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SUMMARY

Climate change is altering patterns of seed production worldwide [1–4], but the potential for evolutionary re-
sponses to these changes is poorly understood. Masting (synchronous, annually variable seed production by 
plant populations) is selectively beneficial through economies of scale that decrease the cost of reproduction 
per surviving offspring [5–7]. Masting is particularly widespread in temperate trees [8, 9] impacting food 
webs, macronutrient cycling, carbon storage, and human disease risk [10–12], so understanding its response 
to climate change is important. Here, we analyze inter-individual variability in plant reproductive patterns and 
two economies of scale—predator satiation and pollination efficiency—and document how natural selection 
acting upon them favors masting. Four decades of observations for European beech (Fagus sylvatica) show 
that predator satiation and pollination efficiency select for individuals with higher inter-annual variability of 
reproduction and higher reproductive synchrony between individuals. This result confirms the long-standing 
theory that masting, a population-level phenomenon, is generated by selection on individuals. Furthermore, 
recent climate-driven increases in mean seed production have increased selection pressure from seed pred-
ators but not from pollination efficiency. Natural selection is thus acting to restore the fitness benefits of mast-
ing, which have previously decreased under a warming climate [13]. However, selection will likely take far 
longer (centuries) than climate warming (decades), so in the short-term, tree reproduction will be reduced 
because masting has become less effective at satiating seed predators. Over the long-term, evolutionary re-
sponses to climate change could potentially increase inter-annual variability of seed production of masting 
species.

RESULTS

Mast seeding is thought to be selectively beneficial because in-

ter-annual variability and synchrony of seed production increase

the fitness of plants through economies of scale that decrease

the cost of reproduction per surviving offspring [5–7]. The two

economies of scale with the most empirical support are positive

density-dependent pollination success and predator satiation.

The pollination efficiency hypothesis states that large and syn-

chronized flowering effort enhances pollination success by

increasing the density of flowers, especially in wind-pollinated

plants [14–16]. Similarly, the predator satiation hypothesis states

that masting decreases average seed predation by satiating

predator populations in years of high seed production [17, 18]

and sometimes also starving them in low-seed years [19–21].

Importantly, these two economies of scale differ in how they

are affected on ecological timescales by patterns of seed

production. Predator satiation is crucially dependent on the

sequence of high and low seed production years and the magni-

tude of the change from one year to the next, whereas pollination

efficiency is affected only by the magnitude of each flowering

year irrespective of the order in which they occur [22–24].

Pollination and predation should consequently select for

different temporal patterns of reproduction. Pollination selects

for population flowering efforts to be above the threshold for effi-

cient pollination [14]. Where a species or population has insuffi-

cient resources to maintain flowering effort above this threshold

during every flowering event, pollination should select for high

variability across years. This strategy ensures that high pollina-

tion success is achieved because plants concentrate most of

their reproductive allocation into fewer but larger flowering

events [25, 26]. Importantly, selection for better pollination is

not expected to lead to systematic changes in the temporal auto-

correlation of seed production. In contrast, predation is
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�20%) and 7% for highly synchronized plants (mean cross-cor-

relation�90%). By 2018, estimated predation for plants with the

same level of synchrony equaled 48% for poorly synchronized

plants but only 10% for highly synchronized plants. Comparison

of selection differentials (which estimate indirect selection) and

selection gradients (which estimate direct selection) suggested

that predation selected against positive AR1 values indirectly

(Table 1; Table S1), through a negative correlation of AR1 with

synchrony (Figure S1; Table S2). Thus, our analysis shows that

climate change strengthens phenotypic selection under pred-

ator satiation for high inter-annual variability and high synchrony

of reproduction in European beech, via both direct and indirect

effects.

The selection driven by pollination efficiency was different

from that under predator satiation, consistent with theory [23,

25]. We found that pollination efficiency also selected for high in-

ter-annual variation and high synchrony in seed production but

did not select for AR1 (Figure 2). Furthermore, rather than

increasing over time as predator satiation did, this pollination se-

lection effect was consistent through the 39 years of the study

(Table 1). Pollination efficiency showed a generally positive rela-

tionship with inter-annual variation, but pollination efficiency

peaked at CVi�1.5 (Figure 2). Similarly, more synchronized trees

achieved higher pollination efficiency (Figure 2). However, selec-

tion gradients from pollination efficiency models suggested that

selection for high reproductive synchrony was not caused by

direct selection but rather by positive indirect selection from

the positive correlation with CVi (Figure S2; Table S2). Moreover,

the observation that neither predation pressure nor pollination

efficiency directly selected for AR1 aligns with the lack of an as-

sociation between AR1 and hypersensitivity to the weather cues

(see below). In other words, AR1 is a secondary feature of the

Figure 1. Temporal Increase in Predation Pressure Selects against Trees with Less Variable and Less Synchronized Reproduction

Temporal change in relationship between seed predation of beech byC. fagiglandana and (A) inter-annual variability CVi, (B) among-plant synchrony, and (C) lag1

temporal autocorrelation of seed production AR1. Points are estimated marginal means of seed predation for selected years from generalized linear mixed

models and associated 95% confidence intervals (see also Table 1). For each metric (CVi, synchrony, and AR1), predictions are plotted for the minimum, mean,

and maximum values (see color legend in each panel).

expected to select for strong negative temporal autocorrelation 
in seed production, i.e., with greater differences, on average, be-
tween successive years and high years not following each other 
[23, 25]. This strategy results in smaller predator populations and 
most seeds being produced in high-seed years when predation 
rates are lower [25]. Both pollination efficiency and seed preda-
tion should also select for high reproductive synchrony, because 
benefits accrue mostly to plants producing large reproductive 
efforts in phase with other individuals in the same population 
[27, 28].

In this study, we used 39 years of seed production data from 
139 individual European beech (Fagus sylvatica) trees to test 
whether seed predation and pollination efficiency select for 
masting in this species. Our past studies on these populations 
have shown that inter-annual variation and synchrony in seed 
production have decreased in recent years, while the abundance 
of the main predispersal seed predator, Cydia fagiglandana, has 
increased [13]. In the early years of the study, seed predation rate 
was low (�1%) for all trees, irrespective of their masting behavior 
(Figure 1). However, by the end of the study, predation rate was 
higher overall (�40%). The increase in predation was largely 
attributed to increases in mean seed crops and increasing tem-

peratures (Figure S1).
The temporal increase in seed predation, and temperature-

related changes in masting patterns, had major consequences 
for predation-related changes in the relative fitness of plants 
with different masting patterns. Selection has increased against 
phenotypes with lower inter-annual variability in seed production 
(CVi), lower among-tree reproductive synchrony, and positive 
temporal autocorrelation (AR1) (Figure 1; Table 1; Table S1). 
For example, in 1980, the estimated predation rate equaled 
4% for poorly synchronized plants (mean cross-correlation



reproductive time series that arises because of inter-annual vari-

ation and synchrony of seed production rather than a feature un-

der direct selection itself.

Janzen [7] predicted that shared fluctuation in seed production

(synchrony) is achieved by selection for hypersensitivity to a

climate cue [29]. Such a system can evolve through selective

amplification of initially modest synchrony, driven by either pos-

itive cues (e.g., warm summers), which let many plants produce

larger seed crops, or negative cues (e.g., frosts), which constrain

reproduction in some years and free resources for a larger effort

the following year [30–32]. Through this process, individuals syn-

chronized byweather events gain benefits through low seed pre-

dation or low pollen limitation. The eventual prediction of Jan-

zen’s hypothesis [7] is that phenotypes that strongly respond

to occasional weather signals should have higher inter-annual

variation, higher synchrony of reproduction, and consequently

higher individual fitness because they achieve larger economies

of scale.

In support of Janzen’s predictions, beech trees more

responsive to weather cues were better synchronized with

their neighbors and gained larger economies of scale. The

weather cue we used was site-level, mean maximum monthly

(June and July) temperature in the year preceding masting

because it is a widely reported correlate of seed production

in European beech, including in our populations [13]. Plants

with a higher positive correlation coefficient with the cue

tended to mature successfully higher proportions of seeds

(regression slope: b ± SE = 1.04 ± 0.3, p < 0.001) (Figure 3A).

The beech trees unresponsive to the cue had an estimated

success of seed maturation (i.e., successful pollination and

predator escape) of around 25%, half that of the most respon-

sive plants (Figure 3A). Thus, individuals that are well corre-

lated with the weather cue are under positive directional

selection. Mechanistically, the higher responsiveness to

weather cues was associated with higher synchrony (regres-

sion slope: b ± SE = 0.20 ± 0.05, p < 0.001) (Figure 3B) and

higher inter-annual variation (regression slope: b ± SE =

0.46 ± 0.12, p < 0.001; Figure 3C) but was unrelated to tem-

poral autocorrelation of seed production (regression slope:

b ± SE = �0.09 ± 0.07, p = 0.25; Figure 3D). These results

support the long-standing assumption that plant phenotypes

that strongly respond to occasional weather signals should

have higher inter-annual variation and higher synchrony of

reproduction and consequently larger economies of scale.

DISCUSSION

Climate change strengthens selection for mast seeding. Our

analysis suggests that warming temperatures increased seed

predator abundance directly through its effects on the insect

populations and indirectly by altering the masting behavior of

beech trees (Figure S1) [13]. The climate-driven increase in pre-

dation pressure translated into stronger selection against indi-

vidual trees that were poorly synchronized with their neighbors

and had lower year-to-year variability. Assuming that masting

traits are heritable [33, 34], stronger selection will lead to higher

synchrony and variability of masting over time. This stronger nat-

ural selection is potentially good news for beech because it pro-

vides an eventual mechanism to restore the benefits of masting

that have declined through climate change over the last four de-

cades [13]. Unfortunately, the response is likely to be an order of

magnitude slower than the original negative climate-driven

changes. Masting benefits will only be restored when seedlings

from the fitter trees replace the current canopy, a slow process

given that these trees normally live for centuries and only

become reproductively active after several decades [35]. Hence,

our study shows the ultimate power of natural selection to

respond to a warmer climate. Yet, such responses require far

longer timescales than the climate changes that have provoked

them.

Masting as a reproductive strategy is costly because it re-

quires plants to delay reproduction [6, 36]. Such a strategy will

evolve, however, if individual plants achieve greater fitness

through variable seed production across years than they would

through more constant annual production (so-called economies

of scale) [22, 27, 37]. In support for the economies of scale, we

found that seed predation and pollination efficiency selected

for variability and synchrony of reproduction in European beech.

Even though masting is a population-level phenomenon, it is

selected at the individual-level because plants that are hyper-

responsive to a weather cue tended to have higher inter-annual

variability and higher reproductive synchrony. Consequently,

Table 1. Predator Satiation and Pollination Efficiency Select for

Masting

Dependent Variable: Seed

Predation

Independent Variable Effect Size (SE) z-value p Value

CVi 0.71 (0.17) 4.29 < 0.001

CVi 3 year �0.03 (0.005) �5.26 < 0.001

Synchrony 0.83 (0.17) 4.85 < 0.001

Synchrony2 0.53 (0.11) 4.62 < 0.001

Synchrony 3 year �0.04 (0.006) �6.69 < 0.001

Synchrony2 3 year �0.02 (0.004) �5.24 < 0.001

AR1 �0.04 (0.09) �0.46 0.64

AR12 �0.35 (0.11) �3.09 0.002

AR12 3 year 0.01 (0.003) 3.65 < 0.001

Year 0.12 (0.005) 19.92 < 0.001

Dependent variable: pollination success

Independent variable

CVi 0.24 (0.07) 3.56 < 0.001

CVi2 �0.10 (0.03) �3.53 < 0.001

Synchrony 0.15 (0.06) 2.55 0.01

AR1 �0.07 (0.05) �1.33 0.18

Year �0.02 (0.003) �6.28 < 0.001

Selection differentials (S) for inter-annual variation (CVi), synchrony, and

temporal autocorrelation of seed production (AR1) of 139 European

beech trees were predicted with mixed-effects models. Fitness was

measured by the proportion of predated or proportion of successfully

pollinated seeds. Masting metrics were standardized to aid direct com-

parisons of effect sizes. Non-significant interaction and quadratic terms

were dropped from the final models. Selection gradients (b) are given in

Table S2, and correlations between masting metrics are in Table S1.

SeeAnalysis: Phenotypic selection for definitions of selection differentials

and selection gradients.



these plants have higher seed maturation success. Overall, this

provides empirical support for the notion that more variable

and better synchronized individuals can gain larger reproductive

success and thus potentially invade and replace less strongly

masting populations, a central process in models of masting

evolution [36, 38].

Figure 2. Pollination Efficiency Selects for High Inter-annual Variability and High Among-Plant Synchrony in Reproduction

Correlation between proportion of pollinated seeds and (A) inter-annual variability (CVi), (B) among-plant synchrony, and (C) lag1 temporal autocorrelation (AR1)

of seed production. Prediction lines from generalized linear mixed models for 139 beech trees observed through 39 years, and ribbons are 95% confidence

intervals for themodel estimates. Only statistically significant relationships are plotted. Points represent tree-level means and associated standard errors. Refit of

the model in (A) with the tree with CVi �2.5 removed results in qualitatively the same pattern (see Figure S4).

Figure 3. Economies of Scale Select for

Masting through Favoring Plants that

Respond to Weather Cues

We compared the tree-level correlation of yearly

seed production with summer (June–July mean

monthly maximum) temperature in the previous

year with the (A) proportion of successfully

matured seeds (pollinated and not predated), (B)

among-plant synchrony, (C) year-to-year vari-

ability, and (D) temporal autocorrelation of seed

production. Lines are from generalized linear

mixed models for 139 beech trees observed

through 39 years, and ribbons are 95%confidence

intervals for the model estimates. Only statistically

significant relationships are plotted. Points are

tree-level observations with associated standard

errors in (A).
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Conedera, M., Drobyshev, I., Liñán, I.D., Friend, A.D., Grabner, M., et al.

(2018). Climatically controlled reproduction drives interannual growth vari-

ability in a temperate tree species. Ecol. Lett. 21, 1833–1844.

63. Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg,

C.W., Nielsen, A., Skaug, H.J., Machler, M., and Bolker, B.M. (2017).

glmmTMB balances speed and flexibility among packages for zero-in-

flated generalized linear mixed modeling. R J. 9, 378–400.

http://refhub.elsevier.com/S0960-9822(20)30908-8/sref51
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref51
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref52
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref52
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref52
https://doi.org/10.1093/aob/mcaa118
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref54
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref54
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref54
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref54
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref54
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref55
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref55
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref55
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref55
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref55
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref55
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref56
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref56
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref58
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref58
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref59
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref59
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref60
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref60
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref61
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref61
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref61
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref61
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref62
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref62
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref62
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref62
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref63
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref63
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref63
http://refhub.elsevier.com/S0960-9822(20)30908-8/sref63


STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

R software version 4.0.0 (2020-04-24) The R Project for Statistical Computing https://www.r-project.org/

glmmTMB_0.2.3 R package [46] https://cran.r-project.org/web/

packages/glmmTMB/index.html

Other

139 beech trees at 12 sites spaced across England This paper See Figure S3

RESOURCE AVALAIBLITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Micha1 Bogdziewicz 
(michalbogdziewicz@gmail.com)

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The datasets generated during this study are available on request to the corresponding author. The study did not generate code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study species and sites
Seed production of 139 beech trees located at 12 sites spaced across England (Figure S3) was sampled annually for 39 years (1980 –
2018). European beech (Fagus sylvatica L.) is a major forest-forming species in temperate Europe. It is wind-pollinated, and induces 
flower buds in the summer prior to the flowering year [35]. Flowers are produced in spring, and are fertilized and develop into mature 
fruit in the same year as they were pollinated. The seeds are then eaten and dispersed by a suite of vertebrates [47, 48], and destroyed 
by a seed-eating moth, Cydia fagiglandana Z. (Tortricidae). C. fagiglandana is the main pre-dispersal predator of beech seeds and has 
a univoltine cycle with five larval stages. Adults fly from July to September. Larvae grow within nuts feeding on the cotyledons until 
completing development, when they drill an exit hole through the seed coat to leave the nut. The insect species does not undergo 
prolonged diapause. Because fruit and seed coats develop irrespective of whether pollination occurs, but unpollinated fruits lack a 
seed (kernel) [49], relatively accurate estimates of pollination can be made from seed production data. Our previous study revealed 
that climate warming over recent decades has increased seed production of European beech at our sites, but decreased the inter-
annual variability of seed production and the reproductive synchrony among individuals [13]. Consequently, the benefits that the 
plants gained from masting has declined – mean seed predation increased while mean pollination efficiency decreased over the 
last four decades.

METHOD DETAILS

Field studies of beech reproduction
The ground below each tree was searched for seeds for 7 min, and seeds were counted as sound, or empty with formed pericarps 
(not pollinated), or damaged by Cydia fagiglandana moths. Seeds killed by Cydia were filled with dark frass and had a round exit hole 
in the seed coat. This captured predispersal mortality (primarily by Cydia), and sampling within days of maximum seed fall each year 
minimized postdispersal loss of full seeds to predators [50]. Mean monthly maximum temperature for each site was obtained from the 
corresponding 0.25� grid cell of the E-OBS dataset version 19.0e [51].

QUANTIFICATION AND STATISTICAL ANALYSIS

Seed production and masting behavior
We calculated three individual-tree level masting metrics that are widely used to characterize reproductive patterns of plants [23, 52–
54]: inter-annual variability of seed production of individuals (coefficient of variation, CVi); lag-1 autocorrelation of seed production at
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the tree level (AR1), wherein negative numbers indicate populations that alternate between years of high and low seed production;

and synchrony of seed production by plants, asmeasured by the average pairwise Pearson’s correlation of seed production between

individual plants in a site through time. Past studies in these populations revealed that inter-annual variability and synchrony of seed

production declined over the last four decades (see Study species). We thus tested if the correlations betweenmetrics persisted over

time by splitting the dataset into two parts (first 20 years versus the last 19 years, since masting behavior can only be quantified on

subsets of sufficient length), and calculating the metrics on each subset. We then analyzed intercorrelations between these three

metrics using linear mixed models with study site included as a random intercept and metric by time interactions as fixed effects.

Temporal trends in seed predation
To attribute the temporal trends in seed predation to their possible drivers, we used the temporal contribution method [55, 56]. First,

using the tree ID and site as random intercept terms and an autoregressive order-1 autocorrelation structure, we modeled seed pre-

dation as a function of beech seeding behavior and of temperature, i.e., variables that can affect Cydia population abundance. The

temperature variables included mean temperature for the period between July and September, which covers the time of adult insect

activity [57], and December and March, which can be important for wintering survival of larvae [46]. We also included current year

seed production and the difference between seed production in the current versus the previous year, i.e., variables that affect pre-

dation by starving and satiating insects [13]. We first calculated the observed time trend in the predation rate (slope ± standard error)

in our data using binomial GLMM. We then calculated the trend predicted by the full model and the trends predicted by the same

model but maintaining individual predictors constant (e.g., winter temperature is held constant, using the median values per site,

while all other predictors change according to the observations). The difference between the observed trend and when one variable

was constant was the contribution of that predictor variable to the change in the response variable. The difference between all indi-

vidual contributions and the observed trend were considered to be unknown contributions. All errors were propagated using stan-

dard methods [55].

Phenotypic selection
We estimated phenotypic selection in beech populations using regression-based techniques developed by Lande and Arnold (1983).

The method estimates the strength of natural selection by regressing fitness on the phenotype [58, 59]. In our study, fitness was

measured as pollination efficiency and predation rate (see below). For each selection analysis described below, we built two types

of models. We constructed univariate models for eachmastingmetric to estimate selection differentials (S) for each reproductive trait

(indirect selection). We also estimated selection gradients (b), which measure direct selection on each trait after removing indirect

selection from all other traits in the analysis by using multiple regressions [58, 59]. In other words, selection differentials measure

indirect selection, while selection gradients measure direct selection.

We tested whether pollination efficiency and predation selected for masting in European beech using generalized linear mixed

models (GLMMs) with a binomial error term. Using the tree ID and site as the random intercepts and an autoregressive order-1 auto-

correlation structure, we modeled the proportion of successfully pollinated seeds or proportion of predated seeds as a function of

tree-level masting metrics: inter-annual variation (coefficient of variation, CVi), among-plant synchrony (mean Pearson pairwise

cross-correlation), and tree-level lag1 temporal autocorrelation (AR1) in seed production. Directional and nonlinear selection differ-

entials were estimated by including linear and quadratic effects of independent variables, respectively. We tested for heterogeneity in

selection on masting across years by including an interaction term for each masting metric with year (as a continuous variable) as

fixed effects in our models. Models included observation-level random intercepts to correct for overdispersion. The interaction

and quadratic terms were removed from final models if not statistically significant.

We tested whether selection eliminates phenotypes that are insensitive to environmental cues that cause reproductive synchrony

in two steps. In the first step, we tested whether higher individual tree-level correlations with mean summer (June-July) temperature

one year before seedfall increased the probability of producing a viable seed (both pollinated and unpredated, combined). We used a

binomial GLMM with tree ID and site as the random intercepts and an autoregressive order-1 autocorrelation structure. Mean sum-

mer (June-July) temperature in the previous year is a widely reported weather correlate of seed production in European beech,

including in our populations [13, 60–62]. In the second step, we used linear mixed models with site as a random intercept to test

the hypothesis that the positive response to the cue (i.e., individual tree-level correlations with mean summer temperature) correlates

positively with reproductive synchrony, CVi, and AR1. We fitted all models in R version 3.6.1, and mixed models using the package

glmmTMB v 0.2.3 [63].
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