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ABSTRACT

Stress is a psychological condition in which a person feels overwhelmed with pressure. It can be
positive, keeping us alert and motivated or negative causing emotional and physical wear-tear. The
body’s autonomic nervous system has a built-in stress response that causes physiological changes to
allow the body to combat stressful situations. Bio-signals are biomarkers depicting these physiological
changes during chronically activated situations. Only trained medical practitioners can measure such
indicators which can be tedious and time consuming, delaying early identification and timely interven-
tion. With the availability of IoT based sensors for healthcare, these biomarkers can be tracked using
various wearable devices. Motivated by the need to design a model for mental stress state detection
using sensor-based bio-signals, this research proffers multi-level deep neural network with hierarchi-
cal learning capabilities of convolution neural networks. A multivariate time series data consisting
of both wrist-based and chest-based sensor bio-signals is trained using a hierarchy of networks to
generate high-level features for each bio-signal feature. A model-level fusion strategy is proposed to
combine the high-level features into one unified representation and classify the stress states into three
categories. A superlative performance accuracy of 87.7% is achieved using the proposed network,

which outperforms the state-of-the-art results.

1. Introduction

The craving to succeed in this fast-paced life takes away the
time to overhaul oneself. An individual encounters constant
pressure to excel at everything, job stress, nagging by parents
and peer pressure leading to increased risk of developing men-
tal health problems. Undeniably, stress is a common problem
in modern life psychology. However, mental health is not vis-
ible to anyone and it is hard to identify the real mental health
status of a person. In contrast, physical health whenever dete-
riorates has observable signs & symptoms and we seek imme-
diate diagnosis, advice and treatment for it from the healthcare
professionals. Moreover, some of the mental health conditions
like depression, acute stress syndrome, anxiety and insomnia
have common symptoms, so classifying the correct type be-
comes challenging. For example, stress and anxiety both have

symptoms like a dry mouth, sudden sweating, and increased
breathing rate. Therefore to classify them as stress or anxiety,
the subject needs to be evaluated for an extended period as anx-
iety attack lasts only for few minutes and is often triggered by
an external stimuli. The physical and psychological impacts
can be cyclically linked: emotional distress and poor mental
health can trigger or flare a physical health problem and, as a
result, cause further distress. Likewise, poor physical health
can lead to an increased risk of developing mental health prob-
lems. A mild amount of stress can be favorable, as it has been
observed that a person gives near-optimal works performance
under mild-stress. Eustress or beneficial stress [1] is often re-
lated to a positive challenge as compared to distress which has
negative implications. However, prolonged and chronic stress
can severely impact person’s health, affect the whole body and
increase the risk of developing certain illnesses. It can have
several physical or psychological symptoms, which can make
functioning on a daily basis more challenging.

Formally, mental illnesses are health conditions involving



changes in emotion, thinking or behavior (or a combination of
these) [2]. The general cognitive function is hindered to an ex-
tent that it can trigger inappropriate responses because those
responses are based upon inaccurate thoughts. That is, the per-
son finds difficult to stay focused, process information, store
it in memory, and accurately respond. Mental illness is con-
ceptualized as a clinically significant behavioral dysfunction or
psychological syndrome. There many different categories of
mental/ psychological disorders defined in the ICD-10, 10th re-
vision of the International Statistical Classification of Diseases
and Related Health Problems (ICD), a medical classification list
by the World Health Organization (WHO) known as mental and
behavioral disorders, ICD codes FOO to F99.

The healthcare industry has radically changed as the Internet
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Fig. 1. IoT based sensors in Health Care 4.0

of Things (IoT) have recalibrated endless applications within
the structure. The current generation, healthcare 4.0 improves
clinical treatment such that medical practitioners can moni-
tor personal health information shared through sensors to be
more watchful and connected with the patients proactively. The
smart [oT based devices available in the market have helped
patient management by remotely monitoring health conditions
and timely alerting the hospital about any irregularities using
biomarkers on daily basis [3]. Smart healthcare, as shown in
figure 1, works both on clinical and non-clinical data. Clinical
trials for any disease require the subject to visit hospital and
always be available physically for examination. With the help
of ToT-based sensors, the health condition of the user can be
tracked remotely using wearable IoT such as a wristwatch, or
with the implantation sensor in the subject’s body like a pace-
maker. In the non-clinical collection of data, the bio-signals of
the subject can be traced with the help of their smart devices
such as mobile phones, the daily/ monthly activities like walk-
ing, running, and sitting to track the health of the user. Indeed,
this health data fetched from IoT devices can allow caregivers to
make informed decisions and therefore deliver better outcomes.
The benefits of using IoT in healthcare include, but are not lim-
ited to:

e Higher patient engagement
o Better patient outcomes

e Decrease in errors

e Enhanced patient experience

o Timely intervention and diagnosis
e Improved accuracy
e Proactive treatments

e Better treatment outcomes

Mental healthcare also needs various biomarkers to detect the
status of a person’s mental health by evaluating the daily activi-
ties. An individual’s behavior needs to be evaluated in different
scenarios like his feeling while watching a movie, while driv-
ing, or while doing office work. Only then a psychologist can
identify the actual mental condition of the person. Each psycho-
logical disorder has its own characteristic symptoms and some
general warning signs to alert the need of professional help.
An intelligent mental illness diagnostic can support clinicians
with early detection. Most of the work conducted to detect the
mental health status of a user involves datasets constructed with
the help of medical questionnaires [4] [5]. These suffer due to
lack of standardization of questionnaires, dishonest & uncon-
scientious answers, unanswered questions and differences in
understanding and interpretation. With healthcare 4.0, wearable
IoT utilities can gather information, assess activity and other
biomarkers, and even deliver interventions for various mental
health conditions of an individual. Devices like wristwatch can
be used to track the level of stress in an individuals [6]. It can
collect the information about the daily activities of the subject
such as walking, running, cycling along with bio-signals like
the heartbeat, temperature, blood pressure and detect signs and
symptoms of stress and direct the smartwatch wearer to thera-
peutic resources.
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Fig. 2. Mental Health Predictor Biomarkers

In this work, we have proposed a model to detect the metal
stress at an early stage by evaluating the different biomarkers
indicative of mental health. As every individual act differently
on encountering the same situation, stress is not dependent on
a single attribute, and it works differently for different individ-
uals. Therefore, to evaluate the stress level of an individual
without prior medical history is a difficult task [7]. Various
biomarkers can be used to track the mental health of an individ-
ual like sleep pattern, level of cortisol and adrenaline hormones,
walking pattern, outdoor activities, size of eye pupil, heartbeat
rate while performing physical activities and while in the rest-
ing period as shown in figure 2.

In this paper, we have proposed a hierarchal deep neural net-
work that takes as input wearable stress and affects detection



dataset (WESAD) that contains the bio-signals of 15 individ-
uals collected from the wrist-wearable device (Empatica E4)
and chest-worn device (RespiBAN) for a time-span of 2 hours.
The different biomarkers that are taken into account to iden-
tify the stress in a user include Electrocardiogram (ECG) sig-
nals, Body temperature (TEMP), Blood Volume Pulse (BVP),
Electrodermal Activity (EDA), Respiration, Three-Axis Accel-
eration (ACC) motion, Electromyogram (EMG). WESAD was
recorded in the lab under a controlled environment by showing
different visual stimuli and by giving assignments to evaluate
the behavior of a user at that time. A total of 16000000 in-
stances of data are available. The mental state of the subject
is categorized into three classes, namely, baseline, stress, and
amusement. Also, the bio-signals are a collected as a time se-
ries data. So, to evaluate the mental state of the individual, input
is a frame of 1 second with the sliding window of 0.25 second,
since the effect of an external stimuli can change over 5 sec-
onds.

The hierarchal deep neural network consists of three levels.
As WESAD contains data of each device-type bio-signal sepa-
rately, so, to fetch the optimal values for every feature at each
instance, at the first level, the sub-sub networks(SSN) for each
bio-signal are used. Each bio-signal based sub-sub network
(10 SSNs) is a 1-dimensional convolution neural network (1D-
CNN) containing two convolution layers with batch normaliza-
tion and max-pooling and one dense layer. These SSNs gener-
ate a high-level representation of the respective wrist and chest-
based biomarkers which are input to the respective SNs at the
second level. Again, both these sub-networks at the second
level are 1-dimensional convolution neural network (1D-CNN)
containing two convolution layers with batch normalization and
max-pooling and one dense layer. This produces a combina-
tion the high-level representation features of each device type
biomarker. Finally, at the third level, separately learned device
type biomarkers are combined into one unified representation
realizing a model-level fusion strategy. Thus, the shared rep-
resentation is given to a convolution layer which generates the
final feature vector and uses a denser layer to process the fea-
ture vector. The output layer generates a regression output with
linear activation to finally detect the mental state into one of the
three categories, baseline, stress, and amusement. The network
is compared with the machine learning (Decision tree and Ran-
dom forest classifier, LDA, KNN, AdaBoost), and deep learn-
ing models (CNN with late fusion), which is the state-of-the-art
result for the WESAD dataset proposed by Schmidt et al. in
2018 and Lin et al. in 2019. The primary contributions of this
research are:

o A deep neural network with hierarchical learning capabil-
ities is proposed for mental stress state detection.

o Both wrist-based and chest-based sensor bio-signals are
used to generate high-level representation of features with
generalization capabilities.

e Model-level fusion strategy is proposed to elucidate the
correlation in data as different sub-networks are used to
operate over features which are learned separately for each
input type and then combined into one unified representa-
tion.

1.1. Related Work

Mental health is as vital as physical health. Most of the organi-
zations try to arrange motivational sessions or activity sessions
to ensure their employees get a ‘mental vacation’ and feel re-
laxed. This is important as a stressed or depressed person will
always find it challenging to focus and so will always take ex-
tra time to pursue the same work in comparison to a mentally
healthy and relaxed person. As the early stages of mental illness
have invisible symptoms, it is not always possible to notice the
change until the symptoms are persistent, increase in frequency
and severity and interfere with life activities and roles. By this
time, it becomes too late and in worst cases, untreated mental
illnesses can lead to loss of life an average of 25 years early
[5]. Thus, early identification and intervention are necessary to
recover and reclaim lives. Various artificial intelligence based
techniques have been reported to supplement clinical practice
in various mental healthcare studies. To analyze the behavior
of a person under stress, researchers have proposed machine
learning-based techniques; however, the availability of a WE-
SAD dataset has always been an issue. In 2018, Schmidt [8]
created and applied five different machine learning algorithms
namely, Random Tree Classifier (RT), Decision Tree (DT), Ad-
aBoost, K Nearest Neighbor (KNN), and Linear Discriminant
Analysis (LDA) and given the state of the art results by provid-
ing the accuracy of 80%. In 2019, Lin et al. proposed a deep
fusion network on the WESAD to optimize the accuracy of the
prediction of stress. They used the late fusion method in deep
neural networks and divided the model into four subnetworks,
one tuned on the chest sensor dataset, and rest three tuned on the
wrist sensor dataset, first one on EDA and Temperature, second
on BVP and last on ACC. They attained the highest accuracy
of 85% and F1 score as 0.86, which was a significant improve-
ment on the result provided by Schmidt et al. [9]. The latest
work on stress detection using WESAD is proposed by [10].
They used three classifiers, namely logistic regression, decision
tree, and random forest, and rather than evaluating the result
into three categories, they added one more output category as
meditation. Also, rather than applying each classifier on the
complete dataset, they applied it on individual subjects, result-
ing in an accuracy of 88% to 99% for the individual subject.

WESAD is considered as the most recent benchmark dataset
to analyze mental health of a person since it contains the max-
imum number of biomarkers on a single subject to determine
the affective state of the subject. Previously, many researchers
have created datasets to evaluate the stress level. Picard et al.
[11] built a dataset containing physiological data of a single
person depicting eight different emotions for 20 days. As dif-
ferent individuals can represent different behaviors for the same
emotional feeling; therefore, the dataset collected from a single
source cannot predict accurately for all the users. Healey et
al. [12] also created a dataset for evaluating stress using ECG,
Electrodermal Activity and Respiration, and Electromyogram
data. However, this dataset was only used to evaluate the stress
of a driver, so it did not apply to all the subjects performing
different actions. In 2012, DEAP was published by Koestra
et al.; which contained the facial videos and EEG signals of



the users to analyze the emotions using peripheral signals [13].
Although it used multiple subjects, the features used were lim-
ited, so DEAP was also unable to predict the emotion of all
the users accurately. [14] used mobile phones to construct data
for analyzing the level of stress in a user. They used biomarkers
like physical activity level, social interaction, and social activity
along with the location of the user. A transfer learning model
was used to predict the stress level and an accuracy of 76% was
reported. In 2017, Gjoreski et al. [6] used only bio-signals from
a wristwatch to evaluate the level of stress from 5 subjects eval-
uated over a span of 55 days using machine learning.

In the next section, we discuss the dataset used along with the
model proposed. It is followed by a discussion on results and
finally the conclusion is presented in the last section.

2. Material and Methods

Stress is a mental state of a person that can be triggered by ex-
ternal or internal stimuli, and these stimuli vary for different
individuals. Consequently, to train a model, we need to have a
variation of users with different scenarios. WESAD comprises
data from 15 graduate students most prone to stress, 12 being
male and three being female, are analyzed using both wrist-
based and chest-based tests under diverse conditions over 2
hours. WESAD acts as a benchmark dataset to build the model.
The prediction of the level of stress in a user depends on sev-
eral biomarkers like dry mouth, dilation of pupils, decreased
digestion, but measuring every aspect from an individual is not
possible, to monitor the pupil dilation, we need access to video
of the user continuously. However, it invades the privacy of the
user. Thereby, data collection is done through sensors in a way
that does not invade the privacy of the users.

2.1. Dataset

To identify the mental stress using behaviour biomarkers, we
have used a sensor collected multimodal dataset which features
psychological and motion data from both a wrist-worn device
Empatica E4, and chest-worn device RespiBAN over 2 hours
in a lab under controlled environment named WESAD. It is a
publicly available data set for variable stress and affects detec-
tion collected by Schmidt et al. in a lab study on 15 subjects
12 being male and 3 been female. Different biomarkers that
were used hey to monitor the stress level of a person are Blood
Volume Pulse (BVP), Electrocardiogram (ECG), Electroder-
mal Activity (EDA), Electromyogram (EMG), Body Temper-
ature (TEMP), Respiration (RESP) and Three-Axis Accelera-
tion (ACC) motion. The data collected by RespiBAN was at
700Hz, whereas the data collected by the wrist device was at
low resolution. All these biomarkers contribute to identifying
the mental state of a person, whether he is amused, stressed, or
is in normal state i.e., baseline. Each subject has 12 features,
and the results were self-reported by the users [8]. The dataset
contains a total of 63000000 instances [8].

Table 1. Biomarkers of the Proposed Model

Biomarker Device Feature/ Significance

Blood Volume | RespiBAN, BVP is the amount of blood in blood

Pulse Empatica tissue during a certain time period.

E4 BVP also provides pulse rate and blood
flow volume, as it is obtained by photo-
plethysmography.

Electrocardio- | RespiBAN ECG provides the frequency of cardiac

gram cycles. It is sensed using photodetec-
tors, so is not able to be detected by
wrist-wearable device.

Electrodermal | RespiBAN, | EDA gives the flow of electricity

Activity Empatica through the skin. The changes arise in

E4 skin when brain sends the signal due to
different emotion activation. Skin con-
duction increases when a person is un-
der stress.

Electromyo- RespiBAN EMG is used to detect musculoskeletal

gram movements. These signals can detect
face and hand gestures.

Body Temper- | RespiBAN, | Skin temperature of the subject is mea-

ature Empatica sured using thermistor sensor. Body

E4 temperature is negatively correlated
with stress.

Respiration RespiBAN RESP gives the person inhalation and
exhalation rate. The slowed respiration
rate shows the level of stress in a user.

Three  Axis | RespiBAN, | ACC gives an indication of differ-

Acceleration Empatica ent activities like lying, sitting, stand-

E4 ing, walking, running and cycling by
recording the human movement in all
the three dimensions. Fast hand move-
ment over short time depicts sign of
mental stress.

2.2. Convolution Neural Network (CNN)

Convolution Neural Network (CNN) is the most commonly
used deep neural network proposed for image processing but
now validated for all types of data. Typically, in a CNN, the
input is passed through convolution layers such that the output
of the primary layer becomes the input for the subsequent layer.
Non-linearity is added post every convolution operation using
an activation function such as ReLU, to create a rectified fea-
ture map. Each non-linear layer is followed by a pooling layer
which performs a down sampling operation. Pooling operation
helps to progressively reduce the size of the input representation
and control overfitting too [15]. We can either use max, aver-
age or sum pooling. A fully connected layer also known as the
dense layer is then attached to this series of convolution, non-
linear and pooling layers which outputs the information from
the convolutional networks. Structure of CNN model is shown
in figure 3.

In our proposed hierarchical network we have three levels. At
bottom level, we use 1-D CNN for creating 10 different sub-
sub networks(SSN) to generate the optimized feature value
for every bio-signal of RespiBAN and Empatica E4. In the
second layer, the output of SSNs are passed to two differ-
ent sub-networks(SN) depending upon the feature is obtained
by RespiBAN or Empatica E4, for producing a combination
of the high-level representation features of each device type
biomarker. Both SN are also a ID-CNN containing two convo-
lution layers with batch normalization and max-pooling and one



dense layer. And the top level is the classification level, where
the result of SNs, separately learned device type biomarkers
are combined into one unified representation realizing a model-
level fusion strategy. As the dataset has approximately more
than half-million values for a single attribute over a single sub-
ject, the fusion strategy is used. Typically, fusion strategies can
be categorized into early, model-level and late fusion. The early
fusion strategy involves concatenation of input features whereas
the model-level fusion involves concatenation of high-level fea-
ture representations from different sub-networks and the late
multi-lingual fusion involves fusion of predictions from differ-
ent sub-networks (figure 4).

Inputs Convolution

Pooling Dense

Fig. 3. CNN Structure

The model-level fusion strategy helps to complete the essence
of hierarchical learning proposed in this work. Unlike early fu-
sion, this strategy helps to circumvent the curse of dimension-
ality and synchronization between different features and at the
same time does not isolate interactions among different features
as in late fusion. Finally, the fused representation is given to a
convolution layer, which generates the final feature vector and
uses a denser layer to process the feature vector. The output
layer, i.e. SoftMax layer generates a regression output with lin-
ear activation to finally detect the mental state into one of the
three categories, baseline, stress, and amusement.
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3. Model
3.1. Data Pre-Processing

Since the different subjects have a different response to the dif-
ferent type of tests, they have variation in their signal values,
to use this dataset we apply the min-max normalization tech-
nique so that all the subjects have test results in the same scale
range. Since the data collection is done over 2 hours, in which a
subject is presented with different stimuli, it results in different
behavior at different times. To evaluate a time series data, the
continuous data is broken into short instances of one second.
The sliding window of 0.25 seconds is used to better predict
the mental state, as the effect of stimuli can happen over even a
short interval of 5 seconds. Over breaking the continuous time
frame data, if the change of stimuli started in previous one sec-
ond interval, but the main change comes in the next one second
interval then to compare the change, the value of previous in-
stance is required, that can be used with the sliding window of
0.25 second, which is to use the prior time to predict the next
time step.

The target class is also given the numerical value, 1 for base-
line, 2 for stress, and 3 for amusement; Baseline is a condition
that a subject exists in the first 20 minutes of the experiment
setup, where no external stimuli has been used. For all those
scenarios, where target class is undefined is given the value of
0.

3.2. Architecture

After the data has been fetched in the scalable format, data is
still astronomical and exists as individual units, so we apply the
1D-CNN over each feature signal by constructing a separate
sub-sub network. Once all the sub-sub network gets trained.
The input is passed in as subject manner, i.e., all the features of
a subject at one sliding window or at a particular time is passed
through the sub networks, and the output of the sub models is
then passed into the primary model that classifies the subject at
a particular instance into one of the three classes defined during
the training phase. The proposed hierarchical network is shown
in figure 5.

Each subject’s data contains signals from two different sen-
sor devices, first RespiBAN, for monitoring chest signals ECG,
TEMP, RESP, EDA, EMG, and ACC each recorded with 700Hz
signal, the sub-sub-networks created for each of these feature
is 1-D CNN with input layer 700*1 except for ACC which is
provided with input layer of 700*3. The sub-sub-networks for
features recorded with Empatica E4, have different sized input
layers, for ACC 32* 3, BVP has 64%2, TEMP and EDA has
input size of 4*1 input layer. 65% of data is used to train the
model, i.e., ten subjects are used to train the model, and rest
35% is used to test the data, and 10% of the data is used to val-
idate the model. 53% of the total instances belong to the base-
line class, 30% belongs to stress class, and 17% belong to the
amusement class. The structure of different layers used in CNN
sub-networks implemented in the proposed hierarchal network
is shown in table 2.
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Table 2. Layers of the proposed Hierarchical deep neural network
CNN-SSN1 to | CNN SN1 and
CNN-SSN10 CNN SN2
High-level Feature Input - Input -
. Convolution Convolution
Extraction - -
Pooling Pooling
Convolution Convolution
Pooling Pooling
Dense Dense
Classification based Convolution
Model-level fusion Dense
SoftMax

4. Results & Discussion

The proposed deep hierarchal neural network is trained with
65% of processed WESAD data once the continuous time
series data is split over one second interval over the sliding
window of 0.25 second. Model is tested over 35% of total
data, i.e. 5 subjects are used for testing the models. Model is
evaluated in terms of accuracy and f1-Score, where,

A B TP+TN
ceuracy = TpyTN+FP+FN
PrecisionxRecall
F-1 Score= 2 Precision+Recall
y TP LE
Precision= TP+FP and Recall = TP+FN

Subject 15
100
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Fig. 6. Accuracy of Subjects

Precision, Recall, Accuracy and Fl-score of each individual
subject is hsown in table3. The average accuracy achieved by
the proposed model is better than the state-of-the-art results.
The F-score of the model is 0.8325, and the average accuracy is
87.7% which is better than the state-of-the-art results provided
by [8],[9]. The comparison of the deep hierarchal model with
results of other models is shown in table 4.

The accuracy of the model depends upon the subject’s data, as
different individuals have different level of stress for same sce-
nario and the expression of stress is also different for each in-
dividual. The results of the proposed model for each subject is
shown in table 4. It is observed that the accuracy of the model
varies from 72% to 96%. The accuracy curve of model is shown



Table 3. Accuracy of different classifiers over WSEAD

F-1Score | Precision | Recall Accuracy | Subjects
0.9467 0.901 0.9973 93.39 S1
0.998 0.9474 0.9861 96.98 S2
0.612 0.826 0.9193 88.70 S3
0.9292 0.9079 0.9693 95.07 S4
0.96855 0.5518 0.9051 74.9 S5
0.8548 0.7709 0.9593 87.92 S6
0.8601 0.8353 0.8877 86.79 S7
0.6836 0.8761 0.5605 72.19 S8
0.798 0.8145 0.8756 87.24 S9
0.9348 0.9921 0.8831 92.73 S10
0.834 0.873 0.913 93.46 S11
0.8577 0.8222 0.8974 87.24 S12
0.93 0.92 0.961 88.72 S13
0.649 0.789 0.681 76.834 S14
0.917 0.95 0.925 93.56 S15

Table 4. Accuracy of different classifiers over WSEAD

Classifier Accuracy F-score
Decision Tree [8] 0.64 0.58
Random Forest [8] 0.75 0.64
KNN [8] 0.56 0.48
LDA [8] 0.75 0.71
AdaBoost [8] 0.79 0.69
CNN [9] 0.85 0.86
Proposed Hierarchical Model | 0.877 0.83

in figure 6. The sample confusion matrix for subject 5 and 10

is shown in figure 7.
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Fig. 7. Subject 5

5. Conclusion

Bio-signals are the biomarkers depicting these physiological

Fig. 8. Subject 15

changes as stress response symptoms during chronically acti-
vated situations. Only trained medical practitioners can mea-
sure such indicators, which can be tedious and time-consuming,
thus delaying early identification and timely intervention. Per-
sistent and chronic stress can lead to long-term health damage.
It is imperative to design and develop an intelligent mental ill-
ness diagnostic that can support clinicians pro-actively. With
the availability of smart sensors, the health condition of a per-
son both physically and mentally can be tracked easily through
[1] IoT based wearable devices. This research proffered a deep
hierarchal neural network model which, on receiving different
sensor-based signals, categorizes the individual mental state to

7

be either in stress or not or in amusement. A multivariate time
series data, wearable stress and affects detection dataset (WE-
SAD), consisting of both wrist-based and chest-based sensor
bio-signals, was trained using a hierarchy of networks. The
model used 13 CNN networks at different levels of the hierar-
chy that provided an average accuracy of 87.7%, which is more
efficient than the state-of-the-art results.
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