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ABSTRACT 19 

Our ability to improve prognostic modelling of the Greenland Ice Sheet relies on understanding 20 

the long-term relationships between climate and mass flux (via iceberg calving) from marine-21 

terminating tidewater glaciers (TWGs). Observations of recent TWG behavior are widely 22 

available but long-term records of TWG advance are currently lacking. Here we present glacial 23 



geomorphological, sedimentological, archeological and modelling data to reconstruct the ~20 km 24 

advance of Kangiata Nunaata Sermia during the first half of the last millennium. The data shows 25 

that KNS advanced ~15 km during the 12th and 13th centuries CE at a rate of ~115 ma-1, 26 

contemporaneous with regional climate cooling towards the Little Ice Age and comparable to 27 

rates of TWG retreat witnessed over the last c. 200 years. Presence of Norse farmsteads, 28 

proximal to KNS, demonstrate a resilience to climate change, manifest as a rapidly advancing 29 

TWG in a cooling climate. The results place limits on the magnitude of ice margin advance and 30 

demonstrates TWG sensitivity to climate cooling, as well as warming. These data combined with 31 

our grounding line stability analysis provides a long-term record that validates approaches to 32 

numerical modeling aiming to link calving to climate.  33 

 34 

INTRODUCTION  35 

Reconstructions of Greenlandic TWGs prior to the observation record are limited in 36 

number and overwhelmingly dominated by retreat behavior (e.g., Kjeldsen et al., 2015). Such 37 

reconstructions are crucial because ice sheet models require validating over longer timescales 38 

than the observational record and should ideally include episodes of both ice margin advance and 39 

retreat. This would improve confidence in long-term model validation of ice sheet behavior and 40 

subsequent projections in sea level change (Pörtner et al., 2019; Vieli and Nick, 2011; Straneo 41 

and Heimbach, 2013; Fahrner et al., 2021).  42 

Kangiata Nunaata Sermia (KNS) is the largest outlet TWG south of Jakobshavn Isbræ on 43 

Greenland’s west coast. It currently has one of the best constrained records of Holocene ice 44 

margin change in Greenland spanning the retreat from its Little Ice Age maximum (LIA); 1761 45 

CE) to present (Lea et al., 2014a;b; Pearce et al., 2018; Young et al., 2021). Evidence of glacial 46 



advances are typically not preserved due to sediment reworking, leaving our understanding of 47 

TWG dynamics in Greenland and elsewhere largely unconstrained (Kjeldsen et al., 2015; Larsen 48 

et al, 2015).  We reconstruct the advance of KNS over the last millennium using a multi-proxy 49 

approach supported by novel grounding line stability analysis (Fig.1).  The geographic and 50 

temporal focus of our study also permits the new opportunity to consider the resilience of Norse 51 

farmers in the North Western Settlement.  52 

 53 

METHODS  54 

To constrain the pre-LIA maximum advance geometry of KNS, we obtained samples for 55 

radiocarbon (14C) dating from sedimentary sequences in Austmannadalen and Qamanaarsuup 56 

Sermia  valleys adjacent to Kangersuneq fjord (Figs.2; 3 and Supp. Methods). To explore the 57 

timing of Norse occupation close to the ice margin, we sampled and dated plant macrofossils 58 

(charcoal and seeds) extracted from an anthrosol adjacent to ruin group V15 at Umiivik, a farm 59 

located beyond, but proximal to, the LIA maximum. Fieldwork was undertaken in 60 

Austmannadalen, Qamanaarsuup Sermia and Umiivik in August and September 2015 and August 61 

2016. Processing of material for AMS 14C dating was undertaken at the University of Aberdeen 62 

and dating was performed at the 14CHRONO Centre, Queens University Belfast, and at the Beta 63 

Analytic Radiocarbon Dating Laboratory in Florida. To evaluate the relative stability of KNS 64 

along Kangersuneq, we apply in a novel manner, a well-established equation for determining 65 

whether a grounding line occupies a steady state (Schoof, 2007). Explanation of the 66 

geomorphological and archaeological context of all sites is presented within each of the sections 67 

that follow. For full details see Supp. Methods.  68 

 69 



PRE-LITTLE ICE AGE MAXIMUM GLACIER GEOMETRIES 70 

Geomorphological mapping demonstrates that KNS retreated by ~23 km from its LIA 71 

maximum, to its present (2021) position, with its lateral margins mostly confined by steep fjord 72 

topography along Kangersuneq (Pearce et al., 2018; Fig.1). Evidence for pre-LIA maximum  73 

glacier geometries at KNS are preserved within three adjoining valleys that have not been 74 

glaciated during the last millennium allowing us to identify locations to reconstruct the advance 75 

of KNS (Pearce et al., 2018).  76 

One location is the ice dammed lake Isvand which formed as KNS retreated from its LIA 77 

maximum configuration (Fig.1).  As KNS continued to thin and retreat into the 21st century the 78 

meltwater drainage direction switched in 2004 from Isvand discharging via Austmannadalen 79 

(predominantly to the west) to draining subglacially into Kangersuneq (northwest). The river in 80 

Austmannadalen is no longer fed by glacier meltwater, leaving an abandoned river channel fed 81 

only by a network of small streams which diminish the capacity to move sediment (Weidick and 82 

Citterio, 2011) (Fig.1; Fig. SM1). Where the margin of the KNS glacier was at or inland of its 83 

2004 location during the Holocene (Fig.1), as it advanced it would have dammed Isvand and led 84 

to the initiation of glacial meltwater discharge and associated sedimentation through 85 

Austmannadalen.   86 

In Austmannadalen, we identified well-preserved overbank deposits of silt and fine sand 87 

overlying an organic horizon (Fig. 2, Supplemental Methods, and SMI).  The upper surface of 88 

this organic horizon yielded a AMS 14C age of 972±43 years BP (UBA-31338; cal. 994-1165 CE 89 

[95.4%]; Fig. 3). This is consistent with changes in sedimentation observed elsewhere in 90 

Greenland used to reconstruct ice margin change prior to the LIA maximum (e.g., Briner et al., 91 

2010).  Our evidence provides an earliest date by which KNS advanced to a similar ice margin 92 



and location to that of 2004 that resulted in damming of Isvand and initiation of meltwater 93 

discharge into Austmannadalen River. 94 

As KNS advanced toward its LIA maximum position, it dammed the forefield of the 95 

Qamanaarsuup Sermia glacier on its northeastern margin, leading to the formation of an 96 

extensive ice-dammed lake where glaciolacustrine sediments accumulated (Fig.1). Following the 97 

drainage of this lake (1808‒1856 CE) (Lea et al., 2014a) subsequent gullying of these sediments 98 

revealed a buried organic horizon interpreted to be the land surface prior to lake damming (see 99 

Figs.2C-E and Supp. Methods). AMS 14C dating of a pristine terrestrial macrofossil (bark 100 

indeterminate sp.) – amongst the most reliable materials available for radiocarbon dating in this 101 

environment (cf. Edwards et al. 2008) from the top of this organic horizon, returned an age of 102 

800±29 years BP (UBA-31339; cal. 1181-1278 CE [95.4%]; Fig. 2-3). This provides 103 

chronological control for the damming of Qamanaarsuup Sermia ice-dammed lake by KNS, 104 

which was last directly observed as holding standing water in 1808 (Lea et al., 2014a; Giesecke, 105 

1910) (Fig.1). 106 

GLACIER ADVANCE DURING REGIONAL COOLING 107 

The geometries and chronologies of KNS reconstructed from Austmannadalen and 108 

Qamanaarsuup Sermia demonstrate that it advanced by at least 15 km in the early part of the last 109 

millennium at a median rate of ~115 m a-1 (Figs. 1, 4 and Fig. SM3), before reaching the LIA 110 

maximum configuration in 1761 CE with a total advance of ~20 km (Lea et al., 2014a;b). These 111 

reconstructed advance rates are comparable to recent rates of TWG retreat observed across 112 

Greenland (e.g., Fahrner et al., 2021).  113 

The period of advance coincides with a reduction in reconstructed summer air 114 

temperatures during the 12th century in west Greenland (Von Gunten et al., 2012; Lasher and 115 



Yaxford, 2019), which is superimposed on a longer-term regional cooling indicated by a decline 116 

in summer δ18O from the DYE3 ice core (Vinther et al, 2010; Fig.4). It also coincides with a 117 

known period of land-terminating glacier expansion in Greenland (Jomelli et al., 2016) and 118 

Baffin Island in the Canadian Arctic (Young et al., 2015).  119 

 120 

GLACIER STABILITY  121 

The sequence of continuous glaciolacustine deposition in Qamanaarsuup Sermia  (Fig.3) 122 

indicates that the ice-dammed lake existed for over 500 years from initial damming (1186-1275 123 

CE) to when it drained after 1808. This constrains the margin of KNS between its LIA maximum 124 

and 1808 positions during this time (Fig.4A), indicating that the glacier terminus was relatively 125 

stable at this extended position despite periods of warming and cooling (Figs.4B, 4C). To 126 

evaluate this assertion, and identify other regions of relative margin stability, we implemented a 127 

novel, computationally light application of the grounding line boundary layer theory (Schoof, 128 

2007) (See Supp. Methods). Our approach evaluates the potential for a steady state grounding 129 

line being achieved along the fjord; primarily driven by a range of potential ice fluxes provided 130 

by balance fluxes derived from modern modelled surface mass balance of the KNS catchment, 131 

when the glacier margin is known to have been stable (1980-1995; Lea et al., 2014b; Mottram et 132 

al., 2017). Results show a clear match between predicted steady state grounding line positions 133 

and observed locations where the calving margin was known to be stable during retreat from the 134 

LIA maximum, (~1761), providing confidence in our approach (Fig.1). 135 

Both the position at which KNS begins to dam Qamanaarsuup Sermia, and the position of 136 

its LIA maximum, are notable in that they coincide with potential steady state glacier margin 137 

locations identified by our analysis (Fig.1). These results imply that when the margin of KNS 138 



was located within this area, between 1230±45 and 1808‒1856, the glacier would be capable of 139 

maintaining a steady state grounding line even if ice fluxes were lower than contemporary 140 

values. This helps to explain how KNS maintained an extended configuration that kept 141 

Qamanaarsuup Sermia lake dammed, despite multiple warming and cooling episodes which 142 

occurred between the 13th and 19th centuries (Fig.4). 143 

 144 

NORSE PRESENCE DURING RAPID GLACIER ADVANCE 145 

Our reconstruction indicates that prior to the LIA maximum, the terminus of KNS 146 

approached within 5 km of the Norse farmstead at Umiivik (V15) during the occupation of the 147 

Norse Western Settlement (~985-1400 CE; Figs. 1, 3 and Fig.SM4; Schofield et al., 2019). The 148 

farm ruins at Umiivik are currently extremely difficult to reach by boat due to dense 149 

concentrations of icebergs and mélange in Kangersuneq. Given its location on the eastern margin 150 

of the fjord, surrounded by steep and mountainous terrain, the site is also impractical to access 151 

over land. If similar conditions prevailed during the 11th‒14th centuries, navigation in the fjord, 152 

using even the smaller conventional boats known to have been used by the Norse would have 153 

been extremely challenging, if not impossible (Crumlin-Pedersen, 2010). Radiocarbon dating of 154 

an anthrosol, adjacent to the ruins, returned age estimates within the conventionally accepted 155 

timing for Norse settlement across this region (Fig.3 and SM4). The occupation of the Norse 156 

farmstead at Umiivik was therefore coeval with the rapid advance of KNS and for at least part of 157 

the period where the glacier margin was proximal to it. 158 

Since KNS began to retreat from the LIA maximum, between 1761‒1808 CE, iceberg 159 

concentrations in Kangersuneq appear to have been similar to present (Lea et al., 2014a). 160 

Evidence for this is provided by written accounts, maps and photographs from the 19th and 20th 161 



centuries (Lea et al., 2014a; Giesecke, 1910; Roussell, 1941), as well as aerial photographs and 162 

satellite imagery from the 20th and 21st centuries (Lea et al., 2014b, Pearce et al., 2018). This 163 

leads us to agree with Roussell’s (1941, p16) initial assessment upon visiting Umiivik in 1933 164 

that, ‘it must be assumed the conditions [in the fjord] in the Middle Ages were different’. This 165 

archaeological evidence implies lower calving fluxes during the Norse period than currently 166 

observed, consistent with glaciological behavior that is conducive to our reconstructed glacier 167 

advance. 168 

 169 

CONCLUSIONS 170 

Our reconstruction of the rapid advance of KNS during the early part of the last 171 

millennium demonstrates that regional atmospheric cooling can drive TWG advance at rates 172 

comparable to post-LIA and contemporary retreat observed in Greenland. The analysis of glacier 173 

margin stability provides the first real-world demonstration that the commonly applied ice sheet 174 

model grounding line parameterization can independently identify stable ice margin locations 175 

over multi-decadal to multi-centennial timescales (Fig.1).  Lower calving fluxes and associated 176 

iceberg concentrations in the fjord during ice margin advance are inferred from the occupation of 177 

a Norse farmstead proximal to KNS, in an area that is currently very difficult to access by boat. 178 

Together, this supports the counter-intuitive notion that a cooling climate would have allowed 179 

the Norse easier access by boat to the inner fjord network of the Western Settlement, when 180 

viewed relative to the iceberg dominated conditions that exist following the LIA maximum. Our 181 

findings provide insight into the dynamic behavior of Greenlandic TWGs during both periods of 182 

advance and retreat, allowing those who aim to model their response to climate change to 183 

validate their results against a full range of forcing conditions. Confidence in prognostic 184 



simulations of future changes in TWGs and their contributions to global sea level rise will be 185 

improved for models that are able to replicate both the advance and retreat phases of this 186 

reconstruction. 187 
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 198 

FIGURE CAPTIONS 199 

Figure 1. Study area with location of sample sites, 14C dates and the results of the grounding line 200 

stability analysis. The dates from the buried land surfaces (black labels) show how these relate to 201 

the reconstructed locations of KNS (blue labels). Norse ruin group codes follow Bruun (1917). 202 

The reconstructed 992‒1160 CE glacier configuration is assumed to be analogous to that of 2004 203 

when Isvand began to drain eastwards below KNS (Weidick and Citterio, 2011). Inset, shows the 204 

distribution of Western Settlement ruins in this area including farms, storehouses and shielings. 205 

Grounding line stability analysis shown for areas where BedMachine v3 bathymetry is available 206 

(grey contour lines) (Morlighem et al., 2017), with relatively less stable locations in blue and 207 



more stable locations in red. Selected known ice fronts from last century are shown (white 208 

labels) (Lea et al., 2014b). 209 

 210 

Figure 2. A) Soil pit stratigraphy for Austmannadalen (RIVA5). 14C dates are available from the 211 

organic units at location A5 with ages given in 14C yr BP with *indicating fraction modern 212 

(F14C). The 14C dates for A5 were taken on the humic acid fraction of organic sediments. B) 213 

Photo shows sample retrieval from soil pit A5 using a monolith tin. C) Qamanaarsuup Sermia 214 

ice-dammed lake and stratigraphy related to lake impoundment and sedimentation in 215 

Qamanaarsuup Sermia following the early LIA advance of KNS. Stratigraphy where sample 216 

UBA-31339 was obtained, from the top contact of the peat and the overlying lacustrine unit. 217 

Only a partial stratigraphy is found at this site, for full description see SM2 D) Location map; E) 218 

Photograph of site UBA-31339.  219 

 220 

Figure 3. A) OxCal multiplot comparing the probability distributions of calibrated 14C dates 221 

discussed within the text. Brackets indicate the confidence limits (95.4%) on the dates. The 222 

vertical dashed lines depict the conventionally acknowledged dates for the start of landnám and 223 

the end of occupation (abandonment of the farms likely maximum date for the abandonment of 224 

the Western Settlement. B) Table of 14C dates from the region around KNS (see Fig.1 for site 225 

locations).  226 

 227 

Figure 4. KNS marginal location and climate proxy data for the last millennium. (A) Terminus 228 

advance and retreat showing key advance stages (blue dashed lines). Median advance scenario 229 

(black line, based upon model; see Fig. SM3) shown with 95.4% uncertainty (grey shading) 230 



accounting for probability distribution of radiocarbon dates and variable fjord geometry. (B) 231 

Measured δ18O of chironomids from Scoop Lake (60.70º N 45.42º W; black dots; Lasher et al., 232 

2019), three point moving average (orange line), and 1σ moving average uncertainty (orange 233 

shaded area); (C) Alkenone air temperature reconstruction for Braya Sø, Greenland (von Gunten 234 

et al., 2012) (66.99°N 51.03°W), showing sample density (white dots), uncertainty (blue 235 

shading), and JJA mean Nuuk air temperature (Vinther et al., 2006) (red line) with 10-year mean 236 

(black line). (D) 30 year running mean of DYE3 ice core δ18O observations (Vinther et al., 2010) 237 

and standard deviation (red shading). Black dashed lines on panels B-D show the time period of 238 

reconstructed advance indicated on panel A.  239 
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