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Research Highlights  
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

• TANA, A Hindi sarcasm detection model that combines LSTM and hinge loss of SVM 
• Use of pre-trained fastText and emoji2vec embeddings for training 
• Performance validation using various metrics, accuracy, F1, recall, precision 
• Superior performance in comparison to existing works 
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1. Introduction 

The abundance of social media generates a colossal quantity of 
content for consumption, clarification, and communication. 
Sentiment analysis is contextual mining of text which classifies 
polarity and subjectivity in user-generated content. It monitors 
conversations and evaluates language and voice inflections to 
quantify attitudes, opinions, and emotions related to a business, 
brand, product or service, or topic. Indeed, sentiment analysis is 
used across a variety of applications and for myriad purposes. 
Computationally identifying and categorizing polarity expressed 
in piece of text can either be in a subjective or objective sentence 
and analyzed at message, sentence or at entity and aspect level for 
finding regular, comparative, implicit or explicit opinion. But 
human sentiments are not just restricted to the discrete classes of 
positive, negative, or neutral. There are more complex emotions 
and communicative expressions within these defined categories 
which are difficult to categorize. As a key challenge that analysts 
in sentiment analysis continue to face is how to detect sarcasm in 
real-time user-generated text [1, 2]. 

One of the most promising solutions for training machines to 
identify sarcasm is the one that looks for context around tweets.  
As a focused NLP task, context-aware weighting for automatic 
detection of sarcasm intends to find accompanying hints from 
users’ linguistic input that are aware of ‘context’ to aid right  
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interpretation [3]. This is important as for the word 'excellent' a 
tweet like “He is amazingly excellent at cheating” can be regarded 
as positive without context. The above tweet can only be classified 
as negative when the context of the word 'excellent' is considered, 
as the word 'cheating' is a negative polarity term. Evidently, the 
context of each word can aid in properly categorizing its polarity, 
increasing the accuracy of conventional sentiment analysis. 
Basically, one needs more than just words to assist in deciding the 
true nature of the sentence as sarcasm is not in your face and 
obvious at textual level. As a result, more attention needs to be 
paid to the semantic relationships between the words in the 
sentence which could elucidate the presence of certain 
incongruence and serve as potential indicators of sarcasm [4]. 
Another accentuating online phenomenon is the emergence of the 
use of visual language emoji in social media conversations. Emojis 
work with human psychology and compensate for the 70% of 
human emotional expression that might come from non-verbal 
cues, such as facial expressions, body language, and tone in face-
to-face conversations.  Emojis can express emotion that would be 
difficult to convey via text alone. For example, “He is amazingly 
excellent at cheating 
�����” is a more lucid representation of a 
goofiness associated with the statement thus making it less 
vulnerable to incorrect interpretations. Emojis are advantageous as 

ABST RACT  

Sentiment analysis is indeed a difficult task owing to the playful language mannerism, altered vocabulary and speak-text used on 
online forums. Humans tend to use words and phrases in ways that are incomprehensible to those who are not involved in the 
discourse. Sarcastic remarks in conversations are often utilized to mock others by saying something that isn't pleasant. Sardonic 
or humorous statements/ tones are used to insult or make others appear puerile. Automated sarcasm detection is considered as one 
of the key tasks to tweak sentiment analysis and extending it to a morphologically rich and free-order dominant indigenous Indian 
language Hindi is another challenge. This research puts forward ‘The Amalgam Neural Architecture’, TANA, to detect sarcasm in 
Hindi tweets. The architecture is trained using two embeddings, namely word and emoji embeddings and combines an LSTM 
with the loss function of SVM for sarcasm detection. We use the Sarc-H dataset, which is built by scrapping Hindi language 
tweets and manually annotating based on the hashtags ‘#कटा�’ (pronounced as kataaksh, which means sarcasm in Hindi) and 
‘#�ं�’ (pronounced as vyangya,  another word for sarcasm in Hindi) used by the tweeters and the results are evaluated using 
various classification performance metrics and achieves a F-score of 0.9675 outperforming LSTM using last layer as softmax as 
well as the existing works. 
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these are almost completely universal in their meanings and can 
be unanimously understood by hugely diverse audience. 

Most of the work on detecting sarcasm in textual data has been 
done only on English language [5-7]. Hindi is numerically and 
proportionally the largest indigenous language community in the 
Indian sub-continent. It is the official language of India and a 
sizeable population speaks/ writes Hindi while the rest are 
comfortable in their regional language [8]. But like other Indian 
languages, Hindi is a resource poor language [9]. The lack of 
annotated dataset, various analysis tools like POS tagger and 
sentiment scores have restricted the scope of research in sentiment 
analysis and subsequent sarcasm detection in Hindi. Also, like 
most of the Indian languages, Hindi too has free-word order. For 
example, कपड़े अ�े ह� इस दुकान के (pronounced as Kapde acche 
hain iss dukaan ke), इस दुकान के कपड़े अ�े ह� (pronounced as Iss 
dukaan ke kapde acche hain), अ�े कपड़े ह� इस दुकान के 
(pronounced as Acche kapde hain iss dukaan ke) all three 
statements convey the same meaning “This shop has good 
clothes” with different word order. Considering such limitations, 
only few research efforts are available publicly for sarcasm 
detection in Hindi [5, 10, 11]. Most of the previous work on 
sarcasm detection in Hindi rely lexical language resources using 
statistical or the semantic relations between the words for polarity 
annotation and are efficient and simple methods with acceptable 
results. These are unsupervised methods that do not need training 
data. On the flip side lexicon-based techniques report low recall 
and suffer due to out-of-vocabulary words, microtext, speak text 
and emojis. Moreover, such methods are not only time-consuming 
and cumbersome, but often fail to correctly interpret the context 
of each word with respect to its neighbors or the entire sentence 
[12, 13]. More recently, deep neural networks achieve state-of-
the-art results at discerning patterns and discriminative features in 
sarcasm detection task, but limited studies have explored 
indigenous language datasets.  

Thus, motivated by the need to develop more efficient models 
for sarcasm detection in the resource-poor indigenous language, 
Hindi, this research proposes a TANA model. That is, the 
amalgam neural architecture which combines LSTM and SVM by 
automatically learning features with the help of word-emoji 
embedding. Additionally, the word ‘TANA’ signifies the 
functionality that the model serves as the Hindi word ‘ताना’ 
(pronounced as Tana) means sarcasm, taunt, or gibe in English.  

The pre-trained fastText2 Hindi word embeddings are utilized 
in this research. Additionally, to achieve added confidence in the 
intended sentiment of any sentence, information conveyed by 
emojis is also considered. For this purpose, the pre-trained 
emoji2vec [14] emoji embedding is used. The embeddings are 
concatenated to form an integer-encoded word-emoji embedding 
vector. The model combines the long short-term memory (LSTM) 
model with the loss function of support vector machine (SVM) 
with the squared Hinge loss function to identify sarcasm. The 
Sarc-H dataset built by scrapping Hindi language tweets and 
manually annotating based on the hashtags used by the tweeters is 
used. The classification performance of baselines and the hybrid 
model is evaluated using accuracy, F1 Score, precision and recall 
as metrics.  

The rest of the paper is organized as follows: Section 2 surveys 
the related work done in this domain; Section 3 discusses the 
TANA model for Hindi sarcasm detection. Section 4 focuses on 
the experimental settings and the results obtained. The paper 
concludes the work with a brief discussion on the future work in 
Section 6. 

2. Related Work 

Deep learning approaches have obtained very high 
performance across many different NLP tasks including sarcasm 
detection. Pertinent studies reveal most of the work on sarcasm 
detection has been done on English language. Few studies have 
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been reported on Arabic, Dutch and Chinese languages. In 2018, 
Alayba et al. [15] used a hybrid of CNN and LSTM for sarcasm 
detection in Arabic posts. Ptáček et al. [16] used machine learning 
for sarcasm detection in Dutch tweets. Liu et al. [17] proposed a 
multi-strategy ensemble learning approach (MSELA) for handling 
imbalanced datasets in Chinese and introduced a set of features 
specifically for detecting sarcasm in social media. Similar research 
has been carried out languages like Spanish [18] and Indonesian 
[19]. As far as the low-resource Hindi language is concerned, 
research on code-mix social media text which is a linguistic 
anglicization of Hindi (transliteration based on pronunciation, not 
meaning) has been notably done [1, 20]. One of the pioneer works 
was reported by Desai and Dave [11] where the authors built a 
dataset of sarcastic sentences in Hindi and used various lexical 
features like emoticons, punctuation marks polarity lists to train an 
SVM classifier for categorizing sarcasm. Bharti et al. [5] used a 
context-based approach by using input tweet and its related news 
to count the number of positive and negative keywords in both 
news and tweet using a predefined list of Hindi words with polarity 
value to determine if the given tweet is sarcastic or not. In 2017, 
Bharti et al. [10] presented a pattern-based framework to predict 
sarcasm in Hindi tweets. This research is the primary effort in the 
same direction where the strength of embeddings is harnessed to 
better comprehend the sentiments being manifested by the text.  

3. TANA for Sarcasm Detection in Hindi Tweets  

    TANA implements SVM in last layer while using LSTM for 
binary text classification. That is, instead of using the conventional 
cross-entropy loss for binary classification problem, we use a 
popular extension of the hinge loss function, known as the squared 
hinge loss, that simply calculates the square of the score hinge loss. 
The architectural flow of the LSTM-SVM model for sarcasm 
detection in Hindi tweets using word-emoji embeddings is shown 
in fig.1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Architectural flow of the TANA model 
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The following sub-sections explain the model in detail. 
 
3.1 Sarc-H Dataset and Pre-processing 
     The dataset, Sarc-H is created by extracting Hindi language 
tweets using explicit sarcasm hashtags (‘#कटा�’ and ‘#�ं�’) for 
the sarcastic category whereas the negative category includes 
tweets from popular Hindi news channels. The class annotations 
are added as labels in the dataset. TweetScraper3 was used for 
extracting tweets and dataset with a total of 1004 tweets were built 
with 414 tweets labelled as sarcastic and 590 labelled as non-
sarcastic Given the informal style of writing style that users prefer, 
a lot of noise is added to the tweet in terms of URL references, 
mentions of users with @, and use of English words in Hindi 
sentences. Thus, the fetched tweets are cleaned and pre-processed 
by removal of strings starting with @ to refer to a user, URLs, 
hashtag ‘#’ and removal of the string following the hashtag in case 
of trailing hashtags only [6]. This prevents the employed 
classification model from predicting every sentence every tweet 
with ‘#कटा�’ or ‘#�ं�’ as sarcastic and thus focus on extracting 
actual semantic or syntactic features for distinguishing between 
sarcastic and non-sarcastic tweets. 

 
3.2 Embeddings 

We use a pre-trained word embedding for Hindi language 
provided by fastText (AN NLP library by Facebook). This model 
was trained using CBOW with position-weights, in dimension 
300, with character n-grams of length 5, a window of size 5 and 
10 negatives. 

Similarity score is an implementation provided by gensim 
library which essentially helps us determine how similar two 
words are to each other. Since these scores are a measure of cosine 
similarity between the word vectors, a larger value depicts a closer 
relationship. Just like the word embeddings, emoji embeddings are 
essentially points in the vector space such that similar emojis exist 
close to each other while dissimilar ones are relatively more 
distant. Emoji2vec allows us to do this by representing emojis as 
vectors in a 300-dimensional vector space. It is a pre-trained model 
that has been trained on the description of all the emojis in the 
Unicode emoji standard. The embedding is the sum of word 
embeddings of words in description. As an example, table 1 
showcases the cosine similarity between the selected pair of 
emojis to depict how similar (higher score) and disparate (lower 
score) emojis fare with respect to emoji2vec.  

 
Table 1. Similarity score of various emoji pairs according to emoji2vec 

embeddings 
Emoji Pairs Similarity Score 

(😂😂,😆😆)  
0.6827 

(😐😐,😞😞)  
0.5617 

(😆😆,😞😞)  
0.3619 

 
Not all extracted tweets contain emojis. But as the language of 

visual symbols effectually substitute body language and tone of 
voice in text-based communication, their use as contextual cues to 
detect sarcasm is obligatory. Motivated by the merits of inclusion 
of emojis along with the availability of the requisite tools to 
incorporate them into our task, we use DeepMoji [21] for 
generating emojis relevant to the respective tweet. However, 
DeepMoji does not support Hindi language and therefore we used 
the Google Translation API for translating the extracted Hindi 
tweets to English. However, not all translations were precise 
enough in terms of the intended meaning and therefore, we refined 
the translations to better convey the meaning of the given tweet. 
Following the translation, the entire list of tweets which only 
comprised the text exclusive of the hashtags and user annotations 
was fed into the DeepMoji code to generate emojis. While 
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reasonably appropriate emojis were obtained in the case of non-
sarcastic tweets, the ones generated for sarcastic tweets 
represented a wide variety of emotions for most of the tweets. Such 
a behavior was plausible as DeepMoji was not aware of the 
appended hashtags of ‘#sarcasm’. Thus, to include this 
information in the generation of emojis, we appended each 
sarcastic tweet with the word ‘sarcasm’ to obtain relevant emojis. 
DeepMoji generated 5 emojis to the given input which it deemed 
most pertinent being mindful of the possible sentiments the author 
might be intending to manifest. As a result, some of the emojis 
obtained were indeed irrelevant and hence discarded. 

Next to utilize both embeddings for our task, we implemented 
a concatenation procedure as follows: A word-emoji embedding 
vector Ef is constructed which has a size equal to the sum of the 
embedding vector size of word embeddings, Ew, and emoji 
embeddings, Ee and is initialized with 0s. We have used the upper 
half to represent the word embeddings and the lower half to 
represent the emoji embeddings. For any given word, only the top 
half of the vector is assigned to the respective value of the word 
embedding while the lower half is untouched. Similarly in case of 
emojis, only the lower half of the final embedding is assigned to 
the respective emoji embedding value while the upper half remains 
set to 0. 
 
3.3 LSTM-SVM  

Previous studies demonstrate SVM as an alternative to 
softmax function for classification and claim improved 
performance with the use of SVM in an artificial neural network 
(ANN) architecture in comparison to the conventional softmax 
function.  The approach is suitable for binary classification, as in 
this research the tweets are classified as sarcastic or non-sarcastic. 
The combination of LSTM with SVM is shown in fig.2.  

 
Fig.2. LSTM-SVM 

 
Where, 
m: Batch size 
k: No. of LSTM cells 
f: No. of features  
t: Output dimension of a single LSTM cell 
Input dimension: m * k * f 
Output of LSTM network at one time step: m * t 
 
Long Short-term memory or LSTM [22], a variant of RNN, 

helps solve the problems of vanishing and exploding gradients 
thus allowing it to plot long-term dependencies by defining each 
memory cell with a set of gates Rd, where d is the memory 



dimension of hidden state of LSTM. LSTM consists of three gates, 
which are functions of xt, input at the current time step and ht−1, 
the hidden state: input gate it, which decides by how much each 
memory cell has to be updated, forget gate ft ,which decides 
whether or not to discard the memory cell state information that 
came from ht−1 and output gate ot , which takes the decision of 
passing the memory state to the rest of the network. The gates 
jointly decide on the memory update mechanism. The LSTM 
transition functions are as shown in (1) to (6): 

 
it = σ(Wi[ht−1,xt] + bi)                (1) 

ft = σ(Wf[ht−1,xt] + bf)                (2) 
qt = tanh(Wq[ht−1,xt] + bq)                (3) 

ot = σ(Wo[ht−1,xt] + bo)                (4) 
ct = ft.ct−1 + it ⊙ qt                (5) 

ht = ot ⊙ tanh(ct)                  (6) 
 
where σ denotes the logistic sigmoid function that provides an 

output in [0,1], tanh denotes the hyperbolic tangent function with 
the output in the range [-1,1], and ⊙ denotes element wise 
multiplication.  

The softmax layer is usually used as a network output layer 
and the function of cross-entropy loss is used as the decision 
function. However, we have used linear SVM as the final layer in 
this work as given by Tang [23], and instead of optimizing the 
cross-entropy loss function, we have optimized the SVM decision 
function provided as given in (7)  

 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚 1

2
‖𝑤𝑤‖2 + 𝐶𝐶 ∙ ∑ max(0, 1 − 𝑡𝑡 ∙ 𝑦𝑦)𝑛𝑛

𝑖𝑖=1               (7) 
 
This is called L1-SVM unconstrained optimization problem 

with the hinge loss. This objective function is not differentiable 
therefore another variation of it, called L2-SVM, with squared 
hinge loss is used as given in (8) 

 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚 1

2
‖𝑤𝑤‖2 + 𝐶𝐶 ∙ ∑ max(0, 1 − 𝑡𝑡 ∙ 𝑦𝑦)2𝑛𝑛

𝑖𝑖=1               (8) 
 
where, C = regularization factor,  
t = target labels [-1,1],  
y = input to the SVM layer = (w · x + b) where x is the output 

of LSTM 
 

This loss function is a margin-based loss function that is a 
bigger loss is imposed on points which violate the decision margin. 
The parameters of LSTM are updated by various gates as well as 
by optimizing the loss function of SVM. 
 
4. Results and Discussion 
  

The dataset was split into 70:30 training and testing datasets. 
Though the dataset was small but deep learning allowed easy 
incorporation of the problem-specific constraints directly into the 
model to reduce variance. At the same time neural nets have a 
large library of techniques to combat 
overfitting.  These techniques helped mitigate the variance issue, 
while still benefitting from the flexibility. 

A simplistic ANN and LSTM were applied discretely to define 
the baselines for the study. For hyperparameter tuning, we made 
use of automated hyperparameter optimization that is provided by 
a python library, Hyperopt [24]. The models were evaluated using 
four performance metrics: accuracy, precision, recall and F-score.   
The confusion matrix is used to visualize the output of the device 
[25]. The table for the confusion matrix includes the following 
values: 
 

• True Positive (TP): total no. of tweets which were 
“sarcastic” and predicted “sarcastic”. 

• False Negative (FN): total no. of tweets which were 
“non-sarcastic” and predicted “sarcastic”. 

• False Positive (FP): total no. of tweets which were 
“sarcastic” and predicted “non-sarcastic”. 

• True Negative (TN): total no. of tweets which were 
“non-sarcastic” and predicted “non-sarcastic”. 

 
Table 2, 3 and 4 depict the confusion matrix for ANN, LSTM 

and LSTM-SVM respectively.  
 

Table 2.  Confusion matrix for ANN  
Non-Sarcastic Sarcastic 

Non-Sarcastic 153 10 
Sarcastic 12 127 

                                                                                           
Table 3.  Confusion matrix for LSTM  

Non-Sarcastic Sarcastic 
Non-Sarcastic 155 8 
Sarcastic 4 135 

 
Table 4.  Confusion matrix for LSTM-SVM  

Non-Sarcastic Sarcastic 
Non-Sarcastic 159 4 

Sarcastic 5 134 
  

The ROC curve for the TANA model is shown in fig.3.

 
Fig.3. ROC curve of LSTM-SVM 

 
Table 5 presents the performance comparison of all the models 

using the evaluation metrics. The proposed TANA model outperforms 
all the models, achieving an accuracy of 97.01% and F-score of 
0.9675. ANN, on the other hand, falls on the lower end of the 
spectrum, achieving the lowest, though an appreciable accuracy of 
92.72% and F-score of 0.9203. 

 
Table 5.  Performance comparison of all models 

Model Precision Recall F-Score Accuracy 

ANN 0.9270 0.9137 0.9203 0.9272 
LSTM 0.9440 0.9712 0.9574 0.9603 
TANA  
(LSTM-SVM) 

0.9640 0.9710 0.9675 0.9701 

 
The results of TANA were also evaluated without using emojis. 

Table 6 shows the confusion matrix for LSTM-SVM based TANA 
without the use of emojis. 

 
Table 6.  Confusion matrix for LSTM-SVM without emojis  

Non-Sarcastic Sarcastic 
Non-Sarcastic 152 11 
Sarcastic 13 126 

 
A F-score of 0.9131 and an accuracy of 92.05% was observed 

without the use of emojis, clearly establishing the role of emojis in 
discerning sarcasm in written content. Fig.4 shows the results of using 
TANA with and without emojis. 

 



 

Fig.4. Comparison of proposed TANA model with and without emojis 
 
The results were also compared with the existing work done based 

on performance metrics.  Fig.5 presents the comparison along with the 
details of dataset, features and techniques utilized in each study.  
 

 

Fig.5. Comparison of proposed TANA model with existing state-of-the-art 
 
 

5. Conclusion  
 

Sarcasm is a pivotal natural language challenge to analyze 
sentiments accurately as most text-based conversation is flat-
toned. The exact emotion or intention is difficult to comprehend, 
and this task becomes even more strenuous for indigenous 
languages like Hindi which are complex in morphology and lack 
sufficient resources to facilitate analytics. The ability to analyze 
text has substantially increased with the advances in deep learning 
and this work described one such deep learning based model, 
TANA. As context incongruity signaled by words and emojis can 
be used to detect sarcasm in online data streams, we used a 
combination of fastText and emoji2vec embeddings to generate an 
integer-encoded word-emoji vector that trained a LSTM-SVM. 
That is, in TANA the L2-SVM is implemented in the output layer 
of the LSTM instead of the conventional softmax function with the 
cross-entropy function (for computing loss) to detect sarcasm. The 
model was validated on a Hindi dataset created for the purpose for 
detecting sarcasm detection. TANA performed superiorly with 
97.01% accuracy, 0.9675 F-score, 0.9710 recall and 0.9640 
precision. On comparison with the existing works too, the TANA 
model demonstrated superlative results. The research validates 
that automated feature engineering facilitates detecting sarcasm in 
indigenous, low-resource languages and at the same time, emojis 
can prove to be quite pivotal in the determination of the true 
sentiment of any tweet. 

The dataset size is surely a limitation, and we intend to 
increase the dataset for generalization. Further the use features 
such as number of punctuations and number of hashtags can 
also be evaluated for finding signs of sarcasm in text. The study 
on transliterated text and code-switched with Hindi are some 
promising directions of future work. 
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