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Abstract 

Artificial Intelligence (AI) is believed to have a significant potential use in tackling 

climate change. This paper explores the connections between AI and climate change 

research as a whole and its usefulness in climate change adaptation efforts in 

particular. Using a systematic review of the literature on applications of AI for climate 

change adaptation and a questionnaire survey of a multinational and interdisciplinary 

team of climate change researchers, this paper shows the various means via which AI 

can support research on climate change in diverse regions, and contribute to efforts 

towards climate change adaptation. The surveyed articles are classified under nine 

areas, e.g., Global/Earth Related; Disaster Response; Water-related Issues and 

agriculture, 95% of which are related to adaptation. The areas that have attracted the 

most studies about AI applications are water-related management issues (38%). In 

terms of the survey results, the most robust agreements were noted concerning the 

capacity of digitisation and AI to strengthen governance practices, and afford policy 

coherence in climate change. Evidence gathered in the study suggests that, provided 

that due care is taken, the use of AI can provide a welcome support to global efforts to 

better understand and handle the many challenges associated with a changing climate. 

Keywords: Artificial Intelligence, digital technologies, climate change adaptation. 
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The notion of Artificial Intelligence (AI) indicates the abilities of machines to "learn from 

experience, adjust to new inputs, and perform human-like tasks" (Duan et al., 2019, p. 

63) to "interpret external data correctly, to learn from such data, and to use those 

learnings to achieve specific goals and tasks through flexible adaptation" (Kaplan and 

Haenlein, 2019, p. 17). Recent developments in AI have triggered significant 

breakthroughs and consequences across all aspects of human life. At the same time, 

the value of AI is estimated to reach up to $16 trillion by 2030 (Walsh et al., 2020). 

Even though an overarching definition for AI remains an elusive task, it is commonly 

accepted that such disruptive technological advancements open up new possibilities 

in the automation of repetitive and, usually, time-consuming tasks, offer new 

opportunities for pattern recognition in large amounts of unstructured data and 

integrate the self-learning of novel algorithms (Bhatia, 2017; Ghallab, 2016). 

Representing a new era in the knowledge society, AI brings new opportunities to 

interpret external datasets, imitating human cognitive functions, and addressing 

complexities linked to human thought or feelings (Kaplan and Haenlein, 2019; Russell 

and Norvig, 2016; Martınez-Miranda and Aldea, 2005). 

AI has penetrated most aspects of our life and its massive power, coupled with big 

data, is evolving geometrically. AI is bound to alter production processes across all 

business sectors and foster advanced, innovative, and long-term solutions to pressing 

sustainability challenges. Under the scope of sustainability-oriented research. AI is 

employed through supervised, unsupervised, or semi-supervised machine learning 

models, pertaining to algorithms that predict, identify, and/or inherent patterns from 

labeled, unlabelled, or semi-labeled input data, respectively (Nishant et al., 2020; 

García et al., 2019). Generalised linear models, decision trees, cognitive computing, 

support vector machines, Bayesian and artificial neural networks are some AI models 

gaining traction in the past few years (Shrestha and Mahmood, 2019; Şerban and 

Lytras, 2020). Natural computing is a subfield aimed at algorithm optimisation utilising 

biophysical material as computational media and simulating environmental 

phenomena in computers (Brabazon et al., 2015). Expert systems are also emerging 

themes linked with AI's capacity to solve complex problems of the natural world, such 

as climate change impact assessments, and aid decision-making by relying on specific 

knowledge and inference derived from databases and inference engines (Leo Kumar, 

2019; Nishant et al., 2020).  



5 
 

Walsh et al. (2020) pinpoint key attributes describing the interactions between the 

global climate system and human psychology. Such attributes refer to our inability to 

comprehend the impacts of climate change due to their extreme scale and duration, 

our (mere) reliance on predictive models that encapsulate risks and uncertainty, the 

remoteness of climate change impacts in terms of space as well as time, and the 

inherent common-pool resource constraints of anthropogenic GHG emissions that 

hamper collective mitigation actions. These properties explain why climate change 

affects livelihoods and incurs multidimensional impacts, spanning from rising 

temperatures and increased frequency of extreme weather events to the aggravation 

of socioeconomic inequalities and human diseases. In this context, the computational 

architecture and power that AI encapsulates are particularly fitting in grappling with 

such pressing climate change threats, a domain of global environmental changes 

described by massive data availability, processing, and forecasting challenges (Stein, 

2020). Multi-sensor-driven AI tools and blockchain platforms can optimise circular 

economy loops (Kouhizadeh and Sarkis, 2018; Kouhizadeh et al., 2019; Adebiyi-Abiola 

et al., 2019; Wang and Qu, 2019), giving room to sustainability transitions that reduce 

the carbon footprint and uncontrolled disposal of solid waste (Sankaran, 2019) as well 

as our dependence on primary (non-renewable) resources. Likewise, neural or sensor 

networks, machine learning, and cognitive computing can bring profound energy 

management and optimisation capabilities and smart urban planning and design 

(Şerban and Lytras, 2020). Utilising such AI advances can yield unprecedented 

advantages in analysing interconnected, large-scale databases to minimise the carbon 

intensity of systems, model possible climate change impacts, and maximise resource 

efficiency through smart grids and connected smart appliances. Neural networks and 

smart algorithms, in particular, can also contribute to developing joint actions aimed at 

preserving the ecosystem's health and biological diversity, combat desertification, soil 

degradation and marine pollution (e.g. Keramitsoglou et al., 2006; Mohamadi et al., 

2016; Kwok, 2019; Nunes et al., 2020; Vinuesa et al., 2020). It is well-established in 

the literature that emphasising carbon neutrality in electricity production and 

distribution, transportation, agriculture, as well as construction and buildings can have 

tremendous benefits in climate change mitigation and, in this respect, AI can be a 

critical agent of change (e.g. see Stein, 2020). AI applications may also upscale climate 

engagement of the public and stimulate collective action by predicting or visualising 

climate change risks and aid decision-support efforts by monitoring extreme weather 
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disasters (remotely and) in real-time (Alemany et al., 2019; Huntingford et al., 2019; 

Walsh et al., 2020).   

For example, AIDR (Artificial Intelligence for Digital Response) assists relief 

organizations by analyzing big data, that is, tweets, to detect the location and impacts 

of floods (Imran et al., 2014). There are other AI models that can immensely help 

disaster relief by mapping floods, locating refugee camps using satellite data (Logar et 

al., 2020) and determining the populations requiring the most help (Omdena & WFP, 

2020). Indeed, AI advancements in climate big data processing allow for the 

identification of much more comprehensive future climate change scenarios and 

intelligent early warning systems.  Projects like EnviroAtlas offer actionable insights 

into climate change implications on societies, ecosystems and healthcare (Manogaran 

and Lopez, 2018). For instance, ambient intelligence using sensor networks provides 

real-time climate data (Dingli et al., 2012; Ribeiro and José, 2013) and brings new 

opportunities in monitoring climate change impacts and disease forecasting and 

surveillance (Booth, 2018; Waits et al., 2018; Manogaran and Lopez, 2018). AI is also 

useful for assessing impacts of climate change on agriculture. Crane-Droesch, A. 

(2018) has developed a machine learning based model that can predict corn 

production under different climate change scenarios. Jakariya et al. (2020) has 

developed a mobile application using machine learning methods that can assess 

vulnerability of farmers in coastal Bangladesh based on an individual’s responses to a 

questionnaire. 

Nevertheless, AI applications aiming to endorse environmental sustainability are 

challenged by the rebound effects of high energy-intensive structures, undermining 

efforts to achieve carbon-neutrality and avoiding overexploitation of primary resources. 

For example, server operating systems that execute essential AI computational tasks 

(or store big data) entail considerable energy for cooling and unhindered operation. At 

the same time, their production, service and final disposal require vast amounts of non-

renewable materials (such as lithium, nickel or cobalt) and efficient e-waste 

management, respectively (Kaplan and Haenlein, 2020). By performing a 

comprehensive review of the available literature, Nishant et al. (2020) also point out as 

significant challenges posed by AI-based applications the overreliance on historical 

data in machine learning models, undesirable human responses to AI interventions, 
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the underlying cybersecurity risks and possible adverse impacts of AI applications as 

well as a lack of holistic metrics for AI performance measurement. 

Moreover, before launching AI deployments, it is crucial to increase the awareness of 

risks associated with likely failures of AI systems in a society progressively more 

dependent on this technology (Vinuesa et al., 2020). Related challenges in climate big 

data in the global earth observation system are outlined in Faghmous and Kumar 

(2014), Lee and Kang (2015) and Nativi et al. (2015). Crucially, underlying gaps in 

ethical, transparency, equality and safety standards stemming from such challenges 

call for regulatory insights and appropriate legislation frameworks to address 

counterproductive outcomes from AI penetration patterns (Kaplan and Haenlein, 2020; 

Vinuesa et al., 2020; Petit, 2018).  

Overall, digital technologies (DTs) are transforming societies and accelerating 

achievements faster than any previous innovation over last two decades (United 

Nations, 2020). Digitalization and digital economies additionally trigged by the COVID-19 

pandemic (MIT Initiative on the Digital Economy, 2021) significantly contribute to climate 

actions (Balogun et al., 2020; Li et al., 2021; Dwivedi et al., 2022). DT itself can potentially 

directly reduce global emissions up to 15% by 2030 and additional 35% by impacting on 

transformation of systems as well as business and consumers decisions (Falk et al. 2020).  

Given the above and taking into account that AI research and development can be a 

significant game-changer towards advanced, innovative and long-term solutions to 

pressing climate change threats, this study aims to review AI applications for climate 

change adaptation. We used a systematic review of the literature on these subjects 

based on an online survey to achieve this. The paper is structured as follows. The next 

section describes the relation between AI and Climate Change Adaptation. Further, 

section 3 presents the methods used, namely an expert-driven systematic literature 

review complemented by a global online survey. Section 4 discusses the main results. 

Section 5, the conclusions section, summarises implications of the paper and outlines 

future prospects. The paper ends with two Appendixes. Appendix 1 (Systematic 

Literature Review with a data matrix which summarises examples of the articles used 

and their references) and Appendix 2 which includes the survey instrument deployed 

in the study. 
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2. Artificial Intelligence and Climate Change Adaptation  

AI and its subset of machine learning have drawn significant attention in recent years. 

The influence of such technology on human life has increased due to the improved 

connectivity, data storage and processor speed. AI is frequently used in many sectors 

such as health and transport (Huntingford et al., 2019); renewable energies (He et al., 

2021); education (Shaikh et al., 2021); construction industry (Abioye et al., 2021); 

ocean dynamics (Zhao and Du, 2021); environmental quality control (Liu et al., 2021); 

biodiversity (Li, 2020); agriculture (Liu et al., 2021). Yet, for climate change adaptation, 

AI is used in the cities and mobility sustainability (Balogun et al., 2020); housing cooling 

system (Ahmed et al., 2021); water sustainability (Doorn, 2021); energy sustainability 

(Ahmad et al., 2021). 

Although AI and machine learning are helpful in climate change adaptation, their 

combined use was previously neglected due to the lack of power and computer 

capacities, which is particularly important as climate change is a data-intensive issue 

with various subsets. However, recent advancements enable scientists to incorporate 

AI into climate change adaptation (Huntingford et al., 2019). 

AI may be used in multiple ways to increase adaptation to climate change, to the same 

extent that climate-smart technologies do (Tran et al., 2020). Firstly, systems may be 

designed to monitor meteorological measurements using high resolution and spatial 

data. Secondly, machine learning can be used to draw links between location, time, 

and changes of the meteorological measurements. After that, interpreted data can be 

fed into artificial intelligence systems that provide automated warnings to people about 

erratic weather patterns and extreme weather events caused by climate change 

(Huntingford et al., 2019).  

Scientists are now able to combine machine learning with climate models. Machine 

learning is valuable, as it helps to solve previous problems by offering accurate results 

that are less expensive than older models. Previous models faced difficulties dealing 

with large amounts of data. However, machine learning can efficiently process data 

faster, which is beneficial in predicting extreme weather events, and models are now 

being redesigned or modified to include machine learning (Rolnick et al., 2019). 
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Climate change has a significant societal impact that translates to ecological and 

socioeconomic issues in a given country. Machine learning has uses in alerting citizens 

by identifying and prioritising areas of high risk. Besides, it may provide annotation by 

using raw data and promoting exchange, making it easier for data to be shared, 

allowing people to develop adaptation methods by deciding on the highest risks and 

using shared information to generate solutions (Rolnick et al., 2019). 

With regards to ecology, AI is used to monitor live ecosystems and track biodiversity. 

By tracking species and their numbers, conservationists can decide areas of high 

priority and low priority. Furthermore, machine learning is used in the form of image-

based sensors to monitor biodiversity. These are automatically triggered by movement, 

and cameras capture pictures that can be used to classify species (Rolnick et al., 

2019). 

AI has great potential in the energy industry. The reduction of fossil fuels used requires 

that the energy crisis be addressed, which, in turn, will reduce the climate change 

impacts and make adaptation easier (Walsh et al., 2020). A key example is Google 

using machine learning to increase wind generation efficiency and predict power 

output, increasing the value of their wind energy by a 20% factor (Elkin & Witherspoon, 

2019). Promotion of alternative energy sources aids in lowering carbon emissions. In 

similar ways, AI and machine learning can be used to regulate building energy and 

thus can be applied to the construction of intelligent cities (Rolnick et al., 2019; Walsh 

et al., 2020) 

3. Methods  

This paper seeks to identify the nexus between AI and climate change adaptation in a 

sample of countries known to be investing resources on AI for various climate change 

adaptation purposes primarily based on a systematic literature search that was 

implemented, adapting the model used by Leal Filho et al. (2019). The following data 

collection and analysis steps were conducted sequentially: Identify data sources; 

select pieces of pertinent literature; perform critical evaluation of studies; distill 

synthesis of acquired prior studies and document essential findings. This systematic 

method facilitates the aggregation of a significant volume of information in the search, 
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thereby offering detailed and reliable information for diverse stakeholders in the AI-

climate change adaptation domain.  

Care was taken to select reliable sources for the research data since top quality 

resources are essential requirements for a good literature search (Balogun et al., 

2020). Literature searches were based on some of the most reputable online 

databases of scientific research data, including Web of Science, Scopus, and Google 

Scholar. We also consulted reports from specialised organisations (e.g. research 

centres and societies, UN bodies, and the OECD). In addition, the scope of literature 

sources was extended to include search engines (e.g., Google) to ensure that relevant 

publications which are not included in scientific databases were not omitted. The 

parameters analysed in such literature include (i) Theme/Category, (ii) AI Application, 

(iii) Implications, (iv) Region. Some of the syntaxes used include: 

 

* Global/Earth  

* Disaster Response 

* Water-related issues  

* Agriculture 

* Water-related management issues  

* Agricultural, Land or Tree 

* Energy 

* Wildfire 

Specific AI Techniques 

Further, to complement the above mentioned systematic literature review, a global 

online survey based on a questionnaire was administered, with a focus on DTs and AI 

for climate change adaptation. 

The structured questionnaire survey was made available to respondents for 

approximately two weeks in February 2021 through the online Google forms platform 

tool. The survey design was deployed with a view to catering for a 'rapid turnaround in 

data collection' (Creswell and Creswell 2018, p. 149). It was supplemented by a critical 

expert literature analysis (Machi and McEvoy 2016), which provided a robust 

foundation for the execution of this research. 
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Overall, the survey instrument comprised sixteen closed-ended questions, of which 

three questions offered scope for a brief qualitative analysis. The survey questions 

were designed to probe aspects of research relevance at the intersection of AI and 

climate change management. The questions were organised into the categories of 

'general questions' (e.g. What is your climate change research oriented towards?) and 

'technical questions' (e.g. In which areas do you see a promising use of DTs and AI in 

climate change context?). The data collection instrument was developed through an 

iterative process that solicited input and feedback from a multinational and 

interdisciplinary team of climate change researchers. Following the instrument's 

conceptual development, the data collection instrument was pre-tested, which led to 

minor adjustments, but overall confirmed its adequacy (Bryman 2016, pp. 260-261).  

The purposive sampling ensured that the survey instrument was appropriate for the 

envisaged target group, which comprised academics working in disciplines related to 

climate change, including mitigation and adaptation. Additionally, a snowball sampling 

was used to leverage the research networks of the authors and 'capitalise on the 

connectedness of individuals in research networks' (Bryman 2016, p. 415). The 

participation in the survey was solicited by email during the above stated data collection 

time frame.  

The subsequent descriptive statistical analysis allowed the researchers to characterise 

the prominent trends (Punch 2014, Creswell 2013, 2014). Selected respondent 

comments, to which our analysis refers in some places of this paper, resulted from 

those three questions which allowed respondents to provide qualitative answers. The 

qualitative responses were analysed through a content analysis using coding and 

categorisation (Creswell and Creswell, 2018). The inferential analysis of the data was 

performed using the statistical software SPSS.  

4. Results and Discussion  

Systematic literature review 

The systematic literature review has assessed the current research areas in applying 

AI and climate change.  Appendix 1 provides a summary of the identified research 

publications, which are categorised under the Adaptation or Mitigation category. Each 

article is further classified under  the following main areas: 1 = Global or Earth Related; 
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2 = City or Urban Related; 3 = Disaster Response; 4 = Water-related Issues; 5 = 

Agricultural, Land or Tree; 6 = Energy; 7 = Wildfire; 8 = Specific AI Technique (s). 

Around 95% of these studies are related to climate change adaptation, whereas 5% of 

them refer to mitigation. In particular, the use of AI for adaptation is frequently 

performed for monitoring climate dynamics, and in predicting the adverse impacts of 

climate change in cities and the urban environment. Making other areas, AI is deployed 

to develop sophisticated modelling and forecasting for evaluating vulnerabilities of 

different regions of the world. This approach is considered relevant to policy and 

decision-makers in environment planning and action plan formulation, in light of 

potential disasters and adversities to human health.  From a risk management 

perspective, the use of AI in this context is useful in anticipating scenarios that could 

be dealt with, by formulating measures to reduce possible climate change impacts, and 

even avoid potential losses due to climate-associated problems where conceivable. 

The assessed studies were either reviews (4), case studies (17), or experimental 

studies (35). The case studies involved Asia (8), Europe (6), Australia (2), and North 

America (1), respectively. Nearly half of the literature assessed (27 out 56) focused 

heavily on the significant role of AI in understanding future outlooks, where issues 

related to forecasting, projection, and modelling of extreme weather events, resource 

use, and the even impact of conservation and adaptation efforts were predominant.  

In terms of humanitarian responses in the wake of extreme weather events, fewer than 

ten studies addressed the application of AI in disaster risk reduction and response.  

Similarly, little attention was given to AI's role in unlocking the blue economy's potential, 

as only six studies underscored its application in inland and natural coastal capitals.   

Among the literature assessed, AI was noted to have gained traction in terms of its 

application in biotechnology, agronomy, and plant science, particularly at a time when 

drought and pest-resistant crop varieties are most sought in many places around the 

world. The place of AI in the clinical characterisation of mental health cases emerged 

only once where virtual reality (VR) is relevant in assessing, treating, and managing 

posttraumatic stress disorder (PTSD). These findings echo the broad application areas 

previously studied, but extend previous studies by representing the spread and reach 

of AI application in climate change adaptation (Walsh et al, 2020) 
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Figure 1 reveals that 38% of studies pertinent to water-related issues under climate 

change, including flood prediction and irrigation management, have attracted the most 

research attention on examining the application of AI for adaptation.  

 

Figure 1. Distribution of main research areas on AI application by the identified 

research publications 

These studies have examined the vulnerability of various regions to potential floods 

linked to climate change, and evaluated measures to adapt based on AI applications. 

The combined categories of agriculture, land and wildfire represent 31% of the 

sampled literature.  These studies broadly reveal how AI is deployed to predict 

pertinent events that create challenges and risks to the inhabitants; possible solutions 

are derived. About 27% of the articles provide some reviews and assessments on the 

use of AI technologies to support climate change adaptation in disaster management, 

regional and global deployment potentials in general. The remaining 5% suggest the 

possible innovative deployment of AI for energy management, particularly to enhance 

renewable energy that mitigates greenhouse gas emissions and climate change. 

Contrary to previous studies, this highlights the relative concentrated application of AI 

in relation to disaster management (Stein, 2020). 
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Survey 

The systematic literature review was complemented by a survey of 104 respondents 

from 51 countries. The respondents came from all continents (Figure 2), with a majority 

coming from Africa at 32%, followed by Europe (31%). The lowest percentage 

contribution came from the Oceanic-Australia block, which contributed 3%. 

Furthermore, the respondents varied among countries and the rate was 68% male and 

30% female, whereas about 2% did not state their gender. 

 

Figure 2. Spatial distribution of respondents 

It was positive that Africa had the most survey participants. It is one of the continents 

is disproportionately affected by climate change; therefore, as part of building the 

adaptation capacity on the continent, participation in such studies is vital. Moreover, 

results from the systematic review indicated that comparatively few case studies from 

the continent are document. Thus, number of African respondents to the survey can 

offer valuable insights to make up for the absence of case studies from the region. 

 Even though South America, Australia and Oceania did not have a high number of 

participants, these continents are also expected to suffer several adverse climate 



6 
 

change effects; hence adaptation capacity may be increased by integrating AI and 

other related DTs. 

Respondents provided various types of replies to the questions posed (Table 1). The 

most robust agreements were noted concerning the capacity of digitisation and AI to 

'strengthen governance practices and policy coherence in climate change' (90%), to 

'strengthen environmental sustainability and reduce climate vulnerability' (89%), and 

to 'deliver economic and environmental benefits in climate change management' 

(88%). These reflect the positive intentions of AI reported in the literature (Stein, 2020). 

Table 1. Percentage responses on survey questions 

Variable Percentage response Mean Standard 
deviation 

 Strongly  
Disagree
d 

Disagree Neither agree 
nor disagree 

Agree Strongly 
agree 

  

Digital technologies and AI can 
strengthen governance practices 
and policy coherence in climate 
change 

7 1 2 36 54 4.29 1.07 

The implementation of timely and 
adequately designed digitally-
based technologies and AI can 
deliver economic and 
environmental benefits in climate 
change management. 
 

6 1 5 35 53 4.28 1.05 

Digital technologies and AI can 
strengthen environmental 
sustainability and reduce climate 
vulnerability. 
 

5 2 4 49 40 4.17 0.97 

I fear the possible risks that digital 
technologies and AI can bring to 
mankind (e.g. algorithms, robots 
making decisions). 
 

12 26 20 30 12 3.04 1.23 

I fear the possible risks that digital 
technologies and AI can bring to 
employment (e.g. human 
redundancy). 
 

9 24 22 32 13 3.16 1.20 

Digital technologies and AI may 
help to mitigate the inequalities 
that are being exacerbated by 
climate change. 
 

3 11 27 38 21 3.63 1.03 

Limitations in digital connectivity 
disproportionately affect 
developing countries. 

5 3 7 37 48 4.2 1.04 
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Leveraging digital technologies and 
AI may facilitate teaching and 
research on matters related to 
climate change. 
 

6 1 9 44 40 4.11 1.03 

Leveraging digital technologies and 
AI may accelerate progress 
towards the implementation of 
SDG13 (climate action) 

6 3 10 40 41 4.07 1.08 

There is a need to improve the 
sustainability dimension of 
teleworking, remote learning and 
virtual living to foster education on 
matters related to climate change 

6 1 11 37 45 4.14 1.06 

There is a need to keep the public 
well informed, with full 
transparency and accountability 

5 3 2 31 59 4.36 1.03 

Digitalisation and AI will be 
deployed much faster and on a 
wider scale than in the past 

6 1 11 35 47 4.16 1.07 

The use of digitalisation and AI 
needs to be paralleled by privacy 
and data protection procedures 

7 2 2 29 60 4.33 1.11 

Enhancing the use of digital 
technologies and AI will be critical 
for a climate-resilient and 
sustainable  
COVID-19 pandemic recovery 

5 4 12 33 46 4.11 1.09 

However, there was also a recognition of the 'need to keep the public well informed, 

with full transparency and accountability' (90% of respondents agreed or strongly 

agreed), 'the use of digitalisation and AI needs to be paralleled by privacy and data 

protection procedures' (89%), and that the 'limitations in digital connectivity 

disproportionately affect developing countries' (85%), which demonstrates a balanced 

view of both the benefits and implications of digitisation and AI in climate change 

research and practice. Whereas the former of these reflect the extant literature, the 

latter points to broader awareness of the inequalities that has hitherto not been so 

explicit (Walsh et al, 2020). 

Responses on the relevance of DTs and AI to climate change action were mixed across 

the continents (Figure 3a). Respondents from Australia demonstrated the most 

affirmative responses (where 100% of respondents replied 'very important and 

frequently used' or 'important and sometimes used'). North America and South 
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America offered the subsequent highest affirmative responses (80% and 75%, 

respectively). 

 

Figure 3. Relevance of digital tools and AI to (a) climate action (b) project cooperation 

(c) climate change management in the next ten years (d) organisational expenditure 

on digitalisation for climate change 

The only continent with respondents reporting ‘no meaning to my work and uses at all’ 

was Africa (5%). These findings might reflect limited national resources and the stage 

of technology diffusion in climate change action across the continents. For instance, 

many farmers in Africa still rely on rainfed agriculture, increasing vulnerability to 

impacts of climate change (Serdeczny et al., 2017). Moreover, digital data on local 

climate projections and weather forecasts to support optimal farming practices in the 

region is scarce (Balogun et al., 2020), aligning with the findings of this study. However, 

such findings are consistent with the aforementioned finding related to the unequal 

access to resources such as AI and DTs which is hitherto largely absent in the extant 

literature (Walsh et al, 2020). 

Similarly, the adoption of DT for climate change adaptation in North America has been 

documented in earlier studies. An example is the United States' Southeast Climate 



9 
 

Consortium's (SECC) agrometeorological program aiding the management of climate 

risks in the past decade. With this initiative, digital tools are used to simplify and 

communicate complex climatic concepts to enhance farmers' understanding and 

awareness of climate impacts on agriculture (AgroClimate, 2015). In contrast to 

previous studies, this finding highlights the differential application of AI and DTs across 

countries in relation to climate change adaptation (Alemany et al, 2019). 

The relevance of DTs and AI to project cooperation was affirmative across all 

continents (Figure 3b). As noted, the most affirmative responses were in Oceania and 

Australia, with 100% of respondents reporting 'very important and frequently used'. 

The answer 'has some importance and occasionally used' was most commonly 

reported in North America (13%), Europe (12%), and Asia (10%). These findings reflect 

the widespread use of communications technologies in project activity across all 

continents, and is an aspect not typically reported in previous studies about the use of 

AIs and DTs in climate change adaptation (e.g. Stein, 2020). In its study of the 

application of digitalisation for sustainable development in the global north and south, 

Balogun et al. (2020) reported the prevalence of DTs (e.g., big data analytics) in all 

continents to enhance urban resilience. Also, Mckinley et al. (2021) highlighted the 

emergence of innovative digital tools, methods, and approaches to support a wide 

range of project cooperation, including aspects of climate change action. The extended 

employment of DTs is evident during the COVID-19 pandemic to facilitate stakeholder 

engagement, project cooperation, communication, research and teaching (Leal Filho 

et al., 2021a). Notably, the relevance of DTs and AI for future climate change 

management (Figure 3c) is overwhelmingly expected to ‘increase’ or ‘greatly increase’ 

by respondents in all regions.  

In terms of predicted future institutional investments in digitisation (Figure 3d), findings 

indicated affirmative results from Oceania (100%), North America (85%), Africa (64%), 

and Europe (63%). In contrast, respondents from the following indicated no further 

investments: Australia (100%), South America (58%) and Asia (57%). These results 

might reflect current commitments to maintain technological advancements in ongoing 

climate change activity (e.g. in Oceania) or potential maintenance and utilisation of 

previous institutional investments in technology (e.g. as demonstrated in China and 

other parts of Asia in recent years). These findings add new insight into the perception 
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of ongoing investment in AI, an area currently unexplored in the literature (Walsh et al, 

2020), but indicative of future intent and activity. 

 

Figure 4. The capacity of DTs and AI to (a) strengthen governance and policy 

coherence, (b) deliver economic and environmental benefits, (c) strengthen 

environmental sustainability and reduce climate vulnerability, and (d) mitigate the 

inequalities from climate change. 

The survey indicated that 54% of respondents disagreed that DTs will strengthen the 

governance practice and policy coherence in climate change (Figure 4a). In 

comparison, 36% agreed that DTs could be of assistance in the development of climate 

change governance policies, which can be linked to the detachments that often exist 

between policymakers and advancements in scientific fields. Furthermore, the 

governance sphere is a complicated field that is often a contested terrain among 

policymakers and politicians alike. Therefore, it is imperative that even though DTs can 

be proven tools in improving governance, vested interest also needs to be taken into 

account during policy formulation. From a continental angle, respondents from 

Oceania and Australia totally agreed with the view; however, this analysis needs to be 
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treated with caution due to the small size of the sample from the two continents. These 

findings sit in contrast to previous findings as they provide a more skeptical picture of 

how AI can be applied in policy and governance fields (Rolnick et al, 2019). 

Concerning that the timely implementation of DTs and AI deliver economic and 

environmental benefits in climate change management (Figure 4b), most respondents 

agree (particularly from South America and Europe) or strongly agree (particularly from 

Oceania and Europe). Only the responses from Australia are neutral.  

Regarding the capacity of DTs to reduce climate change vulnerability, 40% and 45% 

of respondents strongly agreed and agreed, respectively, that DTs might reduce 

climate change vulnerability, with the highest percentage coming from North America, 

besides the 100% from Australia and Oceania (Figure 4c). This aligns with the outcome 

of the literature review and confirms opportunities to use AI and digital tools to find 

practical adaptive approaches to climate change. Such tools include machine learning 

applications in climate change. This position was established by O'Gorman and 

Dweyer (2018). They asserted that machine learning helps reduce uncertainties 

associated with climate models, thus further affirming that AI can be a valuable tool in 

climate change. The exact position is also articulated and highlighted by Vinuesa et al. 

(2020), who assert that AI can be integrated with improving renewable energy 

capabilities and energy efficiency, thus reducing the total greenhouse gas emissions 

and carbon footprint. Finally, concerning DTs being a tool to reduce inequalities (Figure 

4d), 38% of respondents agreed that digital tools could reduce inequalities due to 

climate change. Thus, most respondents in all regions (except Australia) expect DT 

and AI to strengthen governance practices and policy coherence in climate change. 
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Figure 5. Percentage response on risks posed by AI on (a) mankind (b) employment 

(c) limitations of developing countries (d) personal privacy 

The survey respondents still hold considerable fear regarding the threat posed by DTs 

and AI to humankind, as confirmed by 30% of respondents indicating that AI and 

related technologies pose some danger (Figure 5a). The highest percentage of 

concern came from Australia (100%), Oceania (50%), and South America (38%). In 

comparison, respondents' in Africa only reflected a minor level of anxiety at 22%. Fears 

related to impacts on employment (Figure 5b) are nuanced and noticeable across all 

continents, although at close to 60% Europeans are more cautious than North 

Americans. Generally, apprehension stems from the belief that AI may create a 

superhuman with capabilities beyond human beings (Yu et al., 2018), eventually 

overtaking human beings and lacking consciousness (Dehaene et al., 2017). 

Respondents also strongly felt that connectivity and infrastructure issues could 

negatively affect the capacity of developing countries to take full advantage of 

advancements in AI and other digital tools (Figure 5c). 
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The fear of AI is further confirmed by respondents agreeing across all continents that 

there is a need for privacy and data protection procedures when applying AI (Figure 

5d). Figure 5d shows agreement and convergence regarding digitalisation, and AI 

needs to be paralleled by privacy and data protection procedures for all regions. The 

Australia region, and Oceania, both with 100%, are the most positive or affirmative, if 

compared to the South America and European region, with more than 80% and 60%, 

respectively. Although Asia and North America are both positive, they had relatively 

lower values (both over 35%) than Australia and Oceania. Although Africa is 

considered a relatively backward region in the use and exploitation of advanced 

technologies, especially digitisation and AI, it presented a relatively higher value (more 

than 50%) when compared to North America and the Asian region. Whilst some of 

these fears have been previously reported, the extent and reach of these fears has not 

previously been reported on a global level (Stein, 2020). This is an important dimension 

to consider in further implementation and exploitation of AI for climate change 

adaptation. 
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Figure 6. Leveraging digital tools and AI can assist in (a) teaching, and research (b) 

accelerating progress towards implementation of SDG13, (c) faster and broader scale 

deployment (d) enhancing climate resilience and post COVID-19 recovery 

From the survey, 40% and 44% of respondents from across all the continents agreed 

that leveraging DTs and AI can be valuable tools in increasing research in climate 

change-related issues and the implementation of SDG13 (Figure 6a and 6b). On a 

continental level, 68% of respondents from South America felt that AI and related digital 

tools could assist as tools of research and assist in the implementation of SDG13. This 

view is supported by Belayneh et al. (2016), who assert that AI can easily be leveraged 

in drought forecasting, which can subsequently reduce the cost of food insecurity 

interventions as well as assist in saving lives. The use of AI in climate research and 

action is further advocated in Huntingford et al. (2019), who encouraged the use of 

models and data-driven machine learning to provide warnings and decision-making 

support, notably drought predictions. Similar opportunities for AI about disaster 

management and mitigation are noted by Sun et al. (2020) and Sayad et al. (2019), 

respectively. Our study findings are similar to Vinuesa et al. (2020), which established 

that AI could act as an enabler in achieving environmental-related outcomes, including 

SDG13. 

On the other hand, 40% and 41% of respondents respectively, believed that AI and 

DTs would not be good tools to aid research in climate change and the implementation 

of SDG13 as some of the AI techniques are high energy demanders, and particularly 

where non-carbon neutral energy sources are used (Vinuesa et al., 2020).  

The research results allow the authors to highlight the existence of imbalances on the 

understanding of technological advances, or whether digitalisation and AI will be 

deployed much faster and on a broader scale than in the past (Figure 6c). These 

disagreements, mainly in Africa, maybe associated in part due to limited use of 

technologies and digitisation in various productive sectors, limited information on the 

current dynamics of technologies and AI, and reduced opportunities for technological 

production and transformation (Van Rensburg et al., 2019; Cariolle, 2020). 

Furthermore, another set of risks can be classified as cyber physical and structural 

imbalances (Jelinek et al., 2021) thus limiting equitable AI adoption by all countries. 

However, the significant climate sensitivity, exposure, and reduced adaptive capacities 

in Africa consequently translate into major vulnerability (Ahmadalipour et al., 2019; 
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Leal Filho et al., 2021b). This may require advanced technological options such as AI 

to detect, predict, record, and report extreme weather events, sudden events, 

predictability of impacts, and mitigation and adaptation options. Nevertheless, North 

and South America, with more than 80% and 75%, respectively, were more optimistic 

about the rapid advances in digitisation and accelerated implementation of AI. Such 

optimism could mean acquiring most of the knowledge, production capacity, 

technological transformation, and digitisation of these regions.  

Consistent with responses to other questions, answers are skewed in favour of the 

expectation that the use of DTs and AI will be critical for a climate-resilient and 

sustainable COVID-19 pandemic recovery, with a clear majority of respondents in all 

regions (except Australia) expressing this expectation (Figure 6d). The Australian 

region, with 100%, is less favourable compared to all regions. A more positive 

affirmation was verified in the Oceania region, with 100%, and North America, with 

more than 65%. With more than 50%, Africa was more favourable than the Asian 

region (more than 40%) and Europe (more than 35%). We understand that the less 

favourable position of the Australian region (100%) can be justified likely due to (1) the 

existence of similar tools that can play and support climate resilience and sustainable 

COVID -19 pandemic recovery, and (2) climate change and COVID-19 pandemic are 

consequences of human behaviour, which can be positively changed, if there is a will, 

decision, commitment, and all this anchored to well-founded and effective policies. 

The practical application of AI can be a valuable tool shown by Buckland et al. (2019). 

They established that ANNs could be applied in future predictions of future natural or 

human-induced disturbances of climatic systems. The practical application of AI is also 

further demonstrated in Mohamadi et al. (2016), where a trained AI system can track 

the desertification of regions. Furthermore, McGovern et al. (2017) indicated that AI 

could assist in improving forecast models as several AI techniques can extract 

information through blending observational data and forecast model information; hence 

quality outcomes can be derived. Furthermore, evidence exists that shows that AI will 

assist in better understanding the climate change phenomenon as well as modelling 

the impacts thereof (Vinuesa et al., 2020); however, this will not be possible in 

situations where DT distribution is already uneven between rich and developing 

countries (WHO, 2019).  
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Duan et al. (2019) advocate for governments worldwide to develop relevant policies 

that will be a reference point in the use of AI to avoid unintended negative 

consequences on society. This assertion further highlights the fear which has gripped 

both the scientific community and the general population regarding AI. In this sense, it 

may be constructive to synthesise the prospects involving AI and DTs as a kind of 

balancing act whereby their perceived potential risks are juxtaposed against their 

current and future capacity to mitigate climate-related risks, i.e., through enhanced 

options for climate change adaptation, disaster risk reduction, preparedness, wildfire 

prediction and prevention (Dehaene et al., 2017, Huntingford et al., 2019, Sayad et al., 

2019, Sun et al., 2020, Luetz and Rumsey, 2021, Zhao et al., 2020).  

5. Conclusions 

This research has tried to analyse the connections between AI and climate change 

adaptation. One of the main findings from the study is that respondents from North 

America and South America are already extensively applying and utilising DTs and AI 

as tools to increase climate change adaptation. This was evidenced by the high levels 

of optimism as indicated by 80 % of respondents from North America and 75 % from 

South America agreeing that these tools are essential hence being frequently used. 

These positions from the two continents can be attributed to the availability of 

appropriate infrastructure that facilitates the use and deployment of such technologies. 

However, the situation was different for African respondents, where some respondents 

indicated that they seldom use DTs or AI as part of their climate adaptation tools box. 

Thus, the lack of enthusiasm in applying DTs and AI in dealing with climate change 

adaptation in Africa may be a result of the lack of the required infrastructure to deploy 

these technologies. This trend, in turn, offers an opportunity for technology developers 

to provide additional support to African countries, so as to bridge the technology gap. 

The study has also identified the fact that there is still considerable fear about the 

potential risks posed by AI concerning humanity, as some respondents felt that AI is 

an existential threat to humanity. Others felt that they fear that robots might take their 

job. Also, some respondents expressed some concerns regarding the potential 

intrusion on privacy that comes from the deployment of AI, mainly if left unregulated 

and unchecked. Third trend shows the need to set up suitable legal-ethical frameworks 



17 
 

that may regulate the use of AI across different spheres as a whole, and their use in a 

climate change context in particular. 

Furthermore, besides the fear of AI's negative consequences on humanity, our study 

established that 44 % still believe that AI can be a vital tool in teaching and in research, 

enhancing climate resilience, and supporting the post-COVID-19 recovery process. 

Our study also ascertained that from the respondent's views, DTs were also valuable 

tools that can be deployed towards supporting research on issues related to climate 

change adaptation and the implementation of SDG13. Our study also further 

established that DTs can also enhance governance and policy coherence in climate 

change response and adaptation.  

This paper has some limitations. The first one is that the literature review contains 

relatively recent data since AI is a topic that has evolved over the past few years. A 

second limitation is the sampling since only 104 people from 51 countries took part in 

it. 

However, despite the limitations, the study provides a welcome addition to the 

literature. It explores the connections between AI and climate change and offers a 

rough profile of how it is being practised in various countries. 

The implications of this paper are two-fold. Firstly, it sheds some light on the extent to 

which the literature reports on the connections between AI and climate change. 

Secondly, by means of the survey, it describes some pressing issues connected with 

AI, especially its contribution to strengthen governance practices and policy coherence 

in climate change, and the need to keep the public well informed, with full transparency 

and accountability. 

As breakthroughs continue to be made in various fields of AI and DTs, practitioners in 

climate change can take advantage of these developments and deploy AI more 

systematically, taking better advantage of its potential to support increased climate 

change adaptation. Furthermore, in future studies, comprehensive research on the use 

of AI for mitigating climate change can be performed to analyse and predict measures 

to reduce carbon emissions to stabilise the climate. Overall, provided that due care is 

taken, the use of AI can provide a welcome support to global efforts to better 

understand and handle the many challenges associated with a changing climate. 
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Appendix: Systemic Literature Review: Data Matrix 
 

Study Theme   Category: 
Climate 
Change 
Mitigation 
(M) or 
Adaptation 
(A) 

Main Area: (1 = Global or Earth 
Related; 2= City or Urban 
Related; 3= Disaster Response; 
4 = Water-related Issues; 5 = 
Agricultural, Land or Tree; 6 = 
Energy; 7 = Wildfire; 8 = Specific 
AI Technique 

AI Application/Short 
description 

Implications References  

1 Earth System-
related 
measurements to 
provide automated 
warnings 

A 1 Earth System-related 
measurements and high 
spatial and temporal 
resolution Earth System 
Model (ESM) to provide 
automated warnings and 
advice to society of 
approaching weather 
extremes 

Better monitoring of 
climate dynamics 

Huntingford et 
al. (2019) 

2 Impact of large-
scale urbanisation 
under climate 
change scenarios on 
local climate  

A 2 Projected land-use data from 
satellite imagery with 
dynamic simulation land use 
results in the Weather 
Research and Forecasting 
model to predict scenarios 
(WRF). 

Prediction of future 
urbanisation under 
climate change for city 
planning and action 
plans reduces human 
health vulnerability to 
excessive heat in Pearl 
River Delta. 

Yeung et al. 
(2020) 

3 Mapping of 
landslide 
susceptibility for 
preventing and 
combating the 
landslides 

A 5 Artificial intelligence methods 
composed of support vector 
machines (SVM), artificial 
neural networks (ANN), 
logistic regression (LR), and 
reduced error-pruning tree 

SVM method found 
helpful in developing 
an accurate and 
robust landslide 
prediction model in 
the case of Vietnam 

Van Phong et 
al. (2019) 
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(REPT) in the development of 
models for landslide 
susceptibility  

4 Integrated 
Valuation of Eco-
Services and 
Tradeoffs (InVEST) 
model to quantify 
aquatic ecosystem 
services. 

A 4 General circulation models 
(GCMs) and representative 
concentration pathways 
(RCPs) were selected to 
estimate hydrologic 
ecosystem services. 

Revealing annual and 
monthly hotspot 
spatial changes of 
hydrologic ecosystem 
services in Taiwan 
under climate change. 

Peng et al. 
(2019)  

5 Blockchain with 
Artificial 
Intelligence for 
managing water 
utilisation (editorial 
for a special issue) 

A 4 Using blockchain technology 
for decentralised, immutable 
public water transactions 
records to unveil complex 
patterns in big data on 
shifting water distribution 

Technology 
integration yields 
advantages in efficient 
water abundance and 
scarcity pattern 
identification under 
climate change  

Lin et al. (2018) 

6 Artificial Neural 
Network application 

A 4 Application of an Artificial 
Neural Network (ANN). The 
Backpropagation Neural 
Network (BPNN) algorithm to 
forecast rainfall. 

Building model to 
predict extreme 
rainfall in Indonesia 

Hardwinarto 
and Aipassa 
(2015) 

7 AI for Disaster 
Response 

A 3 Combines climatological and 
demographic indicators to 
determine the populations 
which are most impacted and 
in need of relief. The tool can 
calculate the quantity of relief 
(food, shelter) required 

Assists relief 
organisations in 
responding effectively 

Omdena and 
WFP (2020) 
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8 AIDR - Artificial 
Intelligence for 
Digital Response 

A 4 Analyses tweets (using AI) to 
detect floods, their location, 
timing, causes, and impact, 
which can consequently help 
disaster relief organisations to 
respond. 

Shortens time 
required to respond 
by relief organisations 

Imran et al. 
(2014)  

9 Machine learning 
for agricultural yield 
prediction 

A 3 The model predicts corn yield 
under climate change 
scenarios using machine 
learning algorithms 

Can assist in preparing 
and adapting crop 
yield to climate 
change 

Crane-Droesch 
(2018)  

10 Machine learning 
for adaptation 
policy 

A 8 Proposes machine learning to 
examine the large volumes of 
adaptation policy documents 
in various sectors 

Helps in streamlining 
existing adaptation 
policies 

Biesbroek et al. 
(2020) 

11 Machine learning to 
assess vulnerability 

A 5 Developed a mobile 
application to assess the 
vulnerability of agricultural 
communities using machine 
learning based on 
weather/biophysical and 
socioeconomic data 

Monitoring of 
vulnerability and 
planning interventions 

Jakariya et al. 
(2020)  

12 PulseSatellite A 4 Enables identification of 
refugee shelters and mapping 
of floods using satellite 
images 

Helps in the 
coordination of 
humanitarian efforts  

Logar at al. 
(2020)  

13 Smart irrigation 
management 

A 4 Predicts the irrigation 
requirements using sensed 
soil parameters and data on 
environment and weather 
from the internet. 

Helps in the 
sustainable 
management of water 

Goap et al. 
(2018) 
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14 IoT-Based Smart 
Tree Management  

A 2 Uses internet of things based 
data to monitor 
characteristics (air quality, 
sunlight level, sound pollution 
level) and health of trees 

Can assist in planning 
afforestation 
programs and green 
cities 

Shabandri et al. 
(2020) 

15 AI for coral 
conservation 

A 1 Image analysis using Artificial 
Intelligence (AI) to monitor 
the health of coral reefs 
across multiple locations 
around the globe 

Evaluate the adverse 
effects of climate 
change on corals 

Nunes et al. 
(2020) 

16 AI for Wildfire 
Evacuations 

A 7 Integrates AI with existing 
wildfire evacuation models 
for improved accuracy 

Can ensure the safety 
of communities in 
wildfire-prone regions 

Zhao et al. 
(2020) 

17 Machine Learning 
(ML) methods for 
wildfire 
susceptibility 
mapping 

A 7 The case study appraises the 
potential of various machine 
learning (ML) methods for 
wildfire susceptibility 
mapping in Amol County 

A comparative analysis 
between machine 
learning applications 
supports accurate 
wildfire susceptibility 
assessments 

Gholamnia et 
al. (2020) 

18 Monitoring, 
predicting and 
preventing wildfires 
using several 
Artificial 
Intelligence 
techniques 

A 7 The study combines Big Data, 
Remote Sensing and Data 
Mining algorithms to process 
satellite images and extract 
insights to predict the 
occurrence of wildfires and 
avoid such disasters. 

The study presents a 
methodology for 
predicting the 
occurrence of 
wildfires. 

Sayad et al. 
(2019) 

19 Machine-learning 
algorithms to model 
human-caused 
wildfire occurrence 

A 7 The case study uses ML within 
the context of fire risk 
prediction, and human-
induced wildfires in Spain 

Results suggest that 
the use of ML 
algorithms leads to 
improvements in 
prediction accuracy 

Rodrigues and 
de la Riva 
(2014) 
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20 Synopsis of the 
Risk-Reduction 
Strategies for 
Floods and 
Droughts 

A 4 The study reviews 150 peer-
reviewed journal publications 
from the last twenty years 
focusing on risk-reduction 
strategies for floods and 
droughts. 

The AI and the 
internet of things (IoT) 
are foreseen to impact 
future disaster risk 
reduction 

Yang and Liu 
(2020) 

21 Near real-time 
identification of 
bushfire impact 

A 7 Applying the U-Net deep 
learning framework to train 
the recent and historical 
satellite data leads to an 
effective pre-trained 
segmentation model of burnt 
and non-burnt areas.  

More timely 
emergency response, 
successful hazard 
reduction, and 
evacuation planning 
during severe bushfire 
events.  

Lee et al. 
(2020)  

22 Flood Prediction 
Using Machine 
Learning (ML) 
Models: Literature 
Review 

A 4 The study demonstrates the 
state of the art of ML models 
in flood prediction 

Hydrologists and 
climate scientists can 
use the survey to 
identify the best ML 
methods 

Mosavi et al. 
(2018) 

23 Applications of 
artificial intelligence 
for disaster 
management 

A 3 Provides an overview of 
current applications of AI in 
disaster management during 
its four phases: mitigation, 
preparedness, response, and 
recovery. 

Most AI applications 
focus on the disaster 
response phase. 
However, this study 
also identifies 
challenges for future 
research. 

Sun et al. 
(2020) 

24 Anticipatory climate 
change 
management 
through early 
warning (EW.) 

A 3 The case study field tests a 
semi-autonomous analysis of 
early warning data in the 
context of humanitarian 
disaster response 

The application of 
effective semi-
autonomous EW 
safeguards 
humanitarian 
development gains  

Luetz and 
Rumsey (2021) 
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25 Machine learning 
and artificial 
intelligence to aid 
climate change 
research and 
preparedness 

A 8 The study suggests a parallel 
emphasis on utilising ML and 
AI to understand and 
capitalise far more on existing 
data and simulations 

Artificial intelligence 
(AI) provides 
enhanced warnings of 
approaching weather 
features, including 
extreme events 

Huntingford et 
al. (2019) 

26 AI and responding 
to the impacts of 
climate change in 
the context of the 
helping professions 
– e.g. Clinical Virtual 
Reality tools to 
advance the 
prevention, 
assessment, and 
treatment of PTSD 

A 8 Virtual Reality (VR): A clinical 
tool to assess, prevent, and 
treat posttraumatic stress 
disorder (PTSD)  

Advances of AI 
automation on 
psychology and 
mental health care as 
corollary effect of 
climate change 
adaptation on the 
helping professions  

Rizzo and 
Shillin (2017) 

27 European Union 
Strategies for 
Adaptation to 
Climate Change 
with the Mayors 
Adapt Initiative by 
Self-Organising 
Maps 

A 8 Application of artificial neural 
networks to classify and 
understand the local climate 
adaptation measures, verify 
their differences between 
themselves, and identify and 
characterise patterns in the 
different adaptation 
strategies examined. 

Providing valuable 
information for its 
interpretation and the 
planning of climate 
change adaptation 
actions 

Abarca-Alvarez 
et al. (2019) 

28 Machine Learning 
for Conservation 
Planning under a 
Changing Climate 

A 7 Four machine learning 
algorithms served to locate 
the current sites of wildlife 
habitats and predict suitable 
future places where wildlife 
would possibly relocate to, 
depending on the climate 

Localisation of areas 
of habitat for an 
exemplary species, 
based on current 
climate conditions and 
pinpointed locations 
of future habitat 

Fernandes et 
al. (2020) 
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change impacts, based on a 
timeframe of scientifically 
backed temperature-increase 
estimates.  

based on climate 
projections 

29 Artificial 
intelligence and 
sustainable 
development 

A 1 Discusses the role of AI for 
three case studies in 
accelerating the progress on 
the United Nations (UN.) 
Sustainable Development 
Goals (SDGs) 

It provides guidelines 
to management 
education and the 
business of leading 
corporations amid 
rapid technological 
and social change. 

Goralski and 
Tan (2020)  

30 Renewable energy: 
Present research 
and future scope of 
Artificial 
Intelligence 

M 6 It summarises the review of 
reviews and the state-of-the-
art research outcomes related 
to renewable energy 
alternatives. Remarkably, the 
role of single and hybrid AI 
approaches in the research 
and development of these RE. 

It discusses how 
Artificial Intelligence 
could assist in 
achieving the future 
goals of the RE. 

Jha et al. 
(2017) 

31 Machine Learning 
to Evaluate Impacts 
of Flood Protection 
in Bangladesh, 
1983-2014 

A 4 it implements machine-
learning approaches to study 
the long-term impacts of 
flood protection in 
Bangladesh 

Implications for 
planning for future 
and more extreme 
climate futures and 
global investments in 
climate-resilient 
infrastructure to 
create positive social 
impacts 

Manandhar et 
al. (2020) 
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32 Foreseeing global 
patterns of long-
term climate 
change from short-
term simulations 
through machine 
learning 

A 8 It introduces a machine 
learning approach that 
utilises a dataset of available 
climate model runs to 
understand the relationships 
between short-term and long-
term temperature responses 
under different climate 
scenarios. 

Better data for 
decision making and 
identified challenges 
and opportunities for 
data-driven climate 
modelling 

Mansfield et al. 
(2020) 

33 Forecasting energy 
demand, wind 
generation and 
carbon dioxide 
emissions in Ireland 
using evolutionary 
neural networks 

M 6 Robust evolutionary 
optimisation algorithm and 
covariance matrix adaptation 
evolutionary strategy: 
Training of neural networks to 
predict short term power 
demand, wind power 
generation, and carbon 
dioxide intensity levels in 
Ireland. 

The algorithm 
performs very 
competitively when 
compared to other 
states of the art 
prediction methods 
when forecasting. 

Mason et al. 
(2018) 

34 Machine learning 
application in 
geographically 
differentiated 
climate change 
mitigation in urban 
areas 

M 2 A systematic review of 
applied machine learning 
researches relevant to climate 
change mitigation focused on 
remote sensing, urban 
transportation, and buildings. 

Big data and machine 
learning methods 
emergence enabling 
climate solution 
research to overcome 
generic 
recommendations and 
provide policy 
solutions 

Milojevic-
Dupont, and 
Creutzig (2021) 
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35 Modelling climate 
change impact on 
wind power 
resources using 
adaptive neuro-
fuzzy inference 
system 

M 8 An adaptive neuro-fuzzy 
inference system (ANFIS)-
based post-processing 
technique is used to consider 
the spatial variation of wind 
power density at the turbine 
hub height and its variability 
under future climatic 
scenarios.  

Climate change does 
not notably affect the 
wind climate over the 
study area; the real 
potential of wind 
power in the area is 
lower than that 
projected in the RCM. 

Nabipour et al. 
(2020) 

36 Machine learning 
approaches for 
spatial modeling of 
agricultural 
droughts in the 
southeast region of 
Queensland, 
Australia. 

A 5 It aims to develop new 
approaches to map 
agricultural drought hazards 
with state-of-the-art machine 
learning models. 

Such machine-learning 
approaches can 
construct an overall 
risk map, thus 
adopting robust 
drought contingency 
planning measures. 

Rahmati et al. 
(2020) 

37 Consistent Climate 
Scenarios: 
projecting 
representative 
future daily climate 
from global climate 
models based on 
historical climate 
data 

A 8 It compares several 
techniques (including 
machine learning algorithms) 
for modeling climate data 
requirements for climate 
adaptation studies in 
Australia. 

Two machine learning 
models had a good 
performance. These 
and other remaining 
models were used to 
develop the CCS 
projections data. 

Ricketts et al. 
(2013) 

38 Artificial 
Intelligence and 
Climate Change 

A 8 it argues for the enhanced 
use of AI to address climate 
change and analyses critical 
policy tradeoffs associated 
with the increased use of AI.  

"Climate change is too 
important not to try." 

Stein (2020) 
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39 Deep learning to 
represent subgrid 
processes in climate 
models 

A 8 It trains a deep neural 
network to represent all 
atmospheric subgrid 
processes in a climate model 
by learning from a multiscale 
model in which convection is 
treated explicitly. 

Deep learning can 
capture many 
advantages of cloud-
resolving modelling at 
a fraction of the 
computational cost. 

Rasp et al. 
(2018) 

40 Accelerating 
climate-resilient 
plant breeding by 
applying next-
generation artificial 
intelligence 

A 8 Genomics and phenomics 
integration to speed the 
development of climate-
resilient crops, combined with 
AI, to survey and classify 
omics data. In addition, so-
called "next-generation AI" is 
expected to change the 
dynamics of how experiments 
are planned, thus enabling 
better data integration, 
analysis, and interpretation. 

AI/ML models to 
support the 
development of 
stress-tolerant crops 

Harfouche et 
al. (2019) 

41 Application of 
remote sensing and 
artificial intelligence 
as tools to improve 
the resilience of 
agriculture 
production systems 

A 8 The potential of Artificial 
Intelligence to leverage big 
data, which is now becoming 
easily accessible through 
using Unmanned Aircraft 
Systems (UAS) to improve the 
resiliency and efficiency of 
production systems (focus on 
remote sensing tech.) 

Developing climate-
resilient cropping 
systems 

Jung et al. 
(2021) 

42 Determining the 
best drought 
tolerance indices 
using artificial 
neural network 

A 5 Wheat production forecasting 
through artificial neural 
networks (ANN) and 
investigating contributing 
factors of crop yields 

AI/ML models to 
support the 
development of 
stress-tolerant crops 

Etminan et al. 
(2019) 
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(ANN): Insight into 
the application of 
intelligent 
agriculture in 
agronomy and plant 
breeding 

43 Classification of 
Crop Tolerance to 
Heat and Drought—
A Deep 
Convolutional 
Neural Networks 
Approach 

A 5 Present an unsupervised 
approach to classify corn 
hybrids as either tolerant or 
susceptible to drought, heat 
stresses, and combination. As 
a result, the DCNN was 
recognised as one of the 2019 
Syngenta Crop Challenge 
winners. Products labelled 
121 hybrids as drought-
tolerant, 193 as heat tolerant 
and 29 as tolerant to both 
stresses. 

AI/ML models to 
support the 
development of 
stress-tolerant crops; 
prevent yield loss. 

Khaki et al. 
(2019)  

44 Applying artificial 
intelligence 
modelling to 
optimise green-roof 
irrigation 

M 4 An artificial neural network 
(ANN) and fuzzy logic 
simulated changes in soil 
moisture; real-time weather 
data trained the model to 
predict soil moisture content 
accurately, and the new 
model maintained adequate 
soil moisture content whilst 
saving 20% water use. 

Improve green roof 
irrigation 

Tsang and Jim 
(2016) 

45 Citrus rootstock 
evaluation utilising 
UAV-based remote 

A 5 A UAV-based high-throughput 
technique was developed for 
the citrus tree. Phenotypic 
characteristics of sweet 

AI/ML models to 
support the 
development of 
stress-tolerant crops 

Ampatzidis et 
al. (2019) 
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sensing and 
artificial intelligence 

orange trees grafted on 25 
rootstocks were evaluated. 
Data collected by UAV were 
correlated significantly with 
manually collected data. 

46 Machine Learning 
for High-
Throughput Stress 
Phenotyping in 
Plants 

A 5 ML tools (SVM, ANN) for plant 
stress analytics. 

AI/ML models to 
support the 
development of 
stress-tolerant crops 

Singh et al. 
(2016) 

47 Re-engineering 
traditional urban 
water management 
practices with 
intelligent metering 
and informatics 

A 4 The intelligent system 
demonstrated various urban 
water management practices, 
including an intelligent 
system for autonomous water 
end-use disaggregation and 
demand forecasting. 

AI/ML models for 
water systems 
management (efficient 
supply and demand 
management) 

Nguyen et al. 
(2018) 

48 Intelligent urban 
water infrastructure 
management 

A 4 DSS for water distribution 
networks (near real-time 
logger data providing 
pressures, flows and tank 
levels at selected points 
throughout the system). 
Furthermore, urban drainage 
systems and the utilisation of 
rainfall data predict the 
flooding of urban areas in 
real-time.   

AI/ML models for 
water systems 
management (efficient 
supply and demand 
management) 

Savic et al. 
(2013) 
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49 Improving Urban 
Water Security 
through Pipe-Break 
Prediction Models: 
Machine Learning 
or Survival Analysis 

A 4 Two leading statistical pipe-
break modelling methods: 
machine-learning and 
survival-analysis algorithms, 
are studied. A gradient-
boosting decision tree 
machine-learning model and 
a Weibull proportional hazard 
survival-analysis model are 
used to predict time to next 
break for cast-iron pipes in a 
central Canadian water 
distribution system. 

AI/ML models for 
water systems 
management (efficient 
supply and demand 
management) 

Snider and 
McBean (2020) 

50 Medium-Term City 
Water Demand 
Forecasting with 
Limited Data 
through an 
Ensemble Wavelet–
Bootstrap Machine-
Learning Approach 

A 4 The study explores a hybrid 
wavelet–bootstrap–artificial 
neural network (WBANN) 
modelling approach for one-
week and one to two-month) 
city water demand 
forecasting in situations with 
limited data availability. 
Models showed to be 
effective in assessing the 
uncertainty associated with 
water demand forecasts in 
terms of confidence bands, 
which is helpful in operational 
water demand forecasting. 

AI/ML models for 
water systems 
management (efficient 
supply and demand 
management) 

Tiwari and 
Adamowski 
(2015) 
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51 Applying Artificial 
Intelligence to 
Improve Resilience 
and Preparedness 
Against the 
Negative Impacts of 
Flood Events 

A 4 Several ML models are 
developed and evaluated for 
classifying floods, i.e., flash 
floods, lakeshore floods, 
based on the weather 
forecast. The results show 
that the Random Forest 
technique provides the 
highest classification 
accuracy, followed by the J48 
decision tree and Lazy 
methods. 

AI/ML models for 
flood forecasting and 
management 

Saravi at al. 
(2019) 

52 Detection of the 
State of the Climate 
System via Artificial 
Intelligence to 
Improve Seasonal 
Forecasts and 
Inform Reservoir 
Operations 

A 4 AI-based production of 
seasonal hydrologic forecasts. 
Multiple global climate signals 
and assessment of their value 
on operational decisions. 
Detected teleconnections and 
other observed preseason SST 
anomalies are used to 
forecast local meteorological 
variables on a seasonal time 
scale. 

AI/ML models for 
water reservoir 
management 

Giuliani et al. 
(2019) 

53 Forecasting of daily 
water level with 
wavelet 
decomposition and 
artificial intelligence 
techniques 

A 4 The study applies wavelet 
decomposition theory to ANN 
and ANFIS. As a result, WANN 
and WANFIS models produce 
better efficiency than ANN 
and ANFIS models.  
Wavelet decomposition 
improves the accuracy of ANN 
and ANFIS. 

AI/ML for reliable 
water level forecasting 
for reservoir inflow 

Seo et al. 
(2015) 
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54 Hybrid models to 
improve the 
monthly river flow 
prediction: 
Integrating artificial 
intelligence and 
non-linear time 
series models 

A 5 Artificial neural networks, 
multivariate adaptive 
regression splines, random 
forests and non-linear time 
series models integrated to 
improve the monthly river 
flow prediction. 

AI/ML for reliable river 
flow prediction 

Fathian et al. 
(2019) 

55 The digital twin of 
Zurich city planning 

A 2 Digital twin for urban 
planning, with a focus on CC 
adaptation measures 

AI/ML and digital 
twins for CC 
forecasting and 
adaptation and 
planning   

Schrotter and 
Hürzeler (2020) 

56 The European 
Union builds 'digital 
twin' of Earth to 
hone climate 
forecasts 

A 1 European Union is finalising 
plans for an ambitious "digital 
twin" of planet Earth that 
would simulate the 
atmosphere, ocean, ice, and 
land with unrivalled precision, 
providing forecasts of floods, 
droughts, and fires from days 
to years in advance.   

AI/ML and digital 
twins for CC 
forecasting and 
adaptation and 
planning   

Voosen (2020) 
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Appendix 2: The survey instrument 

1. Gender 
2. Age  
3. Country of residence 
4. Position 
5. Average monthly Income  
6. Where have you mainly carried out your project/research? (select all that apply) 
7. What is your climate change research oriented towards? (select all that apply) 
8. How do you relate the relevance of digital technologies and AI to your current work 
on climate change? 
9. How do you regard the relevance of digital technologies and AI to your 
national/international cooperation in projects today? 
10. Which barriers prevent you from taking advantage of digital technologies and AI 
as part of your climate change work? (Multiple answers possible) 
11. The relevance of digital technologies for climate change management in the 
coming 10 years will 
12. The relevance of AI for climate change management in the coming 10 years will 
13. In which areas do you see a promising use of digital technologies and AI on a 
climate change context? (Multiple answers possible) 
14. To which extent do you agree with the following sentences:  
      [Digital technologies and AI can strengthen governance practices and policy 
coherence in climate change] 
      [The implementation of timely and properly designed digitally-based technologies 
and AI can deliver economic and environmental benefits in climate change 
management] 
      [Digital technologies and AI can strengthen environmental sustainability and 
reduce climate vulnerability] 
     [I fear the possible risks that digital technologies and AI can bring to mankind (e.g.  
algorithms robots making decisions)] 
     [I fear the possible risks that digital technologies and AI can bring to employment 
(e.g. human redundancy)] 
     [Digital technologies and AI may help to mitigate the inequalities that are being 
exacerbated by climate change] 
     [Limitations in digital connectivity disproportionately affects developing countries] 
     [Leveraging digital technologies and AI may facilitate teaching and research on 
matters related to climate change] 
     [ Leveraging digital technologies and AI may accelerate progress towards the 
implementation of SDG13 (climate action] 
     [There is need to improve the sustainability dimension of teleworking, remote 
learning and virtual living to foster education on matters related to climate change] 
    [There a need to keep the public well informed, with full transparency and 
accountability] 
    [Digitalisation and AI will be deployed much faster and on a wider scale than in the 
past] 
    [The use of digitalisation and AI need to be paralled by privacy and data protection 
procedures] 
    [Enhancing the use of digital technologies and AI will be critical for a climate 
resilient and sustainable COVID-19 pandemic recovery] 
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15. Does your organisation plan to increase expenditure on digitalisation for climate 
change management?  
16. Does your organisation plan to increase expenditure on AI for climate change 
management?  
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