
Please cite the Published Version

Jain, Deepak Kumar, Kumar, Akshi and Sangwan, Saurabh Raj (2022) TANA: The amalgam
neural architecture for sarcasm detection in indian indigenous language combining LSTM and
SVM with word-emoji embeddings. Pattern Recognition Letters, 160. pp. 11-18. ISSN 0167-8655

DOI: https://doi.org/10.1016/j.patrec.2022.05.026

Publisher: Elsevier

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/629808/

Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva-
tive Works 4.0

Additional Information: This is an Author Accepted Manuscript of an article published in Pattern
Recognition Letters, by Elsevier.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0003-4263-7168
https://doi.org/10.1016/j.patrec.2022.05.026
https://e-space.mmu.ac.uk/629808/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

Research Highlights

• TANA, A Hindi sarcasm detection model that combines LSTM and hinge loss of SVM
• Use of pre-trained fastText and emoji2vec embeddings for training
• Performance validation using various metrics, accuracy, F1, recall, precision
• Superior performance in comparison to existing works

Pattern Recognition Letters

TANA: The Amalgam Neural Architecture for Sarcasm Detection in Indian Indigenous
Language combining LSTM and SVM with Word-Emoji Embeddings

Deepak Kumar Jaina, Akshi Kumarb and Saurabh Raj Sangwanc1

a Key Laboratory of Intelligent Air-Ground Cooperative Control for Universities in Chongqing, College of Automation, Chongqing University of Posts and
Telecommunications, Chongqing, China
b Department of Computing and Mathematics, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
c Department of Computer Science and Engineering, Netaji Subhas University of Technology, New Delhi, India

1. Introduction

The abundance of social media generates a colossal quantity of
content for consumption, clarification, and communication.
Sentiment analysis is contextual mining of text which classifies
polarity and subjectivity in user-generated content. It monitors
conversations and evaluates language and voice inflections to
quantify attitudes, opinions, and emotions related to a business,
brand, product or service, or topic. Indeed, sentiment analysis is
used across a variety of applications and for myriad purposes.
Computationally identifying and categorizing polarity expressed
in piece of text can either be in a subjective or objective sentence
and analyzed at message, sentence or at entity and aspect level for
finding regular, comparative, implicit or explicit opinion. But
human sentiments are not just restricted to the discrete classes of
positive, negative, or neutral. There are more complex emotions
and communicative expressions within these defined categories
which are difficult to categorize. As a key challenge that analysts
in sentiment analysis continue to face is how to detect sarcasm in
real-time user-generated text [1, 2].

One of the most promising solutions for training machines to
identify sarcasm is the one that looks for context around tweets.
As a focused NLP task, context-aware weighting for automatic
detection of sarcasm intends to find accompanying hints from
users’ linguistic input that are aware of ‘context’ to aid right

adeepak@cqupt.edu.cn ; bakshi.kumar@mmu.ac.uk
1c saurabh.trf18@nsut.ac.in (Corresponding author: S.R. Sangwan)

interpretation [3]. This is important as for the word 'excellent' a
tweet like “He is amazingly excellent at cheating” can be regarded
as positive without context. The above tweet can only be classified
as negative when the context of the word 'excellent' is considered,
as the word 'cheating' is a negative polarity term. Evidently, the
context of each word can aid in properly categorizing its polarity,
increasing the accuracy of conventional sentiment analysis.
Basically, one needs more than just words to assist in deciding the
true nature of the sentence as sarcasm is not in your face and
obvious at textual level. As a result, more attention needs to be
paid to the semantic relationships between the words in the
sentence which could elucidate the presence of certain
incongruence and serve as potential indicators of sarcasm [4].
Another accentuating online phenomenon is the emergence of the
use of visual language emoji in social media conversations. Emojis
work with human psychology and compensate for the 70% of
human emotional expression that might come from non-verbal
cues, such as facial expressions, body language, and tone in face-
to-face conversations. Emojis can express emotion that would be
difficult to convey via text alone. For example, “He is amazingly
excellent at cheating
�����” is a more lucid representation of a
goofiness associated with the statement thus making it less
vulnerable to incorrect interpretations. Emojis are advantageous as

ABST RACT

Sentiment analysis is indeed a difficult task owing to the playful language mannerism, altered vocabulary and speak-text used on
online forums. Humans tend to use words and phrases in ways that are incomprehensible to those who are not involved in the
discourse. Sarcastic remarks in conversations are often utilized to mock others by saying something that isn't pleasant. Sardonic
or humorous statements/ tones are used to insult or make others appear puerile. Automated sarcasm detection is considered as one
of the key tasks to tweak sentiment analysis and extending it to a morphologically rich and free-order dominant indigenous Indian
language Hindi is another challenge. This research puts forward ‘The Amalgam Neural Architecture’, TANA, to detect sarcasm in
Hindi tweets. The architecture is trained using two embeddings, namely word and emoji embeddings and combines an LSTM
with the loss function of SVM for sarcasm detection. We use the Sarc-H dataset, which is built by scrapping Hindi language
tweets and manually annotating based on the hashtags ‘#कटा�’ (pronounced as kataaksh, which means sarcasm in Hindi) and
‘#�ं�’ (pronounced as vyangya, another word for sarcasm in Hindi) used by the tweeters and the results are evaluated using
various classification performance metrics and achieves a F-score of 0.9675 outperforming LSTM using last layer as softmax as
well as the existing works.

.

mailto:adeepak@cqupt.edu.cn
mailto:akshi.kumar@mmu.ac.

these are almost completely universal in their meanings and can
be unanimously understood by hugely diverse audience.

Most of the work on detecting sarcasm in textual data has been
done only on English language [5-7]. Hindi is numerically and
proportionally the largest indigenous language community in the
Indian sub-continent. It is the official language of India and a
sizeable population speaks/ writes Hindi while the rest are
comfortable in their regional language [8]. But like other Indian
languages, Hindi is a resource poor language [9]. The lack of
annotated dataset, various analysis tools like POS tagger and
sentiment scores have restricted the scope of research in sentiment
analysis and subsequent sarcasm detection in Hindi. Also, like
most of the Indian languages, Hindi too has free-word order. For
example, कपड़े अ�े ह� इस दुकान के (pronounced as Kapde acche
hain iss dukaan ke), इस दुकान के कपड़े अ�े ह� (pronounced as Iss
dukaan ke kapde acche hain), अ�े कपड़े ह� इस दुकान के
(pronounced as Acche kapde hain iss dukaan ke) all three
statements convey the same meaning “This shop has good
clothes” with different word order. Considering such limitations,
only few research efforts are available publicly for sarcasm
detection in Hindi [5, 10, 11]. Most of the previous work on
sarcasm detection in Hindi rely lexical language resources using
statistical or the semantic relations between the words for polarity
annotation and are efficient and simple methods with acceptable
results. These are unsupervised methods that do not need training
data. On the flip side lexicon-based techniques report low recall
and suffer due to out-of-vocabulary words, microtext, speak text
and emojis. Moreover, such methods are not only time-consuming
and cumbersome, but often fail to correctly interpret the context
of each word with respect to its neighbors or the entire sentence
[12, 13]. More recently, deep neural networks achieve state-of-
the-art results at discerning patterns and discriminative features in
sarcasm detection task, but limited studies have explored
indigenous language datasets.

Thus, motivated by the need to develop more efficient models
for sarcasm detection in the resource-poor indigenous language,
Hindi, this research proposes a TANA model. That is, the
amalgam neural architecture which combines LSTM and SVM by
automatically learning features with the help of word-emoji
embedding. Additionally, the word ‘TANA’ signifies the
functionality that the model serves as the Hindi word ‘ताना’
(pronounced as Tana) means sarcasm, taunt, or gibe in English.

The pre-trained fastText2 Hindi word embeddings are utilized
in this research. Additionally, to achieve added confidence in the
intended sentiment of any sentence, information conveyed by
emojis is also considered. For this purpose, the pre-trained
emoji2vec [14] emoji embedding is used. The embeddings are
concatenated to form an integer-encoded word-emoji embedding
vector. The model combines the long short-term memory (LSTM)
model with the loss function of support vector machine (SVM)
with the squared Hinge loss function to identify sarcasm. The
Sarc-H dataset built by scrapping Hindi language tweets and
manually annotating based on the hashtags used by the tweeters is
used. The classification performance of baselines and the hybrid
model is evaluated using accuracy, F1 Score, precision and recall
as metrics.

The rest of the paper is organized as follows: Section 2 surveys
the related work done in this domain; Section 3 discusses the
TANA model for Hindi sarcasm detection. Section 4 focuses on
the experimental settings and the results obtained. The paper
concludes the work with a brief discussion on the future work in
Section 6.

2. Related Work

Deep learning approaches have obtained very high
performance across many different NLP tasks including sarcasm
detection. Pertinent studies reveal most of the work on sarcasm
detection has been done on English language. Few studies have

2 https://fasttext.cc/

been reported on Arabic, Dutch and Chinese languages. In 2018,
Alayba et al. [15] used a hybrid of CNN and LSTM for sarcasm
detection in Arabic posts. Ptáček et al. [16] used machine learning
for sarcasm detection in Dutch tweets. Liu et al. [17] proposed a
multi-strategy ensemble learning approach (MSELA) for handling
imbalanced datasets in Chinese and introduced a set of features
specifically for detecting sarcasm in social media. Similar research
has been carried out languages like Spanish [18] and Indonesian
[19]. As far as the low-resource Hindi language is concerned,
research on code-mix social media text which is a linguistic
anglicization of Hindi (transliteration based on pronunciation, not
meaning) has been notably done [1, 20]. One of the pioneer works
was reported by Desai and Dave [11] where the authors built a
dataset of sarcastic sentences in Hindi and used various lexical
features like emoticons, punctuation marks polarity lists to train an
SVM classifier for categorizing sarcasm. Bharti et al. [5] used a
context-based approach by using input tweet and its related news
to count the number of positive and negative keywords in both
news and tweet using a predefined list of Hindi words with polarity
value to determine if the given tweet is sarcastic or not. In 2017,
Bharti et al. [10] presented a pattern-based framework to predict
sarcasm in Hindi tweets. This research is the primary effort in the
same direction where the strength of embeddings is harnessed to
better comprehend the sentiments being manifested by the text.

3. TANA for Sarcasm Detection in Hindi Tweets

 TANA implements SVM in last layer while using LSTM for
binary text classification. That is, instead of using the conventional
cross-entropy loss for binary classification problem, we use a
popular extension of the hinge loss function, known as the squared
hinge loss, that simply calculates the square of the score hinge loss.
The architectural flow of the LSTM-SVM model for sarcasm
detection in Hindi tweets using word-emoji embeddings is shown
in fig.1.

Fig.1. Architectural flow of the TANA model

Concatenation

Hindi Dataset

Text pre-
processing

Translation of Hindi

text to English

Hindi word
embedding

Emoji extraction

DeepMoji

Emoji filtering

Emoji embedding

emoji2vec

Word-emoji

embedding vector

LSTM-SVM

SARCASM

NON-SARCASM

https://fasttext.cc/

The following sub-sections explain the model in detail.

3.1 Sarc-H Dataset and Pre-processing
 The dataset, Sarc-H is created by extracting Hindi language
tweets using explicit sarcasm hashtags (‘#कटा�’ and ‘#�ं�’) for
the sarcastic category whereas the negative category includes
tweets from popular Hindi news channels. The class annotations
are added as labels in the dataset. TweetScraper3 was used for
extracting tweets and dataset with a total of 1004 tweets were built
with 414 tweets labelled as sarcastic and 590 labelled as non-
sarcastic Given the informal style of writing style that users prefer,
a lot of noise is added to the tweet in terms of URL references,
mentions of users with @, and use of English words in Hindi
sentences. Thus, the fetched tweets are cleaned and pre-processed
by removal of strings starting with @ to refer to a user, URLs,
hashtag ‘#’ and removal of the string following the hashtag in case
of trailing hashtags only [6]. This prevents the employed
classification model from predicting every sentence every tweet
with ‘#कटा�’ or ‘#�ं�’ as sarcastic and thus focus on extracting
actual semantic or syntactic features for distinguishing between
sarcastic and non-sarcastic tweets.

3.2 Embeddings

We use a pre-trained word embedding for Hindi language
provided by fastText (AN NLP library by Facebook). This model
was trained using CBOW with position-weights, in dimension
300, with character n-grams of length 5, a window of size 5 and
10 negatives.

Similarity score is an implementation provided by gensim
library which essentially helps us determine how similar two
words are to each other. Since these scores are a measure of cosine
similarity between the word vectors, a larger value depicts a closer
relationship. Just like the word embeddings, emoji embeddings are
essentially points in the vector space such that similar emojis exist
close to each other while dissimilar ones are relatively more
distant. Emoji2vec allows us to do this by representing emojis as
vectors in a 300-dimensional vector space. It is a pre-trained model
that has been trained on the description of all the emojis in the
Unicode emoji standard. The embedding is the sum of word
embeddings of words in description. As an example, table 1
showcases the cosine similarity between the selected pair of
emojis to depict how similar (higher score) and disparate (lower
score) emojis fare with respect to emoji2vec.

Table 1. Similarity score of various emoji pairs according to emoji2vec

embeddings
Emoji Pairs Similarity Score

(😂😂,😆😆)
0.6827

(😐😐,😞😞)
0.5617

(😆😆,😞😞)
0.3619

Not all extracted tweets contain emojis. But as the language of

visual symbols effectually substitute body language and tone of
voice in text-based communication, their use as contextual cues to
detect sarcasm is obligatory. Motivated by the merits of inclusion
of emojis along with the availability of the requisite tools to
incorporate them into our task, we use DeepMoji [21] for
generating emojis relevant to the respective tweet. However,
DeepMoji does not support Hindi language and therefore we used
the Google Translation API for translating the extracted Hindi
tweets to English. However, not all translations were precise
enough in terms of the intended meaning and therefore, we refined
the translations to better convey the meaning of the given tweet.
Following the translation, the entire list of tweets which only
comprised the text exclusive of the hashtags and user annotations
was fed into the DeepMoji code to generate emojis. While

3 https://pypi.org/project/tweetscraper/1.2.0/

reasonably appropriate emojis were obtained in the case of non-
sarcastic tweets, the ones generated for sarcastic tweets
represented a wide variety of emotions for most of the tweets. Such
a behavior was plausible as DeepMoji was not aware of the
appended hashtags of ‘#sarcasm’. Thus, to include this
information in the generation of emojis, we appended each
sarcastic tweet with the word ‘sarcasm’ to obtain relevant emojis.
DeepMoji generated 5 emojis to the given input which it deemed
most pertinent being mindful of the possible sentiments the author
might be intending to manifest. As a result, some of the emojis
obtained were indeed irrelevant and hence discarded.

Next to utilize both embeddings for our task, we implemented
a concatenation procedure as follows: A word-emoji embedding
vector Ef is constructed which has a size equal to the sum of the
embedding vector size of word embeddings, Ew, and emoji
embeddings, Ee and is initialized with 0s. We have used the upper
half to represent the word embeddings and the lower half to
represent the emoji embeddings. For any given word, only the top
half of the vector is assigned to the respective value of the word
embedding while the lower half is untouched. Similarly in case of
emojis, only the lower half of the final embedding is assigned to
the respective emoji embedding value while the upper half remains
set to 0.

3.3 LSTM-SVM

Previous studies demonstrate SVM as an alternative to
softmax function for classification and claim improved
performance with the use of SVM in an artificial neural network
(ANN) architecture in comparison to the conventional softmax
function. The approach is suitable for binary classification, as in
this research the tweets are classified as sarcastic or non-sarcastic.
The combination of LSTM with SVM is shown in fig.2.

Fig.2. LSTM-SVM

Where,
m: Batch size
k: No. of LSTM cells
f: No. of features
t: Output dimension of a single LSTM cell
Input dimension: m * k * f
Output of LSTM network at one time step: m * t

Long Short-term memory or LSTM [22], a variant of RNN,

helps solve the problems of vanishing and exploding gradients
thus allowing it to plot long-term dependencies by defining each
memory cell with a set of gates Rd, where d is the memory

dimension of hidden state of LSTM. LSTM consists of three gates,
which are functions of xt, input at the current time step and ht−1,
the hidden state: input gate it, which decides by how much each
memory cell has to be updated, forget gate ft ,which decides
whether or not to discard the memory cell state information that
came from ht−1 and output gate ot , which takes the decision of
passing the memory state to the rest of the network. The gates
jointly decide on the memory update mechanism. The LSTM
transition functions are as shown in (1) to (6):

it = σ(Wi[ht−1,xt] + bi) (1)

ft = σ(Wf[ht−1,xt] + bf) (2)
qt = tanh(Wq[ht−1,xt] + bq) (3)

ot = σ(Wo[ht−1,xt] + bo) (4)
ct = ft.ct−1 + it ⊙ qt (5)

ht = ot ⊙ tanh(ct) (6)

where σ denotes the logistic sigmoid function that provides an

output in [0,1], tanh denotes the hyperbolic tangent function with
the output in the range [-1,1], and ⊙ denotes element wise
multiplication.

The softmax layer is usually used as a network output layer
and the function of cross-entropy loss is used as the decision
function. However, we have used linear SVM as the final layer in
this work as given by Tang [23], and instead of optimizing the
cross-entropy loss function, we have optimized the SVM decision
function provided as given in (7)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚 1

2
‖𝑤𝑤‖2 + 𝐶𝐶 ∙ ∑ max(0, 1 − 𝑡𝑡 ∙ 𝑦𝑦)𝑛𝑛

𝑖𝑖=1 (7)

This is called L1-SVM unconstrained optimization problem

with the hinge loss. This objective function is not differentiable
therefore another variation of it, called L2-SVM, with squared
hinge loss is used as given in (8)

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚 1

2
‖𝑤𝑤‖2 + 𝐶𝐶 ∙ ∑ max(0, 1 − 𝑡𝑡 ∙ 𝑦𝑦)2𝑛𝑛

𝑖𝑖=1 (8)

where, C = regularization factor,
t = target labels [-1,1],
y = input to the SVM layer = (w · x + b) where x is the output

of LSTM

This loss function is a margin-based loss function that is a
bigger loss is imposed on points which violate the decision margin.
The parameters of LSTM are updated by various gates as well as
by optimizing the loss function of SVM.

4. Results and Discussion

The dataset was split into 70:30 training and testing datasets.
Though the dataset was small but deep learning allowed easy
incorporation of the problem-specific constraints directly into the
model to reduce variance. At the same time neural nets have a
large library of techniques to combat
overfitting. These techniques helped mitigate the variance issue,
while still benefitting from the flexibility.

A simplistic ANN and LSTM were applied discretely to define
the baselines for the study. For hyperparameter tuning, we made
use of automated hyperparameter optimization that is provided by
a python library, Hyperopt [24]. The models were evaluated using
four performance metrics: accuracy, precision, recall and F-score.
The confusion matrix is used to visualize the output of the device
[25]. The table for the confusion matrix includes the following
values:

• True Positive (TP): total no. of tweets which were
“sarcastic” and predicted “sarcastic”.

• False Negative (FN): total no. of tweets which were
“non-sarcastic” and predicted “sarcastic”.

• False Positive (FP): total no. of tweets which were
“sarcastic” and predicted “non-sarcastic”.

• True Negative (TN): total no. of tweets which were
“non-sarcastic” and predicted “non-sarcastic”.

Table 2, 3 and 4 depict the confusion matrix for ANN, LSTM

and LSTM-SVM respectively.

Table 2. Confusion matrix for ANN
Non-Sarcastic Sarcastic

Non-Sarcastic 153 10
Sarcastic 12 127

Table 3. Confusion matrix for LSTM

Non-Sarcastic Sarcastic
Non-Sarcastic 155 8
Sarcastic 4 135

Table 4. Confusion matrix for LSTM-SVM

Non-Sarcastic Sarcastic
Non-Sarcastic 159 4

Sarcastic 5 134

The ROC curve for the TANA model is shown in fig.3.

Fig.3. ROC curve of LSTM-SVM

Table 5 presents the performance comparison of all the models

using the evaluation metrics. The proposed TANA model outperforms
all the models, achieving an accuracy of 97.01% and F-score of
0.9675. ANN, on the other hand, falls on the lower end of the
spectrum, achieving the lowest, though an appreciable accuracy of
92.72% and F-score of 0.9203.

Table 5. Performance comparison of all models

Model Precision Recall F-Score Accuracy

ANN 0.9270 0.9137 0.9203 0.9272
LSTM 0.9440 0.9712 0.9574 0.9603
TANA
(LSTM-SVM)

0.9640 0.9710 0.9675 0.9701

The results of TANA were also evaluated without using emojis.

Table 6 shows the confusion matrix for LSTM-SVM based TANA
without the use of emojis.

Table 6. Confusion matrix for LSTM-SVM without emojis

Non-Sarcastic Sarcastic
Non-Sarcastic 152 11
Sarcastic 13 126

A F-score of 0.9131 and an accuracy of 92.05% was observed

without the use of emojis, clearly establishing the role of emojis in
discerning sarcasm in written content. Fig.4 shows the results of using
TANA with and without emojis.

Fig.4. Comparison of proposed TANA model with and without emojis

The results were also compared with the existing work done based

on performance metrics. Fig.5 presents the comparison along with the
details of dataset, features and techniques utilized in each study.

Fig.5. Comparison of proposed TANA model with existing state-of-the-art

5. Conclusion

Sarcasm is a pivotal natural language challenge to analyze
sentiments accurately as most text-based conversation is flat-
toned. The exact emotion or intention is difficult to comprehend,
and this task becomes even more strenuous for indigenous
languages like Hindi which are complex in morphology and lack
sufficient resources to facilitate analytics. The ability to analyze
text has substantially increased with the advances in deep learning
and this work described one such deep learning based model,
TANA. As context incongruity signaled by words and emojis can
be used to detect sarcasm in online data streams, we used a
combination of fastText and emoji2vec embeddings to generate an
integer-encoded word-emoji vector that trained a LSTM-SVM.
That is, in TANA the L2-SVM is implemented in the output layer
of the LSTM instead of the conventional softmax function with the
cross-entropy function (for computing loss) to detect sarcasm. The
model was validated on a Hindi dataset created for the purpose for
detecting sarcasm detection. TANA performed superiorly with
97.01% accuracy, 0.9675 F-score, 0.9710 recall and 0.9640
precision. On comparison with the existing works too, the TANA
model demonstrated superlative results. The research validates
that automated feature engineering facilitates detecting sarcasm in
indigenous, low-resource languages and at the same time, emojis
can prove to be quite pivotal in the determination of the true
sentiment of any tweet.

The dataset size is surely a limitation, and we intend to
increase the dataset for generalization. Further the use features
such as number of punctuations and number of hashtags can
also be evaluated for finding signs of sarcasm in text. The study
on transliterated text and code-switched with Hindi are some
promising directions of future work.

Funding
The author(s) received no financial support for the research, authorship, and/or

publication of this article.

References
1. Jain, D., Kumar, A., & Garg, G. (2020). Sarcasm detection in mash-up

language using soft-attention based bi-directional LSTM and feature-rich
CNN. Applied Soft Computing, 91, 106198.

2. Majumder, N., Poria, S., Peng, H., Chhaya, N., Cambria, E., & Gelbukh, A.
(2019). Sentiment and sarcasm classification with multitask learning. IEEE
Intelligent Systems, 34(3), 38-43.

3. Kumar, A., & Garg, G. (2019). Empirical study of shallow and deep learning
models for sarcasm detection using context in benchmark datasets. Journal of
Ambient Intelligence and Humanized Computing, 1-16.

4. Bliss-Carroll, N. L. (2016). The nature, function, and value of emojis as
contemporary tools of digital interpersonal communicate

5. Bharti, S. K., Babu, K. S., & Jena, S. K. (2015, August). Parsing-based
sarcasm sentiment recognition in twitter data. In 2015 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining (ASONAM) (pp. 1373-1380). IEEE.

6. Kumar, A., & Garg, G. (2019). Empirical study of shallow and deep learning
models for sarcasm detection using context in benchmark datasets. Journal of
Ambient Intelligence and Humanized Computing, 1-16.

7. Davidov, D., Tsur, O., & Rappoport, A. (2010, July). Semi-supervised
recognition of sarcasm in Twitter and Amazon. In Proceedings of the
fourteenth conference on computational natural language learning (pp. 107-
116).

8. Parshad, R. D., Bhowmick, S., Chand, V., Kumari, N., & Sinha, N. (2016).
What is India speaking? Exploring the “Hinglish” invasion. Physica A:
Statistical Mechanics and its Applications, 449, 375-389.

9. Kumar, A. & Albuquerque., VHC. (2021). Sentiment Analysis Using XLM-
R Transformer and Zero-shot Transfer Learning on Resource-poor Indian
Language. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 20, 5, Article
90 (September 2021), 13 pages. DOI: https://doi.org/10.1145/3461764

10. Bharti, S. K., Babu, K. S., & Jena, S. K. (2017, December). Harnessing online
news for sarcasm detection in hindi tweets. In International Conference on
Pattern Recognition and Machine Intelligence (pp. 679-686). Springer,
Cham.

11. Desai, N., & Dave, A. D. (2016). Sarcasm detection in Hindi sentences using
support vector machine. International Journal, 4(7), 8-15.

12. Kumar, A., Bhatia, M. P. S., & Sangwan, S. R. (2021). Rumour detection
using deep learning and filter-wrapper feature selection in benchmark twitter
dataset. Multimedia Tools and Applications, 1-18.

13. Sangwan, S. R., & Bhatia, M. P. S. (2020). D-BullyRumbler: a safety rumble
strip to resolve online denigration bullying using a hybrid filter-wrapper
approach. Multimedia Systems, 1-17.

14. Eisner, B., Rocktäschel, T., Augenstein, I., Bošnjak, M., & Riedel, S. (2016).
emoji2vec: Learning emoji representations from their description. arXiv
preprint arXiv:1609.08359.

15. Alayba, A. M., Palade, V., England, M., & Iqbal, R. (2018, August). A
combined CNN and LSTM model for arabic sentiment analysis.
In International cross-domain conference for machine learning and
knowledge extraction (pp. 179-191). Springer, Cham.

16. Ptáček, T., Habernal, I., & Hong, J. (2014, August). Sarcasm detection on
czech and english twitter. In Proceedings of COLING 2014, the 25th
international conference on computational linguistics: Technical papers (pp.
213-223).

17. Liu, P., Chen, W., Ou, G., Wang, T., Yang, D., & Lei, K. (2014, June).
Sarcasm detection in social media based on imbalanced classification.
In International Conference on Web-Age Information Management (pp. 459-
471). Springer, Cham.

18. Justo, R., Alcaide, J. M., Torres, M. I., & Walker, M. (2018). Detection of
sarcasm and nastiness: new resources for Spanish language. Cognitive
Computation, 10(6), 1135-1151.

19. Lunando, E., & Purwarianti, A. (2013, September). Indonesian social media
sentiment analysis with sarcasm detection. In 2013 International Conference
on Advanced Computer Science and Information Systems (ICACSIS) (pp.
195-198). IEEE.

20. Swami, S., Khandelwal, A., Singh, V., Akhtar, S. S., & Shrivastava, M.
(2018). A corpus of english-hindi code-mixed tweets for sarcasm
detection. arXiv preprint arXiv:1805.11869.

21. Felbo, B., Mislove, A., Søgaard, A., Rahwan, I., & Lehmann, S. (2017).
Using millions of emoji occurrences to learn any-domain representations for
detecting sentiment, emotion and sarcasm. arXiv preprint arXiv:1708.00524.

22. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8), 1735-1780.

23. Tang, Y. “Deep learning using linear support vector machines,” arXiv
preprint arXiv:1306.0239, 2013.

24. Bergstra, J., Yamins, D., & Cox, D. (2013, February). Making a science of
model search: Hyperparameter optimization in hundreds of dimensions for
vision architectures. In International conference on machine learning (pp.
115-123). PMLR.

25. Kumar, A., Bhatia, M. P. S., & Sangwan, S. R. (2021). Rumour detection
using deep learning and filter-wrapper feature selection in benchmark twitter
dataset. Multimedia Tools and Applications, 1-18.

0.88
0.9

0.92
0.94
0.96
0.98

TANA with
emoji

TANA
without emoji

F-score Accuracy
0.

73
6

0.
83

4

0.
96

4

0.
71

7

0.
83

1

0.
97

1

0.
72

6

0.
83

2

0.
96

75

0.
83

7

0.
79

4

0.
82

4 0.
97

01

Precision Recall F-score Accuracy

	Research Highlights
	5. Conclusion

