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Abstract

Increasing evidence points to intense species competition in wet tropical forests that that may
be explained by interactions involving seeds, seedlings, and their consumers. Lack of tree
fecundity data across temperate to tropical communities precludes analysis of how the seed
resource contributes to biotic interactions that can drive biogeographic diversity patterns. A
global synthesis of raw seed-production data shows a 2.4 order of magnitude increase in seed
abundance from cold, dry to warm, wet climates, driven by a 2.0 order of magnitude increase
in seed production for a given tree size. The modest increase in forest productivity across the
same climate gradient cannot explain this 100-fold increase in seed production or the 250-fold
increase in seed mass per forest area reported here. The increase in seeds per tree can arise from
adaptive evolution driven by intense species interactions or from the direct effects of a warm,
moist climate on tree fecundity. Either way, the massive differences in seed supply to temperate
versus tropical communities ramifies through food webs, affecting community and ecosystem
dynamics, including seedling competition, populations of seed consumers and frugivore-seed
dispersers, all of which appear to be especially important in the wet tropics.

Introduction

Understanding seed production can help resolve the paradox of extreme tree diversity in the
warm latitudes where intense competition is expected to limit coexistence [1, 2, 3, 4]. High net
primary productivity (NPP) that comes with long growing seasons accelerates growth, increases
plant competition, and elevates mortality rates [5, 6, 7]. This coincidence of high diversity with
intense competition is increasingly explained by coexistence mechanisms involving interactions
between seeds and seedlings through their natural enemies [8, 9, 10]. Tree fecundity determines
the density of competing offspring and the diets of consumers and seed dispersers that depend on
them [11, 12, 13], and it is clearly subject to adaptive evolution [14, 15]. If there is a latitudinal
gradient in seed production, is it a product of greater seed production for a given tree size, or is it
the case that tropical trees are simply larger and/or embedded in more productive communities,
as assumed in the Dynamic Global Vegetation Models (DGVMs) used to understand effects
of climate change [16, 17]? Temperate-tropical fecundity gradients that go beyond what could
be explained by differences in tree size or NPP would provide evidence that biogeographic
diversity trends depend on this critical demographic variable that is a foundation for many forest
food webs [18, 19]. While forest inventory data continue to improve estimates of growth and
mortality across climate gradients [7, 20], fecundity evidence has remained unavailable. This
synthesis allows us to quantify the fecundity gradient on a global scale and determine that it is
amplified in warm/moist climates beyond what can be explained by tree size or NPP.

Seed and seedling densities are the starting point not only for competition, but also for
consumer-based explanations of coexistence that were first recognized in the tropics [8, 9].
Intense plant competition is an inevitable consequence of long growing seasons and high annual
growth [21, 22, 23]. Accumulating evidence indicates that consumer pressure is likewise
intense [24, 25, 4]. Selection for high seed production might offset high losses to biotic
interactions, while at the same time intensifying them by increasing density- and frequency-
dependent interactions. By the widely invoked Janzen-Connell mechanism [8, 9], a host tree
can escape its specialist consumers where that host is rare, i.e., a density-dependent process.
A generalist consumer imposes indirect competition between its multiple hosts, as an increase
in one attracts the natural enemies it shares with others, a density- and frequency-dependent
process. The seed diversity available to consumers could differ from that of trees, because the
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abundant species may not produce large seed crops, and vice versa. There is potential for an
arms race between species [26, 27] as selective pressures balance the benefits of producing more
seed against the costs of diverting resources from growth and defense [28, 29]. Taken together,
tree fecundity is a foundation for community interactions that increasingly appear to be most
intense in tropical forests.

Moisture deficit (mm)

a) b) -1000 -2000 -3000
1 1 |
1000 r
Biogeographical
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o
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s 8
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biotic interactions : . ; .
5 10 15 20
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Figure 1: a) Climate effects on fecundity could be I) negligible, in which case there is no latitudinal fecundity
gradient (right), or there could be direct (II) or indirect effects through adaptive responses to intense species
interactions in tropical climates (III). Both II and III could be amplified beyond what could be explained by
gradients in tree size or NPP. Either way, there is potential for positive feedback involving arrows in green. b)
Orders of magnitude increases from cold/dry to warm/moist for individual (ISP) and community (CSP) seed
production compared with NPP. Curves are sections through surfaces (dashed lines) in Fig. 2, with scales for
moisture deficit (above) and temperature (below). Curves are in proportion to minimum values in cold, dry
conditions. Confidence intervals (95%) are not visible for ISP and NPP due to the large number of trees. They are
wider for CSP due to fewer inventory plots at high temperatures (Fig. 2b).

Fecundity could vary due to climate directly or indirectly, the latter through adaptation to
biotic interactions that, in turn, respond to climate (Fig. la). Because reproductive effort
depends on both seed sizes and numbers [30], and it varies with tree size [31], individual seed
productivity (ISP) is standardized for tree basal area,

fijs X &s
ISP;; = ———
""" basal area; (D)

= g m2yr!

depending on mass of a seed g, produced by species s, where the estimate of mean seed
production f; ;s for tree i at location j accounts for the uncertainty in its seed production each
year, fijs, (see Methods). If seed production is determined solely by tree size, as assumed in
ecological models (reviewed in [31]), then climate effects could come through its effects on past
growth that results in larger trees (Fig. la, II), and ISP (standardized for size) will be constant
across climate gradients.

While ISP;; quantifies production by individuals, community seed production, CSP;, quan-
tifies seed density on the forest floor, the starting point for interactions between seeds, seedlings,
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consumers, and dispersers. [We hereafter omit subscripts to reduce clutter.] Like NPP, CSP is
a community property, defined as the seed production summed over all trees on a plot (g ha™!
yr~!, eqn 4). CSP might scale as a fraction of NPP, as suggested by some empirical evidence
[32] and assumed in DGVMs [16, 17], predicting high CSP where NPP is highest in warm/moist
climates [33]. If ISP is determined as a simple fraction of tree size, or CSP as a fraction of
NPP, then it is hard to invoke biotic interactions as an explanation for variation along climate
gradients.

Alternatively, if the responses are amplified beyond what could be explained by the effects
of climate on size or NPP, then climate gradients could be a driver of intense biotic interactions
in the tropics. There are at least two potential causes for fecundity amplification (Fig. 1a). First,
ISP might have flexibility to respond to a longer growing season [34, 35] well in excess of tree
growth, which is limited by mechanical and hydraulic constraints on tree size [36, 37]. At the
community scale, NPP is further constrained by the compensatory losses in stand biomass as
mortality increases to offset increases in growth [22]. Thus, while NPP increases with warm,
wet conditions, the lack of structural constraints on producing more seeds might allow for a
disproportionate fecundity response, the amplification of figure 1a, II.

Amplification could also be driven by intense species interactions in the wet tropics [4, 38]
that increase selection for seed production, mediated by allocation trade-offs between seeds
versus growth and defense [39, 40]. Whether amplification occurs as a direct response to
climate or as an adaptive response to intense biotic interactions (Fig. 1a, II and III), the density-
and frequency-dependent processes involving competition, consumers, and seed dispersers have
community-wide implications. A potential arms race follows from the feedback between high
seed production and the selection pressures to offset mortality losses (green arrows in Fig. 1a).

Biogeographic variation in fecundity remains largely unknown. Fecundity studies typically
report on one to a few species from one to a few sites. Recent compilations of seed numbers
recognise the challenges posed by differing methods, some yielding estimates of stand averages
and others offering various individual-tree estimates that are difficult to compare [41, 42]. Efforts
to synthesize this literature globally report that seed size [43] or variation in seed numbers (e.g.,
[42]) increase with temperature or with variability in precipitation or temperature. Latitudinal
trends in seed size [43, 44] may not translate to trends in fecundity, which depends on the number
of seeds X seed size. A decline in predicted seed-mass density (per forest floor) with increasing
latitude reported from a study that included only forests at low latitudes and mostly heath and
grasslands at high latitudes [43] highlights the need to separate variation in tree fecundity from
variation in tree abundance.

This synthesis extends the Masting Inference and Forecasting (MASTIF) network [45] to
determine the climate controls on seed production globally and the extent to which those trends
go beyond what can be explained by effects of size and productivity. Climate trends are
summarized by mean annual temperature and moisture deficit. We additionally allow for effects
of individual condition and local habitat variation by including tree diameter, shade class, and
soil cation exchange capacity (Materials and Methods).

Results and Discussion

Community seed production (CSP) increases 2.4 orders of magnitude to a global maximum in the
warm, moist tropics, primarily driven by a two order-of-magnitude increase in seed production
for a given tree size (ISP) (Fig. 1b). These increases align with the geographic trend in NPP
(panels in Fig. 2), but the amplification for seed production in excess of the NPP gradient
provides first evidence that it can play a central role in the species interactions hypothesized to
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Figure 2: a) Climate responses for (a) ISP (seed mass per tree basal area, logl0 g m~2 y‘l) (b) CSP (seed mass
per ha forest floor, log10 g ha™! y=!), and (c) NPP (kg C m~2 y~!). Dashed lines indicate the transect from dry taiga
to wet tropics in Fig. 1b. Note the linear scale for (c) and log;q scales for (a) and (b). Convex hulls are defined by
observations (red), including individual trees (a, c) and inventory plots (b). Surface transparency increases as the
inverse of the predictive standard error—faded edges reflect increased uncertainty at data extremes. Coefficients are
reported in Table S4 and Table S2 for NPP.

be most intense in warm, moist climates. If individual fecundity scales with tree basal area, then
ISP (seed mass per tree basal area) would be flat in Fig. 1b. If community seed production
scales with NPP, then CSP would increase no faster than NPP on the proportionate scale in Fig.
1b. The amplification over size and NPP observed here has implications for trophic interactions,
and it provides insights into cause.

A first important benchmark of this study is the exposure of fecundity trends with global
climate. The average seed production for 95% of trees of a given size varies over five orders
of magnitude, with ISP ranging from 0.000025 to 50 g per cm? of basal area (Figure S5a).
The increase in ISP to its highest values in warm, moist climates (Fig. 2b) is driven more
by temperature than by moisture (Table S4), amplified by moisture where temperatures are
high (Figure S2c). The five order-of-magnitude range for individual ISP is matched by that
for community seed production, with 95% of CSP values ranging from 50 g to 2500 kg ha~!
(Figure S5b). The 100-fold increase in ISP across the climate gradient is more than matched by
the 250-fold increase in CSP.

Forest productivity cannot explain the global fecundity gradient evident at the individual or
community levels. Like fecundity trends, NPP shows high values in warm, moist climates (Fig.
2c). However, the three-fold range of NPP across this climate space is swamped by the 100-
and 250-fold ranges for ISP and CSP (Fig. 1b). The amplification of both ISP and CSP means
that not only do individual trees produce more seed for a given size in the wet tropics, but also
that seed abundance is amplified at the community level (Figure S2f). [Community-level CSP
need not necessarily track ISP responses due to heterogeneous size-species structures associated
with local site conditions, past disturbance, and competition.] These results extend the previous
discovery of a fecundity hotspot in the warm, moist southeastern North America [45] to a global
pattern.

Fecundity trends that are amplified well beyond what can be explained by size or productivity
alone could be driven by direct climate effects, by selective pressures due to high losses to biotic
interactions, or both (Fig. 1a). The two order-of-magnitude climatic and latitudinal trend
in seed mass per forest-floor area (CSP) has its most direct implications for density-dependent
interactions, which include competition within tree species and frequency-dependent consumers.
All else being equal, a 100-fold gradient in seed supply requires corresponding mortality losses
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(horizontal axis). In both cases, diversity is evaluated from the Shannon index, — }; ps log ps, where pj is the
fraction of species s in basal area (trees) and CSP (seeds). Each point represents an inventory plot. Except at low
tree diversity, points lie almost entirely below the 1:1 line (dashed). The legend at top left shows mean annual
temperature (symbol color) and mass of the average seed (symbol size).

to yield similar densities of adult trees [21, 22]. Elevated densities of seeds, fruits, and nuts and
their offsetting mortality losses increase selective pressure for the most competitive phenotypes.
The bottom-up enrichment of food webs that cascades to higher trophic levels [18, 19, 25] must
inevitably increase consumer and disperser densities that, in turn, impose frequency-dependence
selection on seed and seedling survival [8]. The magnitude of amplification leaves no doubt that
it intensifies species interactions in the wet tropics.

Frequency-dependent consumer pressures depend on diversity of the seed resource, which
is poorly predicted by the standard inventory of trees. Species diversity of both seed mass and
tree basal area is highest in the warm climates where diversity of the seed resource would be
overestimated on the basis of tree diversity (Fig. 3). The lower species diversity for seeds in
warm climates results from the fact that species having modest differences in tree basal area
vary widely in fecundity; tendency for a subset of species to dominate seed production reduces
seed diversity below that for trees. In the cool climates where seeds tend to be small (small,
blue symbols in Fig. 3), the low diversity that would be estimated on the basis of trees masks
an unexpectedly high seed diversity (Fig. 2). Although many studies do not record fecundity
for species having the smallest seeds (e.g., Salicaceae), these are also the seeds that are least
apparent to vertebrate consumers. Omission of these smallest seeds means that values are over-
estimates, but still relevant for many consumers. The net effect of reduced seed diversity in warm
climates affects frequency-dependent processes [46], such as host-specific seed predation. The
concentration of seed mass in a smaller than expected species diversity reduces the apparency of
weak producers, while potentially concentrating consumption on species that are not necessarily
abundant, but that can dominate seed production.

The biogeographic variation between trees (ISP) and communities (CSP) is distinct from
the large masting literature focused on variation in the magnitude of reproduction over time
within trees or stands. Temporal variation in climate [47, 48, 49] that interacts with variable
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storage and pollen supply [50, 51] is of great interest for understanding allocation shifts within
individuals, but it fundamentally differs from geographic variation in populations subjected to
divergent selection histories [47]. The 100-fold trend in expected ISP and CSP (Fig. 2a) is
still modest relative to the within-tree (over time) and between-tree variation that motivates
local-scale studies (Figure S2). The fact that the massive geographic trend in Fig. 2a can be
readily masked by other sources of variation emphasizes the importance of large data sets that
span broad coverage in individual condition, habitat, and climate.

Whether or not the amplified fecundity response in warm, moist climates represents a legacy
of adaptive evolution to intense species interactions, its 100-fold biogeographic gradient adds a
new dimension to the understanding of trophic processes that may control latitudinal diversity
gradients. The fact that both individual fecundity and community-level CSP overwhelm climate
responses in NPP (Fig. 2a) means that fecundity of many species can contribute to the selection
pressures on others and on their consumers [52]. If host-specific consumers regulate diversity
through density- and frequency-dependent attack, then their strongest impacts are occurring
where seed supply can support their highest numbers. The dramatic biogeographic trend sets
up the potential for an evolutionary arms race to increase fecundity in the warm, moist tropics.
Regardless of whether this arms race has occurred, the trends in stand-level seed rain imply
profound implications for food web dynamics. A positive feedback on selection pressure in
diverse tropical forests could ensue where species from every major angiosperm clade enrich
functional space and niche overlap. Declines in biodiversity that result from climate change,
habitat degradation, and human exploitation in the tropical regions where interaction strength
is intense is expected to ramify through food webs to a degree that is not expected where
interactions are loose and generally weak [53]. The temperate-tropical gradient can motivate
research on its contribution to consumer and disperser guilds [4] and the broader implications
for diversity.
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Supplementary material

Materials and Methods
Fecundity data

Comprehensive data were needed to estimate climate effects due to the large variation in seed
production. Masting, where large crop years exceed intervening years by orders of magnitude,
is further complicated by spatio-temporal variation in habitat and climate. The many sources of
variation means that biogeographic trends of interest can only be identified from broad coverage
and large sample sizes, while accounting for individual tree condition, local habitat, and climate
[45, 31].

The study uses crop-count and seed-trap data from the Masting Inference and Forecasting
(MASTIF) project, including opportunistic data through the iNaturalist project MASTIF [56].
Observations include 12,053,732 tree-year observation from 748 species and 146,744 mature
individuals. For crop-count data, an observation consists of tree species, diameter, crown shade
class, the number of seeds/fruits or cones counted, and an estimate of the fraction of the total
crop represented by the count. For seed-trap data, an observation consists of a count for a seed
trap, trap location from an inventory plot where trees are measured and mapped, and trap area.
Data models for the two data types in the MASTIF model include a beta-binomial distribution
for crop counts (uncertainty in the count and in the crop-fraction estimate) and a redistribution
model for seed counts (uncertainty in seed transport and in the count) [56]. Seed mass is taken
as an average for the species, obtained from collections in our labs, supplemented with the TRY
Plant Trait Database [57].

All observations provide estimates of ISP, including those on isolated trees. Because it
requires seed production from a known area, only inventory plots offer estimates of CSP (Table
S3). Together, ISP and CSP allow us to test how size-standardized seed production by individuals
(ISP) and stand-level density of seed (CSP) vary with climate. As in all observational studies,
geographic coverage is not uniform. The majority of sites are temperate (98%), while most
observations (tree-years, 80%) and species (74%) are tropical. Sample sizes are included in
Table S3 and their locations are shown in Figure S1. To clarify coverage, the distribution of data
is displayed in each figure and detailed in the Supplement (Table S3, Figure S1).

Environmental and individual covariates

Predictors of fecundity for a given tree include diameter, crown class, climate, and soil and
terrain covariates (Table S1). We included both linear and quadratic terms for diameter to allow
changes of fecundity with tree size [31]. Crown class ranges from 1 (full sun) to 5 (full shade),
following the protocol used in the National Ecological Observation Network (NEON) and the
USDA Forest Inventory and Analysis (FIA) program.

Climate variables include annual temperature (°C) from the previous year, and moisture
deficit (summed monthly evapotranspiration minus precipitation, mm) from the previous and
current years. Because seasonality varies globally (there is no uniform definition of a ’growing
season’), we describe climate with annual norms for temperature and moisture-deficit. Moisture
deficit is defined as (D = 2, PETj; — P for location j and month k), which is the basis for
the familiar Standardized Precipitation Evapotranspiration Index (SPEI) [58], but omitting here
the standardization, which allows for comparisons between sites.

To allow for changes in moisture access with tree size we included the interaction between
moisture deficit and tree diameter. Climate variables were derived from CHELSA [59], Terra-
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Climate [60], and local climate monitoring data where available. TerraClimate provides monthly
but spatially coarse resolution [60] through 2020. CHELSA provides high spatial resolution (1
km) but it is not available after 2016. We used regression to project CHELSA climate forward
based on Terraclimate, followed by calibration to local weather data where available. Details
are available in [45].

Cation exchange capacity (CEC), used as an indicator of soil fertility, was obtained from
s01lGrid250 [61] as weighted mean from three soil depths: 0-5, 5-15 and 15-30 cm, weights are
reported uncertainty. Slope and aspect were obtained from the global digital elevation model
from the NASA shuttle radar topography mission [62] and, for latitudes above 61°, from USGS
National Elevation Dataset [63] with a resolution at 30 meters for both products. The covariates
for slope and aspect (1, us, u3) constitute a length-3 vector,

uj1 =sin(s;)
u; =9 ujp=-sin(s;)sin(a;) (1)
u;3 = sin(s;) cos(a;)

for slope s, where aspect a is taken in radians [64].

Table S1: Covariates used to fit the MASTIF model and data sources. Subscripts are tree i, site
J, and year t.

Covariate Units Data source
Diameter (G;;, Gl.zj’l) cm, cm? MASTIF
Crown class (Cjj ) ordinal (class 1-5) MASTIF
Moisture deficit (D ;) mm terraClimate, CHELSA
Deficit anomaly (D ;) mm terraClimate, CHELSA
Temperature (7)) °C terraClimate, CHELSA
Temperature anomaly (7} ;) °C terraClimate, CHELSA
D;XGij, mm X cm

CEC; (0 - 30cm) mmolc/kg soilgrid250m
Slope, aspect (u1;, ua;, u3;) radians DEM, USGS

Model inference with MASTIF

The MASTIF model used to analyse seed trap/crop count data is detailed in [56]. This (hierar-
chical) state-space, auto-regressive model accommodates dependence between trees and within
trees over years through a joint analysis. For each tree i and year ¢ there is a mean fecundity
estimate ﬁ,, = pisi, that is the product of conditional fecundity 4 and maturation probability
pi . The model for conditional fecundity is given by log ¢;; = X:',z ,B(x) + ,Bi(w) +7Ygl[i]« + €ir» Where
X;; 1S a design vector holding climate, soils, local crowding, and individual attributes (sTable
S1), BY are fixed-effects coefficients, ,Bl.(w) is the random effect for tree i, y,[;] , are year effects
that are random across groups g and fixed for year 7, and ¢;; is Gaussian error. The group
membership for a tree i is g[i], which is defined by species-ecoregions [56]. Conditional log
fecundity ¢ is censored at zero to allow for the immature state and for failed seed crops in larger
individuals,
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This censoring means that seed production requires the potential to produce at least one seed
and follows the same approach as a Tobit model for the linear scale, which is censored at zero
rather than one. Fecundity can be calculated as mass of seeds, and it can be standardized for
tree basal area as in eqn 1.

The posterior distribution includes parameters and latent variables for maturation state
and tree-year seed production. Posterior simulation uses direct sampling and Metropolis and
Hamiltonian Markov Chain (HMC) updates within Gibbs. Model structure and methodology
was implemented with R (version 4.0, [65]) and the R package Mast Inference and Forecasting
(MASTIF), detailed in [56].

Uncertainty in fecundity estimates

We evaluated weighted mean fecundity at the individual and plot scales (CSP), where weights
accommodate year-to-year uncertainty for an individual tree and tree-to-tree uncertainty for a
stand. For individual and stand-level CSP we included only trees > 7 cm in diameter, i.e., at
least as larges as the smallest measured size in inventory data.

Individual mean fecundity was obtained as

PN Zz Wijs,tfijs,t

ijs = —w

/ Zt wi js.t
where the weight w;j; ; is the inverse of the predictive coeflicient of variation for the estimate,
Wijst = CVI;; .- This is used rather than the predictive variance, because the mean tends to scale
with the variance such that a variance weight would have the undesirable property of down-
weighting the important large values while up-weighting the low values, which are dominated

by noise. Community seed production (CSP) was evaluated from the individual means

3)

1 Zis Wijsfijs
Aj XisWijs
where A; is plot area, and w;;, is the inverse of the coeflicient of variation evaluated as the

root mean predictive variance for tree ij s divided by the the mean prediction for that individual.
Because CSP requires a plot area, only trees on inventory plots are included in the CSP analysis.

CSP; = @)

Net Primary Production

We extracted Net Primary Production (NPP) from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) product MOD17 at 500 m resolution (MOD17A3HGFv006, [66]). For
2000 to 2020, we merged yearly CSP estimates with NPP from matching site years, which are
available from 2000 to 2020. Because seed production data span the interval 1959 to 2020, we
used the location-specific mean NPP values for the limited number of earlier years.

Because MODIS NPP can depend on uneven cloud coverage, we compared MODIS with
NPP predictions from DGVMs in the TRENDY project [67], using the S3 experiment. For each
site we averaged NPP from 11 models (CABLE-POP, CLASSIC, CLM5.0, ISAM, JSBACH,
JULES, LPJ-GUESS, LPX, OCN, ORCHIDEE, ORCHIDEE-CNP) for all sites and fitted them
to the same climate variables (temperature, moisture deficit) used for ISP and CSP (Table
S2). The two NPP products show similar main effects, but differ in temperature X moisture
interaction, which is negative for MODIS and positive for the aggregated DGVM. Despite this
difference in the interaction term, the main effects dominated such that surfaces show the same
trends (Figure S3). Thus, we included only MODIS results in S4.
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Table S2: Coefficients for climate on NPP MODIS and NPP DGVM products. 72 for NPP

MODIS = 0.48, NPP DGVM = 0.52.

Variable Parameter  Estimate SE  P-value
Climate effects on NPP (MODIS)

Intercept - 35201 2.46e-02 <2e-16
T Byt 1.54e-02 1.92e-03 4.99e-15
D Bnp -1.81e-04 3.35e-05 8.41e-08
TxD Bnpr -1.11e-05 2.65e-06 2.99e-05
Climate effects on NPP (DGVMs TRENDY)

Intercept - 1.455e-01 2.2e-02 7.71e-11
T Bnr  3.19e-02 1.72e-03 < 2e-16
D Bnp -3.25e-04 3.01e-05 <2e-16
TxD Bnpr  71.36e-06 2.38e-06 0.00205
NPP effect (MODIS) on log. ISP

Intercept - 3.98 0.027 <2e-16
NPP BN 2.06 0.024 <2e-16
NPP effect (DGVMs TRENDY) on log, ISP

Intercept - 4.88 0.037  <2e-16
NPP Brn 1.64 0.047  <2e-16
NPP effect (MODIS) on log, CSP

Intercept - 8.70 0.38  <2e-16
NPP BN 2.70 0.44 3.31e-09
NPP effect (DGVMs TRENDY) on log, CSP

Intercept - 9.26 0.44  <2e-16
NPP Brn 2.21 0.58 1.77e-4

s« Supplementary Tables

Table S3: Numbers of species, stands, trees, and tree-years for ISP analysis and complete
inventories for CSP analysis by tropical and temperate regions. Complete inventories include
all trees within a mapped plot and are needed to determine seeds per area in CSP. Because not

all inventory plots use the same minimum diameter, the latter is based on trees > 7 cm.

Floristic Complete
Region Species Sites Tree-years Trees inventories
Tropical 559 64 9,723,438 85,261 47
Temperate 194 3506 2,330,294 61,461 204
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Table S4: Coefficients for climate effect on individual (ISP), community fecundity (CSP). ISP
and CSP fecundity are fitted on a natural log scale. > for ISP = 0.2, CSP = 0.15.

Variable Parameter  Estimate SE  P-value
Climate effects on log ISP

Intercept - 4.64e+00 4.93e-02 <2e-16
T Brr 17801  6.01e-03 <2e-16
T? Brr2 -5.60e-03 1.770e-04 <2e-16
D Brp 2.72e-03  4.80e-05 <2e-16
D? Brpr -1.12e-07  1.14e-08 <2e-16
TxD Brpr -1.84e-04 1.73e-06 <2e-16
Climate effects on log, CSP

Intercept - 9.88e+00 5.61e-01 <2e-16
T Brr 9.96e-02  7.88e-02 0.21
T? Brr2 -2.38e-03  2.82e-03 0.40
D Brp 9.21e-04  7.16e-04 0.20
D? Byp2 287e-08  220e-07  0.90
TxD Bror -1.19e-04  4.05e-05 3.60e-3
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predictive mean. Temperature and moisture deficit correspond here to a mean annual value for each sites.
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Figure S3: Climate response for NPP from MODIS product (a) and DGVM product from TRENDY DGVM
products
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Figure S4: Relationships between NPP from MODIS and individual (standardized) fecundity ISP (a) and
stand CSP (b), both positive (p < 0.00001) and both accounting for little of the variability (+> = 0.05 and 0.13,
respectively). Coefficient are reported in Table S4
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Figure S5: Distribution of (a) ISP (g seed per m? basal area) and (b) CSP (g seed per ha basal area) fecundities.
Black dotted lines represent the quantile at 2.5 and 97.5%.
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