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A Deep Swarm-Optimized Model for Leveraging
Industrial Data Analytics in
Cognitive Manufacturing

Akshi Kumar , Member, IEEE, and Arunima Jaiswal

Abstract—To compete in the current data-driven econ-
omy, it is essential that industrial manufacturers leverage
real-time tangible information assets and embrace big data
technologies. Data classification is one of the most prover-
bial analytical techniques within the cognitively capable
manufacturing industries for finding the patterns in the
structured and unstructured data at the plant, enterprise,
and industry levels. This article presents a cognition-driven
analytics model, CNN-WSADT, for the real-time data clas-
sification using three soft computing techniques, namely,
deep learning [convolution neural network (CNN)], ma-
chine learning [decision tree (DT)], and swarm intelligence
[wolf search algorithm (WSA)]. The proposed deep swarm-
optimized classifier is a feature-boosted DT, which learns
features using a deep convolution net and an optimal fea-
ture set built using a metaheuristic WSA. The performance
of CNN-WSADT is studied on two benchmark datasets and
the experimental results depict that the proposed cogni-
tion model outperforms the other considered algorithms in
terms of the classification accuracy.

Index Terms—Cognitive manufacturing, data classifica-
tion, deep learning, industrial data, swarm intelligence.

I. INTRODUCTION

W ITH the increasing competition globally, the industries
have been tackling numerous challenges pertaining to

the organization-wide innovation that can generate and acceler-
ate the global value chain network. Data are now a quintessential 
business asset, and it is revolutionizing the way companies
operate across most sectors and industries [1], [2]. Businesses 
need to employ efficient analytics algorithms that use the quanti-
tative techniques and evidence-based data to facilitate the value
creation for practical decision making, business intelligence, 
improving product quality, and enhancing knowledge manage-
ment. Cognitive computing is an emerging technology that
operates dynamically into a manufacturing process and business 
environment to yield tangible benefits driven by the Internet

of Things (IoT) and analytics. Essentially, the cognitive man-
ufacturing embraces cognitive computing, the industrial IoT,
and radical analytics to drive and optimize the manufacturing
processes in the recent Industry 4.0 value chain process [3],
[4]. It creates a new interaction paradigm between humans and
machines that harnesses natural language and sensory-based
capabilities to derive the information that enables the manu-
facturers to make logical, practical, and cognizant decisions.
The business outcomes of the cognitive initiatives enable a mass
personalization trend, which involves an interplay of services,
manufacturing, customer experience, and engineering [5], [6].

The industries worldwide are gradually awakening to this
trend and embracing the cognitive manufacturing to leverage
the maximum actionable insights from their data, in a bid to
improve fundamental business metrics. The digital footprints
from multiple industrial data sources, such as data residing
across equipment, systems, and processes, are utilized for real-
time monitoring and diagnostics, streaming analytics, machine
learning, and operations optimization. A substantial volume
and variety of data are generated and shared across the IoT,
which with the help of the social media has been extensively
used in the retail world to benchmark and optimize the product
design, its quality, and customer experience. The intelligence-
driven solutions for smart manufacturing analytics are highly
desirable for improving production and delivery so that the right
customer has the right product at the right time. For example,
user demographics, preferences, and behaviors can be analyzed
for the customized product design and delivery. Analyzing this
goldmine of information about customer preferences is an es-
sential stratagem to a responsive, tractable, and predictive smart
manufacturing.

Artificial intelligence (AI) technologies, for instance, ma-
chine learning and natural language processing (NLP), facilitate
a contextual understanding and allow the personalization of
products and services for customers. The intelligent adaptive
models are required to deal with the information overload on the
chaotic and complex social media portals, and to fully realize
the benefits of the social media in Industry 4.0 for a connected,
optimized, transparent, and proactive marketplace. Certainly,
big-data-driven analytics is the key to smart manufacturing, and
the user-generated big data is a substantial source for enhancing
manufacturing competitiveness.

Data classification is a promising analytic technique, which is
extensively used to solve the IoT and big-data-centered problems
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for various business or personal objectives. Recently, the social
sentiment analysis or emotion AI has also been used to determine
the insights pertaining to a topic, brand, or event [7]. It is the use
of NLP and computational linguistics to interpret and classify
online conversations in terms of positive and negative mentions.
Concurrently, nature-inspired computing, has also emerged as
a new paradigm of the problem solving that mimics a natural
system or process to construct analogies and abstractions for
solving complex real-world problems. These study how the
biological groups, such as ant colonies, beehives, and flocks of
birds, react to stimuli, process information, and make decisions.
Motivated by the need to embed the analytical capabilities into
the core business for the real-time value creation, this article
puts forward a novel cognition-driven social media sentiment
mining model. The hybrid model is built on the concord of
deep learning [convolution neural network (CNN)] and swarm-
optimized [wolf search algorithm (WSA)] decision tree (DT)
for real-time sentiment analytics. CNNs are the state-of-the-art
at feature extraction and have proven helpful to improve the
feature representation and feature learning. Simultaneously, DT
is an efficient classifier and can be used to improve the classifi-
cation capability of CNN. The proposed deep swarm-optimized
CNN-WSADT model embraces the pros of both the techniques,
where CNN is the automatic feature learner and DT is the senti-
ment classifier. The CNN-WSADT has two primary architectural
elements, which are as follows.

1) First, a I-D CNN with five layers, namely the embedding
layer, convolution layer, activation layer, down-sampling
layer (pooling layer), and output layer with the softmax
regression, is used to learn the distributed feature vector
representations of the input.

2) Second, for the final classification, a DT classifier is
used. This DT takes a combination of the learned vector
representations from CNN (the output of the top hidden
layer) and a metaheuristically optimized feature vector
using WSA to finally output the polarity.

The rationale behind this architecture is that the softmax re-
gression (logistic regression), which is customarily used in CNN
to output the probabilities of classes, is a weak classifier that
often suffers from the difficulty to interpret the results. Moreover,
no weightage is given to the relevant features as simply the word
embeddings are used for all features. Basically, the softmax
distributes the probability 0–1 over the target classes. In the clas-
sification, the predictive probabilities obtained at the end of the
pipeline (the softmax output) are often erroneously interpreted
as the model confidence. It does not express incertitude and
may require the calibration of predicted probabilities. That is, a
model can be uncertain in its predictions even with a high soft-
max output. Pertinent studies have reported the use of a strong
classifier, such as support vector machine SVM, to perform the
final classification as it often produces comparable results to
the softmax regression [8]. We opted to replace the softmax
layer with DT as primarily it makes the model easy to interpret.
Additionally, DT splits the input space into hyperrectangles
according to the target and it does not suffer from the imbalanced
support vector ratio or soft margin optimization problems, which
are commonly observed in the classifiers such as SVM. But on

the flip side, DT has a likelihood of reaching a locally optimal
solution as it is a top-down algorithm with a divide and conquer
approach. Overfitting of the training data can negatively affect
the modeling power of the technique and relegate the predictive
accuracy. Population-based metaheuristics, especially the ones
inspired by nature, have helped in solving different optimization
problems and been used successfully for feature selection in
many applications. Our previous study in this direction reported
the use of the population-based metaheuristic optimization for
the optimal feature selection to improve the sentiment classifica-
tion accuracy [9], [10]. The study also demonstrated that DT was
comparable with SVM in terms of the accuracy gain but outper-
formed SVM with a considerable reduction in the number of fea-
tures selected. Therefore, in this article, to generate the optimal
feature set, we first use the conventional term frequency-inverse
document frequency (TF-IDF) feature extraction and then use
a metaheuristic optimization algorithm, the WSA, to select the
most relevant set of features. WSA imitates the way wolves
search the food, survive, and avoid enemies. WSA possesses
the individual local searching ability and autonomous flocking
movement in tandem [11]. That is, each wolf is an independent
hunter with its own behavior and only joins the peer when the
peer is in a superior place within its visual range. The hypothesis
behind WSA is that rather than looking for the best solution in
one direction by forming a single pack/herd, it considers many
leaders swarming to the optimal solution from several directions.
Also, to avert trapping in the local optima, the appearance of a
hunter (threat/enemy) corresponding to each wolf is randomly
added such that the wolf escapes from the hunter’s visual range
to strive for better solutions within in the search space.

Thus, in the proposed CNN-WSADT model, the DT is trained
using a boosted feature vector obtained by combining the CNN-
trained features and WSA-optimized feature vector. The model
is evaluated on two benchmark datasets, SemEval 2016 (DS-
I)1 and SemEval 2017 (DS-II)2. The experiments show that the
proposed deep swarm-optimized model has a superior sentiment
classification accuracy.

The rest of the article is organized as follows. Section II
discusses the related work. Section III presents the proposed
model followed by Section IV, which provides the experimental
results. Finally, Section V concludes this article.

II. LITERATURE REVIEW

Customization, collaboration, convenience, and wireless con-
nectivity are what is driving the digital transformation today
[12]–[15]. The adoption of Industry 4.0 is empowering the indus-
trial users to securely leverage the data and analytics for predic-
tive analysis, reduce machine downtime, centralize storage, and
monitor assets remotely. Interoperability, security, data analysis
and transfer, and the integration of information technology to the
operation technology are some of the key challenges in adopting
industrial IoT. Recently, some techniques and frameworks for
the big-data analytics have been introduced for the industrial

1[Online]. Available: http://alt.qcri.org/semeval2016/task4/
2[Online]. Available: http://alt.qcri.org/semeval2017/task4/
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applications [4], [16], [17]. The user-generated big data sourced
through the social media is one of the prominent sources of
the industrial data to comprehend business trends. This big
data empowers businesses to discover and interpret customer
behavior patterns in terms of buzz alerts and opinions for design-
ing and improving customizable products [7]. A social media
sentiment mining is one of the most proverbial application-based
solutions facilitating the data-driven decision making. A number
of machine learning and deep learning methods and models have
been reported in the relevant studies within this domain [7], [9],
[18]. Few studies have also reported the use of the metaheuristic-
based algorithms to improve the classification accuracy. In 2013,
Basari et al. [19] applied SVM and particle swarm optimization
(PSO) for the sentiment analysis on the dataset taken from
Stanford3 and showed a superlative performance achieved by
this combination In 2015, Gupta et al. [20] reported the use of
conditional random field and PSO on Twitter SemEval corpus
for the multiobjective optimization. Results depicted that the
proposed method yielded enhanced classification results using
the optimization. In 2017, Kumar and Khorwal [21] imple-
mented the SVM, genetic algorithm, and optimization-based
firefly algorithm for the sentiment analysis on the Twitter dataset.
Amongst all, the proposed application of the firefly algorithm
together with SVM yielded an improved accuracy of 6%. In our
earlier work, we focused on the application of swarm optimizers,
namely grey wolf and moth flame algorithms, for the sentiment
analysis on Twitter corpus (SemEval 2016 and 2017) [9] and
cuckoo search to Kaggle corpus [10]. A considerable accuracy
gain and feature set reduction was observed.

It is observed that much amount of work within the domain
has already been done using machine learning techniques. The
studies also demonstrate that the use of deep learning and swarm-
based optimization always enhance the classification with less
error rate and higher prediction accuracy. Motivated by this, we
aim to build a hybrid learning model tapping the benefits of both
the deep learning and swarm-optimization algorithms.

III. PROPOSED CNN-WSADT MODEL

Integrating social media into IoT has emerged as a tool to sup-
port the smart manufacturing especially for the product design.
Consumers are connected to the industry via social networks,
customer interactions, and data analytics. The proposed deep
swarm-optimized classification model proffers an analytical
method that facilitates the data-driven smart manufacturing. The
architecture of the CNN-WSADT model is given in Fig. 1.

It consists of the following three architectural components.
1) CNN for feature learning.
2) WSA for the optimized feature generation.
3) Feature-boosted DT for classification.

The underlying notion that drives this model is that the neural
architectures are cognitive because they exhibit intelligent be-
havior by knowing how to categorize, classify, and remember
[22], [23]. Concurrently, swarms are cognitive systems because

3.[Online]. Available: http://www.stanford.edu/∼alecmgo/cs224n/
trainingandtestdata.zip

Fig. 1. Architecture of the proposed CNN-WSADT model.

they know how to forage, find sites, build nests, and even add
and subtract small numbers [24], [25].

The first component involves the defining, initializing, and
training of CNN [26]. GloVe [27] is used to generate a “word
vector table” with an embedding dimension of 300 and a batch
size of 50. The model uses a three-layer convolution architecture
with a total of 100 convolution filters each for window size (3,
3). This trains the system to learn the vectors for each word
(which would be represented as one hot vector initially) and
converts each word to a vector of integers of 300 dimensions.
The textual data are now converted into the numerical data for
performing convolutions. Padding is used to maintain the fixed
input dimensionality feature of CNN, in which zeros are filled
in the matrix to get the maximum length amongst all comments
in dimensionality. The dropout regularization is set to 0.5 to
ensure that the model does not overfit. The default activation
function ReLU is applied to the output of the convolution
layer introducing nonlinearity into the model, which generates
a rectified feature map.

Generic pooling is of varied types, such as max, sum, and
average, and is used as a down-sampling strategy in convolution
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Algorithm 1: Hybrid Learning Model (CNN+WSADT).
Input: Train, Dev, Test, SemEval- Datasets (2016 and
2017)

Output: Ac–Accuracy obtained
1: Begin: BuildNet()
2: Initialize: InitializeNet(Net)
3: Repeat while termination condition is satisfied do
4: error←TrainNet(Net, Train, Dev)
5: End-while
6: Select FeatureWSA_opt←WSA(Train, Dev)
7: Select FeatureCNN_rel←CNN(Train, Dev)
8: HidTrain←GetTopHiddenLayer(Net, Test)
9: Featuresconcat←FeatureCNN_rel + FeatureWSA_opt
10: ModelDT←DTTrain(Featuresconcat)
11: HidTest←GetTopHiddenLayer(Net, Test)
12: Testconcat←HidTest + Featureopt
13: Ac←DTTest(ModelDT, Testconcat)
14: return (Ac)

networks. In our model, we use a max pooling, which selects the
top-k features with respect to the multiple hidden layers in order
to retain the most significant sentiment feature information.
The output derived from the convolution and pooling layers
denotes the high-level features of the input tweets. Thus, the
n-dimensional representation of the text is finally obtained,
which is sent to the output layer for the classification. For the final
classification, a DT classifier is used that takes a concatenation of
the learned vector representations from CNN (the output of the
top hidden layer) and a set of the optimal features generated
simultaneously by applying WSA on the training data. That
is, a boosted feature vector is used to classify the sentiment,
thus typifying a deep swarm-optimized classification model (see
Algorithm 1).

Steps 1–5 describe the feature learning using CNN followed
by the swarm-optimized feature set generation in step 6. Steps
7–13 explicate the feature-boosted classification. The following
subsections present a brief discussion on the techniques used to
build the proposed hybrid CNN-WSADT model.

A. Convolution Neural Network

CNN is a sequence of convolutional layers, interspersed with
activation functions. It is a deep neural architecture, which has
the power of self-tuning and learning skills by generalizing from
the training data. The CNN model enhances the feature extrac-
tion in tweets, which improves the generic sentiment analysis
task [28]. The proposed CNN model comprises of five layers,
namely the embedding layer, convolution layer, activation layer,
downsampling layer (pooling layer), and output layer.

The posts from the dataset are preprocessed and input into
the embedding layer. The embedding layer of a neural network
converts the input from a sparse representation into a distributed
or dense representation. In this work, we pretrain the model using
the GloVe word embedding. The counts matrix is preprocessed
by normalizing the counts and log smoothing them. Thus, this

Fig. 2. Convolution operation.

model learns the geometrical encodings (vectors) of the words in
each tweet. The proper padding is done for unifying the feature
vector matrix. This matrix is given as the input to the convolution
layer where a convolution involves a filtering matrixw ∈ Rh∗d ,
where h is the size of the convolution, indicating the number of
words it spans (see Fig. 2).

The convolution operation is defined as follows:

ci = f
(∑

j,k
wj,k

(
X[i:i+h−1]

)
j,k

+ b
)

(1)

where b ∈ R is a bias term and f(x) is a nonlinear function,
which is the ReLU activation function. Every hidden unit con-
sists of three convolution and max-pooling layers. The output
c ∈ Rs′−h+1 is, therefore, a concatenation of the convolution
operator over all possible windows of the words in the tweet. The
activation (ReLU) layer is intended to introduce nonlinearity
to the system and produces a rectified feature map, which is
inserted into the pooling layer where a max-pooling operation is
applied to each convolution cmax = max(c). The max-pooling
operation extracts the “k” most important features for each
convolution. The output of the final convolution layer, that is,
the pooled feature map is a representation of our original input
tweet. This representation is then used as an input for the DT
classifier, which is combined with the optimized feature set to
classify as positive (+1) or negative (−1).

B. Decision Trees

DT forms a tree structure to implement the classification or
regression models. It continuously splits the data set into smaller
subsets based on a criterion to simultaneously generate the tree
incrementally. DTs are fast and easy to code, visualize, manip-
ulate, and explain and allow the results to be interpreted very
clearly. Other benefits of using DTs include their application to
both numerical and categorical independent variables, efficient
handling of the missing values in attributes, and robustness
against skewed distributions.

The softmax regression (logistic regression) is generally used
in the fully connected output layer of the CNN but has a single
linear boundary, unlike DT where we get a nonlinear decision
boundary. However, when the classes are not well separated, the
trees are susceptible to overfitting the training data. Moreover,
tree splitting is locally greedy and the DT is more likely to get
stuck in local optima. Therefore, to avert being stuck in the local
optimal we use the metaheuristic optimization.



Fig. 3. WSA in action.

C. Metaheuristic Optimization Using WSA

As one of the key subtask in the data classification, feature
engineering is the data manipulation process of using the domain
knowledge to prepare a compatible dataset for the machine learn-
ing algorithm. It includes feature extraction (n grams, word2vec,
TF-IDF, etc.), feature transformation (scaling, median filling,
etc.), and feature selection (statistical approaches, selection by
modeling, grid search, and cross validation) [29].

The metaheuristic optimization algorithms have been pro-
gressively studied as the wrapper feature selection methods to
find the candidate solutions in large search spaces. WSA is
formulated by the simulation of the preying behavior of wolves.
A wolf in WSA hunts independently and rarely joins its peer,
provided the peer has inhabited a better terrain. WSA can be
visualized as multiple individual wolves gathering from various
directions toward the optimal solution, instead of a single herd
searching for the best solution in one direction at a time (see
Fig. 3).

The natural behaviors of wolves are simulated in WSA as
follows [11].

1) The wolves have an unparalleled memory, which stores
the food in caches and track the prey. This unparalleled
memory is simulated in WSA, where each wolf has the
memory caches that store the positions that are previously
visited by it.

2) The wolves search for the prey during hunting and at the
same time they watch out for the threats coming toward
them. WSA includes a threat probability mechanism that
imitates the wolves encounter with enemies. In this con-
dition, the wolf moves away in a random direction by a
large distance from its position, which prevents getting
stuck in local optima.

3) The wolves have an outstanding judgment of smell, which
helps them to locate the prey. WSA simulates this by
enabling each wolf to have a sensing distance that cre-
ates a coverage area, which is called a visual distance.
While searching when a wolf is not able to find the food
(the global optimum) or a better terrain than its current
position within the visual range, the wolves move in the
Brownian motion.

The WSA follows some rules, which are given as follows.
1) The wolves have a visual distance with a radius as v and

X as a set of continuous possible solutions. In hyperplane,
this distance would be estimated by Minkowski distance
as follows:

v ≤ d (xi, xc) =
(
Σn

k=1|xi,k − xc,k|λ
)
, xc ∈ X

(2)
where xi is the current position, xc are all the potential neigh-
boring positions near xi, and Λ is the order of the hyperspace.

2) The quality of a wolf’s current position is given by the
fitness of the objective function. The wolf continually
attempts to relocate to better terrain inhabited by a com-
panion and will finally choose the best terrain in case of
multiple better terrains. Else, the wolf will continue to
move randomly in the Brownian motion.

3) When a wolf senses an enemy, it will escape to a random
position beyond its visual range to move away from the
threat.

1) Merging With Other Wolves: In WSA, the fitness of the
objective function determines the quality of the wolf’s current
position. A wolf always wants to be in a position where there is a
greater probability of finding a prey (food) and lower probability
of meeting a predator (being hunted), and it will rarely move into
the territory occupied by another wolf if that territory is better.
This works as follows.

Initially, each wolf locates other wolves within its visual
range and evaluates the quality of the position of each of its
companions. The best location amongst all is compared with
the wolf’s position. If it is beneficial to locate to this new
position, the wolf relocates and prey there. Otherwise, the wolf
searches in a Brownian motion with an incremental step size.
The implementation of this movement is given as

x (i) = x (i) + βoe
−r2

(x (j)− x (i)) + escape ( ) (3)

where escape() generates a random position that enables the
wolf to hop, x(i) is the location of the wolf, x(j) is the neighbor
that is in a better position, and βoe

−r2
is the incentive formula,

which represents the betterment (gain) achieved by the wolf by
moving to a new position, where βo is the origin of the food,
and r is the distance between the wolf and the new position.

If there are no better terrains occupied by the wolf’s peers
and the wolf is only in the best position, the other wolves will
ultimately crowd to the wolf’s current position.

2) Preying: Typically, a wolf looks out a region completely
to search for the food in a pattern of the Brownian motion. WSA
exhibits three different kinds of preying behavior, which are as
follows.

1) Preying initiatively: The objective of the optimization
function is represented as a food. In this step, each wolf
checks its visual range to detect the prey. The wolf will
move step by step in the direction of the prey detected
with the highest fitness.

2) Prey passively: In case the wolf is not able to find the food
or better position occupied by a peer in the preceding step,
it will prey passively by staying alert for the incoming



Algorithm 2: WSA Algorithm [11].

Objective function f(x), x = (x1, x2, x3, . . . , xd)
T

Initialize the population of wolves
xi (i = 1, 2, 3, . . . , W )

Define and initialize parameters:
r = radius of the visual range
s = step size by which a wolf moves at a time
α = velocity factor of the wolf
pa a user-defined threshold [0 . . . 1], determines how
frequently an enemy appears

While (t < generations && stopping criteria not met)
For I = 1: W //for each wolf
Prey_new_food_initiatively ();
Generate_new_location (); //check whether the next
location suggested by the random number generator is
new. If not, repeat generating random location

If dist(xi, xj) < r && xj is better as f(xi) < f(xj)
xi moves towards xj //xj is better than xi

Else-if
xi = Prey_new_food_passively ();
End-if
Generate_new_location ();
If rand() > pa
xi = xi + rand() + v; //escape to a new position
End-if
End-for
End-while

threats and also it will check the position of its peers in
an attempt to improve its current position.

3) Escape: The wolf escapes quickly when a threat is de-
tected. It relocates itself to a random new position such
that its escape distance is greater than its visual range.
Escape prevents all the wolves from getting stuck at a
local optimum.

These preying steps can be defined mathematically given as
follows:

if moving =

{
x (i) = x (i) + α · r · rand() //Prey
x (i) = x (i) + α · s · escape() //Escape

(4)
where x(i) is the position of the wolf,α is the velocity, rand() is
a random function with the mean value in [−1,1], v is the visual
distance, and s is the step size. escape() is a custom function
that generates a position in a random manner, which is greater
than v and less than half of the solution boundary.

Algorithm 2 describes the WSA.
The parameters for WSA were set as: population size = 20;

iterations = 20; chaotic coefficient = 4.

IV. RESULTS AND DISCUSSION

The proposed CNN-WSADT was evaluated for classification
performance accuracy Ac (in percentage). Two benchmark Twit-
ter datasets, SemEval 2016 (Task 4, subtask-A) and SemEval

TABLE I
RESULTS OF CNN + WSADT

TABLE II
COMPARATIVE ANALYSIS OF CNN AND HYBRID MODEL FOR DS-I AND II

2017 (Task 4, subtask-A), were used for the training and valida-
tion. The tweets were labeled as positive, negative, and neutral.
Both SemEval 2016 and 2017 are unbalanced datasets with
the SemEval 2017 dataset (DS-II) comprising of 2352 positive,
3811 negative, and 5742 neutral tweets, and the SemEval 2016
dataset (DS-I) consisting of 7059 positive, 3231 negative, and
10 341 neutral tweets. The classification results were assessed
by partitioning the dataset into training and test sets. Tenfold
cross validation was performed to create a validation set and
find the best parameters. We used the Scikit-learn library and
Keras deep learning library with the Theano backend.

A. Performance of the Proposed CNN + WSADT

The accuracy reported by the hybrid model was approximately
90% for both the datasets. This is primarily because CNN does
not depend on the extensive manual feature engineering. It
employs an automatic extensive feature extraction mechanism.
This aids in learning and modeling the real-world problems more
efficiently and thus realizing a robust, dynamic, and flexible
deeper neural architecture. Also, the application of the WSA
optimization produced a set of optimized features, which were
combined with the pooled feature of CNN to train the DT
classifier for the improved classification accuracy. Table I depicts
the accuracy results achieved.

To highlight the improvement shown by the proposed model,
we evaluated the CNN model [28] independently as a baseline on
both the datasets. The proposed CNN+WSADT model achieves
nearly 3.5% more prediction accuracy, as given in Table II.

Fig. 4 depicts the AUC-ROC curves for DS-I and DS-II.

B. Comparison of DT With Other Supervised
Machine Learning Techniques

To endorse the use of DT, it was compared with four other
supervised machine learning techniques, namely, SVM, naïve
Bayes (NB), k-nearest neighbor (k-NN), and multilayer per-
ceptron (MLP), on both the datasets. The TF-IDF weighting
[30] was used to construct the features set used to train the
classifiers. SVM achieved the highest accuracy with 63% for
DS-I and 65% for DS-II. MLP also depicted encouraging results
with an accuracy of around 60% and 61% for DS-I and DS-II,
respectively. Next to MLP, DT attained an accuracy of 55%
and 59% for DS-I and DS-II, respectively. Fig. 5 depicts the



Fig. 4. ROC for DS-I and DS-II.

comparative analysis of the aforesaid techniques based on the
accuracy percentage.

Although SVM individually showed the highest accuracy, for
the proposed model, we preferred choosing DT so as to develop
a robust model for the sentiment analysis, which attune to the
“skewness” in real-time datasets. Also, while MLP came next to

Fig. 5. Comparison of the supervised learning techniques using
accuracy (Ac).

TABLE III
FEATURE SELECTION USING TF-IDF+WSA

SVM but as it is a neural model and our model is already using a
deep layered neural architecture, the CNN, we opted using DT
for the final classification in our proposed hybrid model.

Experiments were also done to discern the selection of the
optimal subset of features using WSA with these supervised
learning techniques. Table III depicts the number and percentage
of features selected in both the datasets using five different
classifiers and WSA optimization.

Quite clearly, our choice was upheld to DT, which reduced
the search space notably by integrating its linearly separable ad-
vantage to the nonlinear search capability of WSA. The average
feature selection by the WSA-optimized DT was approximately
76% for both the datasets.

C. Comparison of WSA With Other Metaheuristic
Optimization Algorithms

We conducted an empirical analysis to validate the use
of metaheuristic WSA. That is, five optimization algorithms,
namely binary bat algorithm (Bat), binary cuckoo algorithm
(Cuckoo), binary grey wolf (BGW), binary moth flame (BMF),
and WSA, were used to generate the optimal feature subset
and the DT was trained using the optimal feature set to witness
the viable classification accuracy. Our recent published works
illustrated the use of BGW, BMF [9], and binary cuckoo [10]
metaheuristic algorithms for the optimal feature selection based
sentiment analysis. Table IV illustrates the comparison of the
accuracy achieved for each of the optimization algorithm used to
train DT and it is observed that WSA-optimized DT outperforms
the others.



TABLE IV
ACCURACY COMPARISON OF OPTIMIZATION ALGORITHMS

Fig. 6. Accuracy (%) of DT with and without the WSA optimization.

The graph in Fig. 6 shows the accuracy of DT in percentage
with and without the WSA optimization.

Thus, an average accuracy gain of 14.5% and an average
feature reduction of 24% was observed for DT with the WSA
optimization.

V. CONCLUSION

Cognitive manufacturing enables organizations to actively
use the advanced analytics to understand, reason, and learn
the processes, people, and operations. The cocreation and user
experience define this emerging manufacturing paradigm where
undeniably a “smart” factory should be able to meet the produc-
tion needs and deliver customer satisfaction. Based on this, a
novel cognition-driven data classification model was put forward
in this article, which embedded the predictive analytics capa-
bilities into the core manufacturing task for the real-time value
creation. This proposed hybrid model for the real-time sentiment
classification used CNN and WSA DT trained and validated on
two benchmark Twitter datasets. The combined optimal feature
vector generated a superior learning model with an average
accuracy of 89.5% validated on both datasets. Ultimately, gaug-
ing this user-generated big-data will allow learning context and
facilitate a cognitive design for mass personalization. Also, the
model added a layer of interpretability and its prospects as an
explainable AI solution needs further discussion. As a promising
future direction, the CNN + WSADT can be used to implement
the classification algorithm in the programming model, such
as MapReduce to achieve parallel processing, thereby solving
the problems of hardware and communication overhead for
managing large-scale and streaming datasets.
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