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A B S T R A C T   

Diabetic Retinopathy (DR) is a major complication in human eyes among the diabetic patients. Early detection of 
the DR can save many patients from permanent blindness. Various artificial intelligent based systems have been 
proposed and they outperform human analysis in accurate detection of the DR. In most of the traditional deep 
learning models, the cross-entropy is used as a common loss function in a single stage end-to-end training 
method. However, it has been recently identified that this loss function has some limitations such as poor margin 
leading to false results, sensitive to noisy data and hyperparameter variations. To overcome these issues, su
pervised contrastive learning (SCL) has been introduced. In this study, SCL method, a two-stage training method 
with supervised contrastive loss function was proposed for the first time to the best of authors’ knowledge to 
identify the DR and its severity stages from fundus images (FIs) using “APTOS 2019 Blindness Detection” dataset. 
“Messidor-2” dataset was also used to conduct experiments for further validating the model’s performance. 
Contrast Limited Adaptive Histogram Equalization (CLAHE) was applied for enhancing the image quality and the 
pre-trained Xception CNN model was deployed as the encoder with transfer learning. To interpret the SCL of the 
model, t-SNE method was used to visualize the embedding space (unit hyper sphere) composed of 128 D space 
into a 2 D space. The proposed model achieved a test accuracy of 98.36%, and AUC score of 98.50% to identify 
the DR (Binary classification) and a test accuracy of 84.364%, and AUC score of 93.819% for five stages grading 
with the APTOS 2019 dataset. Other evaluation metrics (precision, recall, F1-score) were also determined with 
APTOS 2019 as well as with Messidor-2 for analyzing the performance of the proposed model. It was also 
concluded that the proposed method achieved better performance in detecting the DR compared to the con
ventional CNN without SCL and other state-of-the-art methods.   

1. Introduction 

In 2019, the International Diabetes Federation (IDF) announced that 
over 460 million people aged between 20 and 79 suffered from diabetes 
around the world [1]. According to their statistical measure, the number 
of affected people is expected to reach 700 million by 2045. Diabetic 
Retinopathy (DR), vision impairment, heart attacks, renal failure, and 
stroke are the serious health issues associated with the diabetes. DR, a 
frequent diabetes consequence, happens when the blood vessels in the 
retina are damaged by high blood sugar levels, causing swelling and 

leakage [2]. In the fundus retina image, lesions are appeared as leaking 
blood and fluids. Red and bright lesions are the types that can be 
commonly identified during diagnosis of the DR. Microaneurysms (MA) 
and hemorrhage (HM) are involved in the red lesions, whereas soft and 
hard exudates (EX) are involved in the bright lesions. MA refers to the 
small dark red dots, whereas HM refers to the larger spots. Soft EX shows 
as yellowish-white and fluffy dots caused by nerve fiber injury, whereas 
hard EX appears as distinctive yellow spots [3]. Fig. 1 shows a Fundus 
Image (FI) with various lesions for DR identification [4]. A person’s 
eyesight may be entirely lost at the severe stage of the DR. The global 
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prevalence of the DR-related blindness is estimated to be approximately 
2.6% [5]. The risk of blindness can be minimized if the DR is detected at 
an early stage. 

Various imaging modalities have been developed so far for diag
nosing retinal related diseases such as DR, diabetic macular edema 
(DME), glaucoma, and choroidal neovascularization (CNV). Optical 
coherence tomography (OCT) is a non-invasive retinal imaging tech
nology that is used to obtain high-resolution micro-meter level cross- 
sectional images of the retina useful for assessing structural changes 
associated with the DR [6]. OCT images provide the retinal thickness 
and tortuosity through the morphology and reflectivity of retinal layers 
and DME is the thickening of macula, the central part of the retina [7]. 
OCT is more sensitive to small changes in the retinal thickness and 
therefore mainly used for the DME diagnosis. Optical coherence to
mography angiography (OCTA) imaging technology can detect and 
illustrate movement in ocular structures and choroidal vasculature in 
the posterior segmentation of the eye [6]. OCTA generates the volu
metric view of blood vessels [8] by utilizing sequential OCT scans. 
Fundus photography (FP) is another retinal imaging modality used for 
clinical studies to grade and monitor the severity progression of DR over 
time [9]. Though the OCT images capture the thickness changes, the 
OCTA captures volumetric blood vessels and can be used for classifying 
images as normal or DR. However, for grading its different severity 
stages (five stages) various lesions like microaneurysm, hemorrhages, 
exudates etc. Available in FP are used. Therefore, the OCT and OCTA 
imaging modalities are basically used for DME whereas grading severity 
levels is assessed by the FP imaging modality. In this study, the severity 
of the DR was classified using the images obtained from the FP imaging 
modality. 

However, manual examination of Optical Coherence Tomography 
(OCT) or color FIs of the retina is conducted in traditional methods for 
detecting the presence of DR and this requires experienced and profes
sional ophthalmologists due to the use of sophisticated grading systems 
during the DR diagnosis. Furthermore, there is a high probability of 
misdiagnosis during the manual examination, and it is time-consuming 
and expensive. 

Since it is necessary to detect the DR correctly at an early stage for 
reducing the chances of blindness, in the last decade many researchers 
have proposed several computer-aided intelligent diagnosis systems. 
Many researchers have developed several machine learning and deep 
learning algorithms for the automatic detection of DR. However, still 
there is a huge scope of improvement in the case of detecting the DR 
accurately using image analysis by machine learning (ML). So far 
various works have been carried out on the DR detection using end-to- 
end one stage training. Here, a two-stage training approach was 
applied with SCL method. To the author’s best knowledge, so far, the 
classic cross-entropy loss function was used in most of the cases for 

detecting the DR severity. However, more recently some limitations of 
the cross-entropy loss function have been identified. For instance, it is 
sensitive to noisy data and hyperparameter variations, and it also pro
vides poor margin which produces erroneous results if the inputs vary 
slightly from the training data [10,11]. To overcome these issues, a 
novel loss function called supervised contrastive loss function (Super
Con) was used in SCL and this shows significant improvement in 
obtaining model accuracy and robustness. Now-a-days, SuperCon found 
widespread applications in computer vision research. As the images are 
collected from different sources, most of the cases they are noisy and five 
stages labelling by human effort is also erroneous. 

Therefore, SCL, a very simple method, was applied for the DR 
grading from the FIs. Xception deep learning model was employed as the 
encoder. CLAHE was applied for preprocessing the FIs for improving the 
quality of the images. A binary classification was conducted to identify 
whether a FI is DR or not along with a multiclass classification for 
further detection of five stages of the DR. 

The novel contributions of this work are as follows.  

1) A two-stage training method (SCL) was proposed for the first time to 
detect the DR and its severity levels.  

2) Xception CNN model was used as the encoder for representation 
learning.  

3) CLAHE was applied for enhancement of the image quality.  
4) t-SNE method was followed to visualize the embedding space learned 

by the SCL. 
5) Earlier stages were detected with a greater accuracy before it pro

gresses to the severe and PDR stages. 

The rest of the paper is organized as follows: Section 2 describes the 
previous work related to the DR while Section 3 presents the datasets 
that have been considered in this study. The proposed framework for 
conducting this research is described in Section 4 and the results are 
presented and analyzed in Section 5. Finally, Section 6 presents the key 
conclusions and recommendations for future work. 

2. Literature review 

In the past two decades, several research works have been proposed 
for the automatic detection of the DR through image analysis by ML. 
Approximately 425 articles have been published in prestigious journals 
in the past 19 years presenting different strategies for detecting the DR 
[12]. In this section, a few of the recent works have been reviewed 
briefly. 

Traditional ML approaches such as, support vector machine (SVM), 
Random forests (RF), neural network (NN), naive Bayes (NB), multilayer 
perceptron (MLP) and extreme learning machine (ELM) were used in 
some of the research works for identification of the DR. Features were 
retrieved using image processing techniques like HOG features, texture 
features, Wavelet features etc., and employed to the traditional machine 
learning or neural network-based classifiers. Ramasamy et al. [13] 
extracted features based on textural gray-level features like 
co-occurrence, run-length matrix, as well as the coefficients of the 
Ridgelet Transform and fused them. Finally Sequential Minimal Opti
mization (SMO) classifier was used to classify DR images. They achieved 
98.87% sensitivity, 95.24% specificity, 97.05% accuracy on DIA
RETDB1 dataset, and 90.9% sensitivity, 91.0% specificity, 91.0% ac
curacy on KAGGLE dataset. Asha et al. [14] utilized three ML models NB, 
MLP, and ELM for classifying the DR from the FIs achieved an accuracy 
of 90% using ELM that outperformed the other models. Ali et al. [15] 
introduced a novel clustering-based region growing framework and 
utilized different types of ML algorithms for detecting the DR. It was 
calculated that 245 pieces of hybrid feature were obtained from each FI 
than 13 features were selected using four feature selection methods. A 
custom dataset 2500 FIs were used in the investigation and obtained an 
accuracy of 99.73% using the ML algorithm. Gayathri et al. [16] 

Fig. 1. Fundus image with various lesions for DR classification.  
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proposed a lightweight CNN model for detecting the DR from the FIs. 
First, the features from the images were extracted using a six-layer CNN 
model. Five ML algorithms (SVM, RF, AdaBoost, Naïve Bayes, J48) were 
used for classifying the images. In several cases, their proposed strategy 
produced near-perfect categorization findings. Sikder et al. [17] pro
posed a decision tree-based ensemble learning algorithm for detecting 
five stages of the DR. They used gray-level intensity on FIs and extracted 
features using a genetic algorithm (GA) and achieved accuracy and 
F-measure of 94.20% and 93.51% respectively. Chetoui et al. [18] 
introduced various texture features for DR and used SVM as classifier. 
They obtained an accuracy of 0.904, and AUC score of 0.931 with 
SVM-RBF kernel. Huda et al. [19] applied classification algorithms on 
several features like Optic disk, microaneurysms, exudates, hemor
rhages of DIARET-DB dataset having region based lesion information 
and final decision was made using SVM, Decision Tree (DT), and Logistic 
Regression algorithms which achieved 88% accuracy. 

Though ML algorithms achieved a favorable result but the features 
extraction with image processing techniques needs extra effort. 
Recently, deep CNN models have showed greater success in computer 
vision, bio-informatics. Therefore, various works have been reported 
based on deep CNN models to detect the DR from the FIs. Transfer 
learning approach was used in some works to adapt with the relatively 
small size DR Datasets. Liu et al. [20] utilized transfer learning approach 
trained with ‘imagenet’ models EfficientNetB4, EfficientNetB5, NAS
NetLarge, Xception, and InceptionResNetV2 for predicting the DR from 
the EyePACS dataset. An enhanced cross-entropy loss function and three 
hybrid model structures for the classification of the DR were developed 
and achieved accuracy and sensitivity of 86.34% and 98.77% respec
tively. Sheikh et al. [21] applied four transfer learning algorithms which 
were VGG16, ResNet50, InceptionV3, and DenseNet121 for identifying 
the DR from the FIs. Better prediction performance was obtained using 
the DenseNet121 model. A deep convolutional neural network was 
proposed by Xu et al. [22] obtained an accuracy of 94.5% for automatic 
DR classification. They used various augmentation to reduce the over
fitting problem of small dataset. Gangwar and Rav [23] proposed a 
hybrid model where a custom block of convolutional neural network 
(CNN) was accumulated on top of pre-trained Inception-ResNet-v2. For 
training these hybrid models, two Kaggle datasets were employed: 
Messidor-1 and the APTOS 2019. They achieved 72.33% and 82.18% 
test accuracy for the Messidor-1 and APTOS 2019 datasets, respectively. 
Hemanth et al. [24] presented a DR detection and classification method 
based on a CNN. They used both HE and CLAHE for image contrast 
enhancement and obtained a classification accuracy of 97% and 
F-measure of 94% using CNN model. Das et al. [25] proposed a novel 
CNN for classifying normal and abnormal patients using the FIs. The 
blood vessels were extracted from the images using maximal principal 
curvature method. To enhance and eliminate falsely segmented regions 
adaptive histogram equalization (AHE) and morphological opening 
were applied. DIARETDB1 dataset was considered and attained an ac
curacy and precision of 98.7% and 97.2% respectively. Pires et al. [26] 
gradually build a bigger CNN model, performed different types of 
augmentation, and multi-resolution training using APTOS 2019 dataset 
and the tested model using the Messidor-2 dataset achieved an area 
under the receiver operating characteristic (ROC) curve of 98.2%. Liu 
et al. [27] designed a new model where multiple weighted paths CNN, 
named WP-CNN, for detecting the DR. Three models were designed 
including WP-CNN-32, WP-CNN-52, and WP-CNN-105 that consist of 
32, 52, and 105 convolutional layers respectively. A high prediction 
accuracy of 94.23%, sensitivity of 90.94%, and specificity of 95.74% 
were obtained. Math et al. [28] introduced a segment-based learning 
method for predicting the DR. They adapted a segment-level DR esti
mation using a pre-trained CNN and merged all the segment levels for 
classification, which obtained an area under the ROC curve of 0.963. 
Zeng et al. [29] proposed a Siamese-like binocular CNN model and ob
tained an AUC score of 0.951 which is 0.011 higher than existing 
monocular model for detecting the DR automatically. During the 

training phase, 3062 DR images were utilized and conducted external 
validation afterward to obtain sensitivity and specificity values above 
97%. 

Also, various ensemble learning methods was used for DR classifi
cation with multiple classifiers rather than a single classifier. Zhang 
et al. [30] proposed an automated DR identification and grading system 
named DeepDR for determining the prevalence and severity of the DR 
using the FIs. Ensemble learning based method was utilized with 
Inception V3, Xception and InceptionResNetV2 CNN models and ach
ieved an area under the curve of 97.7%, a sensitivity of 97.5%, and a 
specificity of 97.7%. Kaushik et al. [31] presented a stacked model with 
three CNN models and achieved an accuracy of 97.92% for binary 
classification and 87.45% for multi-class classification on EyePACS 
dataset. 

Besides image-level grading for DR classification, various segmen
tation tasks were conducted for segmenting and localizing various le
sions information like blood vessels, microaneurysms, hemorrhages, 
exudates etc. Maqsood et al. [32] proposed a new 3D CNN model for 
localizing the early sign of DR called hemorrhages and a pre-trained 
vgg19 model was used for extracting features from the segmented 
hemorrhages. 1509 images from HRF, DRIVE, STARE, MESSIDOR, 
DIARETDB0, and DIARETDB1 databases were used for the experiments 
and achieved an average accuracy of 97.71%. Xu et al. [33] presented an 
enhanced U-Net named FFU-net for segmenting lesions of DR. IDRiD 
dataset was used in this work and achieved 11.97% sensitivity, 10.68% 
IoU, 5.79% Dice score. Hasan et al. [34] proposed an end-to-end enco
der-decoder network named DRNet for the segmentation and localiza
tion of optical disk (OD) and fovea centers. For OD segmentation, they 
achieved mIoU score of 0.845, 0.901, 0.933, and 0.920 for IDRiD, 
RIMONE, DRISHTI-GS, and DRIVE, respectively. Nazir et al. [35] pro
posed a Faster-RCNN based model to segment lesions like hard exudates, 
soft exudates, microaneurysms, and hemorrhages using the diaretdb1 
dataset and achieved accuracy of 0.95 and Intersection over union (IOU) 
of 0.94. Sambyal et al. [36] proposed a modified U-Net with residual 
network for the segmentation microaneurysm and hard exudate lesions. 
For this, they trained the model on e-optha dataset and validate on 
IDRiD dataset achieved 99.88% accuracy, 99.85% sensitivity, 99.95% 
specificity and dice score of 0.9998 for both microaneurysm and exudate 
segmentation. Zago et al. [37] developed a patch-based deep CNN model 
for red lesion segmentation and localization. For this Diaretdb1 dataset 
was used and obtained an AUC score of 0.912. 

Various attention-based works, fuzzy-classifier and hybrid works 
were also done for DR classification. Li et al. [38] developed a cross 
disease attention network (CANet) for predicting the DR. Two types of 
attention modules were generated including disease specific module and 
disease dependent module. Messidor and IDRiD challenge datasets were 
considered for training the ML models and attained a prediction accu
racy of 85.10%. Mahmoud et al. [39] proposed a hybrid inductive ma
chine learning algorithm (HIMLA) for the automatic detection of the DR. 
They encoded and decoded FIs for improving image quality. Finally, 
they extracted features and classified using multiple instance learning 
(MIL), achieved an accuracy of 96.62%. Afrin & Shill [40] extracted 
features like blood vessels, microaneurysms, exudates using image 
processing technique. Then measures blood vessels area, micro
aneurysms count, exudates area from the processed images and fed these 
features into a knowledge-based fuzzy classifier for classification, ach
ieved an accuracy of 95.63%. Lal et al. [41] developed a framework for 
preserving the classification with correct labels free from adversarial 
attack, training and feature fusion. Their defensive model achieved 99% 
accuracy. Most of the previous research works were focused on 
binary-classification and saw great success in identifying the DR. Again, 
complex features were extracted using image processing techniques in 
traditional machine learning approaches which could lead to complex 
processing and often poor results. However, there is still huge scope for 
developing ML models that can improve the DR prediction accuracy 
without complex operations particularly for the multiclass classification. 
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3. Dataset description 

Various datasets are publicly available for the grading of the DR such 
as Messidor-1, Messidor-2, EyePack, and APTOS 2019. In this research 
work, APTOS 2019 dataset was considered and collected from the 
Kaggle competition [42]. The dataset of FIs was provided by Aravind 
Eye Hospital in India and contained five stages to detect the severity 
levels named No DR, mild stage, moderate stage, severe stage, and 
proliferative diabetic retinopathy (PDR) stage to detect and prevent this 
disease among people living in rural areas where medical screening is 
difficult to conduct. Aravind technicians travelled to these rural areas to 
capture images using high resolution specialized fundus cameras con
sisting of an intricate microscope attached to a flash enabled camera and 
then relied on highly trained doctors to review the images and provided 
diagnosis [42]. The total number of training and test samples in the 
dataset were 3662 and 1928 respectively. The images were made 
available with a variety of sizes for instance 2416 × 1736, 819 × 614, 
and 3216 × 2136. Though 1928 test samples were available but their 
label annotations were not publicly available and kept hidden for final 
assessment of the submitted works from the participants since it was a 
competition dataset. Therefore, the test samples were not considered for 
this experimental work. Only the training samples of 3662 FIs along 
with their label annotations were publicly available and they were 
further split into training (85%) and testing datasets (15%) for the DR 
detection and severity grading. The dataset was highly imbalanced, as 
can be seen after conducting the class distribution (Table 1). 3662 
samples were used to classify the DR in a supervised manner. Multi-class 
classification was performed for five stages severity grading of the DR as 
well as binary classification for the detection of DR. The presence of the 
DR is often classified as binary mode: normal or DR [43]. Thus, for 
convenience, the dataset class was relabeled as either normal or DR for 
the binary classification. 

In addition, messidor-2 [44,45] dataset was experimented. Part of 
the dataset (Messidor-Original) was kindly provided by the Messidor 
program partners. The remainder (Messidor-Extension) contained 
never-before-published examinations from Brest University Hospital, 
France. The data distribution in Messidor-2 is also presented in Table 1. 

4. Proposed framework 

SCL has been proposed in this study for detecting the severity of the 
DR. FIs have been preprocessed using Contrastive Limited Adaptive 
Histogram Equalization (CLAHE) method to enhance the image quality 
before starting the training phase. The overall proposed framework has 
been depicted in Fig. 2. All the sub-modules have been described in 
detail in the following subsections. 

4.1. CLAHE based preprocessing 

Processing of FIs before analysis is critical for obtaining a better 
prediction outcome by using ML. Numerous techniques have been 
developed to enhance the medical imagery suitable for disease detection 
by the application of ML techniques. CLAHE was employed to enhance 
the quality of the FIs [46]. It was primarily created to enhance 

low-contrast medical images; however, it might also be used in more 
comprehensive applications [47]. It is an alternative implementation of 
Adaptive Histogram Equalization (AHE). In case of Histogram Equal
ization (HE) approach, the image is considered as a whole for equalizing. 
But in CLAHE approach, a complete image was divided into smaller 
named clips to convert the image into AHE clips [48]. Then, the AHE 
was applied to each clip individually which limited the amplification in 
CLAHE by clipping the histogram at a user-defined value termed as clip 
limit [49]. The clipping level specified how much noise in the histogram 
should be reduced, increasing the contrast—using a CLAHE color 
version. The clip limit 2.0 was used with a tile grid size of 8 × 8 in this 
case. Fig. 3 presents examples of original and processed images by 
applying CLAHE. After applying CLAHE, all the images were resized to 
224 × 224 × 3 to unify them. 

From Fig. 3, it can be seen that after applying the CLAHE based 
preprocessing, the quality of the raw images is significantly improved, 
for instance the lesions are sharpened in the processed images. 

4.2. Self-supervised contrastive representation learning 

Before applying the SCL, an understand of its primary origin called 
self-supervised contrastive learning is essential. The critical factor of a 
successful machine learning model depends on how well it can learn the 
representation or features or latent variables from the dataset during the 
training period. Representation learning learns the hidden mapping 
from the raw input data to feature vector that can improve the future 
downstream task like classification. More often, the latent feature vec
tors are located in the manifold of the lower-dimensional spaces. While 
many dimensionality reduction methods only convert the input data 
from a higher dimension to a lower dimension, the representation 
learning methods learn the internal mapping to generalize the new data 
points. With the increasing success of deep learning in various fields for 
instance medical imaging, computer vision, and Natural Language 
Processing (NLP) can learn the internal mapping and extract features 
with convolutional layers. Contrastive learning has created a surge 
recently as a suitable representation learning method, and many works 
associated with the contrastive learning have been published. While in 
the discriminative model, mapping is learned by human-generated la
bels. The generative model reconstructs the input given to it, and 
contrastive learning learns the representation by comparing the simi
larities and dissimilarities among samples within the dataset. Contras
tive learning is one of the leading approaches used in self-supervised 
representation learning. The contrastive learning pulls “similar” samples 
together, and “dissimilar” samples are pushed apart in the embedding 
space. 

4.3. Supervised contrastive representation learning 

Since there is no label available in self-supervised contrastive rep
resentation learning as a pretext task, a positive pair is often formed by 
data augmentation from the main “anchor” sample. The negative sample 
is chosen randomly from the mini batch. In the random sampling pro
cess, there is a great chance of generating negatives from the same class 
label of anchor, producing low representation quality. SCL is built on top 

Table 1 
Dataset distribution for binary and multiclass classifications (APTOS 2019 and Messidor-2 datasets).  

Classification DR Stage Number of representative images Number of training images (85%) Number of test images (15%) 

APTOS 2019 Messidor-2 APTOS 2019 Messidor-2 APTOS 2019 Messidor-2 

Multiclass No DR (0) 1805 1017 1534 864 271 153 
Mild (1) 999 270 943 229 56 41 
Moderate (2) 370 347 220 295 150 52 
Severe (3) 295 75 266 64 29 11 
PDR (4) 193 35 149 30 44 5 

Binary No DR/Normal (0) 1805 1017 1533 864 272 153 
DR (1) 1757 727 1479 618 278 109  
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of contrastive self-supervised learning by leveraging the label informa
tion of the samples [50]. In this case, the representation feature space is 
a normalized embedding space where the samples from the same class 
are pulled closer together, and samples from different classes are pushed 
apart. Instead of using one single positive sample as in self-supervised 
contrastive learning, SCL uses many positive samples as well as many 
negatives per anchor. The positive samples are chosen from the same 
class instead of data augmentation. 

Fig. 4 presents a schematic diagram of self-supervised and SCL. In the 
self-supervised contrastive learning, one sample highlighted with dotted 
border is of the same class as the anchor. But in random sampling pro
cess, it has fallen into a category as a negative sample in the mini batch. 
It will degrade the representation learning process. On the other hand, in 
the SCL, all the samples from the same class as the anchor are considered 
to be positives. The sample highlighted with dotted border is a positive 
one for the anchor as it comes from the same class as the anchor. 

4.4. Loss functions 

Cross-entropy loss is a widely used loss function for training in su
pervised learning for classification task. Recently some limitations of 
cross-entropy loss have been identified for example, lack of robustness to 
noisy labels [11] and possibility of poor margins [10]. Contrastive loss 
function used in contrastive learning is free from this shortcoming. 
Firstly, the contrastive loss function used in self- SCL and then this 
contrastive loss function is adapted in supervised domain. For a batch 
with N samples given sample/label pairs, {xk, yk} k = 1 …. .N, the 
samples are augmented randomly. Thus, the corresponding batch con
sists of 2 N pairs which are used for training. Let, i ∈ I = {1 …. 2 N} be 
the index of an arbitrary augmented sample and let j(i) be the index of 
the other augmented sample, then the self-supervised contrastive loss 
function can be defined by Equation (1). 

Fig. 2. Proposed Machine Learning framework for Diabetic Retinopathy (DR) identification.  

Fig. 3. Original images and corresponding CLAHE processed images (a) No DR, (b) Mild (c) Moderate (d) Severe (e) PDR.  
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Lself =
∑

i∈I
Lself

i = −
∑

i∈I
log

exp
(

zi⋅zj(i)
τ

)

∑

a∈A(i)
exp

(
zi⋅za

τ

) (1)  

where zi = H (E (xi)) ∈ RDp, represents dot product, τεR+ is temperature 
parameter, the anchor index is i, positive index is j(i) and the rest 2(N-1) 
are negative samples. 

With the label information, the supervised contrastive loss can be 
defined by Equation (2). 

Lsup =
∑

i∈I
Lsup

i =
∑

i∈I
− log

⎧
⎪⎨

⎪⎩

1
|P(i)|

∑

p∈P(i)

exp
( zi⋅zp

τ

)

∑

a∈A(i)
exp

( zi⋅za

τ

)

⎫
⎪⎬

⎪⎭
(2)  

4.5. Training strategy 

Two stage training was performed where the first phase was repre
sentation learning and the second phase was end-to-end classification. 
Fig. 5 presents the CNN model training strategy. A traditional con
volutional neural network (CNN) is presented in Fig. 5(b) where input is 
given to a convolutional block, then on top of this a classifier is applied 
to classify five stages of DR for the multiclass classification or identify 
DR for the binary classification. Fig. 5(b) describes the full training 
process of the SCL, which has two phases of training as described below 
in details. 

4.5.1. Stage-1: representation learning 
Data Augmentation: In the augmentation module Aug (.), each 

sample image was augmented into two where two views of each sample 
were observed. Primarily, the batches were created for model training. 
The batch samples were augmented before deploying into the model. If 
the primary batch contains N samples having P positive samples and N′

negative samples, then the batch contains 2 N samples containing 2 P 
positive samples and 2 N’ negative samples after conducting augmen
tation. This augmented batch was then given as an input to the base 
encoder E (.). For augmentation, a simple strategy [rotation (90◦, 270◦), 
vertical flip, and horizontal flip] was used from which one augmentation 

method was selected randomly for augmentation purpose. 
Encoder: A deep CNN model was used as the base encoder E (.) that 

extracts the features from the input images. Xception CNN pretrained 
model was used as the base encoder where transfer learning technique 
has been employed to adapt the ‘ImageNet’ leaned weights into the DR 
domain due to having limited datasets [51]. Xception model uses 
depth-wise separable convolution for reducing computational 
complexity and memory requirements. Convolutional block of Xception 
base encoder maps 2048-D features from the given input. In this case, 
2048 is the output of the average pool layer of the Xception CNN model. 

Projection Head: On top of this convolutional encoder, a projection 
head H (.) was added, mapping the 2048-D dimensional representation 
space to 128-D space. To add this projection head, multilayer perceptron 
(MLP) was used with only one linear layer having 128 nodes and to 
attach non-linearity, a ReLU(.) function was added. The supervised 
contrastive loss function was used, and a model was trained to minimize 
the loss. In this case, ‘Adam’ the most popular optimizer for deep 
learning model training was used to update the weights of the model. In 
a unit hypersphere embedding space, it placed all the positive samples 
from the same class altogether while pushing negative samples apart. As 
a similarity measure, a cosine similarity was used in the contrastive loss 
function. 

4.5.2. Stage-2: end-to-end classification 
After completing the training phase of representation learning, the 

encoder learns the representation details for the training samples. The 
projection head was discarded and kept only the trained Xception 
encoder. 

On top of this encoder, multilayer perceptron (MLP) containing one 
dense layer was added and trained this end-to-end classifier with a cross- 
entropy loss function (Equation (3)). During training, the weights of the 
encoder are frozen and fine-tuned with MLP for the classification of DR. 

cross − entropy loss, L=

⎧
⎪⎨

⎪⎩

− (ylog(p) + (1 − y)log(1 − p); Binary

−
∑M

c=1
yo,clogpo,c;Multiclass (3)  

Fig. 4. Representations of (a) self-supervised contrastive learning and (b) supervised contrastive learning.  
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Algorithm 1. describes the whole working procedure of DR image 
processing and classification.   

5. Results and analysis 

The normalized embedding space learned by the SCL method was 
demonstrated with t-SNE visualization into a lower 2-D space and 
further evaluation of the proposed method was carried out with various 
evaluation metrics both for the binary classification and five stages 
grading. Pytorch Python framework was used, and the experiments were 
run on Kaggle online platform with GPU support. “Adam” was used as 
the optimizer, the learning rate was set to 0.001, and the batch size was 
set to 8. For conducting experiments on the DR, two datasets named 
APTOS 2019 and Messidor-2 datasets were used. 

5.1. Evaluation metrics 

When constructing a predictive model, it is critical to use a metric 
such as confusion matrix to evaluate its success. Accuracy is defined as 
the percentage of cases that are accurately detected out of all the 
detected cases (Equation (4)). The method allows seeing how well the 
algorithm works in classifying [53]. 

Accuracy=
Tp + TN

Tp + TN + Fp + FN
(4)  

where TP = True Positive, TN = True Negative, FP = False Positive, FN =

False Negative. Precision as defined by Equation (5) is the most basic to 
measure the percentage of total positive specimens to total positives 
[53]. 

Precision=
Tp

Tp + Fp
(5) 

An accurate model can identify the majority of True Positives, which 
is known as recall defined by Equation (6) [53]. Each DR-affected pa
tient must be identified in this investigation. 

Recall=
Tp

Tp + FN
(6) 

F1 score equals the harmonic mean of precision and recall and can be 
stated by Equation (7) [53]. 

F1 − Score =
2 × Tp

2 × Tp + Fp + FN
(7)  

5.2. Experiments on APTOS2019 dataset 

5.2.1. Pretrained models- APTOS2019 
In order to get the best encoder, various pretrained models named 

Xception, DenseNet121, ResNet50, and VGG19 were trained to choose 
the best one. The highest test accuracies obtained with Xception, Den
seNet121, ResNet50, and VGG19 were 82.00%, 81.31%, 80.90%, and 
49.25% respectively. The variations in training and test accuracies with 
number of epochs are presented in Fig. 6. The figure clearly 
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demonstrated that Xception model showed the highest accuracy, and 
this result justified the selection of the model as an encoder of the pro
posed two-stage training method called SCL. 

5.2.2. t-SNE visualization 
t-distributed stochastic neighbor embedding (t-SNE) is a statistical 

method that is used not only for nonlinear dimensionality reduction but 
also for visualization of higher-dimensional data [52]. The data visual
ization is performed by transforming these higher dimensional data into 
lower dimensions of two or three. The operation is performed in a way 
such that the adjacent points are used to model similar objects and 
remote points are used to model distinct objects with high likelihood. 

The t-SNE algorithm performed the operation in two steps. Firstly, a 
probability distribution is created across two high-dimensional objects 
in this manner that a higher probability is attributed to similar objects, 
while a lower probability is allocated to dissimilar points. Secondly, in 
the lower dimensional space, it creates an equivalent probability dis
tribution over the points, and between the two distributions, the Kull
back–Leibler divergence (KL divergence) is reduced with respect to the 
locations of the map’s points. 

By visualizing what is leaned by the trained model, the model’s 
performance can be interpreted. To visualize the representation learning 

in the embedded space of a trained model, the popular t-SNE method 
was used. It showed that the training and test dataset samples’ embed
ding space was in a reduced 2D space both for the binary and multiclass 
classifications. As shown in Fig. 7, the sample points can easily be 
separated in the embedded space between the normal or DR after the 
training phase using the trained model as well as the points in multiclass 
classification. 

5.2.3. Margin hyperparameter tuning- APTOS2019 
Margin is a hyperparameter used in contrastive loss function as a 

threshold distance to separate positive and negative samples. Different 
margin values provide different representation learning. It was sug
gested in Ref. [50] that using a lower value (greater than 0) of margin, 
provides a better representation learning. Therefore, this hyper
parameter margin value was tuned for binary and multiclass classifica
tions starting from 0.1 and stopping at 0.9, without going further ahead 
as the higher-margin values provided higher supervised contrastive loss 
value during the representation learning. From Fig. 8, the supervised 
contrastive loss for various margin values can be observed. The trained 
encoder was chosen with a margin value of 0.1 as it showed lower loss 
with better representation learning for classification. 

After the representation learning with SCL, the projection head H (.) 

Fig. 5. Model training strategy (a) conventional CNN uses cross-entropy loss (b) supervised contrastive learning uses supervised contrastive loss for representation 
learning and a second stage classifier on top of the representation learned. 

M.R. Islam et al.                                                                                                                                                                                                                                



Computers in Biology and Medicine 146 (2022) 105602

9

Fig. 6. Training and test accuracy of pretrained models with APTOS2019 dataset for the detection of DR severity.  

Fig. 7. Embedding space visualization using t-SNE in a 2-D space of training samples after the model training for (a) binary classification (0: Normal and 1: DR) (b) 
multiclass classification (0: Normal, 1: Mild, 2: Moderate, 3: Severe and 4: PDR). 

Fig. 8. Supervised contrastive loss during training for (a) binary and (b) multiclass classifications with various margin values with APTOS2019 dataset.  
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was dropped and only kept the trained encoder E (.). Then one dense 
layer was added and fine-tuned with the trained encoder E (.) while 
keeping the weights of the trained encoder frozen. This end-to-end 
classifier was trained for 30 epochs and the test accuracy results ob
tained are presented in Fig. 9 for binary classification. The highest test 
accuracy result obtained was 98.36% from the model with a margin of 
0.1 for the APTOS 2019. For the clinical application, only test accuracy 
does not ensure the performance of a model. For this, other evaluation 
metrics such as confusion matrix, precision, recall, F1-score are used 
very often. These evaluation metrics values class-wise and overall scores 
for both the binary and multiclass classifications were presented only for 
the best trained encoder chosen with a margin of 0.1. Fig. 10 presents 
the confusion matrixes (CMs) for both the binary and multiclass 
classifications. 

Table 2 presents the evaluation metrics for the binary and multiclass 
classification. For the binary classification, the overall precision, recall, 
and F1-score obtained were 98.37%, 98.36%, and 98.37%, respectively. 

Fig. 9. Test accuracy of trained models for binary classification with various margin values with APTOS2019 dataset.  

Fig. 10. Confusion matrixes for (a) binary and (b) multiclass classifications with APTOS2019 dataset.  

Table 2 
Class wise performance evaluation for binary and multiclass classifications with 
APTOS2019.  

Evaluation 
Metrics 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

AUC 
(%) 

Binary classification 
Normal – 98.17 98.53 98.35 – 
DR – 98.56 98.20 98.38 – 
Overall 98.36 98.37 98.36 98.37 98.50 
Multiclass classification 
No DR – 99.62 97.79 98.69 – 
Mild – 61.33 82.14 70.23 – 
Moderate – 76.43 80.00 78.18 – 
Severe – 50.00 51.72 50.85 – 
PDR – 81.82 40.91 54.55 – 
Overall 84.36 73.84 70.51 70.49 93.82  
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For the multiclass classification, the overall precision, recall, and F1- 
score obtained were 73.84%, 70.51%, and 70.49%, respectively. 

Also, the effectiveness of the model was demonstrated by the 
receiver operating characteristics curve (ROC) for the binary and mul
ticlass classifications. Area under the curve (AUC) score provides the 
capability of a classifier to distinguish among the classes and is a sum
mary of the ROC curve. From Fig. 11(a), it can be seen that the AUC 
score is 98.50% for the binary classification. Whereas the AUC score was 
93.82% for the multiclass classification (Fig. 11(b)). The AUC scores for 
the normal, mild, moderate, severe, and PDR stages were 100%, 94%, 
94%, 88%, and 94%, respectively. 

5.2.4. Ablation study- APTOS2019 
To show the improvement of using the proposed SCL approach rather 

than using end-to-end CNN model for the detection of the DR and its 
severity levels, experimentations were conducted with both the SCL 
with Xception encoder and end-to-end CNN (Same Xception) model 
separately. The main difference between the proposed SCL method and 
conventional CNN method was identified as the two-stage training 
where the second stage training was the same as like the conventional 
end-to-end classification. In the first stage of the proposed SCL method, 

the representation/features of the training dataset were learned in a 
higher dimensional embedding space with supervised contrastive loss 
function. In the second stage, the trained encoder was taken and a 
classifier was added on top of this and fine-tuned like the conventional 
end-to-end CNN classifier with cross-entropy loss function. From Fig. 12, 
it was noticed that the testing accuracy of the SCL method was always 
higher than the end-to-end method with the same Xception model. The 
results also reflected the effectiveness of using two loss functions 
(SperCon loss and cross-entropy loss) in two stages of the training in SCL 
with Xception compared to only the cross-entropy loss function used in 
end-to-end CNN classifier. For multiclass classification, the proposed 
SCL method achieved the highest test accuracy of 84.36% which 
approximately 2% higher than that of the traditional CNN model with 
the same Xception architecture (82.00%). 

From Fig. 13, it was demonstrated that the SCL method showed 
improved AUC score than the conventional end-to-end model without 
SCL for every class of the DR. 

Again, for the binary cases, similar experiments were conducted to 
demonstrate superiority of the SCL method. The SCL showed improved 
the performance for the DR identification using binary classification 
than the conventional end-to-end deep learning model (Fig. 14) with test 
accuracy increasing from 98.10% to 98.90%. 

Furthermore, other evaluation metrics were obtained from the ex
periments to demonstrate the superiority of the SCL method over the 
end-to-end method as shown in Table 3. 

5.3. Experiments on Messidor-2 dataset 

To demonstrate the superiority of the SCL method over the end-to- 
end CNN, another dataset named Messidor-2 was also experimented. 

5.3.1. Pretrained models- Messidor-2 
Similar to the APTOS 2019 dataset, various pretrained models to 

choose the best encoder for the Messidor-2 dataset. The highest test 
accuracies obtained with Xception, DenseNet121, ResNet50, and VGG19 
were 72.78%, 67.93%, 61.83%, and 58.39% respectively. The variations 
in training and test accuracies with number of epochs are presented in 
Fig. 15 and the Xception model producing the highest accuracy justified 
the selection of the SCL method. 

5.3.2. Margin hyperparameter tuning-Messidor-2 
The margin hyperparameter was tuned with values starting from 0.1 

Fig. 11. ROC curves for (a) binary and (b) class wise multiclass classifications (0: Normal, 1: Mild, 2: Moderate, 3: Severe and 4: PDR) with APTOS2019 dataset.  

Fig. 12. Training and testing accuracy of SCL method and without SCL end-to- 
end method for multiclass classification with APTOS2019 dataset. 
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and stopping at 0.9, without going further ahead as the higher-margin 
values provided higher supervised contrastive loss value during the 
representation learning as demonstrated in Fig. 16. From there, the 
trained encoder was chosen with a margin value of 0.3 as it showed 
lower loss with better representation learning for the second phase end- 
to-end classification. 

Other evaluation metrics such as confusion matrix (CM) were 
demonstrated both for binary and multi-class classification in Fig. 17. 

Table 4 presents the evaluation metrics for the binary and multiclass 
classifications. For the binary classification, the overall precision, recall, 
F1-score and AUC score obtained were 77.64%, 93.63%, 84.89%, and 

84.60% respectively using the proposed SCL method. For the multiclass 
classification, the overall precision, recall, F1-score, and AUC score 
obtained were 52.05%, 63.08%, 55.18%, and 87.26% respectively using 
the proposed SCL method. 

The receiver operating characteristics curve (ROC) for the binary and 
multiclass classifications further proved the model’s effectiveness. The 
overall AUC scores for the binary and multiclass classifications were 
84.60% and 87.26% respectively as shown in Fig. 18. The class wise 
AUC scores obtained were 87%, 75%, 88%, 97%, and 89% for the 
normal, mild, moderate, severe, and PDR phases, respectively. 

5.3.3. Ablation study-messidor-2 
Same as the previous ablation results with the APTOS2019 dataset, 

the testing accuracy of SCL method was always higher than the end-to- 
end method with the same Xception model (Fig. 19). The proposed SCL 
method achieved the highest test accuracy of 74.21%, which was a 2% 
improvement over the traditional CNN model (72.80%) during multi
class classification. It should be noted that in case of the traditional CNN 
model without SCL, though the training accuracy showed substantial 
improvement over the SCL, the test accuracy did not show the similar 
improvement possibly due an overfitting situation. However, in the SCL 
method, no such overfitting was noticed. 

The SCL method also showed improved AUC score than the con
ventional end-to-end model for almost every class of the DR (Fig. 20). 

Fig. 13. ROC curves per class of (a) SCL method (b) without SCL end-to-end method for multiclass classification with APTOS2019 dataset.  

Fig. 14. (a) Training and testing accuracy and (b) ROC curves of SCL method and without SCL end-to-end method for binary classification with APTOS2019 dataset.  

Table 3 
Overall performance evaluation of SCL and end-to-end methods for multi-class 
classification with APTOS2019.  

Evaluation 
Metrics 

Multiclass Binary class 

SCL 
method 

End-to-end 
method 

SCL 
method 

End-to-end 
method 

Accuracy (%) 84.36 82.00 98.90 98.10 
Precision (%) 73.84 66.05 100.00 99.15 
Recall (%) 70.51 60.79 97.78 96.95 
F1-score (%) 70.49 62.40 98.88 98.04 
AUC (%) 93.82 90.24 98.89 98.10  
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Fig. 21 also demonstrated similar results for the binary classification. 
Other evaluation metrics (Recall and f1-score) also showed similar 

trend (Table 5). 

5.4. Discussion 

In an end-to-end CNN model training, the model learns the hidden 
features for classification with cross-entropy loss function using one- 
stage training approach. However, in the SCL method, firstly the hid
den representations/features are learned with an encoder along with a 
higher dimensional projection head on top of it using contrastive loss 
function in the first stage of training in order to measure the contrast 
among the classes. After that the trained encoder is fine-tuned with a 
classifier layer in the second stage of training. 

The SCL method was experimented on both APTOS19 and Messidor- 
2 datasets. It outperformed for binary classification and moderately well 
for multiclass classification, owing to the complexity of the DR datasets, 
which even an expert could not decipher all the time. The hyper- 
parameter margin value was tuned and achieved the best trained 
model with lower SuperCon loss of margin 0.1 and 0.3 on APTOS2019 
and Messidor-2 dataset respectively. Using both the datasets, test ac
curacy, precision, recall and F1-score were shown for both the binary 
and multiclass classifications and the proposed model showed greater 
AUC scores. Also, to show the superiority of the SCL method over the 
end-to-end CNN model, an ablation study was demonstrated. It was 

shown that the SCL method outperformed the standard end-to-end deep 
learning model in terms of DR grading performance. In the case of 
multiclass classification with APTOS 2019 dataset, the proposed model 
achieved higher precision, recall, and F1-score for the earlier stages, but 
lower values were attained for the severe and PDR stages possibly 
because of the corresponding small numbers of samples in the datasets. 
As the early diagnosis can help patients to get recovery than the later 
stages, therefore high precision, recall, and F1-score in the earlier stages 
would demonstrate the robustness of the model. Another perspective 
was that the proposed model achieved a high AUC score indicating that 
it could separate the classes more accurately. 

From all the experimental results, it was clear that the SCL method 
developed with two-stage of training and APTOS 2019 dataset showed 
incremental performance improvement than the conventional CNN 
model with one-stage of training. However, the results with Messidor-2 
dataset showed relatively poorer performance than that with the APTOS 
2019 dataset. Firstly, in the Messidor-2 dataset, a third party provided 
the grading annotation, which might be erroneous or a different grading 
annotation process could be responsible for the inferior performance. 
Deep learning model generally contains a huge number of parameters 
and data hungry. Therefore, to train a deep learning model from scratch 
with only a small sized dataset is challenging. Number of parameters of 
the proposed model (22.8 M) was too high to be trained by only 3113 
images (training set) in the case of APTOS 2019 dataset and 1486 images 
(training set) in the case of Messidor-2 dataset). The total number of 

Fig. 15. Training and test accuracy of pretrained models with Messidor-2 dataset for the detection of DR severity.  

Fig. 16. Training SuperCon loss for (a) binary and (b) multiclass classifications with various margin values with Messidor-2 dataset.  
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images of Messidor-2 dataset was significantly smaller compared to the 
APTOS 2019 dataset. From the distribution of the data in both the 
datasets, it was observed that most of the images were healthy images. 

The proportion of the images associated with later stages of the DR in the 
Messidor-2 dataset were much lower more specifically nearly half of that 
in APTOS 2019 dataset (Fig. 22). Therefore, for the later stages of the DR 
(Severe and PDR), the model showed poorer performance particularly 
for the Messidor-2 dataset. 

Some limitations of our works include imbalanced datasets, error in 
grading and resource restrictions. Both the datasets (APTOS 2019 and 
Messidor-2) contained highly imbalanced FIs for different categories 
with significant bias towards the healthy images. From the official 
documentation of APTOS 2019, it was stated that the grading annota
tions contained errors and Messidor-2 dataset grading annotation was 
provided by a third party, hence, no guarantee of correctness could be 
ensured. Again, because of limitation of the computational resources, 
the batch size was fixed to 8. Other batch sizes could be experimented to 
determine their effects. 

5.5. Performance comparison with existing work 

In traditional machine learning discriminating features are extracted 
using the image processing techniques for the DR classification purpose. 

Fig. 17. Confusion matrixes for (a) binary and (b) multiclass classification with Messidor-2 dataset.  

Table 4 
Class wise performance evaluation for binary and multiclass classifications with 
Messidor-2.  

Evaluation 
Metrics 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

AUC 
(%) 

Binary classification 
Normal – 77.64 93.63 85.01 – 
DR – 87.38 62.07 73.12 – 
Overall 80.52 77.64 93.63 84.89 84.60 
Multiclass classification 
No DR – 93.13 80.51 86.03 – 
Mild – 33.33 46.15 39.21 – 
Moderate – 59.42 69.49 64.41 – 
Severe – 60.00 69.23 64.13 – 
PDR – 14.29 50.00 22.10 – 
Overall 74.21 52.05 63.08 55.18 87.26  

Fig. 18. ROC curve for (a) binary and (b) multi-class classification with Messidor-2 dataset.  
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As the features are very complex and closer from one stage to another, it 
provides poor results most often. Again, most of the previous works fail 
to detect the earlier stages accurately which is mandatory to give the 
patients a chance to recover before it reaches to the later stages [54]. 

Furthermore, all the previous works done so far used the conventional 
cross-entropy loss function, which has some limitations. Therefore, a 
SCL method was proposed for the DR identification and its five stages 
grading using the publicly available APTOS 2019 dataset and supervised 
contrastive loss function. The performance of the proposed model for the 
DR classification from the processed FIs has been evaluated and 
compared with that of several existing models in this section of the 
paper. The APTOS-2019 blindness detection dataset has been used to 
conduct the comparisons. 

With the Kaggle APTOS-2019 dataset, Bodapati et al. used a gated- 
attention method with a deep neural network to detect DR [55]. They 

Fig. 19. Training and testing accuracy of SCL method and without SCL end-to- 
end method for multiclass classification with Messidor-2 dataset. 

Fig. 20. ROC curve per class of (a) SCL method (b) without SCL end-to-end method for multiclass classification with Messidor-2 dataset.  

Fig. 21. (a) Training and testing accuracy and (b) ROC curve of SCL method and without SCL end-to-end method for binary classification with Messidor-2 dataset.  

Table 5 
Overall performance evaluation for multi-class and binary classifications with 
Messidor-2.  

Evaluation Metrics Multi-class Binary 

SCL End-to-end SCL End-to-end 

Accuracy (%) 74.21 72.80 80.52 79.90 
Precision (%) 52.05 61.88 77.64 81.60 
Recall (%) 63.08 51.86 93.63 84.80 
F1-score (%) 55.18 55.20 84.89 83.17 
AUC (%) 87.26 86.00 84.60 83.21  
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used pre-trained CNN models to represent the FI. Spatial pooling tech
niques are described for obtaining the reduced versions of these repre
sentations without losing a lot of information. They used 80% of 3662 
images for training and 20% (733) images for testing purposes. For bi
nary classification, they achieved 97.82% accuracy, 98% precision, and 
98% recall score. Pre-trained DenseNet121 with several modifications 
was proposed by Chaturvedi et al. [56], and for binary classification, 
they got an accuracy of 94.44% and a recall score of 87%. They used 
15% (550) of 3662 images for testing purposes. A blended multi-modal 
fusion model was proposed by Bodapati et al. [57]. They extracted 
features from VGG16-fc1, fc2 layers and Xception convolutional layers, 

and later blended them using 1D and cross pooling to get better repre
sentation. They used 80% of 3662 images for training and 20% (733) 
testing purposes. They got an accuracy of 96.1% for the DR identifica
tion and 80.96% for severity classification. They did not show precision, 
recall scores. Kumar et al. [58] proposed a hybrid model composed of 
VGG16 and Capsule network and achieved an accuracy of 97.05% for 
the DR identification and 75.50% for the five stages classification. 15% 
of the 3662 images of APTOS dataset was used by them for the testing 
purpose. Table 6 shows that for the binary classification, the proposed 
model outperforms the existing models. It can accurately identify the 
presence of the DR in a FI. 

Dondeti et al. [59] extracted features using Neural Architecture 
Search Network (NASNet) and projected them into lowed dimensional 
space using the t-SNE method, and using the v-SVM classifier, they got 
77.90% accuracy, 76% precision, and 77% recall for five stages grading 
of the APTOS dataset. 80% of the 3662 images was used for training and 
the remaining 20% was used for the testing. Gangwar et al. [23] pro
posed a hybrid model pre-trained with Inception-Resnet-v2, and 82.18% 
accuracy was achieved for five class classification on APTOS dataset. 
Kassani et al. [60] used transfer learning models to extract the features 
from the FIs. Using the extracted features, they were able to classify the 
five stages of DR using a multilayer perceptron (MLP) neural network. 
Dekhil et al. [61] proposed a customized CNN model with five con
volutional layers and obtained an accuracy of 77% for five stages 
grading of the APTOS 2019 dataset. They use 15% of the 3662 images 
for the testing purpose. It can be observed that for the multiclass clas
sification (five classes), the proposed model outperforms the existing 
models. 

From Table 6, it could be seen that for the multiclass classification, 
the proposed model achieved higher accuracy (84.36%) than the exist
ing models. Though the overall precision and recall score of the model 
for the multiclass classification did not outperform some existing models 
but a high AUC score of 93.819% was obtained. This indicated that the 
model could distinguish the DR stages accurately. This higher AUC could 
be the result of using the supervised contrastive loss function, which 
attracted samples of the same class closer and pushed the samples of 
different classes apart in the projected embedding space [50]. Therefore, 
the model achieved state-of-the-art performance for the multiclass 
classification. 

For advanced stages of the DR there is no known treatment. Diag
nosis at the earlier or mild stage, will provide practitioner a chance to 
study the patient’s glucose, lipid profile, and other risk factors. Then, 
imposing a strong control would reduce the progression of the DR to the 
later stages [54]. Only one study was found in the literature for the 

Fig. 22. The ratios of the number of images in datasets: (a) APTOS 2019 (b) Messidor-2.  

Table 6 
Comparison of overall model metrics with state-of-the-art methods for both bi
nary and multiclass classifications.  

Reference Number No. of classes Accuracy (%) Precision (%) Recall (%) 

Binary classification 
[55] 2 97.82 98.00 98.00 
[57] 2 96.10 – – 
Proposed 2 98.34 98.35 98.35 
[56] 2 94.44 – 87.00 
[58] 2 97.05 – – 
Proposed method 2 98.36 98.36 98.37 
Multiclass classification 
[55] 5 80.96 – – 
[59] 5 77.90 76.00 77.00 
[23] 5 82.18 – – 
Xception [60] 5 79.59 – 82.35 
ResNet50 [60] 5 74.64 – 56.52 
Inceptionv3 [60] 5 78.72 – 63.64 
Proposed method 5 84.32 70.53 73.81 
[58] 5 75.50 59.40 54.60 
[61] 5 77.00 – – 
Proposed 5 84.36 70.51 73.84  

Table 7 
Comparison of class-wise model metrics with state-of-the-art methods for mul
ticlass classification.  

Reference Number No DR Mild Moderate Severe PDR 

Precision metric (%) 
[58] 93 59 64 32 49 
Proposed method 99.62 61.33 76.43 50 81.82 
Recall metric (%) 
[58] 97 36 73 27 40 
Proposed method 97.79 82.14 80 51.72 40.91  
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multiclass classification with class-wise metric values. From Table 7 
[58], attained a precision score of 93%, 59%, 64%, 32%, and 49% for 
the normal, mild, moderate, severe, and PDR stages, respectively. Again, 
for the recall metric, they achieved 97%, 36%, 73%, 27%, and 40% for 
the normal, mild, moderate, severe, and PDR stages, respectively. It can 
be seen that for the earlier stages especially normal, mild, and moderate 
stages, the model achieved higher precision and recall scores than the 
existing method. Therefore, the combination of higher overall accuracy, 
and higher class-wise precision and recall values than the existing 
methods and an overall high value of AUC for both the binary and 
multiclass classifications demonstrated a superior performance of the 
proposed model particularly for the DR detection at the earlier stages. 
With this information the health practitioners can devise a plan for 
effectively controlling the diabetes and possibly preventing the escala
tion of the DR in the later stages, which can result in vision loss. 

6. Conclusions and future work 

The proposed model for the DR grading using supervised contrastive 
loss function has achieved an overall accuracy, precision, recall, F1- 
score and AUC of 98.36%, 98.365%, 98.365%, 98.365% and 98.50% 
respectively during the binary classification for APTOS 2019 dataset and 
the results outperform the existing works. For the multiclass classifica
tion (APTOS 2019), the proposed model has achieved a higher accuracy 
of 84.364%, which again outperforms the existing methods. Further
more, the proposed method has evidenced better precision and recall 
values for detecting the earlier stages of the DR signifying the robustness 
of the model. Furthermore, the model obtained an AUC score of 
93.819%, indicating its capability to accurately distinguish among the 
classes. Ablation study conducted with Messidor-2 datasets also proved 
the superiority of the SCL over the conventional CNN model. Therefore, 
the experimental analysis demonstrated that the proposed model ach
ieved state-of-the-art performance. 

In near future, not only the severity levels of the DR will be detected 
but also localization of the various lesions will be conducted. Radiolo
gists can be involved to interpret the annotations of the dataset. Further 
experiments will be conducted to validate the model using other data
sets with larger batch sizes. Again, apps can be developed in order to 
facilitate the practical application of the model in the clinical 
applications. 
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