, 39.6% as m_scan attack, and 3.4% as benign network traffic. At
IoT edge node EN5, all the benign network traffic were misclassified. At IoT
edge node EN6, all the m_ack attack samples were misclassified: 96.4% as
m_udp attack, and 3.6% as m_udpp attack. At IoT edge node EN7, all the
m_syn attack samples were misclassified: 69.3% as g_combo attack, 19.1% as
m_scan attack, 9.7% as g_junk attack, and 1.9% as m_udp attack. At IoT edge
node EN8, all the m_udp attack samples were misclassified: 88.4% as m_ack
attack, and 11.6% as m_udpp attack. At IoT edge node EN9, all the m_udpp
attack samples were misclassified: 81.9% as m_ack attack, and 18.1% as
m_udp attack.

EN
-1

EN
-2

EN
-3

EN
-4

EN
-5

EN
-6

EN
-7

EN
-8

EN
-9

Edge Nodes

0

10

20

30

40

50

60

T
ra

in
in

g
 t

im
e

 (
s
)

FIGURE 6.5: Training time of the LDL models based on the
N-BaIoT dataset

The LDL models, which were developed based on the N-BaIoT dataset, had
a faster training time than the CDL models. Figure 6.5 shows that it took
43.47− 53.87 seconds to train the models with training sets of different sizes,
as shown in Table 6.2. However, the LDL models spent more time to classify
the network traffic samples in the testing set, compared to the CDL models.
Figure 6.6 shows that the LDL models spent 3.77− 4.64 seconds to classify

117

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

EN
-1

EN
-2

EN
-3

EN
-4

EN
-5

EN
-6

EN
-7

EN
-8

EN
-9

Edge Nodes

0

1

2

3

4

5

T
e

s
ti
n

g
 t

im
e

 (
s
)

FIGURE 6.6: Testing time of the LDL models based on the
N-BaIoT dataset

733705 network traffic samples in the testing set. Figure 6.7 shows that the
LDL method required a smaller memory space of 20.8− 25.7 MB to store the
network traffic data in the IoT edge nodes.

EN
1

EN
2

EN
3

EN
4

EN
5

EN
6

EN
7

EN
8

EN
9

Edge Nodes

0

5

10

15

20

25

30

M
e

m
o

ry
 s

iz
e

 r
e

q
u

ir
e

d
 (

M
B

)

FIGURE 6.7: Memory sizes of the N-BaIoT dataset in the IoT
edge nodes

In LDL method, the network traffic features of the IoT edge nodes were not
shared with a third-party central cloud server to preserve the data privacy
of IoT-enabled critical infrastructure users. The LDL models required a

118

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

shorter training time and a lower memory space for data storage, and they
incurred lower communication overhead. However, the classification
performance of the LDL models was lower than that of the CDL models
because each of former was trained with insufficient private network traffic
and fewer botnet attack scenarios in a single IoT edge node. Therefore, the
LDL method is not suitable for zero-day botnet attack detection in
IoT-enabled critical infrastructure.

6.4.3 Federated Deep Learning Models

A FDL-based botnet attack detection model, which employed LAE-BLSTM
architecture, was trained and tested with Bot-IoT network traffic data at ten
IoT edge nodes.

0 1 2 3 4 5 6 7 8 9 10

Number of communication rounds

30

40

50

60

70

80

90

100

C
la

s
s
if
ic

a
ti
o

n
 p

e
rf

o
rm

a
n

c
e

 (
%

)

Accuracy

Precision

Recall

F1 Score

FIGURE 6.8: Classification performance of the FDL model
based on the Bot-IoT dataset

Figure 6.8 shows that the classification performance of the FDL model
improved as the number of communication rounds increased from 1 to 10.
Specifically, the accuracy, precision, recall, and F1 score of the model
increased by 6.54%, 53.92%, 60.88%, and 63.75%, respectively. The FDL
model achieved the best classification performance at the end of the ninth
communication round with 99.72% accuracy, 95.67% precision, 97.56%
recall, and 96.52% F1 score. All the network traffic samples in the DD-T,
DD-U, D-U, Norm, OSF, SS, DE, and KL classes were classified correctly.
This means that the FDL model can distinctively detect benign network

119

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

traffic as well as DD-T, DD-U, D-U, OSF, SS, DE, and KL attack traffic in
IoT-enabled critical infrastructure with 100% accuracy and zero false alarm
rate.

Although the FDL model could not classify all the network traffic samples
in the DD-H, D-H, and D-T classes correctly, the detection rates were very
high and the false alarm rates were very low. In the DD-H class, 90.7% of
the samples were classified correctly, 5.9% were misclassified as D-H attack,
and 3.4% were misclassified as DD-T attack. In the D-H class, 91.8% of the
samples were classified correctly, 6.3% were misclassified as DD-H attack,
and 1.9% were misclassified as DD-T attack. In the D-T class, 91.3% of the
samples were classified correctly, and 8.7% were misclassified as DD-T
attack. Therefore, the FDL model can also distinctively detect DD-H, DD-U,
D-H, OSF, and SS attack traffic in IoT-enabled critical infrastructure with
high accuracy and low false alarm rate.

1 2 3 4 5 6 7 8 9 10

Number of communication rounds

0

500

1000

1500

2000

2500

3000

3500

4000

T
ra

in
in

g
 t

im
e

 (
s
)

FIGURE 6.9: Training time of the FDL models based on the
Bot-IoT dataset

Figure 6.9 shows that the time required to train the FDL model increased
from 426 to 3853.64 seconds as the number of communication rounds
increased from 1 to 10. The training time of the FDL model which achieved
the best classification performance at the end of the ninth communication
round was 3491.72 seconds. Figure 6.10 shows that the FDL model spent
3.7− 5.3 seconds to classify 733705 network traffic samples in the testing set.

120

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

1 2 3 4 5 6 7 8 9 10

Number of communication rounds

0

1

2

3

4

5

6

T
e

s
ti
n

g
 t

im
e

 (
s
)

FIGURE 6.10: Testing time of the FDL models based on the
Bot-IoT dataset

Another FDL-based botnet attack detection model, which employed LAE-
BLSTM architecture, was trained and tested with N-BaIoT network traffic
data at nine IoT edge nodes.

0 1 2 3 4 5 6 7 8 9 10

Number of communication rounds

65

70

75

80

85

90

95

100

C
la

s
s
if
ic

a
ti
o

n
 p

e
rf

o
rm

a
n

c
e

 (
%

)

Accuracy

Precision

Recall

F1 Score

FIGURE 6.11: Classification performance of the FDL model
based on the N-BaIoT dataset

Figure 6.11 shows that the classification performance of the FDL model
improved as the number of communication rounds increased from 1 to 10.

121

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

Specifically, the accuracy, precision, recall, and F1 score of the model
increased by 4.78%, 26.54%, 28.19%, and 31.22%, respectively. The FDL
model achieved the best classification performance at the end of the eighth
communication round with 99.71% accuracy, 98.39% precision, 98.94%
recall, and 98.64% F1 score. All the network traffic samples in the Norm,
g_junk, g_scan, g_udp, m_ack, m_scan, and m_syn classes were classified
correctly. This means that the FDL model can distinctively detect benign
network traffic as well as g_junk, g_scan, g_udp, m_ack, m_scan, and m_syn
attack traffic in IoT-enabled critical infrastructure with 100% accuracy and
zero false alarm rate.

Although the FDL model could not classify all the network traffic samples
in the g_combo, m_udp, and m_udpp classes correctly, the detection rates were
very high and the false alarm rates were very low. In the g_combo class, 98%
of the samples were classified correctly, and 2% were misclassified as g_junk
attack. In the m_udp class, 94.9% of the samples were classified correctly,
3.9% were misclassified as m_ack attack, 0.4% were misclassified as m_udpp
attack, and 0.7% were misclassified as benign network traffic. In the m_udpp
class, 98% of the samples were classified correctly, 1.6% were misclassified
as m_ack attack, and 0.4% were misclassified as m_udp attack. Therefore, the
FDL model can also distinctively detect Dg_combo, m_udp, and m_udpp attack
traffic in IoT-enabled critical infrastructure with high accuracy and low false
alarm rate.

1 2 3 4 5 6 7 8 9 10

Number of communication rounds

0

500

1000

1500

2000

2500

3000

3500

T
ra

in
in

g
 t

im
e

 (
s
)

FIGURE 6.12: Training time of the FDL models based on the
N-BaIoT dataset

122

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

1 2 3 4 5 6 7 8 9 10

Number of communication rounds

0

1

2

3

4

5

6

7

T
e

s
ti
n

g
 t

im
e

 (
s
)

FIGURE 6.13: Testing time of the FDL models based on the
N-BaIoT dataset

Figure 6.12 shows that the time required to train the FDL model increased
from 319.95 to 3074.85 seconds as the number of communication rounds
increased from 1 to 10. The training time of the FDL model which achieved
the best classification performance at the end of the eighth communication
round was 2460.92 seconds. Figure 6.13 shows that the FDL model spent
5.4− 6.4 seconds to classify 733705 network traffic samples in the testing set.

TABLE 6.7: Summary of research findings

CDL LDL FDL
Data aggregation ✓ ✗ ✗

Model parameter aggregation ✗ ✗ ✓

Classification performance high low high
Training time long short long
Data privacy ✗ ✓ ✓

Communication overhead high low low
Memory requirement high low low
Network latency high low low

The overview of our findings in this chapter is presented in Table 6.7. FDL
method detects zero-day botnet attacks with high classification
performance; it guarantees data privacy and security; it has low
communication overhead; it requires low memory space for the data
storage; and it has low latency. The FDL model achieved a better
classification performance than the LDL and DDL models because the

123

Chapter 6. Federated Deep Learning for Zero-Day Botnet Attack Detection

central parameter server receives multiple local model updates from all the
IoT edge devices. The only trade-off in FDL method is the time required to
train its model. Therefore, FDL method is efficient for zero-day botnet attack
detection in IoT edge devices.

6.5 Chapter Summary

In this chapter, FDL method is proposed for zero-day attack detection in IoT
edge edge nodes of critical infrastructure. FDL model was developed with
the Bot-IoT and N-BaIoT data sets, and its effectiveness was compared with
the CDL, LDL, and DDL models. The CDL model involves data
aggregation, and it achieved high classification performance. However, it
did not preserve the privacy and security of network traffic data in IoT edge
devices. Also, the CDL model had high communication overhead, large
memory space requirement for data storage, high network latency, and it
took long time to train the model. Although the LDL models overcame the
limitations of the CDL model, their classification performance was very low.
Interestingly, the FDL model outperformed the CDL and LDL models,
except for the long training time. Therefore, the FDL method is most
efficient for zero-day botnet attack detection in the IoT edge devices.

124

Chapter 7

Conclusion and Future Work

In this chapter, the major findings in this thesis are summarised, and
recommendations are provided for possible future research.

7.1 Conclusion

In this thesis, a FDL method was developed for botnet attack detection in
IoT-enabled critical infrastructure. This method addressed the challenges
that were identified in Chapter 2 which include determining the optimal set
of hyperparameters for DL-based botnet attack detection model, low
classification performance due to imbalanced sample distribution in the
training set, high memory space requirement for network traffic data
storage, inability to detect zero-day attacks, and lack of data privacy.

7.1.1 Model Hyperparameter Optimisation

In Chapter 3, a method was developed to determine the optimal sets of
hyperparameters for DL-based botnet attack detection model. DNN models
were trained, validated, and tested with the network traffic features in the
Bot-IoT and N-BaIoT datasets to perform binary and multi-class
classification. A learning rate of 0.001, ReLU activation function, and a batch
size of 512 were the most suitable in all cases. However, the numbers of
hidden layers and their hidden units, the optimiser, and the number of
epochs were different for each dataset and each classification scenario. Two
hidden layers with 128 and 16 hidden units, Nadam optimiser, and 5 epochs
produced the optimal classification performance when DNN models were
developed with the Bot-IoT dataset for binary classification. Four hidden
layers with 128, 128, 128, and 16 hidden units, Adam optimiser, and 10
epochs produced the optimal classification performance when DNN models

125

Chapter 7. Conclusion and Future Work

were developed with the Bot-IoT dataset for 5-class classification. Four
hidden layers with 128, 128, 128 and 64 hidden units, Adam optimiser, and
15 epochs produced the optimal classification performance when DNN
models were developed with the Bot-IoT dataset for 11-class classification.
Three hidden layers with 128, 128 and 16 hidden units, Adam optimiser,
and 5 epochs produced the optimal classification performance when DNN
models were developed with the N-BaIoT dataset for binary classification.
Two hidden layers with 128 and 32 hidden units, Nadam optimiser, and 15
epochs produced the optimal classification performance when DNN models
were developed with the N-BaIoT dataset for 10-class classification. Overall,
the optimal DNN models achieved 99.99 ± 0.02% accuracy, 97.85 ± 3.77%
precision, 98.72 ± 2.77% recall, and 97.72 ± 4.51% F1 score. It took
33.49 − 168.85 seconds to train the models, and they spent 0.43 − 1.16
seconds to classify the network traffic data in the testing set.

7.1.2 Imbalanced Network Traffic Classification

In Chapter 4, a method, named SMOTE-DL, was developed to improve the
classification performance of DL models when the network traffic data in
the training set is highly imbalanced. SMOTE algorithm was used to
generate 52139 synthetic network traffic samples to increase the class
imbalance ratio of the Bot-IoT dataset from as low as 1:154854 to 1:57. DNN,
RNN, LSTM, and GRU models were trained with the balanced network
traffic data. The optimal hyperparameters in Chapter 3 were used for the
development of the SMOTE-DL models. The precision, recall, and F1 score
of the models improved by 6.4− 13.48%, 3.12− 12.81%, and 7.01− 13.27%,
respectively. Specifically, the SMOTE-LSTM model achieved the best
classification performance with 100% accuracy, 94.20% precision, 98.99%
recall, and 95.83% F1 score. Interestingly, the SMOTE method did not
introduce any significant computation complexity to the DL-based botnet
attack detection process.

7.1.3 Memory-Efficient Botnet Attack Detection

In Chapter 5, a hybrid DL method, named LAE-BLSTM, was developed to
reduce the memory space required to store network traffic data without
compromising the classification performance. The optimal hyperparameters
in Chapter 3 were used for model development, and the SMOTE method in
Chapter 4 was used when the network traffic data in the training set is

126

Chapter 7. Conclusion and Future Work

highly imbalanced. LAE models were trained to reduce the dimensionality
of the features in the Bot-IoT and N-BaIoT datasets. This reduced the
memory space required to store the data in a central cloud server or in an
IoT node by 86.46− 98.26%. BLSTM models were trained with the reduced
feature sets to perform binary and multi-class classification, and they
achieved 99.91 ± 0.12 accuracy, 99.33 ± 0.57 precision, 98.82 ± 1.13 recall,
and 99.06± 0.75 F1 score. Therefore, the LAE-BLSTM method can be used
for memory-efficient botnet attack detection in IoT-enabled critical
infrastructure.

7.1.4 Zero-Day Botnet Attack Detection

In Chapter 6, a FDL method was developed to detect zero-day botnet attack
in IoT edge nodes, and preserve the data privacy of IoT-enabled critical
infrastructure users. Zero-day botnet attack scenarios were simulated with
the Bot-IoT and N-BaIoT datasets, and the network traffic samples in these
datasets were distributed among ten and nine IoT edge nodes, respectively.
The LAE-BLSTM model architecture in Chapter 5 was used for local training
at the IoT edge nodes. The method in Chapter 3 was used to optimise the
hyperparameters of the LAE-BLSTM models. The SMOTE method in
Chapter 4 was employed for class balance when the network traffic data in
the training set is highly imbalanced. The FDL method eliminated the need
to aggregate and transmit the network traffic data from multiple IoT edge
nodes to a central cloud server for model training. This preserved users’
data privacy, reduced communication overhead, and reduced network
latency. Also, the FDL models achieved high classification performance, and
they required lower memory space to store network traffic data at the edge
nodes, compared to the centralised approach. Therefore, FDL method can
detect known and unknown botnet attacks in IoT-enabled critical
infrastructure with high detection accuracy and low false alarm rate.

7.2 Recommendations for Future Work

7.2.1 Implementation of FDL on Real IoT Hardware

The IoT edge nodes in this thesis were simulated using different Linux
terminals on the same computer. In the future, the FDL models will be

127

Chapter 7. Conclusion and Future Work

deployed on real IoT devices such as Raspberry Pi 4B using an open-source
platform called FedIoT1 [175].

7.2.2 Advanced Aggregation Methods for Robust FDL

The potentials of advanced model parameter aggregation algorithms such
as Probabilistic Federated Neural Matching (PFNM) [205], Fed+ [206], and
FedProx [207] will be explored to improve the classification performance of
FDL models with less communication rounds. Furthermore, a decentralised
FL approach will be investigated to eliminate the need for a central model
parameter aggregation server. In this method, the IoT edge node with the
best computation and energy resources will be nominated to perform model
parameter aggregation, This will further reduce communication cost and
network latency.

7.2.3 Securing FDL Models against Adversarial Attacks

Efforts will be made to protect the FDL models against adversarial attacks
such as backdoor and poisoning attacks [208]. At the IoT edge nodes, an
attacker can manipulate the network traffic features or insert corrupt features
to ’poison’ the training dataset. Also, the model parameter updates from the
IoT edge nodes can be intercepted and contaminated when transmitted to
the cloud server for aggregation. The potentials of blockchain technology
[209] and differential privacy mechanisms [210] will be explored to achieve
a trustworthy FDL model for botnet attack detection in IoT-enabled critical
infrastructure.

1https://github.com/FedML-AI/FedIoT

128

Bibliography

[1] CPNI, Critical national infrastructure, Last accessed: 29 October 2021,
2021. [Online]. Available: https://www.cpni.gov.uk/critical-
national-infrastructure-0.

[2] K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqim,
“Internet of things (iot) for next-generation smart systems: A review
of current challenges, future trends and prospects for emerging
5g-iot scenarios,” Ieee Access, vol. 8, pp. 23 022–23 040, 2020.

[3] N. Mishra and S. Pandya, “Internet of things applications, security
challenges, attacks, intrusion detection, and future visions: A
systematic review,” IEEE Access, 2021.

[4] Y. Yang, H. Wang, R. Jiang, X. Guo, J. Cheng, and Y. Chen, “A review
of iot-enabled mobile healthcare: Technologies, challenges, and future
trends,” IEEE Internet of Things Journal, 2022.

[5] N. Pathak, P. K. Deb, A. Mukherjee, and S. Misra, “Iot-to-the-rescue:
A survey of iot solutions for covid-19-like pandemics,” IEEE Internet
of Things Journal, 2021.

[6] Y. Dong and Y.-D. Yao, “Iot platform for covid-19 prevention and
control: A survey,” IEEE Access, vol. 9, pp. 49 929–49 941, 2021.

[7] S. A. A. Abir, A. Anwar, J. Choi, and A. Kayes, “Iot-enabled smart
energy grid: Applications and challenges,” IEEE access, vol. 9,
pp. 50 961–50 981, 2021.

[8] M. S. Farooq, O. O. Sohail, A. Abid, and S. Rasheed, “A survey on
the role of iot in agriculture for the implementation of smart livestock
environment,” IEEE Access, 2022.

[9] Y. Song, F. R. Yu, L. Zhou, X. Yang, and Z. He, “Applications of the
internet of things (iot) in smart logistics: A comprehensive survey,”
IEEE Internet of Things Journal, 2020.

[10] D. C. Nguyen, M. Ding, P. N. Pathirana, et al., “6g internet of things:
A comprehensive survey,” IEEE Internet of Things Journal, 2021.

129

https://www.cpni.gov.uk/critical-national-infrastructure-0
https://www.cpni.gov.uk/critical-national-infrastructure-0

Bibliography

[11] F. Guo, F. R. Yu, H. Zhang, X. Li, H. Ji, and V. C. Leung, “Enabling
massive iot toward 6g: A comprehensive survey,” IEEE Internet of
Things Journal, 2021.

[12] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers, “Twenty security
considerations for cloud-supported internet of things,” IEEE Internet
of things Journal, vol. 3, no. 3, pp. 269–284, 2015.

[13] G. S. Aujla, R. Chaudhary, K. Kaur, S. Garg, N. Kumar, and
R. Ranjan, “Safe: Sdn-assisted framework for edge–cloud interplay in
secure healthcare ecosystem,” IEEE Transactions on Industrial
Informatics, vol. 15, no. 1, pp. 469–480, 2018.

[14] A. Singh, S. Garg, S. Batra, N. Kumar, and J. J. Rodrigues, “Bloom
filter based optimization scheme for massive data handling in iot
environment,” Future Generation Computer Systems, vol. 82,
pp. 440–449, 2018.

[15] S. Garg, A. Singh, K. Kaur, et al., “Edge computing-based security
framework for big data analytics in vanets,” IEEE Network, vol. 33,
no. 2, pp. 72–81, 2019.

[16] R. M. Lee, M. J. Assante, and C. T, “Analysis of the cyber attack on
the ukrainian power grid,” Electricity Information Sharing and Analysis
Center (E-ISAC), vol. 388, 2016.

[17] B. D. Davis, J. C. Mason, and M. Anwar, “Vulnerability studies and
security postures of iot devices: A smart home case study,” IEEE
Internet of Things Journal, 2020.

[18] W. Zhou, Y. Jia, A. Peng, Y. Zhang, and P. Liu, “The effect of iot new
features on security and privacy: New threats, existing solutions, and
challenges yet to be solved,” IEEE Internet of Things Journal, vol. 6,
no. 2, pp. 1606–1616, 2018.

[19] M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, and
E. K. Markakis, “A survey on the internet of things (iot) forensics:
Challenges, approaches and open issues,” IEEE Communications
Surveys & Tutorials, 2020.

[20] I. Stellios, P. Kotzanikolaou, M. Psarakis, C. Alcaraz, and J. Lopez, “A
survey of iot-enabled cyberattacks: Assessing attack paths to critical
infrastructures and services,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 3453–3495, 2018.

[21] T. Qiu, N. Chen, K. Li, M. Atiquzzaman, and W. Zhao, “How can
heterogeneous internet of things build our future: A survey,” IEEE

130

Bibliography

Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2011–2027,
2018.

[22] L. Yin, X. Luo, C. Zhu, L. Wang, Z. Xu, and H. Lu, “Connspoiler:
Disrupting c&c communication of iot-based botnet through fast
detection of anomalous domain queries,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 2, pp. 1373–1384, 2020.

[23] S. Walker-Roberts, M. Hammoudeh, O. Aldabbas, M. Aydin, and
A. Dehghantanha, “Threats on the horizon: Understanding security
threats in the era of cyber-physical systems,” The Journal of
Supercomputing, pp. 1–22, 2019.

[24] M. Antonakakis, T. April, M. Bailey, et al., “Understanding the mirai
botnet,” in 26th {USENIX} Security Symposium ({USENIX} Security
17), 2017, pp. 1093–1110.

[25] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[26] D. McMillen, W. Gao, and C. DeBeck, A new botnet attack just mozied
into town, Last accessed: September 18, 2020, 2020. [Online]. Available:
https://securityintelligence.com.

[27] S. Soltan, P. Mittal, and H. V. Poor, “Blackiot: Iot botnet of high
wattage devices can disrupt the power grid,” in 27th {USENIX}
Security Symposium ({USENIX} Security 18), 2018, pp. 15–32.

[28] ——, “Protecting the grid against iot botnets of high-wattage
devices,” arXiv preprint arXiv:1808.03826, 2018.

[29] H. S. Lallie, L. A. Shepherd, J. R. Nurse, et al., “Cyber security in the
age of covid-19: A timeline and analysis of cyber-crime and cyber-
attacks during the pandemic,” arXiv preprint arXiv:2006.11929, 2020.

[30] S. N. John, O. A. Albert, K. Okokpujie, E. Noma-Osaghae,
O. Osemwegie, and C. Okereke, “Mitigating threats in a corporate
network with a taintcheck-enabled honeypot,” in Information Science
and Applications, Springer, 2020, pp. 73–83.

[31] J. Yu, Heh, a new iot p2p botnet going after weak telnet services, Last
accessed on 19 November 2020, October 2020. [Online]. Available:
https://blog.netlab.360.com/heh-an-iot-p2p-botnet/.

[32] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion
detection in the internet of things,” Ad hoc networks, vol. 11, no. 8,
pp. 2661–2674, 2013.

[33] E. Bertino and N. Islam, “Botnets and internet of things security,”
Computer, no. 2, pp. 76–79, 2017.

131

https://securityintelligence.com
https://blog.netlab.360.com/heh-an-iot-p2p-botnet/

Bibliography

[34] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, “A detailed
investigation and analysis of using machine learning techniques for
intrusion detection,” IEEE Communications Surveys & Tutorials, vol. 21,
no. 1, pp. 686–728, 2018.

[35] A. L. Buczak and E. Guven, “A survey of data mining and machine
learning methods for cyber security intrusion detection,” IEEE
Communications surveys & tutorials, vol. 18, no. 2, pp. 1153–1176, 2015.

[36] Y. Xin, L. Kong, Z. Liu, et al., “Machine learning and deep learning
methods for cybersecurity,” IEEE Access, vol. 6, pp. 35 365–35 381,
2018.

[37] D. Gümüşbaş, T. Yıldırım, A. Genovese, and F. Scotti, “A
comprehensive survey of databases and deep learning methods for
cybersecurity and intrusion detection systems,” IEEE Systems Journal,
2020.

[38] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki,
“Network intrusion detection for iot security based on learning
techniques,” IEEE Communications Surveys & Tutorials, 2019.

[39] G. Singh and N. Khare, “A survey of intrusion detection from the
perspective of intrusion datasets and machine learning techniques,”
International Journal of Computers and Applications, pp. 1–11, 2021.

[40] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[41] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep
learning for cyber security intrusion detection: Approaches, datasets,
and comparative study,” Journal of Information Security and
Applications, vol. 50, p. 102 419, 2020.

[42] S. A. Rahman, H. Tout, C. Talhi, and A. Mourad, “Internet of things
intrusion detection: Centralized, on-device, or federated learning?”
IEEE Network, 2020.

[43] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan,
and A.-R. Sadeghi, “Dïot: A federated self-learning anomaly detection
system for iot,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), IEEE, 2019, pp. 756–767.

[44] S. Kim, H. Cai, C. Hua, P. Gu, W. Xu, and J. Park, “Collaborative
anomaly detection for internet of things based on federated
learning,” in 2020 IEEE/CIC International Conference on
Communications in China (ICCC), IEEE, 2020, pp. 623–628.

132

Bibliography

[45] X. Wang, S. Garg, H. Lin, et al., “Towards accurate anomaly detection
in industrial internet-of-things using hierarchical federated learning,”
IEEE Internet of Things Journal, 2021.

[46] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from
decentralized data,” in Artificial Intelligence and Statistics, PMLR,
2017, pp. 1273–1282.

[47] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and
H. V. Poor, “Federated learning for internet of things: A
comprehensive survey,” IEEE Communications Surveys Tutorials,
pp. 1–1, 2021. DOI: 10.1109/COMST.2021.3075439.

[48] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated
machine learning: Survey, multi-level classification, desirable criteria
and future directions in communication and networking systems,”
IEEE Communications Surveys Tutorials, early access,
10.1109/COMST.2021.3058573, 2021. DOI:
10.1109/COMST.2021.3058573.

[49] W. Y. B. Lim, N. C. Luong, D. T. Hoang, et al., “Federated learning in
mobile edge networks: A comprehensive survey,” IEEE
Communications Surveys Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.
DOI: 10.1109/COMST.2020.2986024.

[50] S. I. Popoola, R. Ande, K. B. Fatai, and B. Adebisi, “Deep
bidirectional gated recurrent unit for botnet detection in smart
homes,” Machine Learning and Data Mining for Emerging Trend in Cyber
Dynamics: Theories and Applications, p. 29, 2021.

[51] S. I. Popoola, B. Adebisi, M. Hammoudeh, H. Gacanin, and G. Gui,
“Stacked recurrent neural network for botnet detection in smart
homes,” Computers & Electrical Engineering, vol. 92, p. 107 039, 2021.

[52] S. I. Popoola, B. Adebisi, R. Ande, M. Hammoudeh, K. Anoh, and
A. A. Atayero, “Smote-drnn: A deep learning algorithm for botnet
detection in the internet-of-things networks,” Sensors, vol. 21, no. 9,
p. 2985, 2021.

[53] S. I. Popoola, B. Adebisi, M. Hammoudeh, G. Gui, and H. Gacanin,
“Hybrid deep learning for botnet attack detection in the
internet-of-things networks,” IEEE Internet of Things Journal, vol. 8,
no. 6, pp. 4944–4956, 2021. DOI: 10.1109/JIOT.2020.3034156.

133

https://doi.org/10.1109/COMST.2021.3075439
https://doi.org/10.1109/COMST.2021.3058573
https://doi.org/10.1109/COMST.2020.2986024
https://doi.org/10.1109/JIOT.2020.3034156

Bibliography

[54] S. I. Popoola, B. Adebisi, R. Ande, M. Hammoudeh, and
A. A. Atayero, “Memory-efficient deep learning for botnet attack
detection in iot networks,” Electronics, vol. 10, no. 9, p. 1104, 2021.

[55] S. I. Popoola, R. Ande, B. Adebisi, G. Gui, M. Hammoudeh, and
O. Jogunola, “Federated deep learning for zero-day botnet attack
detection in iot edge devices,” IEEE Internet of Things Journal, vol. 9,
no. 5, pp. 3930–3944, 2022. DOI: 10.1109/JIOT.2021.3100755.

[56] S. I. Popoola, G. Gui, B. Adebisi, M. Hammoudeh, and H. Gacanin,
“Federated deep learning for collaborative intrusion detection in
heterogeneous networks,” in 2021 IEEE 94th Vehicular Technology
Conference (VTC2021-Fall), IEEE, 2021, pp. 1–6.

[57] G. Aceto, V. Persico, and A. Pescape, “A survey on information and
communication technologies for industry 4.0: State-of-the-art,
taxonomies, perspectives, and challenges,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3467–3501, 2019.

[58] J. M. Williams, R. Khanna, J. P. Ruiz-Rosero, et al., “Weaving the
wireless web: Toward a low-power, dense wireless sensor network
for the industrial iot,” IEEE Microwave Magazine, vol. 18, no. 7,
pp. 40–63, 2017.

[59] H. Darvishi, D. Ciuonzo, E. R. Eide, and P. S. Rossi, “Sensor-fault
detection, isolation and accommodation for digital twins via
modular data-driven architecture,” IEEE Sensors Journal, 2020.

[60] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE communications surveys & tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[61] Cisco, Annual internet report (2018-2023), Last accessed: September 19,
2020, 2020. [Online]. Available: https://www.cisco.com.

[62] A. Holst, Number of iot connected devices worldwide 2019-2030, Accessed:
2021-02-20, 2021. [Online]. Available: https://www.statista.com/
statistics/1183457/iot-connected-devices-worldwide/.

[63] Statista, Global iot end-user spending worldwide 2017-2025, Accessed:
2021-02-20, 2021. [Online]. Available:
https : / / www . statista . com / statistics / 976313 / global - iot -

market-size/.
[64] S. Walker-Roberts, M. Hammoudeh, O. Aldabbas, M. Aydin, and

A. Dehghantanha, “Threats on the horizon: Understanding security
threats in the era of cyber-physical systems,” The Journal of

134

https://doi.org/10.1109/JIOT.2021.3100755
https://www.cisco.com
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/976313/global-iot-market-size/
https://www.statista.com/statistics/976313/global-iot-market-size/

Bibliography

Supercomputing, Oct. 2019, ISSN: 1573-0484. DOI:
10 . 1007 / s11227 - 019 - 03028 - 9. [Online]. Available:
https://doi.org/10.1007/s11227-019-03028-9.

[65] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani,
“Demystifying iot security: An exhaustive survey on iot
vulnerabilities and a first empirical look on internet-scale iot
exploitations,” IEEE Communications Surveys & Tutorials, vol. 21,
no. 3, pp. 2702–2733, 2019.

[66] G. Vormayr, T. Zseby, and J. Fabini, “Botnet communication
patterns,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4,
pp. 2768–2796, 2017.

[67] S. S. Silva, R. M. Silva, R. C. Pinto, and R. M. Salles, “Botnets: A
survey,” Computer Networks, vol. 57, no. 2, pp. 378–403, 2013.

[68] S. Khattak, N. R. Ramay, K. R. Khan, A. A. Syed, and S. A. Khayam,
“A taxonomy of botnet behavior, detection, and defense,” IEEE
communications surveys & tutorials, vol. 16, no. 2, pp. 898–924, 2013.

[69] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon,
“Peer-to-peer botnets: Overview and case study.,” HotBots, vol. 7,
no. 2007, 2007.

[70] G. Macesanu, T. Codas, C. Suliman, and B. Tarnauca, “Development
of gtbot, a high performance and modular indoor robot,” in 2010
IEEE International Conference on Automation, Quality and Testing,
Robotics (AQTR), IEEE, vol. 1, 2010, pp. 1–6.

[71] L. McLaughlin, “Bot software spreads, causes new worries,” IEEE
Distributed Systems Online, vol. 5, no. 6, p. 1, 2004.

[72] T. Holz, “A short visit to the bot zoo [malicious bots software],” IEEE
Security & Privacy, vol. 3, no. 3, pp. 76–79, 2005.

[73] A. Marzano, D. Alexander, O. Fonseca, et al., “The evolution of
bashlite and mirai iot botnets,” in 2018 IEEE Symposium on Computers
and Communications (ISCC), IEEE, 2018, pp. 00 813–00 818.

[74] Y. Meidan, M. Bohadana, Y. Mathov, et al., “N-baiot: Network-based
detection of iot botnet attacks using deep autoencoders,” IEEE
Pervasive Computing, vol. 17, no. 3, pp. 12–22, 2018. DOI:
10.1109/MPRV.2018.03367731.

[75] M. Jelasity, V. Bilicki, et al., “Towards automated detection of peer-to-
peer botnets: On the limits of local approaches.,” LEET, vol. 9, p. 3,
2009.

135

https://doi.org/10.1007/s11227-019-03028-9
https://doi.org/10.1007/s11227-019-03028-9
https://doi.org/10.1109/MPRV.2018.03367731

Bibliography

[76] P. Wang, S. Sparks, and C. C. Zou, “An advanced hybrid peer-to-peer
botnet,” IEEE Transactions on Dependable and Secure Computing, vol. 7,
no. 2, pp. 113–127, 2008.

[77] N. Koroniotis, N. Moustafa, and E. Sitnikova, “Forensics and deep
learning mechanisms for botnets in internet of things: A survey of
challenges and solutions,” IEEE Access, vol. 7, pp. 61 764–61 785, 2019.

[78] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic
characterization.,” in ICISSP, 2018, pp. 108–116.

[79] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE Symposium on
Computational Intelligence for Security and Defense Applications, IEEE,
2009, pp. 1–6.

[80] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Towards
generating real-life datasets for network intrusion detection.,” IJ
Network Security, vol. 17, no. 6, pp. 683–701, 2015.

[81] N. Moustafa and J. Slay, “Unsw-nb15: A comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),”
in 2015 military communications and information systems conference
(MilCIS), IEEE, 2015, pp. 1–6.

[82] P. Gogoi, M. H. Bhuyan, D. Bhattacharyya, and J. K. Kalita, “Packet
and flow based network intrusion dataset,” in International Conference
on Contemporary Computing, Springer, 2012, pp. 322–334.

[83] E. Alomari, S. Manickam, B. Gupta, P. Singh, and M. Anbar, “Design,
deployment and use of http-based botnet (hbb) testbed,” in 16th
International Conference on Advanced Communication Technology, IEEE,
2014, pp. 1265–1269.

[84] C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer, “Usilng machine
learning technliques to identify botnet traffic,” in Proceedings. 2006
31st IEEE Conference on Local Computer Networks, IEEE, 2006,
pp. 967–974.

[85] S. Bhatia, D. Schmidt, G. Mohay, and A. Tickle, “A framework for
generating realistic traffic for distributed denial-of-service attacks and
flash events,” computers & security, vol. 40, pp. 95–107, 2014.

[86] S. Behal and K. Kumar, “Detection of ddos attacks and flash events
using information theory metrics–an empirical investigation,”
Computer Communications, vol. 103, pp. 18–28, 2017.

136

Bibliography

[87] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things
for network forensic analytics: Bot-iot dataset,” Future Generation
Computer Systems, vol. 100, pp. 779–796, 2019.

[88] G. Apruzzese, M. Andreolini, M. Marchetti, A. Venturi, and
M. Colajanni, “Deep reinforcement adversarial learning against
botnet evasion attacks,” IEEE Transactions on Network and Service
Management, vol. 17, no. 4, pp. 1975–1987, 2020.

[89] R. Zhao, J. Yin, Z. Xue, et al., “An efficient intrusion detection method
based on dynamic autoencoder,” IEEE Wireless Communications
Letters, 2021.

[90] M. Shafiq, Z. Tian, Y. Sun, X. Du, and M. Guizani, “Selection of
effective machine learning algorithm and bot-iot attacks traffic
identification for internet of things in smart city,” Future Generation
Computer Systems, vol. 107, pp. 433–442, 2020.

[91] M. A. Ferrag, L. Maglaras, A. Ahmim, M. Derdour, and H. Janicke,
“Rdtids: Rules and decision tree-based intrusion detection system for
internet-of-things networks,” Future Internet, vol. 12, no. 3, p. 44, 2020.

[92] N. Koroniotis, N. Moustafa, and E. Sitnikova, “A new network
forensic framework based on deep learning for internet of things
networks: A particle deep framework,” Future Generation Computer
Systems, 2020.

[93] O. Ibitoye, O. Shafiq, and A. Matrawy, “Analyzing adversarial attacks
against deep learning for intrusion detection in iot networks,” arXiv
preprint arXiv:1905.05137, 2019.

[94] B. Susilo and R. F. Sari, “Intrusion detection in iot networks using
deep learning algorithm,” Information, vol. 11, no. 5, p. 279, 2020.

[95] M. A. Ferrag and L. Maglaras, “Deepcoin: A novel deep learning and
blockchain-based energy exchange framework for smart grids,” IEEE
Transactions on Engineering Management, vol. 67, no. 4, pp. 1285–1297,
2020. DOI: 10.1109/TEM.2019.2922936.

[96] O. Alkadi, N. Moustafa, B. Turnbull, and K.-K. R. Choo, “A deep
blockchain framework-enabled collaborative intrusion detection for
protecting iot and cloud networks,” IEEE Internet of Things Journal,
2020.

[97] M. Ge, X. Fu, N. Syed, Z. Baig, G. Teo, and A. Robles-Kelly, “Deep
learning-based intrusion detection for iot networks,” in 2019 IEEE

137

https://doi.org/10.1109/TEM.2019.2922936

Bibliography

24th Pacific Rim International Symposium on Dependable Computing
(PRDC), IEEE, 2019, pp. 256–25 609.

[98] D. Yan, Y. Yang, and B. Li, “An improved fuzzy classifier for
imbalanced data,” Journal of Intelligent & Fuzzy Systems, vol. 32, no. 3,
pp. 2315–2325, 2017.

[99] C. Gui, “Analysis of imbalanced data set problem: The case of churn
prediction for telecommunication.,” Artif. Intell. Research, vol. 6, no. 2,
p. 93, 2017.

[100] A. Fernández, S. Garcıa, M. J. del Jesus, and F. Herrera, “A study of the
behaviour of linguistic fuzzy rule based classification systems in the
framework of imbalanced data-sets,” Fuzzy Sets and Systems, vol. 159,
no. 18, pp. 2378–2398, 2008.

[101] E. Lin, Q. Chen, and X. Qi, “Deep reinforcement learning for
imbalanced classification,” Applied Intelligence, pp. 1–15, 2020.

[102] M. A. Ferrag and L. Maglaras, “Deepcoin: A novel deep learning and
blockchain-based energy exchange framework for smart grids,” IEEE
Transactions on Engineering Management, 2019.

[103] I. Idrissi, M. Boukabous, M. Azizi, O. Moussaoui, and H. El Fadili,
“Toward a deep learning-based intrusion detection system for iot
against botnet attacks,” IAES International Journal of Artificial
Intelligence, vol. 10, no. 1, p. 110, 2021.

[104] S. Pokhrel, R. Abbas, and B. Aryal, “Iot security: Botnet detection in
iot using machine learning,” arXiv preprint arXiv:2104.02231, 2021.

[105] S. Bagui and K. Li, “Resampling imbalanced data for network
intrusion detection datasets,” Journal of Big Data, vol. 8, no. 1,
pp. 1–41, 2021.

[106] R. Qaddoura, A. Al-Zoubi, I. Almomani, and H. Faris, “A multi-stage
classification approach for iot intrusion detection based on clustering
with oversampling,” Applied Sciences, vol. 11, no. 7, p. 3022, 2021.

[107] A. Derhab, A. Aldweesh, A. Z. Emam, and F. A. Khan, “Intrusion
detection system for internet of things based on temporal
convolution neural network and efficient feature engineering,”
Wireless Communications and Mobile Computing, vol. 2020, 2020.

[108] Y. Wang, L. Guo, Y. Zhao, et al., “Distributed learning for automatic
modulation classification in edge devices,” IEEE Wireless
Communications Letters, 2020.

[109] R. E. Bellman, Adaptive control processes: a guided tour. Princeton
university press, 2015.

138

Bibliography

[110] F. Luo, B. Du, L. Zhang, L. Zhang, and D. Tao, “Feature learning
using spatial-spectral hypergraph discriminant analysis for
hyperspectral image,” IEEE transactions on cybernetics, vol. 49, no. 7,
pp. 2406–2419, 2018.

[111] J. Peng, W. Sun, and Q. Du, “Self-paced joint sparse representation
for the classification of hyperspectral images,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 57, no. 2, pp. 1183–1194, 2018.

[112] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52,
1987.

[113] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in
machine learning,” The annals of statistics, pp. 1171–1220, 2008.

[114] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” science, vol. 313, no. 5786, pp. 504–507,
2006.

[115] Y. Bengio et al., “Learning deep architectures for ai,” Foundations and
trends® in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[116] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning
approach to network intrusion detection,” IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 2, no. 1, pp. 41–50,
2018.

[117] F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, “A novel two-
stage deep learning model for efficient network intrusion detection,”
IEEE Access, vol. 7, pp. 30 373–30 385, 2019.

[118] Y. Xiao, C. Xing, T. Zhang, and Z. Zhao, “An intrusion detection model
based on feature reduction and convolutional neural networks,” IEEE
Access, vol. 7, pp. 42 210–42 219, 2019.

[119] A. Dawoud, S. Shahristani, and C. Raun, “Dimensionality reduction
for network anomalies detection: A deep learning approach,” in
Workshops of the International Conference on Advanced Information
Networking and Applications, Springer, 2019, pp. 957–965.

[120] F. C. Schuartz, M. Fonseca, and A. Munaretto, “Improving threat
detection in networks using deep learning,” Annals of
Telecommunications, pp. 1–10, 2020.

[121] J. Sun, X. Wang, N. Xiong, and J. Shao, “Learning sparse
representation with variational auto-encoder for anomaly detection,”
IEEE Access, vol. 6, pp. 33 353–33 361, 2018.

139

Bibliography

[122] X. Wang and L. Wang, “Research on intrusion detection based on
feature extraction of autoencoder and the improved k-means
algorithm,” in 2017 10th International Symposium on Computational
Intelligence and Design (ISCID), IEEE, vol. 2, 2017, pp. 352–356.

[123] M. Z. Alom and T. M. Taha, “Network intrusion detection for cyber
security using unsupervised deep learning approaches,” in 2017 IEEE
National Aerospace and Electronics Conference (NAECON), IEEE, 2017,
pp. 63–69.

[124] M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, “Deep
learning approach combining sparse autoencoder with svm for
network intrusion detection,” IEEE Access, vol. 6, pp. 52 843–52 856,
2018.

[125] S. Gurung, M. K. Ghose, and A. Subedi, “Deep learning approach on
network intrusion detection system using nsl-kdd dataset,”
International Journal of Computer Network and Information Security
(IJCNIS), vol. 11, no. 3, pp. 8–14, 2019.

[126] A.-H. Muna, N. Moustafa, and E. Sitnikova, “Identification of
malicious activities in industrial internet of things based on deep
learning models,” Journal of Information security and applications,
vol. 41, pp. 1–11, 2018.

[127] B. Abolhasanzadeh, “Nonlinear dimensionality reduction for
intrusion detection using auto-encoder bottleneck features,” in 2015
7th Conference on Information and Knowledge Technology (IKT), IEEE,
2015, pp. 1–5.

[128] D. C. Ferreira, F. I. Vázquez, and T. Zseby, “Extreme dimensionality
reduction for network attack visualization with autoencoders,” in
2019 International Joint Conference on Neural Networks (IJCNN), IEEE,
2019, pp. 1–10.

[129] R. Abdulhammed, H. Musafer, A. Alessa, M. Faezipour, and
A. Abuzneid, “Features dimensionality reduction approaches for
machine learning based network intrusion detection,” Electronics,
vol. 8, no. 3, p. 322, 2019.

[130] J. Yang, T. Li, G. Liang, W. He, and Y. Zhao, “A simple recurrent unit
model based intrusion detection system with dcgan,” IEEE Access,
vol. 7, pp. 83 286–83 296, 2019.

[131] A. Liu and B. Sun, “An intrusion detection system based on a
quantitative model of interaction mode between ports,” IEEE Access,
vol. 7, pp. 161 725–161 740, 2019.

140

Bibliography

[132] R.-H. Dong, X.-Y. Li, Q.-Y. Zhang, and H. Yuan, “Network intrusion
detection model based on multivariate correlation analysis–long
short-time memory network,” IET Information Security, vol. 14, no. 2,
pp. 166–174, 2020.

[133] M. Asadi, M. A. J. Jamali, S. Parsa, and V. Majidnezhad, “Detecting
botnet by using particle swarm optimization algorithm based on
voting system,” Future Generation Computer Systems, vol. 107,
pp. 95–111, 2020.

[134] A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, and A. Alazab,
“A novel ensemble of hybrid intrusion detection system for detecting
internet of things attacks,” Electronics, vol. 8, no. 11, p. 1210, 2019.

[135] Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto, and K. Sakurai,
“Towards a lightweight detection system for cyber attacks in the iot
environment using corresponding features,” Electronics, vol. 9, no. 1,
p. 144, 2020.

[136] ——, “Rule generation for signature based detection systems of
cyber attacks in iot environments,” Bulletin of Networking, Computing,
Systems, and Software, vol. 8, no. 2, pp. 93–97, 2019.

[137] A. Guerra-Manzanares, H. Bahsi, and S. Nõmm, “Hybrid feature
selection models for machine learning based botnet detection in iot
networks,” in 2019 International Conference on Cyberworlds (CW),
IEEE, 2019, pp. 324–327.

[138] S. Lee, A. Abdullah, N. Jhanjhi, and S. Kok, “Classification of botnet
attacks in iot smart factory using honeypot combined with machine
learning,” PeerJ Computer Science, vol. 7, e350, 2021.

[139] Y. Zhang, J. Xu, Z. Wang, et al., “Efficient and intelligent attack
detection in software defined iot networks,” in 2020 IEEE
International Conference on Embedded Software and Systems (ICESS),
IEEE, 2020, pp. 1–9.

[140] K. Filus, J. Domańska, and E. Gelenbe, “Random neural network for
lightweight attack detection in the iot,” in Symposium on Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems,
Springer, 2020, pp. 79–91.

[141] M. A. Lawal, R. A. Shaikh, and S. R. Hassan, “An anomaly mitigation
framework for iot using fog computing,” Electronics, vol. 9, no. 10,
p. 1565, 2020.

[142] D. Oreški and D. Andročec, “Genetic algorithm and artificial neural
network for network forensic analytics,” in 2020 43rd International

141

Bibliography

Convention on Information, Communication and Electronic Technology
(MIPRO), IEEE, 2020, pp. 1200–1205.

[143] B. A. NG and S. Selvakumar, “Anomaly detection framework for
internet of things traffic using vector convolutional deep learning
approach in fog environment,” Future Generation Computer Systems,
vol. 113, pp. 255–265, 2020.

[144] P. Kumar, G. P. Gupta, and R. Tripathi, “Toward design of an
intelligent cyber attack detection system using hybrid feature
reduced approach for iot networks,” Arabian Journal for Science and
Engineering, pp. 1–30, 2021.

[145] P. Kumar, R. Kumar, G. P. Gupta, and R. Tripathi, “A distributed
framework for detecting ddos attacks in smart contract-based
blockchain-iot systems by leveraging fog computing,” Transactions on
Emerging Telecommunications Technologies, e4112, 2020.

[146] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, “Corrauc: A
malicious bot-iot traffic detection method in iot network using
machine learning techniques,” IEEE Internet of Things Journal, 2020.

[147] ——, “Iot malicious traffic identification using wrapper-based feature
selection mechanisms,” Computers & Security, p. 101 863, 2020.

[148] T. T. Huong, T. P. Bac, D. M. Long, B. D. Thang, T. D. Luong, and
N. T. Binh, “An efficient low complexity edge-cloud framework for
security in iot networks,” in 2020 IEEE Eighth International Conference
on Communications and Electronics (ICCE), IEEE, 2021, pp. 533–539.

[149] P. Kumar, G. P. Gupta, and R. Tripathi, “Tp2sf: A trustworthy
privacy-preserving secured framework for sustainable smart cities
by leveraging blockchain and machine learning,” Journal of Systems
Architecture, p. 101 954, 2020.

[150] M. Alshamkhany, W. Alshamkhany, M. Mansour, M. Khan, S. Dhou,
and F. Aloul, “Botnet attack detection using machine learning,” in
2020 14th International Conference on Innovations in Information
Technology (IIT), IEEE, 2020, pp. 203–208.

[151] S. Sriram, R. Vinayakumar, M. Alazab, and K. Soman, “Network flow
based iot botnet attack detection using deep learning,” in IEEE
INFOCOM 2020-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), IEEE, 2020, pp. 189–194.

[152] S. Liaqat, A. Akhunzada, F. S. Shaikh, A. Giannetsos, and M. A. Jan,
“Sdn orchestration to combat evolving cyber threats in internet of

142

Bibliography

medical things (iomt),” Computer Communications, vol. 160,
pp. 697–705, 2020.

[153] Y. N. Soe, P. I. Santosa, and R. Hartanto, “Ddos attack detection
based on simple ann with smote for iot environment,” in 2019 Fourth
International Conference on Informatics and Computing (ICIC), 2019,
pp. 1–5. DOI: 10.1109/ICIC47613.2019.8985853.

[154] M. Mulyanto, M. Faisal, S. W. Prakosa, and J.-S. Leu, “Effectiveness
of focal loss for minority classification in network intrusion detection
systems,” Symmetry, vol. 13, no. 1, p. 4, 2021.

[155] M. A. Khan and Y. Kim, “Deep learning-based hybrid intelligent
intrusion detection system,” Computers, Materials & Continua, vol. 68,
no. 1, pp. 671–687, 2021.

[156] M. Roopak, G. Yun Tian, and J. Chambers, “Deep learning models for
cyber security in iot networks,” in 2019 IEEE 9th Annual Computing
and Communication Workshop and Conference (CCWC), 2019,
pp. 0452–0457. DOI: 10.1109/CCWC.2019.8666588.

[157] M. Injadat, A. Moubayed, and A. Shami, “Detecting botnet attacks in
iot environments: An optimized machine learning approach,” arXiv
preprint arXiv:2012.11325, 2020.

[158] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Transactions on Wireless Communications,
vol. 19, no. 3, pp. 2022–2035, 2020.

[159] B. Li, Y. Wu, J. Song, R. Lu, T. Li, and L. Zhao, “Deepfed: Federated
deep learning for intrusion detection in industrial cyber–physical
systems,” IEEE Transactions on Industrial Informatics, vol. 17, no. 8,
pp. 5615–5624, 2020.

[160] M. A. Ferrag, O. Friha, L. Maglaras, H. Janicke, and L. Shu,
“Federated deep learning for cyber security in the internet of things:
Concepts, applications, and experimental analysis,” IEEE Access,
vol. 9, pp. 138 509–138 542, 2021.

[161] Y. Cheng, J. Lu, D. Niyato, B. Lyu, J. Kang, and S. Zhu, “Federated
transfer learning with client selection for intrusion detection in mobile
edge computing,” IEEE Communications Letters, 2022.

[162] P. Kumar, G. P. Gupta, and R. Tripathi, “Pefl: Deep privacy-encoding
based federated learning framework for smart agriculture,” IEEE
Micro, 2021.

143

https://doi.org/10.1109/ICIC47613.2019.8985853
https://doi.org/10.1109/CCWC.2019.8666588

Bibliography

[163] H. Sedjelmaci and N. Ansari, “On cooperative federated defense to
secure multi-access edge computing,” IEEE Consumer Electronics
Magazine, 2022.

[164] D. C. Attota, V. Mothukuri, R. M. Parizi, and S. Pouriyeh, “An
ensemble multi-view federated learning intrusion detection for iot,”
IEEE Access, vol. 9, pp. 117 734–117 745, 2021.

[165] Y. Sun, H. Esaki, and H. Ochiai, “Adaptive intrusion detection in the
networking of large-scale lans with segmented federated learning,”
IEEE Open Journal of the Communications Society, 2020.

[166] M. Abdel-Basset, N. Moustafa, H. Hawash, I. Razzak, K. M. Sallam,
and O. M. Elkomy, “Federated intrusion detection in
blockchain-based smart transportation systems,” IEEE Transactions
on Intelligent Transportation Systems, 2021.

[167] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke,
“Edge-iiotset: A new comprehensive realistic cyber security dataset
of iot and iiot applications for centralized and federated learning,”
IEEE Access, 2022.

[168] Z. Chen, N. Lv, P. Liu, Y. Fang, K. Chen, and W. Pan, “Intrusion
detection for wireless edge networks based on federated learning,”
IEEE Access, vol. 8, pp. 217 463–217 472, 2020.

[169] O. Aouedi, K. Piamrat, G. Muller, and K. Singh, “Federated
semi-supervised learning for attack detection in industrial internet of
things,” IEEE Transactions on Industrial Informatics, 2022.

[170] P. Ruzafa-Alcazar, P. Fernandez-Saura, E. Marmol-Campos, et al.,
“Intrusion detection based on privacy-preserving federated learning
for the industrial iot,” IEEE Transactions on Industrial Informatics, 2021.

[171] T. T. Huong, T. P. Bac, D. M. Long, et al., “Lockedge: Low-complexity
cyberattack detection in iot edge computing,” IEEE Access, vol. 9,
pp. 29 696–29 710, 2021.

[172] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha,
and G. Srivastava, “Federated learning-based anomaly detection for
iot security attacks,” IEEE Internet of Things Journal, 2021.

[173] Y. Wei, S. Zhou, S. Leng, S. Maharjan, and Y. Zhang, “Federated
learning empowered end-edge-cloud cooperation for 5g hetnet
security,” IEEE Network, vol. 35, no. 2, pp. 88–94, 2021.

[174] A. Tharwat, “Principal component analysis-a tutorial,” International
Journal of Applied Pattern Recognition, vol. 3, no. 3, pp. 197–240, 2016.

144

Bibliography

[175] T. Zhang, C. He, T. Ma, L. Gao, M. Ma, and S. Avestimehr, “Federated
learning for internet of things: A federated learning framework for
on-device anomaly data detection,” arXiv preprint arXiv:2106.07976,
2021.

[176] V. Rey, P. M. S. Sánchez, A. H. Celdrán, and G. Bovet, “Federated
learning for malware detection in iot devices,” Computer Networks,
p. 108 693, 2022.

[177] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[178] Y. Chauvin and D. E. Rumelhart, Backpropagation: theory, architectures,
and applications. Psychology press, 2013.

[179] X.-H. Yu and G.-A. Chen, “Efficient backpropagation learning using
optimal learning rate and momentum,” Neural networks, vol. 10, no. 3,
pp. 517–527, 1997.

[180] L. Friedman and O. V. Komogortsev, “Assessment of the
effectiveness of seven biometric feature normalization techniques,”
IEEE Transactions on Information Forensics and Security, vol. 14, no. 10,
pp. 2528–2536, 2019.

[181] S. Patro and K. K. Sahu, “Normalization: A preprocessing stage,”
arXiv preprint arXiv:1503.06462, 2015.

[182] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[183] S.-i. Amari, “Backpropagation and stochastic gradient descent
method,” Neurocomputing, vol. 5, no. 4-5, pp. 185–196, 1993.

[184] M. C. Mukkamala and M. Hein, “Variants of rmsprop and adagrad
with logarithmic regret bounds,” in International Conference on Machine
Learning, PMLR, 2017, pp. 2545–2553.

[185] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[186] A. Lydia and S. Francis, “Adagrad—an optimizer for stochastic
gradient descent,” Int. J. Inf. Comput. Sci, vol. 6, no. 5, 2019.

[187] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Icml, 2010.

[188] B. L. Kalman and S. C. Kwasny, “Why tanh: Choosing a sigmoidal
function,” in [Proceedings 1992] IJCNN International Joint Conference on
Neural Networks, IEEE, vol. 4, 1992, pp. 578–581.

145

Bibliography

[189] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter,
“Self-normalizing neural networks,” in Advances in neural information
processing systems, 2017, pp. 971–980.

[190] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv
preprint arXiv:1511.07289, 2015.

[191] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: Synthetic minority over-sampling technique,” Journal of
artificial intelligence research, vol. 16, pp. 321–357, 2002.

[192] C. X. Ling and C. Li, “Data mining for direct marketing: Problems and
solutions.,” in Kdd, vol. 98, 1998, pp. 73–79.

[193] N. Japkowicz, “The class imbalance problem: Significance and
strategies,” in Proc. of the International Conf. on Artificial Intelligence,
Citeseer, vol. 56, 2000.

[194] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[195] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with lstm,” in 1999 Ninth International
Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No.
470), vol. 2, Sep. 1999, 850–855 vol.2. DOI: 10.1049/cp:19991218.

[196] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical
exploration of recurrent network architectures,” in International
Conference on Machine Learning, 2015, pp. 2342–2350.

[197] K. Cho, B. Van Merriënboer, C. Gulcehre, et al., “Learning phrase
representations using rnn encoder-decoder for statistical machine
translation,” arXiv preprint arXiv:1406.1078, 2014.

[198] F. Zhao, J. Feng, J. Zhao, W. Yang, and S. Yan, “Robust
lstm-autoencoders for face de-occlusion in the wild,” IEEE
Transactions on Image Processing, vol. 27, no. 2, pp. 778–790, 2017.

[199] P. J. Werbos et al., “Backpropagation through time: What it does and
how to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560,
1990.

[200] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional lstm and other neural network architectures,”
Neural networks, vol. 18, no. 5-6, pp. 602–610, 2005.

[201] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Transactions on Signal Processing, vol. 45, no. 11,
pp. 2673–2681, 1997.

146

https://doi.org/10.1049/cp:19991218

Bibliography

[202] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A
comprehensive survey,” IEEE Communications Surveys Tutorials,
vol. 22, no. 2, pp. 869–904, 2020. DOI: 10.1109/COMST.2020.2970550.

[203] J. Shu, L. Zhou, W. Zhang, X. Du, and M. Guizani, “Collaborative
intrusion detection for vanets: A deep learning-based distributed sdn
approach,” IEEE Transactions on Intelligent Transportation Systems,
vol. early access, doi: 10.1109/TITS.2020.3027390, 2020. DOI:
10.1109/TITS.2020.3027390.

[204] M. Zhang, L. Wang, S. Jajodia, A. Singhal, and M. Albanese, “Network
diversity: A security metric for evaluating the resilience of networks
against zero-day attacks,” IEEE Transactions on Information Forensics
and Security, vol. 11, no. 5, pp. 1071–1086, 2016.

[205] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang, and
Y. Khazaeni, “Bayesian nonparametric federated learning of neural
networks,” in International Conference on Machine Learning, PMLR,
2019, pp. 7252–7261.

[206] P. Yu, A. Kundu, L. Wynter, and S. H. Lim, “Fed+: A unified
approach to robust personalized federated learning,” arXiv preprint
arXiv:2009.06303, 2020.

[207] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine Learning and Systems, vol. 2, pp. 429–450, 2020.

[208] T. D. Nguyen, P. Rieger, M. Miettinen, and A.-R. Sadeghi, “Poisoning
attacks on federated learning-based iot intrusion detection system,”
in Proc. Workshop Decentralized IoT Syst. Secur.(DISS), 2020, pp. 1–7.

[209] S. K. Lo, Y. Liu, Q. Lu, et al., “Towards trustworthy ai: Blockchain-
based architecture design for accountability and fairness of federated
learning systems,” IEEE Internet of Things Journal, 2022.

[210] A. El Ouadrhiri and A. Abdelhadi, “Differential privacy for deep and
federated learning: A survey,” IEEE Access, 2022.

147

https://doi.org/10.1109/COMST.2020.2970550
https://doi.org/10.1109/TITS.2020.3027390

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Research Questions
	Research Aim
	Research Objectives
	Main Contributions
	Thesis Organisation
	List of Publications
	Journal Papers
	Conference Paper
	Book Chapter
	Submitted Journal Papers (Under review)

	Concepts and Literature Review
	Internet of Things and Botnet Attacks
	Datasets for Botnet Detection in IoT Network
	Centralised Learning for Botnet Detection
	Model Hyperparameter Selection
	Class Imbalance in the Training Set
	Feature Dimensionality Reduction

	Federated Learning for Botnet Detection
	Research Gaps
	Chapter Summary

	Model Hyperparameter Optimisation for Deep Learning-Based Botnet Detection
	Introduction
	Model Hyperparameter Optimisation Method
	Model Development and Experiment
	Result Analysis and Discussion
	Optimal Numbers of Hidden Layers and Hidden Units
	Optimal Learning Rates
	Optimisers
	Optimal Activation Functions
	Optimal Batch Sizes
	Optimal Number of Epochs

	Chapter Summary

	SMOTE-DL: An Algorithm for Imbalanced Network Traffic Classification
	Introduction
	SMOTE-DL for Imbalanced Network Traffic Classification
	Synthetic Minority Oversampling Technique
	Recurrent Neural Network
	Long Short-Term Memory
	Gated Recurrent Unit

	Model Development and Experiment
	Result Analysis and Discussion
	Generation of Synthetic Network Traffic Data
	Robustness against Under-fitting and Over-fitting
	Performance of the DL and SMOTE-DL Models

	Chapter Summary

	Hybrid Deep Learning for Memory-Efficient Botnet Detection
	Introduction
	Hybrid Deep Learning Framework
	LSTM Autoencoder
	Bidirectional LSTM

	Model Development and Experiment
	Result Analysis and Discussion
	Feature Dimensionality Reduction
	The Original Bot-IoT Dataset
	The Balanced Bot-IoT Dataset
	The N-BaIoT Dataset

	Classification Performance of the LAE-BLSTM Models
	Binary Classification: The Original Bot-IoT Dataset
	Binary Classification: The N-BaIoT Dataset
	5-Class Classification: The Original Bot-IoT Dataset
	10-Class Classification: The N-BaIoT Dataset
	11-Class Classification: The Original Bot-IoT Dataset

	Chapter Summary

	Federated Deep Learning for Zero-Day Botnet Attack Detection
	Introduction
	Zero-Day Botnet Attack Scenarios
	Federated Deep Learning Method
	Results Analysis and Discussion
	Centralised Deep Learning Models
	Localised Deep Learning Models
	Federated Deep Learning Models

	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Model Hyperparameter Optimisation
	Imbalanced Network Traffic Classification
	Memory-Efficient Botnet Attack Detection
	Zero-Day Botnet Attack Detection

	Recommendations for Future Work
	Implementation of FDL on Real IoT Hardware
	Advanced Aggregation Methods for Robust FDL
	Securing FDL Models against Adversarial Attacks

	Bibliography

