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Abstract—Deep Learning frameworks, such as TensorFlow,
MXNet, Chainer, provide many basic building blocks for de-
signing effective neural network models for various applications
(e.g. computer vision, speech recognition, natural language pro-
cessing). However, run-time performance of these deep learning
frameworks varies significantly even when training identical deep
network models on the same GPUs. This study presents an
experimental analysis and performance model for assessing deep
learning models (Convolutional Neural Networks (CNNs), Mul-
tilayer Perceptrons (MLP), Autoencoder) on three frameworks:
TensorFlow, MXNet, and Chainer, in a multi-GPU environment.
We analyse factors that influence these frameworks’ performance
by computing the running time of each framework in our
proposed model, taking load imbalance factor into account.
The evaluation results highlight significiant differences in the
scalability of the frameworks, and the importance of load balance
in parallel distributed deep learning.

Index Terms—Deep Learning; GPUs; SGD and synchronous
SGD; Deep Learning Frameworks, Load imbalance factor.

I. INTRODUCTION

With the available computational power such as GPU, Deep
learning (DL) [1], as a subset of machine learning based
on artificial neural networks, has attracted much attention
due to its nature in discovering correlation structure in data
in an unsupervised fashion, which has led to its popularity
among the many domains such as image classification, speech
recognition, computer vision and natural language processing.
However, training a deep learning model is a challenging
task due to many constraints such as large data instances and
high dimensionality, model complexity and inference time, and
model selections. For instance, there are a million parameters
defining a deep learning model, which requires large amounts
of data to learn from it and is a computationally intensive
process. Especially, when the data size and the deep learning
models become larger and more complicated, training a model
within a considerate period usually demands more hardware
memory and computing power such as parallel and distributed
computing [2] [3] [4] including data parallelism [5], model
parallelism [6], pipeline parallelism [7] and hybrid parallelism
[8]. Recently, various distributed deep learning frameworks
such as Caffe-MPI [9], TensorFlow [10], MXNet [11], Chainer
[12], CNTK [13]) have been proposed, which provide basic
building blocks for designing effective neural network models
for targeted applications. However, run-time performance of
these deep learning frameworks varies significantly even when
training identical deep network models on the same GPUs.

Existing works have investigated deep learning performance
modelling on distributed systems [14], asynchronous stochas-
tic gradient descent performance prediction [15], and analyt-
ical models for estimating the optimum utilisation of GPU
resources [16] for deep learning, and performance evaluation
and benchmarking of deep learning frameworks on GPUs [17]
[18]. In this study, we extend the work presented in [18]
to analyse the performance of three distributed deep learn-
ing frameworks(TensorFlow, MXNet and Chainer) with Con-
volutional Neural Networks (CNNs), Multilayer perceptrons
(MLP) and Autoencoder within a multi-GPU environment.
Our contributions include:

• Different from the existing works, by taking account of
load imbalance factor and mini-batch time (time taken
to divide mini-batches), we build a performance model
based on synchronous stochastic gradient descent (S-
SGD) to analyse the execution time performance of deep
learning frameworks in a multi-GPU environment, and
evaluate the model using three deep learning models
(Convolutional Neural Networks, Autoencoder and Multi-
layer Perceptron), each implemented in three frameworks
(MXNet, Chainer and Tensorflow) respectively.

• Using our experimental data, we analyze the effect of
load imbalance on the scalability of deep learning models,
concluding that it is in important contribution to parallel
inefficiency.

The remainder of the paper is organised as follows. Section
II reviews relevant related work. In section III we develop
our performance model based on S-SGD. Section IV presents
experiments and analysis on a range of DNN frameworks
and models. In Section V, we summarize our conclusions and
discuss future work.

II. RELATED WORK
This section presents an overview of the existing perfor-

mance models used in distributed systems. A performance
model [19] [20] provides insight into an implementation’s
behaviour in future execution contexts and is used to eval-
uate development-stage design and infrastructure investment
decisions.

Yan et al. [14] developed performance modelling for ex-
ploring the design space and to identify effective system
configurations that reduces elapsed time between iterations on
the training data. The results shown that error rates of less than



25% enable them to define and differentiate between desirable
and undesirable system parameter combinations.

Oyama et al. [15] developed a performance model for
SPRINT, an Asychronous SGD based deep learning system
based on mini-batch SGD, running on GPU. The model
included the key parameters in asynchronous SGD training
are mini-batch size and gradient staleness. There were no other
parallelism types in the performance model, as weights were
directly synchronised between GPUs. The findings showed
that the ASGD deep learning system SPRINT’s performance
model effectively predicted sweeping time, mini-batch size,
staleness, and probability distributions of the fundamental
parameters on two GPU-based supercomputers. The prediction
model was then used to assess deep learning’s scalability for
future hardware architectures.

Lee et al. [21] used CNN models to perform image recog-
nition, implementing AlexNet on five different frameworks,
which include CNTK [13], Caffe-MPI [9], Theano [22], Torch
[23], and TensorFlow [10], and assessed the GPU performance
characteristics. Each framework includes a variety of con-
volution algorithms. They performed a comparison based on
the performance of some convolution algorithms such as the
Winograd method, GEMM, FFT and direct convolution. Scal-
ing DNNs in a single node with multiple GPUs is essential.
As a result, they examined the factors that contributed to their
overhead when parallelizing the data. The results indicated that
by simply altering the framework’s options, the training speed
could be increased by a factor of two without modifying any
source code.

Qi et al. [24] proposed a performance model known as Pa-
leo, which combine parallelization strategies, communication
schemes, and network architecture to forecast the deep neural
networks training performance. In training the AlexNet model,
the results showed that hybrid parallelism outperformed data
parallelism. Paleo has been compared in several communi-
cation schemes, including OneToAll, Tree AllReduce, and
Butterfly AllReduce.

Yufei et al. [25] established a performance model for
estimating resource consumption and performance efficiency
on FPGAs, that was applied to the design phase to find and
explore optimal design options. The authors mainly focused
on DRAM efficiency, response time, and PE utilization. The
evaluation results showed that the model’s predictions are quite
closely match (within a factor of three) the actual test results
obtained on field programmable gate arrays.

Andre Viebke [26] investigated performance prediction ac-
curacy using three alternative CNN models on an Intel Xeon
Phi Processor. These two parameterized performance models
estimated training convolutional neural networks’ execution
time. The first performance model used minimal parameter
estimate approaches. The second model estimated sequential
work by measuring forward and backward propagation. The
results showed that the first model’s average performance
prediction accuracy was 4% higher than the second model.

Shi et al. [18] created performance models to assess the per-
formance of a variety of distributed deep learning frameworks

TABLE I: Notation used in this paper (after [18])

Symbol Description
Ng Number of total GPUs
titer An Iteration time
tio I/O time of an iteration
th2d Communication time between CPU and GPU of an Itera-

tion
tmd Time for dividing batches into mini-batches
tf Forward operation time of an iteration
tb Backward operation time of an iteration
t
(l)
fi

Time taken by ith GPU for lth layer in forward operation

t
(l)
bi

Time taken by ith GPU for lth layer in backward oper-
ation

tci Time taken by ith GPU for computing gradients aggre-
gation

tu Model update time of an iteration
tc Gradients aggregation time of an iteration

(such as CNTK or MXnet) with Alexnet, GoogleNet and
ResNet models on GPU computing platforms. They developed
models for SGD in single-GPU, multi-GPU, and distributed
cluster systems. Through experimental analysis, identified
overheads and limitations that could be further optimized in
terms of system configuration.

In this work, we develop a performance model based on
that of [18], and evaluate it in the context of a single node,
multi-GPU system. Different from the existing works, we
refine some parts of the model by further dividing the timings
for stages of the training, and also consider the effect of
load imbalance on the performance. We analyse the running
performance of Convolutional Neural Network, Multilayer
Perceptron and Autoencoder models on three different frame-
works respectively.

III. THE PROPOSED PERFORMANCE MODEL

A. Preliminaries

For convenience and easy reference, the notations used here
follow the notations in [18].

1) Mini-batch SGD: Let consider an L-layered DNN
model, which is trained iteratively on a GPU using mini-batch
SGD. Each iteration consists of five steps: 1) Fetch a training
data mini batch from either internal or external disk; 2)Transfer
the training data from CPU memory to GPU memory through
PCIe ; 3) Perform feed-forward calculations layer by layer by
using GPU kernels; 4) Use backward propagation for gradients
computation from Layer L to Layer 1; 5) Calculate average
gradients and update the model.

An iteration time can be expressed as:

titer = tio+th2d+tf+tb+tu = tio+th2d+

l∑
i=1

tlf+

l∑
i=1

tlb+tu

(1)
2) S-SGD using multiple GPUs: In comparison with the

SGD, S-SGD consists of six steps. The 1st - 4th steps are
similar to the SGD. The 5th step is gradient aggregation, and



the sixth step is updating the model. The iteration time of the
S-SGD implementation can be represented as:

titer = tio + th2d +

l∑
i=1

tlf +

l∑
i=1

tlb +

l∑
i=1

tlc + tu (2)

In the single GPU environment,
∑l

i=1 t
l
c = 0.

B. The Proposed Performance Model based on S-SGD

In this work, different from the existing works [18], we
build a performance model of S-SGD by inclusion of two new
parameters: time taken to divide the batch into mini-batches
and maximum time taken by GPU, taking load imbalance
factor into account.

Assume that a machine contains k GPUs. Given the model
to be trained, each GPU will individually keep a complete set
of model parameters, although parameter values are identical
and synchronised across GPUs. For an example, Figure 1 de-
scribes the workflow of the performance model when k = 4. In
general, the model works as discussed in section III-A2 using
multiple GPUs. Thus, we develop our proposed performance
model of training DNNs with S-SGD in the TensorFlow,
MXNet and Chainer frameworks.

Here, S-SGD executes feed-forward and backward prop-
agation simultaneously on each GPU with the same model
and distinct training datasets. We consider the time taken for
dividing each batch into mini-batches and we also consider the
maximum time taken by each GPU in forward processing. By
substituting these two parameters in our modelling function,
the iteration time titer for the S-SGD implementation can be
represented as follows:

titer = tio+th2d+tmd+maxiϵ(1,n)(

l∑
i=1

tlf+

l∑
i=1

tlb+

l∑
i=1

tlc)+tu

(3)
In the single GPU environment,

∑l
i=1 t

l
ci = 0. The time of

an iteration can be written as:

titer = tio + th2d + tmd +

l∑
i=1

tlf +

1∑
i=L

tlb + tu (4)

We now consider the effects of optimization strategies,
which make use of task parallelism, which are found in the
existing deep learning frameworks. We can notice two possible
optimization opportunities. Initially, we can parallelize data
reading tasks with the computing tasks, which effectively hide
the time cost of disk I/O. Secondly, gradient communication
tasks with the back propagation computing tasks can be
parallelized. In the case of overlapping I/O with computation,
the first step is frequently processed with multiple threads,
allowing the I/O time of a new iteration to overlap with the
computing time of the preceding iteration. In such a manner,
computing in the following iteration can begin immediately
after the model is completed. Thus, the average iteration time
of pipelined SGD is calculated as;

titer = max(tf + tb + tu, tio + th2d + tmd) (5)

Fig. 1: Workflow of the model: (1) loss and gradient compu-
tation, (2) gradient aggregation, (3) parameter update

In a scenario where the gradient communication overlaps
with the computation, the gradient communication could be
re-programmed to run concurrently with the backpropagation
steps. Therefore, the overheads of I/O and gradient communi-
cations need to be reduced to achieve good performance and
scalability, Let t′iter and t′io represent the iteration time and
I/O times respectively on Ng GPUs. The speedup of using Ng

GPUs is the given by

S = Ng
titer
t′iter

(6)

Accounting for the optimizations described above, we can now
write this as:

S = Ng
max {tio + th2d, tf + tb}

max {t′io + th2d, tf + tb + tc}
(7)

IV. EXPERIMENTS

In this section, we describe our experimental environment
and present the results of experiments to investigate the
running time performance of DNN models and frameworks,
and how communication tasks affect the scalability of S-SGD.

A. Experimental Setup

Initially, we define the hardware specification conducted in
our experiments. We used a single node with three GPUs.
GPU@ GEFORCE RTX 2080, CPU@ 2.60 GHZ 2.81GHZ
and Memory (RAM)- 16.0GB. Software used for the experi-
mentation are TensorFlow version-2.1.0, MXnet version -1.6.0,
Chainer version-7.4.0, python version-3.6.9, CUDA version-
10.2. and operating system- Linux. We used Nsight profiler
[27] to find the running time performance of GPU activity.

Furthermore, we measure the time duration of an iteration
for processing a mini-batch of input data to evaluate the



execution performance. Here we choose three Neural Net-
work models i.e., the Multilayer Perceptron model (MLP),
Convolutional Neural Network model (CNN) and Autoencoder
model. The models are trained on the MNIST dataset on three
frameworks i.e., TensorFlow [10], MXNet [11] and Chainer
[12] by applying distributed and parallel training. The MNIST
dataset contains 70,000 images of ten handwritten digits and is
divided into training and test datasets. The training dataset has
60,000 images, while the test dataset contains 10,000 images.
All the two datasets have 10 classes, the 10 numerical digits.
In our experiment, we run two epochs and discard the result
of the first epoch, since this will include some setup which
is not representative of the average training load over a long
run. We recorded each iteration time and average these over
the second epoch, calculating the mean and standard deviation
of each time.

B. Performance Metrics

The speedup and load imbalance factor are selected as
performance metrics for run time evaluation on three different
frameworks. The speedup is defined in Equation 7. The load
imbalance factor for a set of parallel process which execute in
times t1 . . . tN is defined as

LIF =
maxi∈[1...N ] ti

(1/N)
∑N

i=1 ti
. (8)

LIF = 1 corresponds to a perfectly balanced load, whereas
for imbalanced loads, LIF > 1.

The experimental evaluation is focused on two goals below.
• The first experimental goal is to investigate running time

performance of each model using different frameworks
in a multi-GPU environment.

• The second experimental goal is to investigate how load
imbalance factor of each model under different computing
nodes/GPU affects the computing efficiency.

C. Results and Analysis

This section illustrates the running performance followed
with analysis based on the performance modelling of Ten-
sorFlow, MXNet and Chainer in training CNN, MLP and
Autoencoder models in a multiple GPU environment.

1) Single GPU: Initially, we describe the performance
results obtained on a single GPU. The average time taken by
a framework to complete one iteration during training is used
to evaluate the framework’s performance. As a result, we can
compare the time spent on each step of SGD. The timings are
given in Table II and shown graphically in Figure 2. The results
of each phase will be discussed in the following sections.

In the initial phase of the performance model, all three
frameworks have multiple threads to read data from the CPU
memory to the GPU. By observing the results in Table II we
see that for all frameworks the I/O time is small. In the second
phase, after the reading of data from disk to memory, the data
should be transmitted to the GPU for training purpose. Our
tested environment uses PCIe to connect the CPU and GPU,
which provides a total bandwidth of 11 GB/sec. From the

TABLE II: Measured time of SGD phases on single GPU.
All times are given in seconds, as the mean and standard
deviations over all iterations in a single epoch of training.

CNN Chainer MXNet TensorFlow
tio 0.0004±0.00002 0.0002±0.00005 0.0006±0.00008
th2d 0.0383±0.0054 0.0201±0.0027 0.0212±0.0023
tmd 0.0006±0.00003 0.0003±0.00001 0.0005±0.00002∑l

i=1 t
l
fi

0.0663±0.0031 0.0307±0.0073 0.3489±0.0729∑l
i=1 t

l
bi

0.0594±0.0030 0.1347±0.0040 0.1151±0.0170
tu 0.2365±0.0194 0.1564± 0.0514 0.2636±0.0469
titer 0.4009±0.0240 0.3421±0.0354 0.7494 ±0.1391

MLP Chainer MXNet TensorFlow
tio 0.0001±0.000018 0.0005±0.00008 0.0003±0.000025
th2d 0.0331±0.0062 0.0182±0.00078 0.0199±0.0035
tmd 0.0006±0.00001 0.0003±0.00003 0.0005±0.00008∑l

i=1 t
l
fi

0.0523±0.0067 0.1034 ±0.0082 0.0576±0.0045∑l
i=1 t

l
bi

0.0481±0.0280 0.1754±0.0187 0.1680 ±0.0134
tu 0.4533±0.0095 0.2054±0.00099 0.5985±0.0089
titer 0.5869±0.0575 0.3992±0.0591 1.4371±0.0597

AN Chainer MXNet Tensorflow
tio 0.0004±0.00005 0.0001±0.00003 0.0005±0.00008
th2d 0.0316±0.0026 0.0185±0.0090 0.0215±0.0030
tmd 0.0006±0.00003 0.0003±0.00001 0.0005±0.00008∑l

i=1 t
l
fi

0.1388±0.0045 0.1322±0.0064 0.1595±0.0072∑l
i=1 t

l
bi

0.1421± 0.0056 0.2265± 0.0076 0.4274±0.0103
tu 0.3675±0.0201 0.3287±0.0307 0.3765 ±0.0215
titer 0.6804±0.0328 0.706±0.0258 0.9854±0.0320

TABLE III: Gradient aggregation time in the multi-GPU
experiments

Network Framework tcomm

2 GPUs 3 GPUs

CNN
Tensorflow 0.3945 0.4017

MXNet 0.3245 0.3415
Chainer 0.3106 0.3404

MLP
Tensorflow 0.3024 0.4145

MXNet 0.3156 0.2569
Chainer 0.2945 0.2345

Autoencoder
Tensorflow 0.7187 0.7199

MXNet 0.3565 0.3698
Chainer 0.4563 0.4583

results in Table II, we see that Chainer typically has higher
memory copy time than both TensorFlow and MXNet.

In the third phase (tmd), the three frameworks differ in the
data distribution to GPUs. In the Chainer framework, the data
batch is divided into multiple batches in the GPU whereas
in the MXNet and Tensorflow framework, batches are divided
into mini-batches on the CPU and then transferred to the GPUs
dynamically. As a result the Chainer framework takes 0.3s
higher compared to MXNet and TensorFlow.

In the forward phase, we can see that while the results
are comparable in the case of the Autoencoder and MLP
models, in the CNN model, Tensorflow is significantly slower
than both the MXNet and Chainer frameworks. MXNet’s
performance is good in the forward phase due to its usage
of auto symbolic differentiation and imperative programmimg
[11]. In the case of the CNN, both Chainer and MXNet are able
to autotune to determine the optimal convolutional algorithms
for convolutional layers, but TensorFlow does not allow the



convolution techniques to be customized. TensorFlow uses
the Winograd algorithm, which in some situations may be
suboptimal. Considering the CNN model, MXNet makes use
of GEMM-based convolution, which results in 0.05s less
forward phase and up to 0.15s more backward phase. Chainer
employs the FFT technique [21], which results in a forward
phase that is 0.06s higher and 0.1s less in the backward phase.

Next in the backward phase, MXNet is slower than the
TensorFlow and Chainer frameworks. The values tf and tb are
different in performance due to differing use of the cuDNN
API. cuDNN may have different performance depending on
the parameters that are used. Some factors that affect per-
formance are: Data Layout, Implicit matrix multiplications,
Dimension quantization techniques, Convolution parameters
such as Batch size, Height and width filtersize, channels in and
out (NHWC, NCWH) and strides. For example, in MXNet and
Chainer, the NCHW data layout are used whereas TensorFlow
has NHWC layout which acts as a performance factor.

2) Multi-GPU: In a multi-GPU per node testing, we scaled
the mini-batch with the number of GPUs. Each GPU has
the same dataset. As the number of GPUs increases, data
communication overhead increases due to the data aggregation
process between devices. Our measurements of this time
tcomm are give in Table III. Figure 3 shows the results for
the speedup when running on two and three GPUs, and the
breakdown of the timings in terms of the performance model
are shown in Figure 4.

From Figure 3, we see that MXNet achieves linear scaling
on one to three GPUs, while Chainer achieves speeds 0.2X
less than MXNet. From Figure 4, we see that the data aggre-
gation time ta in MXNet is less than in the TensorFlow and
Chainer frameworks. Here, MXNet parallelizes the gradient
aggregation with back propagation i.e., after the gradients of
the current layer(li) are computed, the preceding layer (li−1)
of backward propagation can be performed without latency.
As a result, gradient computation of (li−1) is parallelized
with gradient aggregation of li. Thus, following computing
layers can hide much of the synchronisation overhead of
gradients. As a result, MXNet has less aggregation time and
good scalability compared to other frameworks. TensorFlow
implements S-SGD differently. It has no parameter server
and uses peer-to-peer memory access if it is compatible with
the hardware topology. Each GPU receives gradients from
other GPUs, averages them, and updates the model when the
backward propagation completes, even from the decentralised
method. In this process, the model update tu and backward
propagation has no computation overlap, which led to the
observed relatively poor scaling performance in TensorFlow.

3) Load Imbalance Factor: Load balancing in a parallel
system plays a major role in determining scalability. A load
imbalance occurs when work is distributed unevenly among
workers. Here we have calculated the Load Imbalance Factor
for each neural network model in each deep learning frame-
work based on Equation 8.

From the results in Table IV, it is clear that all three
frameworks are not well balanced, since in all cases the

load imbalance factor is greater than one, and in some cases
significantly greater. Qualitatively, we see that the higher
values of load imbalance correspond to the lower speedups,
and degraded scalability, see Figure 3. For example, in the case
of Tensorflow, we see that poor scalability is accompanied by
relatively high values of the load imbalance factor.

TABLE IV: Load Imbalance Factor

Network Framework Load Imbalance Factor
2 GPUs 3 GPUs

TensorFlow
CNN 1.15 1.23
MLP 1.189 1.20
AN 1.175 1.27

Chainer
CNN 1.025 1.052
MLP 1.032 1.043
AN 1.152 1.202

MXNet
CNN 1.013 1.030
MLP 1.015 1.079
AN 1.142 1.213

Here we also present further linear regression analysis to
understand how load imbalance factor contributes to parallel
inefficiency, according to the equation below:

y = β0 + β1x1 + β2x2 + ϵ (9)

where x1 and x2 represent the number of GPUs and load
imbalance factor respectively, y is the total execution time
of an epoch, β0, β1, β2 are the regression coefficients and
ϵ represents a random value indicating the error in each
observation of y. The values of β0,β1, and β2 should be chosen
to minimise the sum of squared prediction errors.

We find the following values for the coefficients in the nine
cases. For CNN model using TensorFlow,

y
′
= 0.00001− 40.5588X̄1 + 369.4848X̄2 (10)

For MLP model using TensorFlow,

y
′
= 0.00001− 16.1671X̄1 + 245.9177X̄2 (11)

For AN model using TensorFlow,

y
′
= 0.00002− 49.1037X̄1 + 398.6701X̄2 (12)

For CNN model using MXNet,

y
′
= 0.000011− 5.57483X̄1 + 287.4133X̄2 (13)

For MLP model using MXNet,

y
′
= 0.00002− 28.9346X̄1 + 326.7283X̄2 (14)

For AN model using MXNet,

y
′
= 0.00002− 33.1037X̄1 + 398.6701X̄2 (15)

For CNN model using chainer,

y
′
= 0.00001− 9.00791X̄1 + 286.8447X̄2 (16)

For MLP model using chainer,

y
′
= 0.000016− 10.1584X̄1 + 292.1287X̄2 (17)



(a) (b) (c)

Fig. 2: Iteration times on a single GPU for (a) CNN (b) MLP and (c) Autoencoder models

(a) (b) (c)

Fig. 3: Measured speedup for the three frameworks on different numbers of GPUs for the three DNN models (a) CNN, (b)
MLP and (c) Autoencoder.

(a) (b) (c)

(d) (e) (f)

Fig. 4: Iteration time on multiple GPUs. Results for two GPUs are shown in (a), (b), (c) for CNN, MLP and Autoencoder.
Results for three GPUs are in (d), (e) and (f).

For AN model using chainer,

y
′
= 0.000068− 25.584X̄1 + 260.263X̄2 (18)

where y
′

is the computed prediction execution time as a
function of the number of GPUs and the load imbalance factor.



We compute their coefficients of determination, R2, to further
investigate the impact of number of GPUs and load imbalance
factor on execution time. R2 represents the proportion of the
variance in execution time that is predicted from both number
of GPUs and load imbalance factor. It is defined as follows:

R2 = 1− SSrss

SStss
(19)

where SSrss and SStss are the residual sum of squares and
the total sum of squares. They are defined as:

SSrss =
∑

(y − y
′
)2 (20)

and,
SStss =

∑
(y − ȳ)2 (21)

We find R2valuesfor(CNN,MLP,AN)TensorF lowof(0.9904, 0.9963, 0.9960), forMXNetof(0.9901, 0.9987, 0.9903)andforChainerof(0.99, 0.9963, 0.9965).Theseresultsimplythattheregressionforecastsareaccurateinpredictingtherelationshipbetweenexecutiontimeandloadimbalancefactor.AsthevalueofR2

increases, the model’s fit to the training data becomes more
accurate and precise. The results confirm the importance
of load balancing to achieve scalability in distributed deep
learning.

V. CONCLUSION AND FUTURE WORK

We have evaluated the performance of different deep learn-
ing frameworks over different deep learning neural networks in
terms of scalability in a multi-GPU environment, taking into
account a range of factors affecting performance, including
load imbalance. We have further extended an existing per-
formance model [18] based on synchronous-S-SGD with the
inclusion of two new parameters: time taken to divide the
batch into mini-batches and maximum time taken by GPU. The
proposed performance model was built to measure the perfor-
mance of different deep learning framework implementations
which include TensorFlow, MXNet and Chainer frameworks
on three models: Convolutional neural network, Multilayer
perceptron and Autoencoder models, in a multi-GPU environ-
ment. The experimental results have shown that MXNet and
Chainer have better scalability compared to TensorFlow for all
three models. Moreover, our analysis of the load imbalance
factor has shown that load balancing is a contributing factor
to scalability in distributed deep learning, and high load
imbalance is strongly correlated with poor scalability in our
experiments. Future work will probe the reason for the load
imbalance in these cases, with the aim of discovering optimal
parameters to keep the load balanced.
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