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Adiposity and grip strength: a Mendelian 
randomisation study in UK Biobank
Snehal M. Pinto Pereira1*, Victoria Garfield2, Aliki‑Eleni Farmaki2, David J. Tomlinson3, Thomas Norris1, 
Ghazaleh Fatemifar4, Spiros Denaxas4, Chris Finan2,5,6 and Rachel Cooper3,7,8 

Abstract 

Background: Muscle weakness, which increases in prevalence with age, is a major public health concern. Grip 
strength is commonly used to identify weakness and an improved understanding of its determinants is required. We 
aimed to investigate if total and central adiposity are causally associated with grip strength.

Methods: Up to 470,786 UK Biobank participants, aged 38–73 years, with baseline data on four adiposity indica‑
tors (body mass index (BMI), body fat percentage (BF%), waist circumference (WC) and waist‑hip‑ratio (WHR)) and 
maximum grip strength were included. We examined sex‑specific associations between each adiposity indicator and 
grip strength. We explored whether associations varied by age, by examining age‑stratified associations (< 50 years, 
50–59 years, 60–64 years,65 years +). Using Mendelian randomisation (MR), we estimated the strength of the adipos‑
ity–grip strength associations using genetic instruments for each adiposity trait as our exposure.

Results: In males, observed and MR associations were generally consistent: higher BMI and WC were associated with 
stronger grip; higher BF% and WHR were associated with weaker grip: 1‑SD higher BMI was associated with 0.49 kg 
(95% CI: 0.45 kg, 0.53 kg) stronger grip; 1‑SD higher WHR was associated with 0.45 kg (95% CI:0.41 kg, 0.48 kg) weaker 
grip (covariate adjusted observational analyses). Associations of BMI and WC with grip strength were weaker at older 
ages: in males aged < 50 years and 65 years + , 1‑SD higher BMI was associated with 0.93 kg (95% CI: 0.84 kg, 1.01 kg) 
and 0.13 kg (95% CI: 0.05 kg, 0.21 kg) stronger grip, respectively. In females, higher BF% was associated with weaker 
grip and higher WC was associated with stronger grip; other associations were inconsistent.

Conclusions: Using different methods to triangulate evidence, our findings suggest causal links between adiposity 
and grip strength. Specifically, higher BF% (in both sexes) and WHR (males only) were associated with weaker grip 
strength.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Muscle weakness is a major public health concern. Its 
prevalence increases markedly with age, and it is a key 
component of age-related conditions such as sarcope-
nia and frailty [1], which are associated with mobility 
disability and loss of independence. Hence, the burden 

of muscle weakness is substantial and shared between 
individuals, their families and society [2–4]. Measures 
of muscle weakness are strong predictors of functional 
decline[5] and against the backdrop of an ageing popula-
tion [6], the disease and disability burden associated with 
muscle weakness will continue to rise unless effective 
public health strategies aimed at reducing its occurrence 
are implemented. Low absolute grip strength, commonly 
used to identify muscle weakness, predicts fractures, 
cardiovascular disease and all-cause mortality [7–10]. 
Grip strength increases to a peak in early adulthood 
and is maintained through to mid-life and subsequently 
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declines; but within any one age group, considerable 
between-individual heterogeneity in strength is evident 
[11]. While both genetic and environmental factors over 
the life course are associated with grip strength across 
adulthood [12, 13], an improved understanding of the 
causal determinants of strength is still required to help 
develop effective strategies to prevent or delay the onset 
of muscle weakness.

Like muscle weakness, adiposity (usually assessed in 
population-based studies by body mass index (BMI), 
body fat percentage (BF%), waist circumference (WC) 
and/or waist-hip-ratio (WHR)) is also associated with a 
myriad of adverse outcomes including functional decline 
and premature mortality [5, 14–16]. Obesity is currently 
highly prevalent in all age groups [17], and BMI and BF% 
tend to increase with age [18, 19]. Thus, when current 
generations of younger adults reach older ages, they are 
more likely to have been overweight or obese for longer 
proportions of their lives [18] and so have a higher body 
fat mass than contemporaneous older adults. This has 
potentially concerning implications for a multitude of 
age-related outcomes including muscle weakness. There-
fore, establishing the influence of lifetime adiposity on 
strength has become increasingly important.

Most studies exploring associations between adipos-
ity and absolute grip strength have been limited to BMI 
and findings have been inconsistent with studies show-
ing associations of higher BMI with both weaker [20] 
and stronger [21] absolute grip, associations in men only 
[22] or no association [23]. Discrepant findings could 
be due to differences in age at the time of grip strength 
assessment or variations in birth cohort and/or country 
of study. Reliance on BMI as the main marker of adipos-
ity could be another contributing factor. Although BMI 
provides a quick and easy assessment of total adiposity, it 
does not distinguish between lean and fat mass. This lack 
of differentiation is a key limitation when examining rela-
tionships with characteristics of muscle, such as strength. 
In such situations, a more appropriate marker of total 
adiposity could be BF%, but population-based studies 
examining relationships between BF% and strength are 
scant [24]. In addition, while markers of total adiposity 
are valuable, they do not reflect body fat distribution, and 
central adiposity has been shown to be a stronger pre-
dictor of many health outcomes than total adiposity [15, 
16]. For example, central adiposity is characterized by a 
state of chronic low-grade inflammation, which in turn is 
associated with lower muscle strength [25, 26]. Yet, few 
studies have related central adiposity (usually assessed 
by WC and WHR) to grip strength [21, 22, 24]. Moreo-
ver, regardless of the measure of adiposity examined, all 
observational studies relating adiposity to grip strength 
suffer from unmeasured and/or residual confounding. 

For example, capturing information on resistance train-
ing which influences strength [27] and may influence 
adiposity [28] is difficult in large scale studies. Thus, in 
observational studies, it is not always straightforward to 
quantify the true effects of adiposity on muscle strength.

Given the importance of understanding whether adi-
posity causally influences muscle strength and the meth-
odological limitations of existing studies, we aimed to 
establish the role of total (BMI, BF%) and central (WC, 
WHR) adiposity on grip strength using UK Biobank data. 
In an observational analysis, we examined associations 
between the four indicators of adiposity and grip strength 
cross-sectionally. To help triangulate evidence on the 
effect of adiposity on grip strength, we also used an alter-
native analytic approach—Mendelian randomisation 
(MR)—to estimate the strength of the same associations 
using genetic instruments for each of the four different 
adiposity indicators. Due to evidence of sex-differences 
in BMI-grip strength associations in previous studies 
[22], and marked sex-differences in grip strength [11], we 
chose a-priori to run all analyses stratified by sex.

Methods
UK Biobank [29, 30] is a prospective study of over 
500,000 UK adults aged 38–73  years at recruitment 
(2006–2010). Participants, recruited across the UK 
from National Health Service central registers, provided 
informed consent; ethical approval was given by the 
North West Multicentre Research Ethics Committee. 
Our study included only white European participants 
because the genome-wide association studies (GWAS) 
used to identify genetic instruments (described below) 
were primarily based on European samples. The analysis 
sample of white Europeans with a valid measure of grip 
strength varied from 470,786 for observational analysis 
(214,406 males and 256,380 females) to 407,487 for MR 
analysis (187,245 males and 220,242 females); details are 
in Fig. 1.

Adiposity measures were ascertained following stand-
ardised protocols [29]. Weight (without shoes and heavy 
outer clothing) and BF% were measured using a Tanita 
BC-418 MA body composition analyser. Height was 
measured with a Seca 202 height measure; waist and hip 
circumferences were measured using a tape measure 
[29]. BMI (kg/m2) and WHR were calculated.

Grip strength was assessed using a Jamar J00105 
hydraulic hand dynamometer. Participants sat upright in 
a chair with their forearms on armrests. They were asked 
to squeeze the dynamometer’s handle as hard as they 
could with their right hand for about 3 seconds. The grip 
strength measurement was then repeated using the same 
protocol for the left hand [31]. We examine the maxi-
mum recorded value (greater than 0) from either hand.
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Potential confounders identified a priori, for examined 
observational associations, are described in detail else-
where [32]. They included age; deprivation (defined by 
the Townsend score

[33]); smoking status (never, ex-, current); physi-
cal activity (number of days/week participants under-
took > 10 min of moderate and vigorous activity, recorded 
as two separate categorical variables) and average alcohol 
intake over the last year (rarely/never, once/month to 
twice/week and ≥ twice/week).

Adiposity genetic instruments
We used single nucleotide polymorphisms (SNPs) identi-
fied from the largest European descendent GWAS to date 
[34–37], as our genetic instruments for BMI, BF%, WC 
and WHR (620, 6, 46 and 319 near-independent SNPs, 
respectively). The SNPs in our genetic instruments were 
regressed onto the adiposity measure under considera-
tion and the R-squared and F-statistic calculated. Our 

instruments explained 0.24% (BF%) to 5.81% (BMI) of the 
variability in adiposity traits in men and 0.17% (BF%) to 
5.22% (BMI) in women. The F-statistic varied from 14.90 
(WHR) to 73.83 (BF%) in men and from 19.45 (BMI) to 
61.52 (BF%) in women (Additional File 1: Table S1). We 
used genotype dosage information to estimate allele 
count under an additive genetic model. Instrument 
details are provided in Additional File 1: Table S2; infor-
mation on the genetic instrument selection process is 
provided briefly in Additional File 2: Fig. S1 and in detail 
elsewhere [38, 39].

Statistical methods
Due to evidence of sex-differences in BMI–grip strength 
associations in previous studies [22], and marked sex-
differences in grip strength [11], we chose a-priori to run 
all analyses stratified by sex. Figure 1 illustrates our study 
design, which includes examination of both observational 
and genetic associations.

Fig. 1 Flow diagram of UK Biobank participants and study design. M, males; F, females; SNP, single‑nucleotide polymorphism; G‑XGWAS, genetic 
association of adiposity (BMI, BF%, WC and WHR) instruments (SNPs) with BMI, BF%, WC and WHR respectively from relevant GWAS (see methods for 
details); G‑GSUKB, genetic association of adiposity instruments (SNPs) with grip strength in UK Biobank
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Correlations between phenotypic and genetic adiposity 
measures and traits
We calculated pair-wise phenotypic correlations between 
adiposity measures using Pearson’s correlation coeffi-
cients. Genetic correlations between adiposity traits were 
calculated using cross-trait LD score regressions [40] and 
GWAS summary statistics [34–37]. The LD score regres-
sions were performed with pre-computed LD scores for 
each SNP using the 1000 Genomes European data (which 
are appropriate for use with European GWAS data [40]). 
We filtered our summary statistics to HapMap3 SNPs, 
because these are well-imputed in most studies.

Observational associations
Using linear regression, we examined cross-sectional 
associations of measured total and central adiposity with 
grip strength. Analyses were initially minimally adjusted 
for age (model 1); then additionally adjusted for the 
potential confounders listed above (model 2). To assess 
whether associations between adiposity and strength 
vary by age as has been proposed [41–43], we reran anal-
yses stratified by age groups representing approximate 
fourths of the population (i.e. < 50  years, 50–59  years, 
60–64  years, 65  years +), with tests of interaction 
between age group and each adiposity measure formally 
assessed.

Genetic associations
Briefly, the MR analysis (described below) requires infor-
mation on associations between individual SNPs (i.e. our 
genetic instruments, denoted as G) and (i) our outcome, 
grip strength (denoted as GS) and (ii) our exposure (i.e. 
the adiposity trait of interest, denoted as X). We cal-
culated individual SNPs genetic association with grip 
strength (represented by G-GS in Fig. 1) by running lin-
ear regressions (with adjustment for 10 genetic principal 
components); we used individual SNPs genetic associa-
tion with each adiposity parameter, as reported in the 
original GWAS [34–37] (represented by G-X). We used 
a pseudo-two sample MR design, as we had some overlap 
between the discovery GWAS (for BMI and WHR) and 
our analytic sample (see the ‘Sensitivity analyses’ section).

MR analysis
We examined associations between adiposity and grip 
strength using four different MR approaches (three 
described here; one described in the ‘Sensitivity analyses’ 
section). Our main MR model, inverse-variance weighted 
MR (MR-IVW), estimates the effect of adiposity on grip 
strength by averaging the genetic instruments’ ratio of 
instrument–grip strength (G-GS) to instrument–adipos-
ity (G-X) association estimates under a multiplicative 
random-effects meta-analysis, where the weight of each 

ratio was the inverse of the variance of the SNP–grip 
strength association [44, 45]. For the MR-IVW analysis, 
we report a measure of heterogeneity (I-squared statis-
tic), as heterogeneity could indicate the presence of SNP 
outliers (which we investigated in the ‘Sensitivity analy-
ses’ section). Our two additional MR analyses, MR-Egger 
[46] and weighted median MR (MR-WM) [47], allow for 
horizontal pleiotropy [48] (i.e. they allow for the effects of 
the genetic instruments on grip strength to not be exclu-
sively via their effect on adiposity). MR-Egger produces 
an intercept term indicative of horizontal pleiotropy [46]; 
MR-WM gives valid estimates in the presence of horizon-
tal pleiotropy, provided at least 50% of the information in 
the analysis comes from SNPs that have no pleiotropic 
effects [47]. When the MR-Egger intercept indicated 
pleiotropy (p < 0.05), we undertook two further analyses. 
First, funnel plots were examined to identify outlying 
SNPs, and second, we performed a leave-one-out MR-
Egger analysis. We then reran our analyses removing any 
identified outliers.

The individual SNPs genetic association with each 
adiposity parameter (G-X) reported in the GWAS 
were scaled according to a standard deviation incre-
ment  (SDX) of the adiposity trait in the discovery 
study. Hence, the MR analysis results in effects on grip 
strength of a one SD increase in the adiposity trait 
(according to the discovery sample). To ensure result-
ing coefficients are comparable, observational associa-
tions were scaled according to one SD of the adiposity 
measure of interest.

Sensitivity analyses
The GWAS from which we identified our BMI and WHR 
genetic instruments included UK Biobank participants: 
approximate sample overlap was 60% for BMI and 70% 
for WHR [36, 37]. We therefore needed to mitigate 
against over-estimating genetic effect sizes (i.e. winner’s 
curse bias [49]). We did this by calculating the expected 
bias and type 1 error rate, using a formula described 
elsewhere [49]. The expected bias is a linear function of 
the proportion of overlap between the samples and was 
calculated given the F parameter (the expected value of 
the F statistic), the observational estimate, the sample 
size and the sample overlap percentage (which we over-
estimated at 100% for both BMI and WHR). To assess 
the plausibility of assumptions that underlie our MR 
analysis, we examined associations between SNPs and 
potential confounders (Townsend score, smoking sta-
tus, moderate and vigorous physical activity, and average 
alcohol intake) using linear/logistic regression as appro-
priate. Where associations were present, after adjusting 
for multiple testing using a Bonferroni correction (equat-
ing to p < 0.05), the MR analysis was re-run excluding 
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potentially invalid SNPs. Finally, to evaluate the MR 
results by identifying and correcting for potential outli-
ers (p < 0.05), we conducted a Mendelian Randomisa-
tion Pleiotropy RESidual Sum and Outlier analysis (by 
running the R function MR-PRESSO [50], with 50,000 
bootstrap replications). This method evaluates genetic 
pleiotropy in the MR model, performs outlier removal, 
and performs MR again without the outliers to reduce 
bias in the MR estimates.

We used STATA 14, R, PLINK 2.0 and the command 
line tool ldsc [40] for data processing and statistical 
analyses. MR analyses were performed using the mrro-
bust package in STATA [45] and MR-PRESSO function 
in R [50].

Data availability
This work was conducted using the UK Biobank resource 
under application number 71702.

Results
Mean maximum grip strength was higher in males 
(41.8 kg; SD = 8.9 kg) than females (25.1 kg; SD = 6.4 kg). 
Likewise, mean BMI, WC and WHR were higher in 

males than females, whereas females had higher mean 
BF% (Table 1).

Correlations between phenotypic and genetic adiposity 
measures and traits
Phenotypic and genetic correlations were broadly similar. 
For both phenotypic and genetic correlations and in both 
sexes, BMI and WC were highly correlated (phenotypic 
correlation coefficients = 0.88 for both sexes; genetic 
correlation coefficients = 0.94 (males)/0.90 (females), 
Additional  File  1: Table  S3). In females the BMI–WHR 
and BF%–WHR correlations were low (phenotypic cor-
relation coefficients = 0.46 for both; genetic correlation 
coefficients = 0.46 and 0.36 respectively), while in males, 
these correlations were moderate (phenotypic correlation 
coefficients = 0.60 and 0.63 respectively; genetic correla-
tion coefficients = 0.69 and 0.78 respectively).

Observational associations: measured adiposity and grip 
strength
In males, higher BMI and WC were associated with 
stronger grip, while higher BF% and WHR were associ-
ated with weaker grip (Fig. 2, Additional File 1: Table S4). 
For example, after adjustment for all covariates, a 1-SD 

Table 1 Characteristics (Mean(SD)/N(%)) of included UK Biobank study participants

a Maximum of left and right hand measures
b Range
c For more than 10 minutes
d Positive values indicate areas with high deprivation; negative values indicate relative affluence

Total Males Females

Outcome

 Grip strength (kg)a 32.7 (11.3) 41.8 (8.9) 25.1 (6.4)

Exposures

 BMI (kg/m2) 27.4 (4.77) 27.9 (4.24) 27.0 (5.14)

 Body fat (%) 31.4 (8.53) 25.3 (5.82) 36.5 (6.89)

 WC (cm) 90.3 (13.5) 97.1 (11.4) 84.6 (12.5)

 WHR 0.87 (0.09) 0.94 (0.07) 0.82 (0.07)

Potential confounders

 Age (years)b 56.8 (38–73) 57.0 (38–73) 56.6 (39–71)

 Townsend deprivation  indexd  − 1.45 (3.00)  − 1.41 (3.06)  − 1.48 (2.95)

 Smoking

 Never 309,446 (65.8) 127,560 (59.6) 181,886 (71.0)

 Previous 111,652 (23.7) 60,405 (28.2) 51,247 (20.0)

 Current 49,227 (10.5) 26,242 (12.3) 22,985 (8.97)

 Days/week moderately  activec 3.63 (2.33) 3.61 (2.33) 3.64 (2.34)

 Days/week vigorously  activec 1.83 (1.95) 2.04 (2.05) 1.65 (1.85)

 Alcohol intake

 Rarely/never 82,951 (17.6) 25,424 (11.9) 57,527 (22.4)

 1/month to 2/week 176,554 (37.5) 75,200 (35.1) 101,354 (39.5)

 > 2/week 211,275 (44.9) 113,753 (53.1) 97,522 (38.0)
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higher BMI was associated with 0.49 kg (0.45 kg, 0.53 kg) 
stronger grip, while a 1-SD higher WHR was associ-
ated with 0.45  kg (0.41  kg, 0.48  kg) weaker grip. With 
the exception of WHR (pinteraction = 0.13), there was evi-
dence that associations between adiposity and grip 
strength varied with age (pinteraction < 0.001). Relationships 
of BMI and WC with strength reduced with increas-
ing age, while BF% associations strengthened with age 
(Fig. 3, Additional File 1: Table S5). For example, in males 
aged < 50  years, a 1-SD higher BMI was associated with 
0.93 kg (0.84 kg, 1.01 kg) stronger grip, whereas among 
males aged 65  years + , the equivalent estimate was 
0.13 kg (0.05 kg, 0.21 kg). Analogous estimates for a 1-SD 
higher BF% were 0.19  kg (0.10  kg, 0.28  kg) and 0.51  kg 
(0.43  kg, 0.59  kg) weaker grip for males aged < 50  years 
and 65 years + respectively.

In females, higher BMI and WC were associated with 
stronger grip strength, while higher BF% and WHR 
were associated with weaker grip (model 2; Fig. 2, Addi-
tional  File  1: Table  S4). For example, after adjustment 
for all covariates, a 1-SD higher WHR was associated 
with 0.20  kg (0.18  kg, 0.23  kg) weaker grip. There was 
evidence that all adiposity–grip strength associations 
varied with age (pinteraction < 0.01), although the mag-
nitude of differences in associations by age were small 
(Fig. 3, Additional File 1: Table S5). For example, while 
there was no association between BMI and grip strength 
among females aged 50–59  years and 60–64  years, a 
1-SD higher BMI was associated with 0.08 kg (0.03 kg, 
0.13  kg) and 0.11  kg (0.05  kg, 0.18  kg) stronger 
grip among females aged < 50  years and 65 + years 
respectively.

MR associations between genetically predicted adiposity 
and grip strength
In males, with one exception (MR-Egger for BF%), all 
three sets of MR associations were directionally con-
sistent with observed associations. For example, a 
1-SD higher BMI was associated with 0.63  kg(0.34  kg, 
0.91 kg) stronger grip (MR-IVW; Fig. 2, Additional File 1: 
Table  S4). There was borderline evidence of horizontal 
pleiotropy for BF% (MR-Egger p-intercept = 0.05). Fun-
nel plots and leave-one-out analyses identified three 
potentially pleiotropic SNPs (rs1558902, rs6738627 and 
rs9906944). When BF% analyses were re-run without 

these SNPs, all three sets of MR associations were direc-
tionally consistent with observed associations (Addi-
tional File 1: Table S6).

In females, directional consistency with observed 
associations were present for all three sets of MR associ-
ations for WC. In contrast to observed associations, all 
three sets of MR associations indicated that higher BMI 
was associated with weaker grip. For BF%, there was 
evidence of pleiotropy (MR-Egger p-intercept = 0.03), 
and when potentially pleiotropic SNPs were removed 
(rs1558902, rs6738627 and rs2943652), two MR asso-
ciations (MR-IVW and MR-WM) were similar to 
observed associations, indicating higher BF% was asso-
ciated with weaker grip (Additional  File  1: Table  S6). 
There was also evidence of horizontal pleiotropy for 
WHR (MR-Egger p-intercept = 0.001). However, both 
MR-WM and MR-Egger analyses demonstrated direc-
tionally consistent associations with grip strength. 
For example, a 1-SD higher WHR was associated with 
0.27  kg (0.04  kg, 0.49  kg) stronger grip (MR-WM). 
When we excluded identified outlying SNPs (rs1406948, 
rs10132280, rs12774134), the MR-Egger intercept still 
indicated pleiotropy (p = 0.002); however, both the MR-
Egger (slope) and MR-WM associations were similar to 
those reported in Fig. 2 (see Additional File 1: Table S4 
and S6); removing one SNP at a time had little effect 
on the MR-Egger slope (range: 0.70–0.95) or constant 
(p ≤ 0.005 in all cases).

Any potential bias in our results due to sample over-
lap (i.e. because the GWAS from which we identified 
our BMI and WHR genetic instruments included UK 
Biobank participants) was small: over-estimating sam-
ple overlap at 100%, the absolute value of bias was less 
than 0.01 for both BMI and WHR, with type-1 error 
rate ≤ 0.06 (Additional File 1: Table S7). We found several 
associations between SNPs and potential confounders; 
however, when these SNPs were removed from analy-
ses, results were similar to those presented in Fig. 2 (see 
Additional File 1: Table S4). There was evidence of heter-
ogeneity for all associations (I2 = 29.8% to 75.6% (males); 
66.0% to 78.7% (females); Additional File 1: Table S4) and 
MR-PRESSO provided evidence for outliers in all but one 
case (Additional File 1: Table S8). However, after outlier-
correction, there was little change in the strength of evi-
dence of associations.

(See figure on next page.)
Fig. 2 Associations between one SD increases in measured and genetically predicted adiposity (BMI, BF%, WC and WHR) and grip strength in a 
males and b females. Numbers represent estimated mean difference in grip strength (kg) per 1 standard deviation higher (measured/genetically 
predicted) adiposity; p‑pleiotropy: p‑value for overall horizontal pleiotropic effect indicated by the intercept from MR‑Egger regression; Obs: model 
1 adjusted for age; Obs: model 2 additionally adjusts for Townsend deprivation, smoking, moderate and vigorous physical activity and alcohol 
intake; MR‑IVW, Mendelian randomisation, inverse‑variance‑weighted; MR‑WM, Mendelian randomisation, weighted median estimator; MR‑Egger, 
Mendelian randomisation, Egger; SD, standard deviation; BMI, body mass index; BF%, body fat percentage; WC, waist circumference; WHR, waist hip 
ratio
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Fig. 2 (See legend on previous page.)
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Discussion
We investigated evidence for links between different adi-
posity measures and grip strength in UK Biobank using 
several complementary approaches and found important 
sex-differences in associations. In males, our observa-
tional analyses indicated that higher BMI and WC were 
associated with stronger grip while higher BF% and 
WHR were associated with weaker grip. MR findings 
were generally directionally consistent with observa-
tional findings, providing evidence to suggest observed 
associations in males are causal. In females, our observa-
tional analyses indicated that higher BF% and WHR were 
associated with weaker grip, while higher BMI and WC 
were associated with stronger grip. In general, MR asso-
ciations were only directionally consistent with observed 
associations for BF% and WC. Finally, our observational 
analyses suggest that adiposity–grip strength associa-
tions could vary by age, which may partly explain some 
observed inconsistencies.

Our study has several strengths. First, by using MR, we 
exploit the fact that adiposity alleles inherited by offspring 
from their parents are randomly distributed, ensuring 
our MR-associations are less subject to confounding and 
reverse causation [51]. Second, we adopted four differ-
ent MR approaches which have distinct strengths and 
assumptions. The general concordance of results from 
these different MR approaches with each other and with 
our observational estimates (in males, and for BF% and 
WC in females) reinforces the conclusions drawn. Third, 
by utilising UK Biobank’s large sample size and includ-
ing multiple genetic instruments, we increased the power 
of our MR analysis, mitigating against weak instrument 
bias [52, 53]. Fourth, pleiotropic effects were minimised 
through MR-Egger [46], MR-WM [47] and MR-PRESSO 
[50] analyses, and where required (i.e. in males for BF% 
and in females for BF% and WHR), we explored the effect 
of individual SNPs. Finally, we attempted to quantify the 
bias due to overlapping samples for our BMI and WHR 

Fig. 3 Associations between one SD increases in measured adiposity (BMI, BF%, WC and WHR) and grip strength, stratified by age and sex. 
Associations adjusted for Townsend deprivation, smoking, moderate and vigorous physical activity and alcohol intake
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analyses, by over-estimating sample overlap to 100%, and 
found the potential bias in our analyses to be small.

While MR has noteworthy advantages it depends on 
three main assumptions, the plausibility of which need 
to be assessed: (i) genetic instruments must associate 
with the different adiposity traits, (ii) genetic instru-
ments must be independent of potential confound-
ers of the adiposity–grip strength association and (iii) 
genetic instruments must affect grip strength only via 
their effect on adiposity (i.e. no horizontal pleiotropy). 
The first assumption is plausible because the SNPs used 
as instruments for our adiposity traits were identi-
fied from large GWAS [34–37]. While the second and 
third assumptions are harder to assess definitively, 
only a relatively small number of SNPs were associ-
ated with potential confounders and when we reran 
our MR analyses without these SNPs, results were 
similar. However, we acknowledge the possibility that 
there may be other unmeasured confounders, such 
as dietary patterns, which may explain the observed 
pleiotropic WHR associations in females. The assump-
tion of no horizontal pleiotropy is particularly relevant 
for IVW-MR, because effect estimates can be biased 
in the presence of unbalanced (directional) horizontal 
pleiotropy [54]. Fortunately, pleiotropy was observed 
in only a few instances, and when analyses were rerun 
removing potentially pleiotropic SNPs, in all but one 
case (i.e. WHR associations in females), there was no 
more evidence of pleiotropy. Moreover, the other MR 
approaches we applied are robust to/correct for hori-
zontal pleiotropy (i.e. MR-Egger [46], MR-WM [47] and 
MR-PRESSO [50]). Finally, all our MR analyses assume 
a linear dose–response relationship between adiposity 
traits and grip strength which may not provide an accu-
rate picture of the shape of the relationship.

Other important methodological considerations 
include that our observational associations could be 
affected by measurement error. For example, BF% was 
estimated by bio-impedance, the accuracy of which 
depends on several factors [55]. Nonetheless, bio-imped-
ance is a valid estimation technique for large epidemio-
logical studies [56], such as UK Biobank. Rather than 
examining a single adiposity indicator (BMI) as in most 
previous work, we consider a range of measures includ-
ing a measure of total adiposity that distinguishes fat 
from lean mass (BF%) and indicators of central adipos-
ity (WC and WHR). Nevertheless, other novel adiposity 
measures such as visceral adipose tissue [57], ‘favour-
able’ and ‘unfavourable’ adiposity [58] were not consid-
ered and warrant investigation in future research. We 
were limited to using grip strength as our marker of mus-
cle strength. Although grip strength is a convenient and 
commonly used proxy for overall body strength and the 

Jamar dynamometer used has good reliability and repro-
ducibility [59], grip strength specifically measures upper 
limb strength. Evidence on whether grip strength is an 
adequate proxy for overall muscle strength is equivocal 
[60, 61] and relationships between adiposity and strength 
are likely to vary by location of strength measurement 
(e.g. loaded vs. unloaded muscle). In terms of generaliz-
ability of findings, our analysis was restricted to white 
European participants and thus we are unable to extrap-
olate to other ethnic groups. Additionally, patterns of 
selection into studies such as UK Biobank (i.e. “healthy 
volunteers” [62]) can induce collider bias. Even modest 
influences on selection could lead to biased estimates 
[63], and we acknowledge that such biases can affect both 
observational and instrumental variable analyses [64]. 
Therefore, future work is needed to assess whether our 
findings are replicated in other samples including those 
representing other ethnic groups.

Our findings for total and central adiposity in males 
broadly agree, in terms of direction of associations, with 
other studies [22]. Findings for females, both within our 
study and more generally, compared with the literature, 
are less consistent. For example, in observational anal-
yses for females, we found higher BMI was associated 
with stronger grip, contrasting with a meta-analysis 
that found no association [22]. In observational analy-
ses, for males, we found 0.12 kg stronger grip for a 1 kg/
m2 higher BMI (i.e. mean difference in grip strength 
per BMI-SD (0.489)/BMI-SD (4.24)). This concurs with 
findings from a meta-analysis that in males (mean age 
ranging from 53 to 79  years), a 1  kg/m2 higher BMI 
was associated with 0.23 kg stronger grip [22]. Similar 
to us, the meta-analysis noted associations in males 
between BMI and grip were stronger at younger ages. 
While our MR analyses estimates the life-long effect of 
BMI on strength, it provides little information regard-
ing the importance of BMI at specific life-stages. The 
importance of BMI at specific life-stages for strength 
is supported in the literature in terms of both empiri-
cal evidence and biological plausibility. For example, 
cross-sectional analyses of age-heterogeneous samples 
suggests that relationships between adiposity and mus-
cle characteristics vary by age: muscle adapts benefi-
cially to loading induced by adiposity at younger ages, 
but this benefit is not seen at older ages [41–43]. These 
age-related differences noted elsewhere [41–43] concur 
with our observations and need replication in cohorts 
of individuals with detailed repeat measures of both 
adiposity and strength over time. This is essential to 
understand how lifetime adiposity influences strength 
at specific life-stages and changes in strength over 
life. Underlying biological mechanisms explaining the 
changing relationship between adiposity and strength 
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with age, including observations that with advancing 
age, chronic low-grade inflammation, insulin resistance 
and hormone dysregulation due to long-term exposure 
to obesity [65], could eventually override the beneficial 
anabolic stimulus to muscle provided by loading from 
adiposity in earlier adulthood. Future research should 
explore these underlying mechanisms with the adipos-
ity measures examined here and other phenotypes such 
as ‘favourable’ and ‘unfavourable’ adiposity [58], which, 
although associated differentially with metabolic pro-
files, are similarly associated with inflammatory mark-
ers such as CRP [58].

Unlike BMI, BF% provides an indicator of total adi-
posity that distinguishes fat from lean mass, and reas-
suringly, higher BF% in both sexes was consistently 
associated with lower grip. This finding is important 
in highlighting the need to examine different dimen-
sions of adiposity. Both BMI and BF% are markers of 
total adiposity and are correlated; however, the direc-
tion of association with strength varied for BMI and 
BF% in males. In females, the MR associations for 
BMI and BF% both indicated adverse associations with 
strength. These somewhat unexpected observations 
could be explained by BMI’s inability to differentiate 
between lean and fat mass and the observation that 
females tend to have proportionally more fat mass than 
males [66]. Therefore, at a population level, BMI in 
males might be more representative of lean mass and 
in females more representative of fat mass. In men, 
our finding that higher WC was related to stronger 
grip agrees with the meta-analysis [22]. WHR was 
only moderately correlated to BMI; hence, it is likely 
to be a more specific surrogate for central fat deposi-
tion (compared to WC). We found that in men, higher 
WHR was consistently associated with lower grip. For 
example (in observational analysis), for a man in UK 
Biobank with average hip circumference (104  cm), a 
7  cm greater WC was associated with 0.45  kg weaker 
grip, and although the magnitude of association is 
small, it is relevant, because a 1  kg reduction in grip 
strength is associated with a 3% increase in mortality 
rates [8]. In females, while observational associations 
between BMI and WC concur, MR associations are in 
opposite directions, despite high levels of genetic cor-
relation between the two traits. Moreover, our inability 
to explain pleiotropy in WHR associations for females 
is also concerning. Thus, our findings regarding asso-
ciations between adiposity and grip strength in females 
warrant further investigation. Nonetheless, our find-
ings for BF% in males and females and WHR in males 
add to the sparse literature to date and are noteworthy 
because both BF% and abdominal adiposity increase 
with age [19, 67].

Conclusions
The importance of maintaining muscle strength at older 
ages is increasingly being recognised [27]. Population 
ageing [6], coupled with current [17], and projected [18] 
obesity trends necessitate that we establish the influence 
of adiposity on muscle strength. Moreover, because age-
ing is associated with a progressive loss of subcutaneous 
fat and the accumulation of visceral and ectopic fat [68], 
it is important to elucidate how not only markers of total 
adiposity which distinguish between fat and muscle but 
also more specific adiposity markers influence strength. 
While acknowledging that relationships between adi-
posity and strength may vary with age and could be bi-
directional [69], our consistent findings using different 
methodological approaches strengthens the evidence 
base for causal links between total adiposity and grip 
strength in males and females and between central adi-
posity and grip strength in males. We found that for both 
sexes, higher BF% and (in males only) WHR was associ-
ated with weaker grip strength. Pathways linking total 
and central adiposity to strength are likely to differ; for 
example, loci associated with BMI implicate pathways 
that act in the brain, whereas loci associated with fat dis-
tribution point to pathways involved in adipocyte biology 
and insulin resistance [70]. Further study is warranted to 
establish underlying mechanisms explaining our findings, 
before transitioning to clinical trials that can inform on 
the potential translation of these insights towards ben-
efiting the general population.
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