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quotient: an analysis of spatiotemporal crime patterns in
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ABSTRACT
Incident data, a form of big data frequently used in urban studies,
are characterized by point features with high spatial and temporal
resolution and categorical values. In contrast to panel data, such
spatial data pooled over time reflect multi-directional spatial
effects but only unidirectional temporal effects, which are chal-
lenging to analyze. This paper presents an innovative approach to
address this challenge – a geographically and temporally
weighted co-location quotient which includes global and local
computation, a method to calculate a spatiotemporal weight
matrix and a significance test using Monte Carlo simulation. This
new approach is used to identify spatio-temporal crime patterns
across Greater Manchester in 2016 from open source recorded
crime data. The results show that this approach is suitable for the
analysis and visualization of spatio-temporal dependence and het-
erogeneity in categorical spatial data pooled over time. It is par-
ticularly useful for detecting symmetrical spatio-temporal co-
location patterns and mapping local clusters. The method also
addresses the unbalanced temporal scale problem caused by uni-
directional temporal data representation and explores potential
impacts. The empirical evidence of the spatiotemporal crime pat-
terns might usefully be deployed to inform the development of
criminological theory by helping to disentangle the relationships
between crime and the urban environment.
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1. Introduction

Rapid advances in remote sensing and computer technology, since the inception of
GIS, have led to a significant evolution in urban GIS analyses and data, from land use
and land cover modelling using satellite imagery, to the analysis of spatial accessibility
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by integrating spatial and socio-economic census data, and to mobility and sentiment
analysis using newly available big data and open data. Although there is no standard
definition of big data, it is typically characterized by the 3Vs – the dimensions of vol-
ume, variety and velocity – and sometimes a further 6Vs (veracity, validity, variability,
volatility, visualization and value) (Batty and Michael 2016). Among these Vs, high vel-
ocity indicates that data are generated through a streaming process in real time and
in a continuous fashion, rather than batch processing. High velocity enables the pro-
duction of data with high temporal resolution, particularly suitable for modelling
urban dynamics. Driven by a variety of factors including citizen science, big data is
increasingly used in urban studies to analyze rapid changes in population and associ-
ated socio-economic activity (Kharrazi et al. 2016, Bannister and O’Sullivan 2021). Data
infrastructure developments have driven the emergence of urban analytics (Liu et al.
2020, Kandt and Batty 2021) which, for example, has been used to analyze crime pat-
terns from a variety of big and small data sets (Helbich and Leitner 2017, Zahnow and
Corcoran 2021).

Geographically weighted spatial modeling (GWSM) is commonly used in urban and
geographical studies due to its suitability for exploring spatial nonstationarity and
mapping local relationships. Since the publication of the seminal book on geographic-
ally weighted regression (GWR) in 2002 (Fotheringham et al. 2002), GWSM has been
continuously developed to include semi-parametric or mixed GWR (Nakaya et al.
2005), geographically (or spatially) and temporally weighted regression (GTWR) (Huang
et al. 2010, Fotheringham et al. 2015), multi-scale GWR (Fotheringham and Oshan
2016) and multi-scale GTWR (Wu et al. 2018). GTWR is able to quantify and visualize
the spatial and temporal processes underlying complicated geographical patterns (e.g.,
the dynamics of house prices). Another parallel development in GWSM has been the
spatial extension of traditional statistical or mathematical methods, such as geograph-
ically weighted principal component analysis (Harris et al. 2015, Li et al. 2016), geo-
graphically weighted flow modelling (Zhang et al. 2019) and, geographically weighted
co-location quotient analysis (Cromley et al. 2014). The co-location quotient, devel-
oped from the traditional economic geography location quotient, has been increasingly
used to measure the directed spatial dependence between categorical variables. Many
types of urban big data are categorical variables, such as POI data that have location
and nominal attribute values but no numerical values (e.g., interval or ratio). Location
quotient is a popular method for measuring regional specialization in economic geog-
raphy, but it is subject to the modifiable areal unit problem (MAUP) ( Eckardt and
Mateu 2021). The co-location quotient (CLQ) aims to quantify the spatial association
between categories of a population that may exhibit spatial autocorrelation. It can also
detect symmetry and asymmetry in spatial dependence (Cao et al. 2017). Cromley et al.
(2014) extended the global CLQ to a geographically weighted co-location quotient
(GWCLQ) that takes into account the spatial heterogeneity of the association between
categorical data. Wang et al. (2017) further improved the method by proposing a statis-
tical significance test for the derived GWCLQ. All these methodological developments
have enabled the incorporation of GWCLQ into ArcGIS Pro 2.8.

In urban crime analytics, the co-location quotient method has been used to analyze
geographical patterns. Co-location patterns in criminology can be classified into three
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categories: co-location between crime types (Pope and Song 2015); co-location
between crime types and facilities (e.g., alcohol outlets) (Wang et al. 2017); and co-
location between crime incidence sites and the surrounding land use features (Yue
et al. 2017). These empirical studies have revealed co-location patterns in crime via
global (Pope and Song 2015) or local versions of GWCLQ (Cromley et al. 2014, Wang
et al. 2017). However, these analyses only considered spatial dependence and spatial
heterogeneity. The benefits of simultaneously incorporating spatial and temporal
dimensions in the study of crime patterns have been demonstrated in recent studies
spanning: near repeat analysis (Piza and Carter 2018); temporal typology of crimes
(Corcoran et al. 2021); crime prediction (Jefferson 2018); seasonal crime trends (Quick
et al. 2019); and, spatio-temporal methods for crime prediction (Yang et al. 2020).

Against this backdrop, this paper presents an innovative method of geographically
and temporally weighted co-location quotient analysis (GTWCLQ) which, incorporates
spatial and temporal dimensions as well as addressing the unbalanced temporal scale
problem. The method is validated in a case study of spatiotemporal crime patterns in
Greater Manchester. In the rest of this paper, Section 2 describes the data set and ana-
lytical method of GTWCLQ. Section 3 presents the GTWCLQ results and interprets the
spatio-temporal patterns of crime. Section 4 discusses the outstanding methodological
and technical issues and proposes some solutions, and section 5 ends with conclu-
sions and recommendations for future work.

2. Data and methods

This section summaries the key characteristics of the spatio-temporal data used, and
explains the development of the GTWCLQ.

2.1. Spatio-temporal data

With the advances in information communications technology (ICT) and the subse-
quent proliferation of smart cities, large volumes of spatio-temporal data have been
generated comprising specific geographic locations and corresponding time stamps
(Emani et al. 2015, Wang et al. 2020a). Evaluating patterns and processes in spatial-
temporal data has relevance in urban analytics (Kandt and Batty 2021) and urban
studies (Bannister and O’Sullivan 2021), as well as in other disciplines including climate
science, neuroscience, social sciences, epidemiology, transportation, and earth sciences
(Vega-Oliveros et al. 2019, Ferreira et al. 2020).

Multiple formats of spatio-temporal data have been used in urban studies (e.g.,
geo-referenced time series, event data and trajectory data) (Ansari et al. 2019, Atluri
et al. 2019). Spatio-temporal panel data and spatial data pooled over time (SDPOT)
(Dub�e and Legros 2013) are the most common formats of event or incident point
data. As shown in Figure 1, panel data are repeat measurements at fixed locations
and regular time intervals (e.g., hourly air quality monitoring at fixed stations) but
SDPOT are spatially and temporally random incidents (e.g., traffic incidents). Panel
data are typically recorded as numerical values, intervals or ratios, whereas SDPOT
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data are recorded as nominal or ordinal values (such as crime type and acci-
dent severity).

In terms of data modelling, both panel and SDPOT data are typically represented
by a three-dimensional coordinate system (X, Y, T), where X and Y are latitude and
longitude in a geographic coordinate system or a locally projected system (e.g., the
British national grid system), and T indicates the time of data reporting or collection.
In contrast to panel data, the temporal effect in SDPOT is unidirectional because
events occurring yesterday will influence today’s pattern but not vice versa. Its spatial
effect is multidirectional within the same time period. These features point to the
unbalanced temporal scale problem (UTSP) associated with SDPOT data analysis, in
that data may represent different temporal durations. For example, in the analysis of
monthly crime data over the period of one year, 12months of data will be available
for the pattern analysis of crimes in month 12 (December) but only 6months of data
will be available in month 6 (June) and only 1month of data will be available in
month 1 (January). In other words, there is an unbalanced sample size in spatio-tem-
poral analysis between time points, as the temporal scale (duration) increases at each
time point throughout the year. As with classical spatial panel data analysis, the ana-
lysis of SDPOT data should account for spatio-temporal dependence and heterogen-
eity (Tobler 1970).

2.2. Geographically and temporally weighted colocation quotient

Two key methods have sought to incorporate the temporal dimension into geograph-
ically weighted modelling, in order to capture both spatial and temporal heterogeneity
(Lee and Li 2017, Wang and Lam 2020). The first method combines spatial and tem-
poral effects using a three-dimensional coordinate system (X, Y, T) and introduces two
scale parameters to adjust for spatial and temporal effects (Wang et al. 2017). This
method is widely used in geographically and temporally weighted regression models.
The second method constructs the spatial and temporal weight matrices separately

Figure 1. Comparison between traditional panel data and SDPOT data: (a) panel data with numer-
ical values at fix location (b) SDPOT data with categorical values at random location.
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and combine them into a spatio-temporal weight matrix using a Kronecker/Hadamard
product (Dub�e and Legros 2015). Here, the last one was used to constructs the spatio-
temporal weight matrix. In the following descriptions, it is supposed that GTWCLQ tar-
gets the spatio-temporal pattern at time t (actual or observational time point). All the
points at previous times will be used for global and local computations based on a
spatial and temporal distance decay effect.

The basic structure of a global geographically weighted CLQ is defined as:

GWCLQg
A�B ¼

P
i2C

P
j2Dði 6¼jÞWijxj

M
P

i2C
P

j2Dði 6¼jÞWij
(1)

M ¼ NB

N� 1
(2)

where GWCLQg
A�B is the global geographically weighted colocation quotient for type

A relative to type B; Wij denotes the spatial weight matrix, xij is a binary variable that
equals 1 if the jth point is a marked B-point and is equal to 0 otherwise. N is the total
number of sample and NB are the number of category B.

By incorporating the temporal distance between two observations, GWCLQg
A�B is

modified to GTWCLQg
A�B (global geographically and temporally weighted co-location

quotient), which is formulated as follows (Equation 3):

GTWCLQg
A�B ¼

P
k2E

P
i2C

P
j2Dk

Wijtkxkj
M
P

k2E
P

i2C
P

j2Dk
Wijtk

(3)

Let Wijk ¼ Wijtk , then GTWCLQg
A�B can be modified to Equation 4:

GTWCLQg
A�B ¼

P
k2E

P
i2C

P
j2Dk

Wijkxkj
M
P

k2E
P

i2C
P

j2Dk
Wijk

(4)

where GTWCLQg
A�B denotes the global geographically and temporally weighted co-

location quotient of type A relative to type B at time k. Wijk is a spatio-temporal
weight denoting the relative importance of the jth point at time k to the ith A-point
at actual time. xkj is a binary value that equals 1 if the jth point at time k is a type B
point, and is equal to 0 otherwise. E is the set of time periods in study. C is the set of
type A points at actual time and Dk is the set of all points at time k. Values greater
than one show that type A points tend to be spatially dependent on type B points at
time k, while values less than one indicate that type A points are likely to be far from
type B at time k. The larger the value, the stronger the dependence or attraction.
Asymmetry is defined by the condition that only one of GTWCLQg

A�B and GTWCLQg
B�A

is greater than 1 at a 5% significance or lower level.
It is noteworthy that, N and NB used here differ from the terms used in Equation 2

and are instead defined as follows (Equation 5):

N ¼
X
k2E

Nk NB ¼
P

k2E NBk (5)

where Nk is the total number of points at time k, and NBk is the number of type B
points at time k.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 5



In a similar fashion to local geographically weighted colocation quotient (Cromley,
2014), the local geographically and temporally weighted colocation quotient is formulated
as follows (Equation 6):

GTWCLQlðiÞ ¼
P

k2E
P

j2Dk
Wijkxkj

M
P

k2E
P

j2Dk
Wijk

(6)

where all terms are the same as Equation 4, and GTWCLQlðiÞ is the local value of ith
type A relative to type B at time k.

Constructing the spatio-temporal weight matrix ( Wijk) is central to the calculation
of GTWCLQg

A�B and GTWCLQl, as it combines the multi-directional spatial relations at
a particular time with the unidirectional relations linking past spatial observations with
present spatial observations (Dub�e et al. 2018, Yousfi et al. 2020). The spatial weight
matrix and the temporal weight matrix should be constructed separately, prior to
being combined.

The spatio-temporal weight matrix aims to represent spatial and temporal depend-
ence (the first law of geography by Tobler (1970)) by measuring distance decay
effects, which are usually reflected by various mathematical functions of spatial and
temporal distance. The spatial distance between observation iðxi, yi, tiÞ and j xj, yj, tj

� �
is measured using Euclidean distance:

dSij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�xjÞ2 þ ðyi�yjÞ2

q
(7)

The temporal distance, dtij between observation i and j, is calculated as Equation 8.

dtij ¼ ti�tj þ 1 (8)

where ti and tj is the time point of observations i and j. Adding 1 into this calculation
is based on the following consideration: when ti ¼ tj, the temporal distance should be
1 rather than 0 as the same time point should be given the highest temporal weight.

The spatial and temporal distances are then converted to “closeness” by the Kernel
function in Equation 9:

fðdsijÞ � gðdtijÞ ¼ wijtk ¼ Wijk (9)

where f(.) and g(.) are the kernel functions. Several kernel functions exist to measure
the distance decay effect or closeness between observations (Dubin 1999). Frequently
used kernel functions include the box kernel density, inverse distance and Gaussian
functions. Because Gaussian kernel function are used to generate the normal distribu-
tion distance bandwidths, while inverse distance function generate the line distribu-
tion of bandwidths, the Gaussian kernel function was used to measure spatial
closeness (Equation 10) and the inverse distance function was used to calculate tem-
poral closeness (Equation 11) in this study:

Sij ¼ fðdsijÞ ¼ exp � 1
2

dsij
b0

� �2
" #

dsij � b0

0 dsij>b0

8><
>: (10)

Tij ¼ gðdtijÞ ¼
ðdtijÞ�a if and dtij � t0

0 dtij>t0

�
(11)
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where Sij is the spatial weight value between location point i and point j; Tij is the
temporal weight value between time point i and point j. b0 and t0 are spatial and
temporal bandwidth values, respectively. a is the time decay parameter, measuring
the relative importance of the higher-order temporal neighborhoods (Spettl et al.
2015). The value of a is often set to 0,1 or 2. A value of 0 indicates a ‘no autocorrel-
ation’ temporal effect. When a¼1, the inverse distance function is used to measure
temporal closeness and when a¼2 the bi-square function is used, as in this study.

Bandwidth is a key parameter to control the magnitude of distance-decay in kernel
density-based methods (Anderson 2009, Fotheringham and Oshan 2016). By changing
the value of the bandwidth, a range of indices reflecting diversity can be created on a
precise scale. The bandwidth can be a fixed distance or an adaptive bandwidth (Cho
et al. 2010, Fotheringham and Oshan 2016). In practice, an adaptive bandwidth is
more commonly used because it can capture spatial probability density variations in
different local regions (Brunsdon 1995, Yuan et al. 2019). Bandwidths in GWR can be
optimized by a back-fitting algorithm, for example CV score (Cleveland 1979) or the
Akaike information criterion (AIC) (Fotheringham et al. 2002). However, in this study,
there is no objective function for optimizing bandwidth size for GTWCLQ.

To make the methodology practical for most GIS users, this study incorporates tem-
poral relations into the spatial weights matrix calculation as shown in Figure 2. The
unidirectional temporal effect of SDPOT data means that future observations cannot
influence past observations (Dub�e and Legros 2012). This assumption is critical for spa-
tiotemporal analysis with SDPOT, particularly when it covers a long duration. All obser-
vations are ordered chronologically so that the first right frame in the dataset
corresponds to the newest observations, while the last left frame represents the oldest
ones. In Figure 2, time t represents the actual time to be targeted; its temporal influ-
ence only subjected to neighbouring points at earlier times, that is, t-1,t-2,… t-q. qþ 1
denotes the temporal duration, and q is the number of prior time periods. In this
sense, at time t, q prior time periods (represented as separate layers) define the tem-
poral bandwidth. But, at the time point t-k, only (q-k) prior time periods define the
temporal bandwidth. At time t-q, there are no prior observations, so no temporal

Figure 2. The scheme of the spatio-temporal matrix construction (t is the actual time point and q
represents previous time points).
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effects can be analyzed. This leads to the unbalanced temporal scale problem (UTSP),
which will be further discussed at a later stage.

The spatial weight matrix was constructed in the following way. Only the spatial
distance between points at actual time t and previous time t-k (k¼ 0, 1, … , q) is
calculated by (Equation 10). To concise the symbol, here we used the k denote the
time (t-k). The spatial weight matrix at time k is denoted as Stk (Equation 12):

Stk ¼
s1t1k s1t2k . . . s1tNk

s2t1k s2t2k . . . s2tNk

. . . . . . . . . . . .
sNt1k sNt2k . . . sNtNk

2
664

3
775
Nt�Nk

,WSpatial ¼
St0
St1
. . .
Stq

2
664

3
775 (12)

where Nt and Nk are the number of the points at time t and k, respectively. St0 means
the spatial matrix at time t. It is worth noting that the spatial weights matrix Stk is not
always a square matrix because the number of points at time t often differs from the
number of points at time k. To reflect the whole spatial relation at time t, all the spa-
tial weight matrices from previous time periods are summarized into a single
matrix WSpatial which is a serrated matrix instead of a traditional matrix. Because this
method just calculated the weight matrix between actual time t and all previous
observations and not considered the interaction between previous observations, the
total computation time is only 1/q of the computational time using the traditional
method, so this method is particularly valuable for analysing a large SDPOT data set.

In the case of temporal relations, the same process is employed to construct the
temporal weight matrix. Only the temporal distance between actual time t and previ-
ous time t-k (k¼ 0, 1, … , q) is calculated (Equation 11). As Ttk represents temporal
relations between time t and observations collected at time k, pooling these individual
values creates the global temporal weights matrix WTemporal in Equation 13:

WTemporal ¼ 1 Tt1 . . . Ttk . . . Ttq
� 	T

(13)

where the first element is 1, the time k and the target observations are in the same
time period. The T at top right-hand corner is the sign of matrix transposition. The
dimension of the temporal weight matrix is the same as the spatial matrix, but has a
different meaning; it takes account of the unidirectional temporal relation between
observations in all time periods.

Finally, the spatio-temporal weight matrix is constructed by multiplying the spatial
weight matrix with the temporal weight matrix, term by term, as shown in Equation
14. Using this dot product scheme, Equation 14 results in a number rather than a
matrix. There are three other sophisticated schemes of integrating the spatial and tem-
poral weight metrices, which result in a matrix: the Kronecker product (Shen et al.
2016, Liu et al. 2019), the Hadamard Product (Dub�e and Legros 2015), and the matmul
product (Huang et al. 2010, Fotheringham et al. 2015).

W ¼ WSpatial �WTemporal ¼
St0
St1
. . .
Stq

2
664

3
775 �

1
Tt1
. . .
Ttq

2
664

3
775 (14)
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The dot product scheme used in this study has two obvious advantages of con-
structing the spatio-temporal weight over other schemes mentioned above. First, this
method addresses the multidirectional spatial effect and the unidirectional temporal
effect via two separate processes, which makes it easier to interpret the complex spa-
tial-temporal patterns. Second, the simplified method is not only able to reduce com-
putational time, but also makes it possible to update the weight matrix by focusing
on spatial or temporal effects differently. For example, when the temporal weight is
set as WTemporal ¼ ½1, 1, . . . , 1�T , the temporal effect is least considered, and the spa-
tial-temporal weight matrix is just equal to the spatial matrix; the geographically and
temporally weighted colocation quotient turns into a geographically weighted coloca-
tion quotient. In the same way, when the spatial weight matrix is set as WSpatial ¼
½1, 1, . . . , 1�T , the geographically and temporally weighted colocation quotient
becomes a temporally weighted colocation quotient. Mathematically, the dot or inner
product scheme has been increasingly used in the computation of machine learning
algorithms (Moura et al. 2020).

2.3. Monte Carlo simulation

To test the significance of spatio-temporal colocation quotient values, a Monte Carlo
simulation method is used to calculate statistical test values. Monte Carlo simulation
has been extensively used to estimate the variability of a chosen test statistic under
the null hypothesis, in order to determine whether the test statistic calculated from
the data deviates from the null hypothesis (Olden and Neff 2001, Myllym€aki et al.
2021), such as in geographically weighted regression (Xu and Liang 2001, Brunsdon
et al. 2010, Ren et al. 2014). In this study, the Monte Carlo simulation process select
the category of each point randomly according the frequency distribution of each
point category. A sampling distribution, in terms of the geographically and temporally
weighted co-location quotient, is produced by repeating this process many times.
Then, the sampling distribution are compared with the distribution of the observed
values in order to derive a test statistic and its significance level. The pseudo-code of
the Monte Carlo simulation is listed in Appendix A.

The sample size and the iteration times are the key parameters influencing the accur-
acy of significance test. A large sample size and a long iteration time will require lots of
computational time while a smaller sample size and shorter iteration time will likely cre-
ate an inaccurate result. Based on findings from previous studies (Zacharov et al. 2013,
Hu et al. 2018), the sample size was set at 1000, and 1000 random simulations were run
in this study. A P-value smaller than 0.05 indicates that the spatial-temporal colocation
pattern is significant at the 95% confidence level (Wang et al. 2017). The interface of
GTWCLQ software package developed by the team is shown in Appendix B.

3. Case study and results

3.1. Spatio-temporal crime data

Open source spatio-temporal recorded crime data for Greater Manchester in 2016
were used to validate the GTWCLQ method. Greater Manchester, a metropolitan
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authority in northwestern England, is comprised of 10 local authorities and has two
cities (Manchester and Salford) as well as numerous towns and rural areas.

The UK police open data web service (data.police.uk) enables monthly point data of
recorded crimes to be downloaded for any defined police authority. The data are cate-
gorised by crime type and include the longitude and latitude coordinates of each
crime and the month in which it was recorded. This case study undertook crime pat-
tern analysis using all 12months of data from 2016. In this year, there were a total of
362,115 recorded crimes, across 14 categories of crime type, were recorded in Greater
Manchester. The statistical and temporal distributions of the crimes are shown in
Table 1 and Figure 3 respectively.

3.2. Geographically and temporally weighted CLQ (GTWCLQ) analysis of
crime patterns

An adaptive bandwidth, rather than a fixed bandwidth, was selected for all the spatio-
temporal crime analyses in this study given that Greater Manchester contains a mix-
ture of urban and rural areas with consequent varying densities of socio-economic
activities, recognizing that these tend to hold association with crime clustering (Yue
et al. 2017, Wang et al. 2017). In several case studies, the relative optimal bandwidth is
set around

ffiffiffiffi
N
p

magnitude (N is the number of samples) (Hamada et al. 2015, Yuan
et al. 2019). As an experimental test, the spatial bandwidth was set at

ffiffiffiffi
N
p � 100. The

sample size in the Monte Carlo simulation (significant test), therefore, was set to
N¼ 1000, and the number of random iterations was set to M¼ 1000. The global
GTWCLQ values, based on Equation 9 and shown in Table 2, reflect the spatio-tem-
poral association between crime categories in December 2016 (actual time), taking
account of the temporal effects of prior months from January to November. As such,
the temporal scale is 12months and the spatial scale is 100, captured by the adaptive
bandwidth value.

All crime categories, taken individually, had a CLQ value of greater than 1 (bold,
italic values in Table 2) along the diagonal line, although the CLQ values varied greatly
between crime categories. In other words, all the crime categories were characterized
by a degree of spatial autocorrelation when considering both spatial and temporal
dependence or distance decay effects. C13 (theft from the person) showed the stron-
gest clustering pattern, indicated by the largest CLQ value of 19.8.

The symmetrical and asymmetrical dependence between the 14 crime categories,
identified and classified using the global GTWCLQ values in Table 2, are visualized in

Table 1. Crime data categories and counts.
Code Crime category Count Code Crime category Count

C1 Anti-social behavior 122319 C8 Shoplifting 17240
C2 Burglary 29086 C9 Vehicle crime 24298
C3 Criminal damage and arson 36363 C10 Violence and sexual offences 66175
C4 Drugs 4137 C11 Possession of weapons 1607
C5 Other crime 4163 C12 Public order 18776
C6 Other theft 22685 C13 Theft from the person 6540
C7 Robbery 4171 C14 Bicycle theft 4555
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Figure 4. Among the symmetrically dependent pairs (Figure 4(a)), C4-C11 had the larg-
est two-way GTWCLQ values (1.63 and 1.69), indicative of a strong co-location associ-
ation between drug-related crimes (C4) and possession of weapon crimes (C11).
Interestingly, two loops of co-location patterns between C2 (burglary), C7 (robbery)
and C9 (vehicle crime), and between C6 (other theft), C13 (theft from the person) and
C14 (bicycle theft) were also detected, suggestive of a small network community with
strong spatio-temporal interactions between these categories, statistically. There might

Figure 3. Temporal distribution of categorical crime data in 2016.

Table 2. The global geographically and temporally weighted GTWCLQ values for the 14
crime categories.
Type C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

C1 1.05 1.01 1.06 0.79 0.95 0.83 0.97 0.57 0.93 1.05 1.36 0.56 0.71
C2 0.69 2.62 0.84 1.02 0.39 1.19 1.04 0.69 1.14 0.43 0.79
C3 0.73 1.05 2.17 0.84 1.09 0.78 0.88 0.45 1.04 0.80 1.29 0.46
C4 0.71 1.10 1.04 7.96 1.42 0.92 0.55 0.88 1.15 1.69 1.25 1.00
C5 0.70 1.05 1.07 8.15 0.82 0.88 0.48 0.92 1.24 0.97 1.45 0.34 0.67
C6 0.70 1.05 0.97 0.81 0.98 2.37 1.10 0.77 0.94 1.09 1.23 1.20 1.08
C7 0.72 1.11 1.00 0.94 0.92 7.85 0.72 1.08 1.04 0.65 0.96 0.94
C8 0.62 0.64 0.66 0.58 0.56 0.99 1.14 6.59 0.54 0.73 1.12 1.14 1.01
C9 0.68 1.27 0.94 0.82 1.04 0.42 2.88 0.95 1.14 0.77 0.86
C10 0.73 1.04 1.03 0.89 0.50 0.88 1.65 0.79 1.34
C11 0.69 1.08 1.63 1.02 1.00 1.00 16.9 1.29 0.71 1.01
C12 0.76 0.93 1.02 0.82 1.11 0.85 1.07 0.66 0.88 3.08 0.55 0.77
C13 0.51 0.55 0.54 1.44 0.46 1.30 1.24 1.08 0.45 0.62 0.79 19.8 1.28
C14 0.68 0.86 1.10 1.08 0.95 0.94 1.04 1.24 8.17

Note: blank cells indicate insignificant values at 5% level.
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be a set of neighborhoods possessing facilities and/or land use features that serve to
generate the strong spatio-temporal interactions between these categories.

Figure 4(b) shows the many asymmetrical associations between crime categories. C12
(public order), C2 (burglary) and C7 (Robbery) were the most dependent categories, each
having 7 other categories with GTWCLQ values in relation to them that were greater than
1 but not vice versa. This suggests that the social and/or physical characteristics of the
locations of burglaries, robbery and public order offences serve to attract many other
crimes. By contrast, C1 was the least spatially associated with other crimes, given that the
GTWCLQ values from other categories to them were less than 1. This indicates that loca-
tions of anti-social behavior and shoplifting crimes were independent of other crime cate-
gories. C1 (anti-social behavior) was spatially excluded by others, which places it in an
independent category. This is (potentially) explained by the fact that anti-social behavior
crime tends to locate in residential neighborhoods and not city in center locations.

As with other GWSM methods, GTWCLQ is well suited for mapping local clusters of
categories which have strong spatial and temporal dependence. A small selection of
examples will be used to illustrate this point. C13 (theft from the person) had the larg-
est global GTWCLQ value (19.8) of all crime categories (Table 2), such strong spatial
autocorrelation is indicative of local clusters. Figure 5 shows the C13 data points that
have local GTWCLQl values (Equation 6) greater than 1 at a 5% significance level. The
greater the local GTWCLQl value, the stronger the local spatial autocorrelation.
Clusters were mostly located in Manchester city center (the largest concentration) and
Rochdale town center (smaller concentration). This pattern can be explained by the
higher densities of population attracted to the socio-economic activities in city/town
centers than other areas.

As shown in Figure 6(a), it is easy to understand the statistical artefact that shops attract
people, who were required for the crime of shoplifting. In turn, shoppers are vulnerable to
theft from a person. Consequently, the clusters of shops (i.e. city and town centers) are the

Figure 4. The symmetrical (a) and asymmetrical dependence (b) between crime categories.
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destinations of shop lifting and theft from a person. As shown in Figure 6(b), there are fac-
tors other than shops that attract people to these locations.

Scaling effects in geographically weighted modelling have been widely discussed.
The bandwidth value in GWSM indicates a kind of scale (Fotheringham et al. 2002), as
it determines the number of neighboring points used for local calculations. In
GTWCLQ, empirical tests, rather than a calibration process, are used to identify the
optimal bandwidth value. GTWCLQ requires two bandwidth values that correspond to
spatial and temporal scales. To test the impact of spatial and temporal scale effect,
global GTWCLQ values were calculated for all 14 crime categories with itself in
December 2016 using different spatial bandwidth and temporal bandwidth. The results
listed in Tables 3 and 4.

Figure 5. Local clusters of GTWCLQ values for C13 (theft from the person).

Figure 6. Local clusters of symmetrical dependence (co-location association) between C13 (theft
from a person) and C8 (shoplifting); (a) shows where C13 depends on C8, and (b) shows where C8
depends on C13.
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Table 3 indicates that spatial autocorrelation was present in all crime categories
except C1 (anti-social behavior), and for all spatial bandwidth values. C1 (anti-social
behavior) had a dispersed, rather than clustered, pattern when the bandwidth was
greater than 100. For all crime categories except C5 (other crime) and C13 (theft from
the person), spatial autocorrelation decreased as the bandwidth size increased. C13
(theft from the person) had the highest level of spatial autocorrelation with a band-
width value of 100, rather than 10 or 500. These results suggest crime patterns are
spatially scale dependent as the large bandwidth value reduces the spatial
autocorrelation.

Table 4 shows that all crime categories exhibited a clustering pattern (value >1)
with each temporal bandwidth value. In general, spatial autocorrelation (clustering)

Table 3. Global GTWCLQ values for 14 crime categories with itself based on four different spatial
bandwidth values.

Type of crime

Adaptive bandwidth size

K¼ 10 K¼ 100 K¼ 300 K¼ 500 Count

C1 1.78 1.05 0.88 0.86 122319
C2 6.81 2.62 1.76 1.62 29086
C3 4.90 2.17 1.46 1.38 36363
C4 33.28 7.96 3.00 2.55 4137
C5 31.54 8.15 4.24 5.00 4163
C6 7.24 2.37 1.60 1.51 22685
C7 30.11 7.85 3.42 2.90 4171
C8 9.39 6.59 5.13 4.57 17240
C9 7.32 2.88 1.85 1.73 24298
C10 2.99 1.65 1.37 1.34 66175
C11 86.55 16.91 14.77 12.67 1607
C12 7.56 3.08 2.00 1.88 18776
C13 14.99 19.82 9.97 8.54 6540
C14 31.13 8.17 3.74 3.12 4555

Note: Bandwidth K¼ 10, 100, 300 and 500 indicates that 10, 100, 300 and 500 nearest neighboring points were
chosen for each target point; Count refers to the total number of points in that specific crime type. All colocation
quotient values were significant at the 5% level.

Table 4. The Global GTWCLQ values for all 14 crime categories with itself and each of the four
temporal bandwidth values.

Type of crime

Temporal bandwidth for crime type

3_months 6_months 9_months 12_months

C1 1.07 1.00 1.01 1.05
C2 1.59 2.03 2.36 2.62
C3 1.42 1.76 1.99 2.17
C4 3.43 5.20 6.57 7.96
C5 3.87 5.44 6.51 8.16
C6 1.56 1.93 2.13 2.37
C7 3.03 4.46 6.21 7.85
C8 5.28 6.18 6.23 6.59
C9 1.78 2.24 2.63 2.88
C10 1.21 1.41 1.55 1.65
C11 15.25 10.82 14.33 16.91
C12 1.48 2.07 2.56 3.08
C13 8.47 13.49 16.85 19.82
C14 3.41 5.05 6.32 8.17

Note: temporal bandwidth T¼ 3, 6, 9 and 12 means that the closest three, six, nine and twelve month periods prior
to December 2016 were used to select the neighbouring points for the GTWCLQ analyses (all values were significant
at the 5% level.
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increases as the temporal bandwidth increases, with the exception of the C1 and C11
crime categories. GTWCLQ values for C1 (anti-social behavior) were similar across all
temporal bandwidth values (around 1), which suggests these types of crime are inde-
pendent of temporal effects, or that there is no clear temporal effect. For C11 (posses-
sion of a weapon), the spatio-temporal pattern was least clustered at the 6-month
temporal scale (10.82) and most clustered with a 1-year bandwidth value, suggestive
of a strong temporal effect.

4. Discussion

The results presented above validate the application of GTWCLQ for spatio-temporal
crime pattern analysis, and its suitability for mapping clusters and visualizing co-loca-
tion patterns. The following sub-sections discuss three additional issues regarding the
methodological and technical implementation of GTWCLQ.

4.1. Comparison between GTWCLQ and GWCLQ

The GTWCLQ presented in this paper was compared with GWCLQ. Using the same set
of parameters (i.e., spatial bandwidth value of 100), three analyses including classical
GWCLQ, where only one month of data was used (Wang et al. 2017), GTWCLQ1, where
all time periods were given equal temporal weight, and GTWCLQ2, where temporal
weights varied, were applied to C13 (theft from a person) crime data from December
2016. That is, the difference between no temporal effect, equal temporal effect, and
heterogeneous temporal effect was evaluated. The results are shown in Table 5.

First, the global CLQ value of C13 increased from 5.42 to 7.77 and then to 19.82
across the three methods (Table 5), which suggests that accounting for equal and het-
erogeneous temporal effects increases spatio-temporal autocorrelation. However, in
some cases, adding temporal effects changed the dependence between some crime
categories and the C13 (theft from the person) crime category. For example, the
dependence of C6 (other theft) and C7 (robbery) on C13 (theft from the person) grad-
ually decreased as increasingly complex temporal effects were included in the analysis.

Table 5. The global values of GWCLQ, GTWCLQ1 and GTWCLQ2 for all crime categories in relation
to C13.
Category GWCLQ GTWCLQ1 GTWCLQ2

C1 0.96 0.80 0.51
C2 0.47 0.46 0.55
C3 0.54 0.46 0.54
C4 0.96 1.43 1.44
C5 0.50 0.43 0.46
C6 1.71 1.67 1.30
C7 1.68 1.58 1.24
C8 2.25 2.66 1.08
C9 0.62 0.41 0.45
C10 0.69 0.76 0.62
C11 0.97
C12 0.91 0.79
C13 5.42 7.77 19.82
C14 1.83 1.91 1.28

Note: blank indicates an insignificant value.
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Two crime categories, C8 (shoplifting) and C14 (bicycle theft), were more dependent
on C13 (theft from the person) when equal temporal effects were included, but had
the lowest dependence when heterogeneous temporal effects were included. One cat-
egory, C4 (drugs), only had a clustering pattern in relation to C13 when temporal
effects were considered.

Figure 7 shows local values (>1) of C13 to C13 from each of the three CLQ meth-
ods. Fewer points and a more dispersed pattern were detected by GTWCLQ1 and
GTWCLQ2 than GWCLQ, which suggests that including temporal effects helped to
detect clusters in Rochdale and rural areas.

Further, covariance analysis, as listed in Table 6, is applied to compare the signifi-
cant local values between three methods shown in Figure 7. It is clear to see there is
significant disparity between the GWCLQ, GTWCLQ1, and GTWCLQ2 outputs at the
99% confidence level. This indicates the different statistical patterns when considering

Figure 7. Spatial distribution of significant local values for C13 to C13 from (a) GWCLQ, (b)
GTWCLQ1, (c) GTWCLQ2 and (d) the spatial distribution of merged clusters from three methods.

Table 6. Comparisons in covariance analysis between the three methods (at 1% signifi-
cance level).
Method I Method J I-means J-means I-J p-value

GTWCLQ2 GWCLQ 10.77 8.38 2.39 0.000��
GTWCLQ2 GTWCLQ1 10.77 5.88 �4.88 0.000��
GTWCLQ1 GWCLQ 8.38 5.88 2.49 0.000��
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varying temporal effects. Selecting the same parameters of global Moran I: Gaussian
kernel function and the spatial bandwidth of 100, the Moran I values of the three
maps in Figure 7(a–c) are all greater than 0.95, which means three methods are all
powerful in mapping local clusters. As shown in Figure 7(d), there are more local clus-
ters from GTWCLQ2 when considering heterogeneous temporal effects.

4.2. Unbalanced temporal scale problem

Due to the unbalanced temporal scale problem (UTSP) with SDPOT data, discussed
earlier, a temporal scale or duration of 12months is only possible when analyzing
crime patterns in December 2016. The largest temporal scale for crime pattern in June
2016 can only include data for 6months (January to June) due to the unidirectional
temporal effect detailed in Section 2 of this paper. In order to compare the spatio-
temporal patterns between June and December, a same temporal scale (number of
time periods) must be selected, in this case, which is 6months at maximum. This
means the 6-month data from January to June used for June pattern and another 6-
month data from July to December used for December patterns. By selecting 100 as
spatial bandwidth and 6 as temporal bandwidth, the local GTWCLQ was run for spa-
tio-temporal pattern analysis in June and December respectively. Clusters from the
June and December patterns (only significant local values greater than 1) are shown
in Figure 8(a-June pattern and b-December pattern). Figure 8 shows the distribution
of significant GTWCLQ values and local clusters of C13 (theft from the person) in both
June and December 2016. Comparison of the two patterns in Figure 8 shows that C13
(theft from the person) had a more clustered pattern in June than in December. This
might be explained by the existence of a greater number of shopping activities/loca-
tions in the Christmas period (December). Consequently, the unbalanced temporal
scale problem can be indirectly explored by reducing temporal scales (number of time
periods) when comparing the spatio-temporal patterns at two time periods. For
example, when choosing 2-month as temporal scale, the patterns from February to
December can be compared. However, this method is not the best solution in practice

Figure 8. Spatial distributions of significant (at 5% level) local values of GTWCLQ for C13: (a) The
values of June in 2016 using 6months, (b)The values of December in 2016 using 6months.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 17



due to data limitation since a fixed temporal scale (e.g. half a year) might be needed
for comparisons between all time periods.

4.3. Computational complexity

In addition to scale issues, achieving computational efficiency is a challenge for
GTWCLQ because the distance matrix and significance test calculations are time and
memory intensive, as they are in other GWM approaches (Harris et al. 2010, Zhang
et al. 2017). Using the following hardware and software (PC computer: CPU: Intel i9-
9900K, 3.6 GHz, 16 Core, RAM: 32.0 GB, Matlab 2015 b), the computational times for
running GTWCLQ with different temporal scales (3, 6, 9 and 12months) and a single
spatial scale (adaptive bandwidth of 100) are listed in Table 7.

The results clearly demonstrate (as expected) that the runtime for local GTWCLQ is
longer than that for global GTWCLQ, and the calculation of the matrix takes much lon-
ger than GTWCLQ computation and the Monte Carlo test. Deploying longer or more
fine-grained temporal scales will inevitably increase the number of points used in anal-
yses and will increase the total runtime. The complexity of the algorithm also requires
significant storage space. For a case study of 100,000 data points (n¼ 100,000), 38GB
of memory would be needed to save an n� n distance matrix when a 32-bit float
type is used to denote calculated values.

5. Conclusions

Categorical SDPOT data, characterized by point features with high spatial and tem-
poral resolutions but unidirectional time effects, require unique spatio-temporal ana-
lysis methods. The co-location quotient and the more recently developed
geographically weighted co-location quotient (GWCLQ) have been used successfully to
analyze the spatial dependence and heterogeneity of this type of data. This paper has
presented a further innovation – the geographically and temporally weighted co-loca-
tion quotient (GTWCLQ) – which considers spatio-temporal dependence and hetero-
geneity in categorical SDPOT data. This new approach includes global and local
computations of GTWCLQ and proposes a significance test using a Monte Carlo simu-
lation. The integration of spatial and temporal weight matrices is based on a dot prod-
uct, and this method can reduce computational time as well as make it easy to
transfer to only geographically or temporally weighted co-location quotient analysis.
The key decision in implementing adaptive GTWCLQ is the selection of spatial and

Table 7. Runtime (in seconds) of GTWCLQ with 4 temporal bandwidths (3m–12m).

Bandwidth　 Number

Global GTWCLQ Local GTWCLQ

Matrix Global MC Total Matrix Local CLQ MC Total

3_m 97910 327 1.59 116 444.59 352 1.53 129 482.53
6_m 221190 655 2.61 207 864.61 712 2.91 222 936.91
9_m 280170 902 3.28 309 1214.3 1064 2.98 313 1380
12 m 362115 1189 4.15 397 1590.2 1378 3.94 423 1804.9

Note: the runtime for the matrix includes calculation and sorting of the distance matrix. MC is the runtime of signifi-
cant tests using a Monte Carlo simulation (N¼ 1000, M¼ 1000). Total refers to the runtime for all processes.
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temporal bandwidth values, which dictate the number of neighboring points and the
time periods to be used in the analysis.

This approach has been efficiently validated in a case study of spatio-temporal
crime patterns across Greater Manchester in 2016. The categorical SDPOT crime data
included 14 categories or types of recorded crime. Using the GTWCLQ approach, the
spatio-temporal association between 14 crime categories was analyzed for December
2016, taking account of spatio-temporal effects from prior months and neighboring
places. The key results from the GTWCLQ analysis, with a spatial bandwidth of 100
points and a temporal bandwidth of 12months, can be described as follows. Firstly, all
the crime categories, as expected given the existing criminological literature (Weisburd
2015), exhibited varying degrees of spatial clustering. That said, ‘theft from a person’
held the strongest spatio-temporal dependence and produced the largest clusters,
located in Manchester city centre and Rochdale town center. Secondly, there were 15
pairs of crime categories with co-location patterns, among which drug (C4) and pos-
session of a weapon (C11) crimes held the largest co-location association.
Interestingly, two loops of co-location patterns between C2 (burglary), C7 (robbery)
and C9 (vehicle crime), and between C6 (other theft), C13 (theft from the person) and
C14 (bicycle theft) were detected, suggestive of a small network community with
strong spatio-temporal interactions between these categories. Thirdly, there were
many asymmetrical associations between categories, although C1 (anti-social behavior)
was spatially excluded by others, suggesting this forms an independent category.
Evidence of the spatial and temporal colocation and symmetry of crimes might use-
fully be deployed to inform the development of criminological theory, serving to help
disentangle the relationships between crime and the urban environment, recognizing
that crimes are associated with a combination of facilities and land use features that
draw populations (offenders and victims) to these locations (Bannister and
OSullivan 2021).

It should be noted that the results refer to crime spatio-temporal patterns in
December 2016. To compare patterns from different time periods (e.g., June and
December), the same spatial and temporal scales (duration) must be used, such as
6months. This paper tends to highlight this unbalanced temporal scale problem
(UTSP) in spatio-temporal pattern analysis with SDPOT data, which is different from
the modifiable temporal unit problem (Cheng and Adepeju 2014). The former is influ-
enced by the varying temporal scale at time period but the latter by the temporal
aggregation of data.

Based on our experimental tests, the spatial scale (bandwidth size) at which max-
imum spatial autocorrelation occurred varied between crime categories. By contrast,
spatial autocorrelation increased as temporal scale (duration) increased across all cate-
gories. These tests highlight the importance of choosing appropriate spatial and tem-
poral scales in GTWCLQ analysis.

This paper also has some limitations. The impact of different (spatial and time) dis-
tance decay effects on crime patterns have not been examined although there are
already many studies in the literature. The computational complexity of GTWCLQ
could be reduced in future by using GPU based parallel computation (Wang et al.
2020b). Using hourly data or temporal scale by seasons might help detect more
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interesting spatio-temporal crimes patterns and this should be explored with high-
quality data in the future. In line with the existing criminological evidence base, it
would be valuable to consider the seasonal, weekly and daily distribution of crime
counts, by crime count.
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Appendix A.

The pseudo-code of the Monte Carlo simulation
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Algorithm: the significance test of global GTWCLQ
Input: Dataset D which contains qþ 1 sub datasets, each corresponding to a time.
Input: the global GTWCLQ from the dataset D
input: spatial bandwidth(b0), temporal bandwidth (t0), Kernel function (kf), test time (N), sample

size (M)
Output: p-value
1. Iterations
For i¼ 1 to N

1. Generate the jth simulated samples Ej randomly from the dataset D
by the method of stratified sampling, where the sample Ej contains q sub datasets, each
corresponding to a time and the sample size of each sub dataset is M.

2. Calculate the GTWCLQ of the jth random sample Ej using Equation (8) with parameters b0,
t0, kf, and store the result as mcGTWCLQ(j).

End
2. Calculate the average value avg_mcGTWCLQ of all mcGTWCLQ:

mcGTWCLQ  
PN

1mcGTWCLQðjÞ
N

3. Calculate the standard deviation std_mcGTWCLQ of all mcGTWCLQ:

stdmcGTWCLQ  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

1mcGTWCLQðjÞ�avgmcGTWCLQÞ2
q

N� 1

4. Taking GTWCLQ as the mean and std_mcGTWCLQ as the standard deviation, a normal dis-
tribution data points T relative to avg_mcGTWCLQ are constructed:

T ¼ avgmcGTWCLQ�GTWCLQ

stdmcGTWCLQ=
ffiffiffiffi
N
p












 	 t Nð Þ;

5. Calculate the value of the bilateral cumulative distribution function of T, that is, get the
value of P:

P value 2�ð1� cdfð 0norm0, TÞÞ; ð cdf is the cumulative distribution functionÞ:
6. Output the p-value
End
(Note: the significance test of local GTWCLQ values follows the same process)
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Appendix B.

The interface of GTWCLQ package developed by the project team

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 25


	Abstract
	Introduction
	Data and methods
	Spatio-temporal data
	Geographically and temporally weighted colocation quotient
	Monte Carlo simulation

	Case study and results
	Spatio-temporal crime data
	Geographically and temporally weighted CLQ (GTWCLQ) analysis of crime patterns

	Discussion
	Comparison between GTWCLQ and GWCLQ
	Unbalanced temporal scale problem
	Computational complexity

	Conclusions
	Acknowledgements
	Disclosure statement
	Data and code availability statement
	Funding
	Orcid
	References


