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Is Intermittent Control the Source of the
Non-Linear Oscillatory Component (0.2–2Hz)

in Human Balance Control?
Ian D. Loram , Member, IEEE, Henrik Gollee , Cornelis van de Kamp ,

and Peter J. Gawthrop , Life Senior Member, IEEE

Abstract—Objective: To explain the 0.2–2Hz oscillation
in human balance. Motivation: Oscillation (0.2–2 Hz)
in the control signal (ankle moment) is sustained
independently of external disturbances and exaggerated in
Parkinson’s disease. Does resonance or limit cycles in the
neurophysiological feedback loop cause this oscillation?
We investigate two linear (non-predictive, predictive) and
one non-linear (intermittent-predictive) control model (NPC,
PC, IPC). Methods: Fourteen healthy participants, strapped
to an actuated single segment robot with dynamics of
upright standing, used natural haptic-visual feedback and
myoelectric control signals from lower leg muscles to
maintain balance. An input disturbance applied stepwise
changes in external force. A linear time invariant model
(ARX) extracted the delayed component of the control
signal related linearly to the disturbance, leaving the
remaining, larger, oscillatory non-linear component. We
optimized model parameters and noise (observation,
motor) to replicate concurrently (i) estimated-delay, (ii)
time-series of the linear component, and (iii) magnitude-
frequency spectrum and transient magnitude response of
the non-linear component. Results (mean±S.D., p<0.05):
NPC produced estimated delays (0.116±0.03s) significantly
lower than experiment (0.145±0.04s). Overall fit (i)–(iii)
was (79±7%, 83±7%, 84±6% for NPC, PC, IPC). IPC
required little or no noise. Mean frequency of experimental
oscillation (0.99±0.16 Hz) correlated trial by trial with
closed loop resonant frequency (fres), not limit cycles, nor
sampling rate. NPC (0.36±0.08Hz) and PC (0.86±0.4Hz)
showed fres significantly lower than IPC (0.98±0.2Hz).
Conclusion: Human balance control requires short-term
prediction. Significance: IPC mechanisms (prediction error,
threshold related sampling, sequential re-initialization of
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open-loop predictive control) explain resonant gain without
uncontrolled oscillation for healthy balance.

Index Terms—Sensorimotor control, human balance,
non-linear oscillation, intermittent control, resonance, limit
cycles.

Fig. 1. Balance task and sustained oscillation in control signal.
(a) Participants, strapped to a one degree of freedom device with dy-
namics of upright standing, used visual-haptic-vestibular feedback and
myoelectric control signals from the calf and tibialis anterior muscles
to maintain balance for 250 s. (b) An input disturbance of discrete
steps was applied. (c) Representative signals v time(s): row 1: forward
board angle, row 2: plantar flexion control signal (blue) and forwards
disturbance (red), rows 3–4: Tibialis Anterior and calf muscles rectified
EMG from both legs. Message: control signal oscillates around and
matches step changes in disturbance. The dataset is available (DOI:
10.23634/MMUDR.00629266).
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I. INTRODUCTION

HUMAN balance requires external forces to be matched us-
ing internally generated muscle forces. In healthy people

a well-practiced neurophysiological control system integrates
all sensory feedback to regulate activity in the muscles required
to keep the center of mass (CoM) within the base of support of
their unstable mechanical structure. When standing on a force
plate, the control signal maintaining position of the CoM is
summarized by the moving point of application of the ground
reaction force [1], [2]. Control of sagittal CoM position is
generated predominantly by the calf and tibialis anterior (TA)
muscles [1]–[3]. Oscillation in the control signal at 0.2-2Hz can
be observed, and this oscillation is exaggerated in Parkinson’s
disease [4], [5]. This oscillation, has been associated with “over-
generation” of corrective control signal and when exaggerated
has been explained as an abnormal resonance in the feedback
control loop [4], [5]. Our objective is to provide a feedback
control explanation of this oscillation (0.2–2Hz) and to provide
insight into the neurophysiological processes of human balance.

A. Question – What Is the Source of the 0.2–2 Hz
Oscillation?

Postural sway, and also manually controlled systems with
dynamics similar to an upright standing human both show oscil-
lation which sustains independently of any external disturbance
[6], [7]. Within a feedback control loop there are several possible
explanations of this oscillation. Sensory or motor noise provides
input which can be colored by a closed loop system to provide
a spectrum of sustained oscillation [6], [7]. Resonance within
a closed feedback loop can produce amplitude peaks at certain
frequencies. That resonance can arise from a combination of
delays and poorly tuned parameters, particularly if the controller
is not optimal. Also, a non-linearity within the feedback loop
such as a threshold, a switch, or event triggered open loop
control can cause sustained oscillation without requiring noise
as an input [8], [9]. A periodic return to the same state without
external input (limit cycle) can occur in some circumstances
[8], [9]. Our recent analysis of manually controlled systems
with dynamics equivalent to a standing adult, shows that in-
termittent predictive control (IPC) with aperiodic sampling can
explain linear power and non-linear remnant without addition
of sensory or motor noise [7]. However, balance is different
from manual control, and explaining human balance is challeng-
ing. Any convincing model has to reproduce concurrently and
adequately the linear response to an external disturbance with
accurate physiological delays and timing/phase characteristic,
and also the oscillation which is not related linearly to the
disturbance.

What are the main candidate models? The best validated,
model of human balance is time delayed, continuous state
feedback [1], [2], [6], [11]. We represent this currently un-
surpassed model of human balance by generic non-predictive
control (NPC, Fig. 2(a)). The cerebellum is relevant to balance
and provides short term prediction [12]. Hence we consider
also predictive state feedback control (PC, Fig. 2(b)). Predictive
control requires a mechanism to accommodate prediction error:
furthermore, cerebellar function is associated intimately with
switching function in linked basal ganglia circuits [12], [13].
Thus we consider intermittent predictive control (IPC, Fig. 2(c))
as a logical extension of short-term predictive control [10],

Fig. 2. Feedback control models. See Appendix [7], [10]. (a) Contin-
uous non-predictive control (NPC): uses delayed linear observer state
feedback. (b) Continuous predictive control(PC): uses standard linear
observer, predictor state feedback. (c) Event-driven intermittent predic-
tive control (IPC): the generalized hold implements a continuous linear
observer predictor state feedback controller matched to the existing,
underlying system-observer-predictor-state feedback. The hold is oper-
ated open-loop and the initial state is reset intermittently. The reset is
triggered by the predicted hold state xh deviating from the observed
state xo by more than a threshold θ. Message: Compared with PC,
IPC uses an additional discrete control loop to sequentially re-initialize
a continuous open-loop controller.

[14], [15]: IPC represents functionality associated with central
cerebellar-basal ganglia networks [16].

B. Overview of Approach and Hypotheses

We implemented a task replicating the essence of human bal-
ance while allowing precise measurement of balance control and
disturbance rejection (Fig. 1) [17]. We investigated three models
NPC, PC and IPC for their potential to reproduce concurrently
the delayed linear, and non-linear components of human balance
(Fig. 2).

We tested three hypotheses (Fig. 3):
H1: A non-linear oscillation at 0.2–2 Hz (NLO) is present

in all conditions, namely two sensory conditions (eyes
open, eyes closed), two mechanical conditions (unsta-
ble, marginally stable external system), and two distur-
bance amplitudes.



LORAM et al.: INTERMITTENT CONTROL THE SOURCE OF THE NON-LINEAR OSCILLATORY COMPONENT 3625

Fig. 3. Hypothesis Testing Flow Diagram. Hypotheses H1, H2 and H3
are tested in sequence.

H2: Models (NPC, PC, IPC) can reproduce concurrently the
delays, linear and non-linear component to the control
signal.

H3: The frequency of the NLO can be related to a feature
of the model (e.g., resonance, sampling frequency, limit
cycle).

II. METHODS

A. Apparatus and Balance Task

Standing on a stable surface, participants were strapped
to a single degree of freedom actuated device, named Whole
Body Mover (WBM) with programmable dynamics replicating
standing. Participants used visual-haptic feedback to control
forward-backward movement of their own body using natural
muscle activity from the calf and TA muscles (Fig. 1(a)) [17].

The WBM (Fig. 1(a)) comprised a vertical board rotating
around a joint collinear with the ankles, connected to a direct
drive linear actuator (XTA3810S, Servotube Actuator, Copley
Motion, U.K.) at approximately 1m above the axis of rotation.
An incremental position encoder is located in the linear actuator.
Using a proportional–integral–derivative (PID) controller, the
actuated position of the WBM was controlled to follow the
output of a real time simulated dynamic system. To replicate
postural balance, the system used the equation of motion Jθ̈ =
mgh(1− c)θ −Bθ̇ + ue + d for an inverted pendulum where θ
is forward angle, ue is the experimental control signal generated
by the participant, d is the external disturbance, mgh is the
gravitational toppling moment per unit angle, c is the passive
stiffness relative to mgh, and B is the passive ankle joint viscosity.
We use a mass m of 70 kg, gravitational acceleration g of 9.81
ms−2, and a center of mass height, h of 0.92 m giving mgh= 632
N rad−1 [3]. The moment of inertia J given by kmh2 where k is a
shape factor of 1.3 was 77 kg m2. The passive ankle stiffness c
was 0.85 and passive ankle viscosity B was 2.9 Nm rad−1 s [3],

[18]. Following [19] we used the transfer function 6.9722/ (s2+
0.03721 s - 1.231) where denominator coefficients determine
passive stability and system time constants and the numerator
coefficient represents coupling between experimental control
signal ue and position θ. For comparison, and to include the
circumstance where passive ankle stiffness matches the toppling
torque due to gravity (c= 1) we tested also the related marginally
stable system 6.9722/ (s2+0.03721 s).

Position control of the WBM eliminated the influence of the
mechanical structure of the WBM [17]. During these tasks,
power in the position signal is confined to low frequencies and
using cross correlation the delay between simulated output and
measured position of the WBM (4±3 ms, mean ± S.D.) was
negligible with respect to physiological delays. If the WBM
exceeded a range of motion of ±10° the WBM was deactivated
and the trial terminated.

The task was implemented using Simulink, compiled using
Real-Time Workshop and executed on a PC using Real-Time
Windows Target within MATLAB (Math Works, Natick, MA,
USA) with a step time of 1 ms. Hardware signals were inter-
faced via a data-acquisition card (DAQ card 6036E, National
Instruments, USA) at a sample rate of 1kHz to 16-bit precision.
All signals were saved at 100 Hz.

The experimental control signal ue was generated using a
myoelectric interface recording from the ankle plantar and dor-
siflexion muscles. This control signal represents physiologically
delayed neuromotor output solely, and excludes passive ankle
impedance. Surface electrical activity (sEMG) was recorded
from the calf muscles (intersection of gastrocnemius medialis
and soleus) and TA of both legs (Trigno, Delsys, USA). The
Trigno system contributes a fixed delay of 48 ms to the output
of sEMG signals. At the beginning of each experimental session,
we recorded sEMG (background electrical noise) in all muscles
at rest to set dead-zone values to subtract noise from input to the
myoelectric control signal. Throughout the task, sEMG signals
were processed in real-time through a high-pass filter (fcutoff
= 50 Hz), then rectified and then low pass filtered using a
second order filter 1/(1+τs)2 of time constant τ = 100 ms.
For each participant, the output of each electrode was scaled
to a common external force measured using a load cell in series
with the linear actuator. With the WBM locked, the participant
strapped into the WBM, relaxed one leg at a time and with the
other leg increased push (calf) or pull (TA) against the board
to match a pre-set visual target equivalent to ∼10 Nm ankle
moment. The net plantarflexion (backward acting) control signal
was generated by the sum of the two scaled calf muscles minus
the sum of the two scaled tibialis anterior muscles. During task
familiarization the gain applied to output of the myoelectric
interface was adjusted to ensure that it was neither too high nor
too low for the participant. We find participants adjust easily to
halving or doubling the ‘myoelectric gain’ with little effect on
performance [17].

With the WBM unlocked and using an absolute position
potentiometer mounted on the rotational axis, the WBM was
set to a reference position of 2° forward with respect to the
vertical line, to approximate physiological standing. A small,
(∼5 Nm) constant, forwards acting external disturbance was
applied requiring a low-level tonic plantar flexion contraction
to maintain the reference position (Fig. 1). Using this tonic bias
disturbance, the task felt exceptionally natural and similar to
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normal standing. In the absence of a disturbance challenging
balance, participants maintained their position with minimal
sway and participants reported the task felt as though they were
not doing anything.

To enable identification of the human controller, an exter-
nal disturbance providing random direction, constant amplitude
(∼4 Nm), step changes in input was applied (Fig. 1(b)). We use
a small disturbance relative to normal fluctuation of the control
signal so as to study natural balance rather than responses to large
perturbations. Thirty-two paired steps were implemented in ran-
dom sequence from (eight inter-step intervals (0.1, 0.2, 0.3, 0.5,
0.8, 1.4, 2.4, 4.0 s), each interval used four instances, including
two unidirectional and two bidirectional pairs. Unidirectional
pairs were followed by a double size third step returning to zero.
A random recovery of 4–5 s was used after each pair, and after
each 3rd return step [20]. The trial duration was 250 s.

The experimental control signal represents muscle activity in
units of volts. While a force is associated with active muscle
contraction, the forces generated have no effect on motion of
the WBM. However, to aid understanding of the task, we pro-
vide (Fig. 1(c)) an estimate of the ankle moment derived from
the system equation of motion and the measured relationship
between ue in volts and output in degrees. This shows the tonic
forward bias (∼5 Nm), and shows the normal step disturbance
(∼4 Nm) is less than the oscillation associated with regulating
balance. The rectified EMG signals (Fig. 1(c)) confirm the tonic
calf activity and the bursts of TA activity when the control signal
reverses sign. At these low levels of muscle contraction, rectified
EMG provides a good estimate of the neural drive with minimal
non-linearity arising from amplitude cancellation [21].

Participants received natural visual, vestibular and ankle-foot
related haptic feedback and also contact sensation from the
vertical board to which they were strapped. The position of the
board and the reference position were also displayed on a screen
mounted at eye level a couple of meters in front of the participant
(Fig. 1(a)).

The experiments reported in this study, conducted at Manch-
ester Metropolitan University (MMU), were approved by the
Academic Ethics Committee of the Faculty of Science and
Engineering, and conform to the Declaration of Helsinki. Par-
ticipants gave written, informed consent to the experiment.

B. Participants and Procedures

Fourteen healthy participants (10 male, age 32 ± 12 years,
mean ± S.D.), attempted five 250s trials in randomized order
including eyes open unstable (EO US), eyes closed unstable
(EC US), eyes open stable (EO S), eyes closed stable (EC S),
lower amplitude disturbance eyes open unstable (L EO US).
Participants were first prepared for sEMG recording, then base-
line noise thresholds were recorded, then myoelectric signals
scaled as above. Participants were strapped to the WBM and
given a familiarization, until they were comfortable with the task,
the perturbations and the experimental conditions. If necessary
participants returned a second day for the actual experiment.
Participants were instructed only to keep the WBM within the
range of motion (± 10°).

C. Overview of Analysis

Stage 1. Separation into linear and non-linear components
(Fig. 4). We separate the experimental control signal ue(t) into a
non-parametric linear portion and non-linear remnant (ue = ue

lin

Fig. 4. Separation of control signal into linear and non-linear compo-
nents. Left. Using mean removed time series of a human control signal
(top), and disturbance (middle, red), a linear model (ARX) including
delay (0.13s) was estimated and used to simulate a linear response
(left, middle, blue) with linear fit 0.353 to the original control signal.
The non-linear component (bottom) is created by subtraction of the
linear time-series from the control time-series. All units Nm. Right. Top:
Magnitude-frequency spectrum. The non-linear component (red) shows
peak amplitude in the range 0.2–2 Hz. The power of the linear compo-
nent (where original control amplitude (blue) is larger than the non-linear
amplitude (red) is confined to low frequencies e.g., below 1 Hz. Bottom
left: Stim event averaged non-linear response. i.e., Disturbance step
onset averaged absolute value of non-linear time-series. Bottom right:
Impulse response function with respect to disturbance of absolute value
of non-linear time-series.

+ ue
nonlin). Together these linear and non-linear components

comprise 100% of the signal (Fig. 4 Left). The linear portion
where the control signal is linearly coherent with the disturbance
tends to be largest at low frequency, and at these low frequencies
larger than the non-linear portion. The non-linear portion tends
to be largest at mid- frequencies of 0.2–2 Hz and increase
transiently following changes in input disturbance (Fig. 4 Right).
We fitted a non-parametric (high order) linear time-series model
to generate the linear portion of the experimental control signal.

Stage 2 Model estimation (Fig. 5). We fit parametric con-
trol models concurrently to the linear and non-linear portions.
We simulated a control signal ue

sim, and separate into linear
ue

sim_lin and nonlinear components ue
sim_nonlin as above. We

calculated a normalized root mean square error (nrmse) for
the linear (nrmselin) and non-linear (nrmsenonlin) components
and minimized their sum nrmselin + nrmsenonlin. Normalized
root mean square error calculates the ratio of rms error to
rms signal. We used the formula nrmse(ue

sim, ue
) = ‖ue

sim

– ue‖/‖ue-mean(ue)‖ where ‖ indicates the 2-norm.

D. Practical Details Stage 1: Extraction of Linear and
Non-Linear Components

Analysis was applied to experimental and simulation times
series down sampled to 10 ms timestep. A time-series model
ARX (timestep 10 ms, autoregressive in ue with exogeneous
input disturbance d including a dead-time) was used to extract
the component of the human control signal related linearly to the
disturbance (Fig. 4(a)). Using Akaike’s Information Criterion
(AIC), and mindful of the Trigno delay of 48ms delay and
minimal lower limb peripheral spinal feedback delay of 40 ms,
the deadtime (nk timesteps) was selected from range 0.09, 0.10
… to 0.4 s using an 8th order model (na = nb = 8 coefficients).
The data was then split into equal training and validation halves.
Using ‘AIC’ and this estimated deadtime, model order was
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Fig. 5. Representative fit of IPC without noise (ic). Left. Top: mean
removed control signal (blue, y), ic simulation (red, Y). Middle: linear
component of control signal (blue) and ic simulation (red). Lower: non-
linear remnant of control signal (blue) and ic simulation (red). Right.
Top: Magnitude v. frequency of non-linear component. Middle: Impulse
response function with respect to disturbance of absolute value of non-
linear times v time for control signal. Lower: Auto correlation function
of envelope of non-linear control signal v time. Experiment (blue) and
ic simulation (red). All units Nm. Message: This wholly deterministic in-
termittent controller reproduces concurrently the linear timeseries, non-
linear magnitude spectrum and transient non-linear amplitude impulse
response, without noise added.

selected from 40 or less. Using this chosen deadtime and model
order (na = nb), L2 regularization, a constraint for stability and
the full time-series, the ARX model was estimated using pre-
diction error method (one time-step ahead) and used to simulate
the linear component. Subtraction of the linear component from
the experimental control signal gave the non-linear component
(Fig. 4). For data simulated by the parametric control model
(below), we used the same procedure to separate into linear and
non-linear time series. We used MATLAB 2020a for all analysis:
functions here were ‘delayest’, ’selstruc’, ’arx’, ’arxRegul’.

E. Practical Details Stage 2: Identification of Model
Parameters

Using non-linear optimization of parameters, we fitted three
models (NPC, PC, IPC, Fig. 2) to minimize the error function
representing concurrently the linear and non-linear components
of the control signal. Models were run in Simulink in accelerator
mode with a fixed step time of 1ms taking approximately∼2–4 s
computer time to simulate 250 s data on a standard Intel i7
desktop PC. Parameters were optimized using a combination
of Direct Search (mesh adaptive pattern search) and gradient
based search (“SQP”) each iteration allowing typically 10000
function evaluations per model, sufficient for local convergence.
For all three models, all trials were optimized in five successive
iterations. For each iteration, each model of each trial evaluated
the optimized model parameters of all other trials to search for
the best starting parameter combination. (MATLAB functions
used: ‘patternsearch’, ‘fmincon’).

For NPC and PC models we optimized 10 parameters (delay
td, 4 state feedback gains k, 5 linear quadratic weightings for

observer gain Qo, c.f. Appendix). Since gains k were fitted freely
rather than designed using system parameters, mismatch gain
gac was redundant and set to 1. We also optimized 4 amplitudes
of gaussian observation noise vy and one amplitude of gaussian
motor noise vu). Our previous analysis of remnant noise spectra
showed motor noise and position observation noise exhibit a 1/f
rather than gaussian pattern [7], thus we integrated the motor
noise vu and observation noise applied to the position state prior
to input to the simulation.

For IPC, noise free simulation (ic) we optimized 17 param-
eters (td, Δs, k, Qo, gac and 5 event trigger thresholds θ1-5,
c.f. Appendix). For simulation with noise (icn) we optimized 22
parameters (td, Δs, k, Qo, gac, θ1-4, vy and vu). The predicted
delay + sampling delay, td + Δs, was constrained to > 50 ms.

F. Practical details: Objective Error Function

From simulated timeseries ue
sim, using the same procedure as

for experimental timeseries (Section D), we calculated the esti-
mated delay nk_sim, the linear timeseries ue

sim_lin, the fractional
error in delay %Δlin = (nk_sim-nk)/nk and the normalized error
nrmselin = nrmse (ue

lin, ue
sim_lin). Using the same procedure

for experimental and simulated data, we calculated also the non-
linear time series ue

sim_nonlin, its absolute value |ue
sim_nonlin|

and its analytic envelope envsim_nonlin using a Hilbert filter
(2s). From ue

sim_nonlin we calculated magnitude frequency
response |ue

sim_nonlin(f)| at 0.01, 0.02 … 50 Hz (Fig. 5) and
its normalized error nrmse(|ue

sim_nonlin(f)|, |ue
nonlin(f)|). From

|ue
sim_nonlin| and using absolute value of first differential of the

disturbance |d(t) - d(t-1)| as input, we calculated a non-linear
deadtime nk_sim_nonlin, a fractional error in non-linear dead-
time %Δnonlin = (nk_sim_nonlin-nk_nonlin)/nk_nonlin, transient
impulse response |ue

sim_nonlin|IRF (Fig. 5) and its normalized
error nrmse(|ue

sim_nonlin|IRF, |ue
nonlin|IRF). For the analytic

envelope env_sim_nonlin we calculate its autocorrelation func-
tion (envACF) and normalized error nrmse(envACFsim_nonlin,
envACF_nonlin). For the system output ysim (i.e., body position)
we calculated magnitude frequency spectra and its normalized
error nrmse(ysim(f), y(f)). We used MATLAB functions ‘ar’,
‘bode’, ’impulse’, ‘envelope’, ’xcorr’.

Optimization iteration one minimized nrmselin +
nrmse(|ue

sim_nonlin(f)|, |ue
nonlin(f)|) alone. Some simulations,

showed drift in system output y unlike experimental data. So
iteration 2, incorporated nrmse(ysim(f), y(f)) within the cost
function. Analysis following iteration 2, showed amplitude
of non-linear oscillation in the simulated data decaying too
much rather than sustaining following intermittent corrections.
So iteration 3 included nrmse(envsim_nonlin(f), envnonlin(f)
in the cost function. Analysis following iteration 3 showed
partial improvement to the temporal variation in amplitude
of nonlinear oscillation, showed experimental amplitude of
oscillation was related transiently to step changes in disturbance
(Fig. 4 right) and revealed imperfect reproduction of estimated
delays in the linear response and transient non-linear amplitude
response. Our purpose is to find models which can reproduce
concurrently the delays, linear and non-linear component to
the control signal. Thus iterations 4 and 5 included and gave
high weight to fractional error in delays to linear and transient
non-linear response and to the non-linear transient impulse
response. The cost function for final optimization iterations 4
and 5 was:
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cost function = %Δlin + %Δnonlin + nrmselin +
nrmsenonlin_composite + 0.1 nrmse(ysim(f), y(f)) where
nrmsenonlin_composite = 0.6 nrmse(|ue

sim_nonlin(f)|, |ue
nonlin(f)|)

+ 0.25 nrmse(|ue
sim_nonlin|IRF, |ue

nonlin|IRF) + 0.15
nrmse(envACFsim_nonlin, envACF_nonlin). The dataset including
code for the cost function is openly available from
Manchester Metropolitan University’s research repository
(DOI: 10.23634/MMUDR.00629266).

G. Analysis of Resonance and Limit Cycles in Estimated
Models

For each optimized model (npc, pc, ic, icn), we report the time
constant of the least damped conjugate complex pole, and from
its inverse, the resonant frequency of the closed-loop system fres
[9] and the closed-loop frequency response [22]. For IPC models
(ic, icn) we conducted a sensitivity analysis [9]. This sensitivity
analysis reports the maximum eigenvalue of the closed-loop
system when sampled discretely at each possible open-loop
interval (Fig. 9). Eigenvalues greater than one indicate unstable,
sustained oscillation. Eigenvalues of unity indicate periodic limit
cycles. We tested frequencies of resonance, periodic limit cycles
and also rates of intermittent sampling for correlation with the
frequency of peak amplitude of the non-linear component. Fi-
nally, for experimental and simulated control signals, we calcu-
lated sample entropy (m = 2, r = 0.2 S.D., Chebyshev distance)
as a non-linear measures of complexity [23] not included in the
optimization cost function.

Results report mean±S.D. unless stated otherwise. Fit reports
(1 - nrmse) x 100 which ranges from -� (bad fit), through zero
(borderline linear relationship) to 100% (perfect fit). Statistical
tests report, at alpha = 0.05, a linear mixed effect model (68
trials, 14 subjects, 5 models, 5 conditions) with factors vision
(EO, EC), stability (US, S), disturbance amplitude (normal, L),
model (npc, pc, ic, icn) included within fixed and random ef-
fects (grouped by subject), and ANOVA (Satterthwaite approx-
imation) using functions ‘fitlme’, ’anova’). Post hoc pairwise
comparisons used Bonferroni correction.

III. RESULTS

Thirteen participants completed all five 250 s trials including
eyes open (EO) v eyes closed (EC), unstable (US) v stable (S),
and the reduced amplitude disturbance trial (L). One participant
failed to complete two 250 s trials. The myoelectric control
signal, delays and sway statistics approximated typical values
for natural standing and single segment constrained balance for
the sensory conditions studied (Table I) [4], [6]. The control
signal deadtime was 145±36 ms overall and higher for EO than
EC (F1,19.6 = 7.2, p = 0.014). Position sway was larger (F1,14.0

= 84.0, p<<0.00001) and faster (F1,15.6 = 15.0, p = 0.001)
for EC than EO. Linearity (linear fit to the control signal) was
28%±10% overall and smaller for low amplitude disturbance
(F1,13.9 = 30.1, p = 0.00008).

A. Presence of Non-Linear Oscillation in
All Conditions (H1)

Combining all participants, the non-linear component of the
control signal show a broad amplitude peak in the range 0.2–
2 Hz, referred to as the non-linear oscillation (NLO), for all the

Fig. 6. Non-linear oscillation for all conditions. Shows magnitude v.
frequency for non-linear component of experimental time series (solid)
and complete time series (faint dotted) for all conditions tested eyes
open v close, unstable v marginally stable system, low amplitude (L)
v. higher amplitude disturbance. Each spectrum averaged across 13
participants. Message: non-linear oscillation peak (0.2–2Hz) is present
for all conditions.

TABLE I
BALANCE PERFORMANCE

Shows Metrics (mean ± SD) of Balance for All (All) and Individual Conditions
Including Eyes Open (EO) v Eyes Closed (EC), Marginally Stable (S) v Unstable (US)
System, and Low Amplitude (L) v Normal Amplitude disturbance. Metric info: Fpk and
<f> are Frequency of Largest Amplitude and Mean Power Frequency Respectively
From Range 0.2–2 Hz.

conditions studied (Fig. 6). Non-linear power at low frequencies
(≤0.1 Hz) exceeded the amplitude of the NLO only in the eyes
closed, unstable condition. Overall, the mean power frequency
of the NLO (0.99±0.16 Hz), was significantly higher with eyes
open (F1,14.3 = 25.4, p = 0.0002), and significantly higher for
marginally stable loads (F1,16.2 = 7.0, p = 0.02). The peak
magnitude of NLO was lower for low amplitude disturbance
(F1,20.1 = 23.0, p = 0.0001).

B. Model Fit to Linear and Non-Linear Components (H2)

Fitting scores are summarized in Table II. Cost Function:
Overall fit (cost function) of the NPC model was significantly
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lower than PC and IPC (ic, icn). Main effect of model (F3,22.4

= 11.5, p = 0.00009), post hoc NPC v PC (F1,26 = 22.6,
p<0.001). There was no significant difference between PC or
IPC (ic or icn). Delay: Estimated delays using NPC simulation
were significantly lower than experiment (Table I). Main effect
of model F4,35.6 = 6.4, p= 0.0005), post hoc NPC v Experiment
(F1,16 = 24.1, p = 0.001). There was no significant difference
in delay between any of PC, IPC (ic or icn) and experiment.
The inability to reproduce the experimental delays while fitting
concurrently the linear and non-linear response, rules NPC out
as a viable explanation of this balance task.

Considering only PC and IPC (icn) as leading, viable can-
didate models: Linear: Fit to the linear component is signifi-
cantly higher in IPC (icn) than PC (F1,14.1 = 5.6, p = 0.03),
(Table II). Non-Linear: there was no significant difference in fit
to the non-linear component (F1,12.7 = 1.8, p = 0.20). Delay
fit_non-linear: Fit to the delay before onset of transient increase
in non-linear amplitude was significantly higher in IPC (icn)
than PC (F1,15.4 = 8.5, p = 0.01), (Table II). Fig. 7(a) shows for
the eyes open, unstable condition, how all models reproduce the
non-linear magnitude frequency spectrum; and Fig. 7(b) shows
systematic onset too early and rise too slow in the linear models
(NPC, PC) whereas IPC reproduces the sharp onset in non-linear
amplitude matching the experimental delay. Sample Entropy:
complexity (uncertainty) of PC simulation is significantly higher
than experiment. Main effect of model (F2,16.4 = 32.0, p =
0.000002), post hoc PC v Experiment (F1,26 = 31.1, p<0.0005).
IPC sample entropy was lower than experiment, marginally
below the threshold of significance, post hoc IPC v Experiment
(F1,15 = 8.7, p = 0.049) (Tables II, I).

C. Resonance, Sampling, Limit Cycles and NLO (H3)

The largest underdamped resonance (fres) in all models (npc,
pc, ic, icn) was present at frequencies within the range (0.2-2Hz)
of the NLO (Table III, Fig. 8). The resonant frequency (fres) of
NPC and PC models was significantly lower than experimental
mean power frequency <f> (Tables III, I). Main effect of model
F4,22.7 = 77.4, p<<0.00001), post hoc fres NPC v <f> exper-
iment (F1,16 = 246, p<0.0005) and fres PC v <f> experiment
(F1,16 = 20.9, p = 0.002). PC and NPC (fres) were lower than
<f> by 0.18±0.3Hz and 0.64±0.2Hz respectively. There was
no significant difference between fres IPC (ic or icn) and <f>
experiment.

Trial by trial, these resonant frequencies (fres) correlated with
the mean power frequency<f> of the NLO for PC (r= 0.686, df
= 62, p<<0.00001) and IPC (r= 0.689, df= 66, p<<0.00001).
NPC showed no correlation between fres and <f> (Fig. 8).

IPC use aperiodic sampling with a distribution of open loop
intervals ranging from the model delay (Table IV) to 362, 599
and 891ms (25%, 50%, 75% percentiles), (Fig. 8). The central
instant sampling rate (inverse of mean power open loop interval)
1.75±.13 Hz (mean±SD), showed no significant correlation
with <f> of the NLO. Whereas the model resonant frequency
fres increased with vision (EO Table III) in correspondence with
<f> NLO (Table I), the instant sampling rate decreased with
eyes open (EO), indicating that sampling rate does not cause the
frequency of the NLO.

Sensitivity analysis (Fig. 9): IPC models: For unstable external
systems only, eigenvalues increased beyond unity for open-loop

Fig. 7. Fit of Models to non-linear spectrum and transient. (a) Magni-
tude v. frequency for non-linear component, and (b) Impulse response
function of absolute value of non-linear component with respect to distur-
bance signal, for one condition eyes open (EO), unstable (US) system.
Experimental data (solid blue) and models (npc, pc, ic, icn) (dotted).
Lines show mean of 14 participants. Message: (A) All models reproduce
the magnitude-spectrum. (B) Linear models (NPC, PC) deviate from
experiment for the impulse response.

intervals above 1.5 seconds, giving limit cycles with periods
above 1.5s (Fig. 9 left). The marginally stable external systems
had eigenvalues less than unity and thus no limit cycles. For
both unstable and marginally stable external systems, IPC shows
eigenvalues approaching unity, i.e., an instability boundary, at
open-loop intervals less than 1s.

In the closed-loop transfer function T, PC models show reso-
nance, and IPC models showed larger resonance at around 1 Hz
(Fig. 9 Middle). NPC showed resonance around 0.36 Hz. The
underlying continuous controllers used for the open-loop hold
in IPC models (Fig. 9 Middle) T shows an additional resonance
at 10 Hz that is not present in the complete IPC model. For
IPC, frequency of the resonance in T increased for EO v EC
conditions (Fig. 9 right).

IV. DISCUSSION

Using a bespoke task, providing accurate measurement of
human balance, we seek a feedback control explanation of the
sustained oscillation (0.2–2 Hz) in the control signal. Do limit
cycles or resonance in the neurophysiological feedback loop
cause this oscillation? We tested two linear continuous models,
non-predictive and predictive control (NPC, PC) and one non-
linear model intermittent predictive control (IPC) for their ability
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to simulate concurrently the delays, the delayed linear response
and the non-linear remnant.

A. Key Results

We have clear answers to our three hypotheses (Fig. 3):-
H1: The human control signal is mostly non-linear remnant

(linearity 28%±10%, Table I). The salient feature of
the remnant is the 0.2–2 Hz amplitude peak referred
to as the non-linear oscillation (NLO). This NLO is
present in all conditions with eyes open or closed, when
controlling stable or unstable external systems and when
the amplitude of disturbance is small or large (Fig. 6).
This NLO is an inherent part of the balance process.

H2: PC and IPC can reproduce concurrently the delays,
remnant NLO and linear response (Table II, Fig. 7).
PC and IPC provide possible explanations of human
balance. Non-predictive control (NPC) is not a viable
explanation as it cannot reproduce the estimated delays
concurrently with linear and non-linear components.

H3: Limit cycles are rejected as a general explanation of
the NLO, since the NLO was present for stable as
well as unstable external systems (Fig. 9). Closed loop
resonance, combined with continuous predictive (PC)
or intermittent predictive IPC control is a possible ex-
planation of the NLO (Fig. 8, Table III).

B. Do These Results Generalize to Natural Human
Balance?

We use a bespoke task to test balance control. Estimation
of the human control system is informed by precise measure-
ment of the disturbance, control signal and system output (po-
sition) of a known external system, and a known neuromus-
cular system converting EMG into force. In natural standing
the control signal for a multi-segment system is hard to de-
fine, the neuromuscular and mechanical system are also hard
to define precisely and system output (whole body CoM) is
difficult to measure precisely. In natural balance, separation of
neuromotor from passive contributions to the control signal is
imprecise.

Do our findings apply to natural balance? In our task, bal-
ance is natural. Participants use their own muscles and their
own natural senses to control movement of their own bodies
which are strapped to the board. The actuated board becomes
part of their body. The difference from normal standing is
that movement of their body is constrained to one degree of
freedom namely forward and backward motion around the ankle
joints. The disturbance steps are small (∼4 Nm) in relation to
oscillation of the control signal associated with balance and
the sway statistics, e.g., rms sway, rms speed and frequency
of non-linear oscillation (NLO) (Table I) are similar to natural
standing [4], [6].

Both this task and normal postural balance, require partici-
pants to engage in the same processes to estimate and generate
the muscular forces required to balance the effect of external
forces and control body position within a finite range. So the
neurophysiological control processes studied here should be
representative of natural balance.

TABLE II
FIT OF MODELS TO LINEAR AND NON-LINEAR COMPONENTS AND DELAYS

Shows Fit of Models to All Trials As Mean ± SD. Fit Is (1-nrmse) x 100. Rows:
Cost Function Shows Overall fit. Linear and Nonlinear Show Fit to Linear and
Non-Linear components. Delay Fit and Delay Fit_Non-Linear Show Respectively
Percentage Fit to Estimated Delay and Delay to Non-Linear Impulse response.
Delay Shows Actual Delay (s) Estimated From Model Simulated Control Signals
(nksim): c.f. Table I Delay.

C. Short Term Prediction Is Required to Explain Balance
and the Non-Linear Oscillation (0.2–2Hz)

NPC is not a viable explanation of this balance task as it could
not reproduce the experimental delays concurrently with linear
and non-linear components. This result is consistent with known
function of the cerebellum as a short term predictor and known
role of the cerebellum for balance [12], [24].

Previous investigations used NPC (delays, state feedback,
state estimation (Fig. 2(a)) [1], [2], [6], [11], and didn’t use PC
which uses predicted future states (e.g., one closed-loop delay
ahead) for state feedback [10], [14], [25] (Fig. 2(b), Table IV).

Discrimination between predictive and non-predictive control
requires a) experimental stimulus-response data accurate and
precise to high frequencies, b) a neuromotor response signal
uncontaminated by passive non-motor components, c) accurate,
precise knowledge of the neuromuscular and external system
being controlled, d) control models representing NPC and PC,
and e) convincing fit to experimental delays concurrent with
reproducing the linear response and all features of the non-linear
remnant.

This study used stepwise changes in force disturbance giving
high frequency range to the independent stimulus. The measured
response (myoelectric signal) was a direct output of the human
neuromotor system, and was the signal actually used to control
balance. Quality of this stimulus-response data is shown by
statistically significant differences in experimental delay (EO
v EC) from only 14 participants. We propose the ability to
distinguish experimental delays (EO v EC) as one benchmark
of data quality for discriminating PC from NPC. We propose
ability to fit individual experimental trials without averaging as
a second benchmark for data quality. We propose ability to fit
delays, linear response and all features of the non-linear remnant
as a third benchmark.

These previous datasets of constrained and natural balance
may lack stimulus-response data to the accuracy, precision and
frequencies required, and lack knowledge of the neuromuscular
system and plant to the accuracy required to discriminate NPC



LORAM et al.: INTERMITTENT CONTROL THE SOURCE OF THE NON-LINEAR OSCILLATORY COMPONENT 3631

from PC. Briefly, these studies compared model simulations
to (i) the average (8 subjects) complex frequency response
(constrained body position/support surface angle) and remnant
(stochastic) magnitude frequency response, at 0.017–1.3 Hz [6];
(ii) the average (18 subjects) complex frequency response alone
(e.g., composite EMG signals/estimated leg-trunk segment an-
gles), at 0.025–5 Hz [11]; (iii) to the complex frequency response
(ankle torque/platform acceleration) and remnant magnitude
frequency response at 0.06 – 4.4 Hz [1]. (iv) In the time do-
main, a composite EMG signal was fitted to a delayed, linear
combination of derivatives (0, 1, 2) of estimated CoM position
averaged over all push-pull platform accelerations [2] A linear
fit and estimated delay alone does not discriminate NPC from
PC. Discriminating NPC from PC requires models with accurate
values for the external system and accurate values of the position
(CoM), control and disturbance signals.

D. Limit Cycles Are Eliminated As a General Explanation
of the Non-Linear Oscillation (0.2–2Hz)

Limit cycles are a property of non-linear systems, and have
been considered a possible feature of human balance [8], [26],
[27]. Limit cycles are a periodic return of the system to the same
state, without external input [8]. IPC (Fig. 2(c)) can produce limit
cycles when the generalized open-loop hold is mismatched to
the underlying closed loop system [9].

When the generalized hold is system matched, the IPC system
is stable no matter what the open loop interval [28]. However
when the hold is based upon an inaccurate model of the external
system (gac � 1, limit cycles can occur at certain open loop
intervals [9], but only for unstable external systems.

Two facts rule out limit cycles as an explanation of the
observed NLO. First the NLO occurs in stable as well as unstable
systems. Second, sensitivity analysis of the eigenvalues v. open
loop interval, showed that even for the unstable systems studied,
the period of limit cycles (>1.5 s), is too long to account for the
mean <f> and peak fpk power frequencies 0.99±0.2 Hz and
0.87±0.3 Hz (Table I, Fig. 9) of the NLO. The NLO is not a
limit cycle.

E. Resonance Explains the Non-Linear Oscillation
(0.2–2Hz)

For predictive control models (PC, IPC) the frequency of
closed-loop resonance fres correlated trial by trial with the mean
power frequency <f> of NLO Fig. 8, Table III). For IPC,
frequency of sampling did not correlate with <f> of NLO. Thus
closed-loop resonance provides a general, linear or nonlinear
explanation of the NLO. For IPC the frequency of resonance
fres equals the mean frequency <f> of NLO with no significant
systematic error, though for PC fres was significantly lower than
<f> (Fig. 8, Tables I, III).

A resonant circuit requires an input to excite an oscillation. For
linear models, sensorimotor noise provides a stochastic input.
We used observation noise consistent with noisy state-estimation
[1], [6], [11]. For IPC, excitation of the NLO occurs determin-
istically (Fig. 5) with or without sensorimotor noise [7]. IPC in-
cludes a sequential process of event triggered sampling, discrete
reset of the hold states and continuous open loop implementation
of the reinitialized hold [10], [15]. The event trigger, sampling
and hold processes (Fig. 2(c)) are not present in linear control

Fig. 8. Resonance and open loop intervals in relation to NLO. Left:
Vertical axis: Mean power frequency of NLO (<f>). Horizontal axis: Fre-
quency of largest underdamped resonance (fres) for ic and pc models.
Shows all trials. Solid line shows <f> = fres. Right: Distribution of open
loop intervals for ic model, median for each condition.

TABLE III
RESONANCE

Shows Frequency of Largest Resonance (mean ± SD) for All Models (npc, Pc, Ic, icn)
and Conditions Including Eyes Open (EO), Eyes Closed (EC), Marginally Stable (S),
Unstable (US) System, and Low Amplitude (L) Disturbance and All Combined (All).

(Fig. 2(a), (b)). Inaccurate prediction, resulting from unpredicted
disturbance, inaccurate model of the system or added noise, will
trigger sampling when the prediction error exceeds a threshold
[7], [15]. Discontinuity in the control signal injects energy into
the closed loop at each iteration of event triggered sampling
even when IPC is wholly deterministic and noise free. Sequential
injection of energy, at the frequency of sampling provides one
possible, but rejected, explanation of the frequency of NLO.

Resonance shown by a peak in closed-loop gain T (Fig. 9)
indicates a large response at certain timescales in relation to
an unpredicted disturbance. Falling over takes approximately
∼1s. A large response on this timescale is valuable for survival.
This large response is unhelpful only if it turns into oscillation
which cannot be turned off. In neurological conditions (essential
tremor, Parkinson’s, dystonia) uncontrollable tremor illustrates
the undesirability of oscillation that cannot be stopped.

A linear controller contains no mechanism for interrupting
resonant oscillation. In linear controllers, closed loop resonance
arising from delays and poorly tuned parameters, may indicate
that control is not optimal.
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IPC provides mechanisms within the main feedback loop for
resetting the state of the controller (Fig. 2(c)). When a reset is
triggered by prediction error exceeding a threshold, the current
state of the hold (magnitude and phase) has no influence on
the new state value. The open-loop hold implements a fast un-
derlying continuous controller from the new re-initialized hold
state. Evolution of the hold state is not influenced by measured
or observed feedback. See how the underlying continuous con-
troller icnucc has higher closed loop gain at higher frequencies,
and additional resonance at 10 Hz, compared with PC, and with
NPC (Fig. 9).

We propose, that reinitialization and open loop operation of
fast continuous controllers within a main slow discrete control
loop, benefits robust control of balance [29]–[31].

F. Neurophysiological Interpretation of PC
and IPC Models

Valid explanations must reproduce the observed experimental
delay (145±40 ms, Table I). The experimental delay includes a
precise “Trigno” delay of 48 ms, which conveniently equals the
physiological delay (49.7±7 ms) between onset of EMG and
onset of force during voluntary (as opposed to electrically stim-
ulated) contraction [32]. Second order neuromuscular dynamics
combined with noise or non-linear variation explain latency
longer than the model delay to observe statistically significant
responses.

NPC model delays were 85±20 ms (Table IV). However, since
NPC could not reproduce experimental delays NPC is eliminated
as a valid model.

Using model delays of 108±40 ms (Table IV), PC repro-
duced the observed delay (145±40 ms, Table I). The PC delay
for all unpredicted disturbance is fixed whereas physiological
reaction times show a distribution. Furthermore, 108±40 ms is
inconsistent with previous, estimates of the delay from other
authors (∼88±7 ms) [2] and has the unphysiological attribute
of excluding lower limb spinal feedback. However 108±40 ms
is reasonable as a mean delay representing balance mediated by
trans-cortical feedback loops [30], [33].

IPC reproduced observed delays using model delays of 88±20
ms (Table IV). The IPC delay represents the minimum value
of a distribution which includes additional variable time for
each unpredicted disturbance to cause prediction error to ex-
ceed a threshold. This latency (88±20 ms) and the distribution
of open loop intervals (Fig. 8) is consistent with a minimum
delay defined by spinal feedback and a main contribution from
transcortical and central pathways [30].

While there is no significant difference in cost function fit,
IPC fits features of the data significantly better than PC (Lin-
ear, Delay fit_non-linear, Sample Entropy, Table II; mean power
frequency Table III, Fig. 8). PC uses noise to reproduce the
remnant. PC sample entropy is significantly higher than exper-
iment, thus PC is unphysiological. IPC produces the remnant
mechanistically and sample entropy is marginally lower than
experiment (Tables I, II). Additional sources of variability (e.g.,
time varying parameters) are possible, thus IPC is compatible
with physiology.

IPC confers a functional benefit. Unlike linear control, IPC
can use a resonant response without the disadvantage of uncon-
trollable oscillation. Open loop implementation of an underlying

Fig. 9. Sensitivity Analysis. For a range of open-loop intervals Δol, ||Λ||
is the maximum eigenvalue of the periodically sampled discrete system
including a hold matching the underlying continuous control system, and
a series mismatch gain gac [9]. Left: shows ||Λ|| for ic models, median
for each condition. Dotted lines show the same calculation for PC to
compare with IPC.(using a hold matched precisely (gac = 1) to the
optimized PC model), Middle & Right: show closed loop transfer function
T (ue/d) as magnitude v frequency (top) and phase v frequency (bottom).
IC computed for periodic sampling [22]. Middle: For each model (npc,
pc, ic, icn), shows median of all 68 trials. Note ic_ucc, icn_ucc show
underlying continuous controller used for the ic and icn open-loop hold
(c.f. Appendix). Note also. ic/icn overlap and ic_ucc, icn_ucc overlap.
Right: For icn model, shows each condition (median). Message 1: IPC
limit cycles occur only with unstable systems. Message 2: Compared
with PC, IPC has enhanced resonance around 1 Hz.

TABLE IV
SELECTED MODEL PARAMETERS

Model Delay: NPC, PC Shows Delay td. IPC (ic, icn) Shows Delay +sampling
Delay Td + Δs. System Hold Mismatch Applies Only to IPC. gac<1, Indicates
System Matched Hold Is Over Estimating the Required Size of Control signal. Shows
Parameters As Mean ± SD. (c.f. Supplementary Material Table SM1 Shows All Model
Parameters).

continuous controller, within a main discrete feedback loop that
can reset the states, allows IPC to use shorter latency, higher
gain underlying continuous control than the equivalent linear
controller (Fig. 9, icnucc v PC, NPC).This combination of fast
continuous feedback loops within a main slow discrete feedback
loop is observed in vertebrate neurophysiology [29], [30]. In all
vertebrates, the basal ganglia provides a metabolically costly,
and thus important, main function of generalized tonic inhibition
of fast trans-cortical and subcortical sensorimotor loops. The
basal ganglia loop also provides discrete selection (disinhibi-
tion) and reinforcement of beneficial responses. Functionally,
the basal ganglia provides a slow pathway within the main
sensorimotor feedback loop. Working together the cerebellum
and basal ganglia can sequentially switch on or off, and change
the gain of transcortical and spinal reflex loops, can potentially
shortcut, or not, the main slow loop, and can learn from and
model, these reflex loops [12], [13], [24], [30]. In principle,
vertebrates contain the neurophysiological machinery for IPC.
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The exaggeration and emergence of tremor in neurologi-
cal conditions (essential tremor, Parkinson’s, dystonia), adds
weight to the idea that processes of IPC are associated with
distributed basal ganglia, cerebellar loops [12], [13], [30]. These
IPC processes not present in linear PC or NPC, include short
term prediction, detection of prediction error, sequential event
triggered sampling, modelling of systems within a generalized
hold, reselection of initial hold states, and gating of feedback
to allow open loop implementation of the continuous hold. This
processes are worth investigating for their potential to explain
uncontrolled tremor and other deficits of balance in neurological
conditions.

G. Current Limitations and Possible Future Extensions

Our analysis used a single, main feedback loop to repre-
sent balance control and tested three models (NPC, PC, IPC).
This approach lumps spinal, transcortical and more voluntary
feedback into a single feedback controller. Our results showed
that experimental sample entropy lies between that predicted
by PC and IPC and was closer to IPC. IPC appears close to
neurophysiological reality with some amendment required to
incorporate continuous control more fully.

For example, spinal, transcortical and voluntary feedback
could be combined in parallel. Following c.f. Fig. 1 [16], the
external system and neuromuscular system augmented by fast
continuous, spinal/transcortical feedback could be modelled as
an augmented system controlled by an intermittent controller.
IPC feedback could add to fast continuous spinal/transcortical
feedback (parallel control) or could provide a setpoint to
spinal/transcortical feedback (cascade control).

Evidence suggests short and long latency reflexes are limited
in magnitude and are pulsatile (short duration) in nature [34],
[35]. This evidence supports a serial concept in which a short
duration reflex response is the first response to prediction error
arising at short latency relative to the original discrete distur-
bance. That first response is followed by sequential responses
at longer latencies relative to the original disturbance. The
IPC model illustrates the serial concept, and already combines
continuous with intermittent control (Fig. 2(b)). For IPC, the
observer generating estimated states, the predictor generating
future states one closed loop delay ahead (e.g., 100 ms), and the
open loop hold generating time evolving states from an initial
state are all continuous. The hold models the continuous closed
loop system that it is matching. In the context of this serial
model, spinal/transcortical reflexes are therefore understood as
the initial triggered response to an unpredicted disturbance rather
than as the response of a separate feedback system.

V. CONCLUSION

We report a whole body balance task, providing data suitable
for discriminating non-predictive, predictive, and intermittent
predictive models of human balance control. We provide evi-
dence that:

1) the non-linear oscillation (NLO) (0.2–2Hz) present in
healthy balance control is explained by closed-loop reso-
nance, not limit cycles

2) short-term prediction is required for human balance. The
standard state-estimation, state feedback model of hu-
man balance did not replicate concurrently the experi-
mental delays, linear response and oscillatory non-linear
remnant.

3) intermittent predictive control (IPC) is a viable explana-
tion of human balance, fitting and explaining the mean
frequency of NLO, sample entropy, the linear response,
and non-linear delay better than continuous predictive
control (PC).

4) processes of IPC (prediction error, threshold related sam-
pling, sequential re-initialization of generalized hold,
continuous open-loop implementation of predictive con-
trol) enable high gain fast reflexes (resonant closed loop
gain) without uncontrolled oscillation.

Significance: IPC provides new model based concepts to
investigate balance in healthy and neurological conditions.

APPENDIX

Description of models [10]
Definition of external and neuro-muscular system.
The human participant controls an external 2nd order sys-

tem using their net myoelectric signal. The explanatory model
controls a dynamic system including the external system and
a neuromuscular system representing the generation of the net
myoelectric signal from state feedback. The external and neu-
romuscular system are connected in series (Fig. 2).

Fig. 2 shows the external 2nd order system, labelled “system”
in Fig. 2(a), (b), and a 2nd order linear approximation of the
neuro-muscular system, with a time-constant of 100ms, labelled
“neuromusc. system”. The system is augmented by a disturbance
observer with integral action to compensate for any constant
disturbances [10], [15].

Linear controllers (Fig. 2(a), (b)): A standard continuous-time
state-space controller [15], [25] containing an optimal state
observer together with a state-predictor which compensates the
model delay td and state feedback (not optimal), is used as
a linear continuous-time predictive controller (PC) modelling
the human operator (Fig. 2(b)). The linear, continuous non-
predictive controller (NPC), Fig. 2(a)) omits the state predic-
tor. Four measured system outputs, yo (position, velocity, and
neuromuscular states), are taken as observer inputs, together
with the control signal u. The state observer is designed using
standard steady-state linear quadratic methods, which involve
minimizing a quadratic cost function of the weighted control
signals, system states and output signals [7]. The state feedback
gains are adjusted freely by model fitting.

Intermittent predictive controller (Fig. 2(c)): The intermittent
controller (IPC) [15] is based on the same structure as the
linear continuous time predictive control (PC), but instead of
continuous feedback of the observer state, feedback is only
used at discrete time points, ti (indicated by the dashed line).
The sampled observer state, xo(ti), is fed to a predictor and
subjected to a computational delay, td which represents the
predicted physiological delay, resulting in the predictor state
xp(ti). The predictor state is used as the initial condition for
a system matched hold element (labelled as “hold”) with dy-
namics which correspond to those of the equivalent continu-
ous time predictive control loop [15]. Thus, in the absence of
disturbances, the hold state xh follows the observer state xo. A
gain gac applied between state feedback and the neuromuscu-
lar system simulates mismatch between the assumed-predicted
system and actual system. When disturbances or uncertainties
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affect the loop, xh will diverge from xo, resulting in a non-zero
prediction error, ep(t)= xh(t)−xo(t). A quadratic switching func-
tion of the form epT Qtep > 1, with Qt a positive semi-definite
matrix, is defined as an event trigger to reset the hold state xh to
the observer state xo [10], [15]. All elements of ep corresponding
to the velocity (epvel), position (eppos), two neuromuscular states,
and estimated disturbance are considered, and Qt is a diagonal
matrix with five positive elements, θ1-5), forming the axes of
an elliptic switching surface. The time between trigger events
is the intermittent (open-loop) interval, Δol

i = ti−ti−1. A new
trigger event can only occur if Δol exceeds a minimal open loop
interval, Δol

min > td + Δs.
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