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A B S T R A C T   

The emergence of the novel coronavirus has necessitated immense research efforts to understand how several 
non-environmental and environmental factors affect transmission. With the United States leading the path in 
terms of case incidence, it is important to investigate how weather variables influence the spread of the disease in 
the country. This paper assembles a detailed and comprehensive dataset comprising COVID-19 cases and 
climatological variables for all counties in the continental U.S. and uses a developed econometric approach to 
estimate the causal effect of certain weather factors on the growth rate of infection. The results indicate a non- 
linear and significant negative relationship between the individual weather measures and the growth rate of 
COVID-19 in the U.S. Specifically, the paper finds that a 1 ◦C rise in daily temperature will reduce daily covid 
growth rate in the U.S. by approximately 6 percent in the following week, while a marginal increase in relative 
humidity reduces the same outcome by 1 percent over a similar period. In comparison, a 1 m/s increase in daily 
wind speed will bring about an 8 percent drop in daily growth rate of COVID-19 in the country. These results 
differ by location and are robust to several sensitivity checks, so large deviations are unexpected.   

1. Introduction 

COVID-191 is the worst pandemic that has hit humankind since the 
last Century. Since its discovery in Wuhan, China, in December 2020 
(WHO, 2020), there have been more than 72.3 million cases, with 1.61 
million deaths worldwide, according to John Hopkins University.2,3 Of 
this count, the U.S. leads in both the number of cases (> 20%) and 
deaths (> 18%). Due to the novelty of the virus, there is a plethora of 
emerging research investigating its genesis and growth, both locally and 
globally. Mounting evidence attributes the slowed growth of covid 
infection to endogenous, non-pharmaceutical interventions (NPIs) (e.g., 
Hsiang et al., 2020), fear-driven behavioral change (e.g., Chernozhukov 
et al., 2021), media influence (e.g., Bursztyn et al., 2020), amongst 
others. On the other hand, few studies have detailed how some exoge-
nous factors, such as weather changes, have influenced the number of 
covid cases, with no unanimity on whether and which environmental 

factors affect coronavirus transmission. 
It might not be coincidental that both severe acute respiratory syn-

drome (SARS) and covid diseases originated in winter months. Evidence 
from research on previous epidemics and contagious diseases reveals 
that weather affects infection rate of infectious diseases. Tan et al. 
(2005); Bi et al. (2007) document temperature rise as a strong factor that 
led to the decline in SARS infection. Importantly, the organism causing 
SARS (SARS-Cov) and covid (SARS-CoV-2) infect humans using similar 
receptor (angiotensin-converting enzyme 2 (ACE2)) (Runkle et al., 
2020). Besides, a dyad of studies, Barreca and Shimshack (2012); 
Deschênes and Greenstone (2011), use mortality and daily weather 
changes from U.S. counties to show that annual weather fluctuations, 
especially temperature and humidity, significantly influence mortality 
from infectious diseases such as influenza. Recent studies have linked 
the spike in Spanish flu deaths to declining temperature and torrential 
rainfall (More et al., 2020).4 Further, there is documentation that 

E-mail address: lotanna.emediegwu@manchester.ac.uk.  
URL: https://sites.google.com/view/lotannaemediegwu.   

1 Everywhere else, I shall refer to the disease as covid or coronavirus.  
2 This cumulative statistics are as of 14th December 2020, with 191 countries already infected.  
3 See, Bashir et al. (2020a) for a review of socioeconomic and environmental impacts of Covid-19.  
4 Also, a newly funded NOAA project suggests that the 1918/1919 El Niño is linked to the Flu pandemic. 
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weather patterns affect the viability, activity, and transmission effi-
ciency of viruses,5 hence there is need for more extensive discussion on 
how and which environmental variables influence coronavirus activ-
ities. The few available studies are mostly outside the U.S. with mixed 
results. 

Using a mechanism-based parameterization scheme, Lin et al. (2020) 
observe that transmission rate of covid in China shows a negative and 
exponential temperature dependence, while there is no significant 
relationship with other weather variables. Further Chinese studies like 
Liu et al. (2020); Oliveiros et al. (2020) reach similar conclusions. On 
their part, Ma et al. (2020) find that a 1 unit rise in both temperature and 
absolute humidity will decrease China’s covid death count in lag 3 and 
lag 5 periods, with the greatest decrease both in lag 3. Other 
country-based studies have also reported similar results. Using statistical 
methods, Rosario et al. (2020) evidence that the incidence of corona-
virus in Brazil is negatively correlated with solar radiation (− 0.609, p <
0.01), (maximum and average) temperature, and wind speed (p < 0.01). 
Two global studies - Sarkodie and Owusu (2020); Sobral et al. (2020) - 
that investigate the impact of weather factors of covid find that tem-
perature reduces covid case counts: however, they differ on the effect of 
rainfall. Sarkodie and Owusu (2020) find that rainfall increases covid 
caseload, whereas Sobral et al. (2020) observe no effect. On the con-
trary, a meta-review analysis by Bilal et al. (2020) fails to find a sig-
nificant association between the pandemic and temperature. 

It is important to understand the environment’s role in modifying 
covid transmission activities in the U.S. since it has the largest share of 
infection worldwide. Few studies have attempted to undertake this ex-
ercise. Bashir et al. (2020b) use statistical correlation tools and found 
that temperature is positively associated with covid cases in New York 
City. On the other hand, Runkle et al. (2020) employ a case-crossover 
design with a distributed lag nonlinear model to evaluate how humidi-
ty and temperature impact covid cases in 5 U.S. cities. They find that 
humidity outperforms temperature in reducing covid cases, although 
both have a non-linear relationship with cases. Using several statistical 
techniques, Bashir et al. (2021) find that temperature, humidity, envi-
ronmental quality index, PM2.5, and rainfall are significant factors 
related to the COVID-19 pandemic in the top 10 most affected states of 
the USA. 

Given the lack of detailed and robust analysis of how meteorological 
factors affect covid in the U.S., this is the first study, to the best of the 
author’s knowledge, that uses county-level data to empirically demon-
strate how weather factors affect growth rate of covid infection. While 
the existing few studies consider a subset of U.S. cities using raw case 
counts, this study takes a holistic approach by considering all covid- 
affected U.S. counties. The weather data are gathered from more than 
1000 weather stations all over the U.S., while the covid data is from the 
New York Times. In addition to the different weather measures 
employed and the covid index used, the sample’s temporal length en-
sures that the study captures the weather variations in a typical year 
other than just occurrences in a limited part of the year as done in 
previous studies. Furthermore, using the entire continental U.S. rather 
than only a single state or few cities allows for substantial heterogeneity 
in the model employed in this work. 

I apply similar methodology that has been used in previous climate- 
related studies to estimate the impact of local weather conditions on 
several economic outcomes.6 Specifically, I estimate the impact of 
weather variation on covid infections. These impacts are identified from 

weakly exogenous and random daily local weather fluctuations, which 
reduce the problem of omitted variable bias. Moreover, the use of state- 
by-day fixed effects, which is missing in previous U.S. studies controls 
for differentials across states that may impact health in a county. 

The results in a concise form indicate the existence of a non-linear, 
negative relationship between weather shocks and growth rate of 
covid infection in the U.S. Increased weather occurrence lowers cumu-
lative daily growth rate of covid cases over the following week. Spe-
cifically, a 1 ◦C increase in daily average temperature reduces daily 
growth rate of covid cases by approximately 6 percent. Cumulative daily 
growth rate of covid cases in the U.S. will fall by 1 percent from a 1 
percent increase in relative humidity. Also, a 1 m/s rise in daily wind 
speed will reduce the outcome variable by 8 percent. More so, these 
estimates are insensitive to different modifications. 

While the results are intuitive and indicative of how daily weather 
fluctuations affect covid growth rate in U.S. counties, there are some 
caveats to state. First, the method employed here does not account for 
changes in behavior following either the pandemic or weather varia-
tions, so what is examined here is “short-term” effect. It is expected that 
changes in human behavior due to climate change (Stankuniene et al., 
2020) might alter how weather affects diseases as in Deschenes and 
Moretti (2009); Deschenes (2014).7 Hence, the estimated result should 
be seen as an upper-bound possibility. Also, the paper could not inves-
tigate the heterogeneous effect of weather on covid growth rate across 
age, race, and sex due to data unavailability. It is important to note that 
although the metrics used in this study are widely accepted in academic 
and policy circles (The Royal Society, 2020; Chernozhukov et al., 2021), 
other metrics, such as reproduction rate, also contain important infor-
mation about the progress of the pandemic. While no one metrics is 
better than the other, no (single) one provides sufficient information for 
policy purposes (UK Government, 2020). Hence both rates are always 
considered for a better understanding of the pandemic. Unfortunately, I 
am unable to calculate reproduction rate since it requires more sophis-
ticated information, such as the period between each generation of in-
fections, which is unavailable for most counties and some states. 
Regardless of the caveats, this work complements the growing literature 
seeking to understand the weather-covid nexus better. 

The remainder of the paper is subdivided as follows: Section 2 con-
siders a concise précis of the relationship between weather variables and 
infectious diseases. Data and methodology are described in Section 3, 
while the various results are discussed in Section 4. The paper ends with 
some concluding remarks in Section 5. 

2. Weather and infectious diseases - potential mechanisms and 
channels 

There is documented evidence on how weather affects the trans-
mission of infectious diseases (see, Sellers, 1980; Patz et al., 1996; 
Altizer et al., 2006; Barreca and Shimshack, 2012, for some overview). 
Weather affects the ability of pathogens to transit from person to person. 
Also, some or all of the cycle of infection - the population of pathogens 
and hosts, and the interactions between them (Avery et al., 2020) - could 
be affected by nature. Research has shown that high temperature re-
duces viruses’ viability and activity; very cold temperature makes it 
difficult for them to replicate, thereby lowering the viral load in the 
atmosphere (Polgreen and Polgreen, 2018). Besides, cold temperature 
increases sneezing and coughing, both of which are effective and fast 
mediums of transmitting contagious diseases. Further, cold air can 
irritate the airways and lungs, thereby causing breathing to be more 
strenuous and making the use of NPIs like face mask difficult to sustain 5 See, Campbell et al. (2013) (Dengue virus), Soverow et al. (2009) (West Nile 

virus), Woodruff et al. (2002) (Ross River virus). For a detailed analysis of the 
interplay amongst weather, viruses, and host, see Sellers (1980).  

6 Some previous climate-related studies include Kalkuhl and Wenz (2020); 
Dell et al. (2012) (economic growth); Harari and Ferrara (2018); Hsiang et al. 
(2013) (conflict); Deschênes and Greenstone (2007); Hsiang and Meng (2015) 
(agriculture); Deschenes and Moretti (2009); Barreca (2012) (mortality). 

7 Streimikiene et al. (2020), in a systematic review, show that behavioral 
changes following climate change could affect households’ energy consump-
tion, which is an important medium of conditioning atmospheric conditions to 
extenuate or exacerbate viral infections. 
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in such conditions. 
Humidity is economically important as it affects human health via 

different mechanisms. Low humidity means less water content in the air, 
therefore making aerosols smaller. This condition can also lead to 
dehydration, promoting the spread of airborne diseases, like covid, due 
to prolonged activity of suspended infectious aerosols in the air. On the 
other hand, a moist atmosphere means that the aerosols are larger and 
fall to the ground much quicker. Further, some studies suggest that host 
resistance to viruses are low under dry air condition. For example, in a 
laboratory experiment, Kudo et al. (2019) observe that mice with 
influenza at 10% relative humidity level had more symptoms and are 
more likely to die than those at 50%. Equally important, high humidity 
causes sweating, making the cooling of the human body more difficult 
(Hsiang and Kopp, 2018). Besides, it can impair the respiratory system 
because it abets the spread of non-viral organisms like bacteria, fungi, 
and dust mites (Barreca, 2012). 

Wind speed is also important in understanding the spread of 
(airborne) infectious diseases such as coronavirus (Morawska and Mil-
ton, 2020). Wind speed may modulate the dynamics of various patho-
gens and vectors (Ellwanger and Chies, 2018), and low wind speed 
increases the spread of infectious disease (Altizer et al., 2006). Infectious 
aerosols can stay for some hours on surfaces and atmosphere - up to 3 h 
in aerosols, 4 h on copper, 24 h on cardboard, and 2–3 days on plastic 
and stainless steel (van Doremalen et al., 2020). However, these times 
are reduced with high wind speed. 

Summarily, since weather variables are correlated, I set up the 
empirical specification to include all relevant weather measures. Also, 
the paper includes weather measures’ quadratic terms to account for 
potential non-linearity, which is conventional in the climate-health 
literature. 

3. Data and model specification 

3.1. Data sources and description 

3.1.1. Covid and population data 
I draw county-level covid data from New York Times.8 Among other 

county-level variables, the dataset contains the daily count of covid 
cases from January 21, 2020 and is updated daily as new information 
becomes available.,9, 10 The sample, however, ends on October 31, 
2020. The dataset is obtained from daily officially reported confirmed 
case counts reported to the Centers for Disease Control and Prevention 
(CDC). The initial sample contains 3106 counties covering the conti-
nental 48 U.S. states, including the District of Columbia, totaling 
885,210 county-day observations.11 

3.1.2. Weather data 
The paper uses average temperature, total precipitation, average 

relative humidity, and average wind speed from more than 1000 oper-
ational weather stations in the United States during the sample period to 
measure daily weather fluctuations. These data are obtained from the 
National Climatic Data Center “Cooperative (or Global Surface) 

Summary of the Day” (GSOD) files using geospatial software. The GSOD 
records detailed daily weather information by weather stations from 
1928 till present. It is a very reliable dataset used by many weather data 
services such as the Parameter-Elevation Regressions on Independent 
Slopes Model (PRISM), NASA, etc. The construction and aggregation of 
the weather dataset are described, with more details, in the Supple-
mentary Information. For the purpose of weighting, I use estimated 
2018 county-level population from the United States Census Bureau.12 

3.2. Summary statistics 

The paper reports the summary statistics of the variables at regional 
and national levels in Table 1. The first four rows contain regional sta-
tistics, while the national statistics are in the last row. 

The national mean temperature over the sample period is 17.39 ◦C. 
The average temperature over the same period varies across regions, 
showing some form of spatial variation - from 13.43 ◦C in the Midwest to 
20.56 ◦C in the South. Also, there is significant within variation across 
the regions, as seen from the standard deviations. The West region has 
the lowest relative humidity, 49%, which means that, on average, air in 
the region is less moist than in other regions where the relative humidity 
is above the national average. Table 1 also shows that wind speed is 
highest in the Midwest and lowest in the Northeast, with a national 
average of 3.09 m/s. 

Fig. 1 further reveals the geographical variation in weather measures 
in the U.S. The maps show that some parts of the South are both hot and 
very humid, whereas average wind speed is highest in the Midwest. 
Fig. 2 also displays the temporal variation in the weather variables 
across regions. These spatial and temporal variations are the basis for 
using these weather variables to predict changes in growth rate of covid 
infection. 

Fig. 3 shows the geographical distribution of cumulative covid cases 
in the U.S., as of October 31, 2020. There appears to be some relation-
ship between cumulative cases and weather measures, as the largest 
incidence of covid infection occurs in the colder and less windy regions 
of the U.S. - Northeast and West regions. 

3.3. Econometric strategy 

This paper seeks to estimate the effect of weather on the covid 
pandemic in the U.S. The motivation for the model follows Chernoz-
hukov et al. (2021) intuition on the popular epidemiology model for 
infectious disease known as Susceptible–Infected–Recovered–Dead 
(SIRD).13 First, I describe the outcome variable - growth rate of infection 
(GRI) as 

GRIit = log(Cit) − log(Cit− 7)

where Cit refers to cumulative covid cases in county i at time t. GRI 
measures the rate at which infection is transmitted amongst the popu-
lace, and it is lagged by a week to account for the period between when 
an infection occurs and when a positive test detects it. Technically, Cit −

Cit− 7 refers to the number of new covid cases in the last seven days. The 
use of growth rate rather than covid count is based on policy preference, 
as the former is one of the main metrics which policymakers use to 

8 Data is accessible via https://github.com/nytimes/covid-19-data/blob/ 
master/us-counties.csv.  

9 The first reported case in the USA was on 20th January 2020 in Washington 
state.  
10 Confirmed cases refer to counts of individuals whose coronavirus infections 

were confirmed by a molecular laboratory test. Therefore, such statistics are 
widely considered to be an undercount of the true toll. However, this is not 
considered to be a serious problem as there is no evidence in the literature that 
such bias systematically correlates with county-level weather fluctuations. 
Moreover, Hsiang et al. (2020) find the bias associated with such 
under-reporting is quantitatively small.  
11 I excluded Alaska, Hawaii, and observations from unspecified counties. 

12 https://www.census.gov/data/datasets/time-series/demo/popest/2010s 
-counties-detail.html 
13 The standard Susceptible–Infected–Recovered (SIR) model compartmen-

talize economic agents into three states as suggested by the name. Agents can 
move between states via two ways: an infectious agent becomes noninfectious 
and moves to recovered state, or a susceptible agent can come in contact with 
an infectious agent, become infected, and move to the infected state. These 
movements are controlled by two parameters - recovery rate (γ) and the number 
of people that would be infected by an infectious agent (R0). For more on this 
model, the reader is referred to Avery et al. (2020). 
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decide what sort of policy to adopt (UK Government, 2020). There is no 
unanimity on the number of lag days to use in calculating growth rate. 
Here, I choose 7-day lag period because laboratory and statistical ex-
periments suggest that the incubation period of covid volleys between 5 
and 7 days (see, Lauer et al., 2020; Li et al., 2020; Wu et al., 2020). 
However, the insensitivity of the results to different choices of lag 
lengths is shown in the Supplementary Information. Further, I do not 
smoothen the data so as not to lose significant variations. Although I 
show in the robustness section that smoothening the data produces 
similar estimates. 

Due to the lag time between infection and detection, the paper es-
timates weather variables’ impact using their lags. Specifically, I 
construct a panel data model at county/day level that takes the reduced 
form 

GRIit =αc + γst +
∑j=13

j=7
βT

j Tit− j +
∑j=13

j=7
βRH

j RHit− j +
∑j=13

j=7
βWDSP

j WDSPit− j

+
∑j=13

j=7
βPREP

j PREPit− j + εit (1)  

where GRIit refers to a vector of outcomes - growth rates of infection - in 
county i for day t, αc are county fixed effects to control for county- 
specific time-invariant determinants of covid outcomes such as 
geographical location, γst are state-by-year fixed effects which accounts 
for time-varying factors of mortality that are common within a state 
(state-wide lockdowns, for example). εit are idiosyncratic errors. 

Tit− j, RHit− j, WDSPit− j, and PREPit− j represent daily average temper-
ature (in oC), average relative humidity (in %), average wind speed (in 
m/s), and aggregate rainfall (in mm), respectively, observed on day t-j in 
county i. The common expectation is that any disruption of infection 
activities due to weather actions will be realized after some time, ergo 

Table 1 
Summary statistics of weather measures across regions.   

Average Temperature (o C) Relative Humidity (%) Wind Speed (m/s) 

Mean Min Max StD Mean Min Max StD Mean Min Max StD 

Midwest 13.43 − 27.67 32.74 9.72 68.21 15.38 100 12.50 3.56 0.08 13.41 1.54 
Northeast 14.24 − 20.67 31.09 8.72 66.13 19.69 99.39 14.11 2.87 0.14 11.06 1.23 
South 20.56 − 8.71 36.6 7.37 70.51 7.10 100 13.31 2.96 0 16.83 1.41 
West 18.02 − 24.24 42.12 8.33 49.44 6.23 99.42 20.30 3.02 0 16.64 1.19 

USA 17.39 − 27.67 42.12 8.88 64.35 6.23 100 17.37 3.09 0 16.83 1.39 

Note: The above table represents 285 daily observations (from January 21 to October 31, 2020) for 3106 counties spanning the country’s census regions. Census regions 
are defined as follow: Midwest (IA, IL, IN, KS, MI, MN, MO, ND, NE, OH, SD, WI), Northeast (CT, MA, ME, NH, NJ, NY, PA, RI, VT), South (AL, AR, DC, DE, FL, GA, KY, 
LA, MD, MS, NC, OK, SC, TN, TX, VA, WV), and West (AZ, CA, CO, ID, MT, NM, NV, OR, UT, WA, WY). StD denotes standard deviation. Observations are weighted by 
county-level population. 

Fig. 1. Spatial variation of average weather conditions in the U.S. (January 21 - October 31, 2020).  
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Fig. 2. Average weather trends by region.  

Fig. 3. U.S. Total COVID-19 reported cases as at October 31, 2020. Source: https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html  
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the main explanatory variables capture the weather events of seven days 
(or one week) preceding the week the outcome variable captures. As is 
customary in dynamic models (see, Dell et al., 2012), this paper is 
interested in the cumulative effect of the lag structure, which represents 
the growth effect of weather fluctuations. 

Since weather variables are mostly correlated, the non-inclusion of 
an important weather variable can produce biased results, except if the 
relationship amongst the variables is uniform across counties, which is 
not so in this case, as seen in Fig. 1. Hence, joint estimation of the 
weather variables accounts for the correlation among them. The paper 
does include precipitation as a customary practice but do not report the 
results because (i) there is little spatial variation in precipitation as seen 
in Figure S2 in the Supplementary Information, and (ii) previous 
mortality-climate studies for the U.S. confirm that the impact of rainfall 
on health outcomes in the U.S. is insignificant due to reason (i) 
(Deschênes and Greenstone, 2011; Barreca, 2012). 

I intend to use the variation inherent in these weather measures to 
capture accurate empirical estimates. In keeping with the convention in 
climate studies, this study includes the quadratic terms of the weather 
measures to capture potential non-linearities. Moreover, I do not add 
other controls to avoid the bad control scenario (Angrist and Pischke, 
2008; Dell et al., 2014). εit are clustered at county-level to account for 
possible correlation of the standard error terms within county groups. 

The reason for having a full set of county and state-by-day fixed ef-
fects is to ensure that the derived estimates are truly from fluctuations in 
weather. This is a fair assumption, given that weather fluctuations are 
fairly exogenous to other unobserved mortality factors. Also, to account 
for heteroskedasticity associated with county sizes, a weighted version 
of equation (1) is estimated where weight is the square root of county- 
level population. In addition to controlling for heteroskedasticity, 
population-weighted models allow us to estimate impacts on average 
person rather than average county. The work also considers models 
weighted with other important population subgroups and socio- 
economic indices in the Supplementary Information, which produce 
broadly identical results. 

4. Empirical results and discussion 

4.1. Main results 

In this section, I discuss the results obtained from fitting several 
versions of equation (1). Table 2 presents the point estimates associated 

with the impact of daily weather variations on daily cumulative growth 
rate of covid infection in the U.S. The estimates presented here are the 
cumulative effects of lagged weather variables on the outcome, which 
signifies the growth effect of weather fluctuations. Due to space con-
straints, the estimates of the individual lags’ effects are reserved in the 
Supplementary Information. The linear terms define the marginal effect 
of weather changes evaluated at the mean value, whereas the quadratic 
terms reflect the marginal effect’s behavior as one deviates from the 
center. 

Beginning with temperature effects, Column III in Table 2 shows a 
significant and negative relationship between temperature and GRI in 
the U.S. Specifically, an increase of 1 ◦C in average daily temperature 
will reduce the GRI by approximately 6% in the following week. This 
estimate is consistent across specifications, either bivariate (Col I) or 
multivariate (Cols II and III). Similarly, the paper finds a negative and 
significant relationship between relative humidity and GRI in the U.S. A 
1% rise in relative humidity would lead to a 1% drop in GRI, which 
signifies that areas with increasing relative humidity levels will expe-
rience a reduction in cumulative growth rate of covid cases in the 
ensuing week. Furthermore, the main result suggests that high wind 
speed will lower growth rate of covid infection. Explicitly, a 1 m/s (or 
2.2 miles per hour) increase in average daily wind speed will necessitate 
an 8% drop in GRI in the subsequent week. 

The findings in this paper also complement the results from Lin et al. 
(2020); Liu et al. (2020), who reach similar conclusions of a negative 
relationship between temperature and covid infection in China. How-
ever, they contrast Bashir et al. (2020b), who find a positive relationship 
between temperature and covid caseload in New York. Additionally, as 
presented in the results, the importance of moist air is corroborated by 
similar conclusions from some studies such as Ma et al. (2020); Runkle 
et al. (2020). However, this work differs from these studies in terms of 
methodology, sample size, and temporal coverage as discussed in the 
previous section. The negative relationship between wind speed and GRI 
indicates the importance of wind in reducing covid infections. It implies 
that, ceteris paribus, more windy counties/states will experience decline 
in cumulative infection growth rate. 

The quadratic terms of the weather variables are significant, which 
indicate a potential non-linear (convex by nature) relationship between 
weather factors and the covid outcome - GRI. Such non-linearity means 
there is a minimally beneficial level from which the effects start rising, 
significantly or insignificantly, in both directions. The non-linear 
observation is similar to the findings in Deschênes and Greenstone 
(2011); Prata et al. (2020) (for temperature) and Barreca (2012); Runkle 
et al. (2020) (for humidity). 

4.2. Robustness results 

The paper considers several robustness checks to ascertain the 
sensitivity of the main results. The robustness tests entail re-modeling 
equation (1) with different panel samples, without outliers, with lower 
frequency data and smoothening effects.14 

4.2.1. Different start dates 
The first row in Table 3 shows the results for re-estimating equation 

(1) with trimmed sample sizes. The results show a steady negative effect, 
howbeit a decline in the size of the coefficients as the sample is trimmed 
down from January 21 to April 1. The reduction in the estimates’ 
magnitude could be due to the loss of more than 30% of the original 
sample size on April 1. Also, starting the sample from April 1 means 
some loss of variation in weather observations since, for example, 
temperature has begun to fall by June, as shown in Fig. 2. 

Table 2 
Main specification results.   

(I)Temp (II)Temp + RH (III)Temp + RH + Wind 

Temp. cum − 0.059 
[0.003]*** 

− 0.055 
[0.003]*** 

− 0.057 
[0.003]*** 

Temp. cum sq 0.001 
[0.000]*** 

0.001 
[0.000]*** 

0.001 
[0.000]*** 

RH cum  − 0.011 
[0.003]*** 

− 0.013 
[0.003]*** 

RH cum sq  0.000 
[0.000]*** 

0.000 
[0.000]*** 

WDSP cum   − 0.084 
[0.007]*** 

WDSP cum sq   0.005 
[0.001]*** 

Observations 636,595 633,170 633,082 
Counties 3094 3094 3093 

Notes: All specifications include county FE, state × day FE and are weighted by 
the county-level population. Robust standard errors are in parentheses, adjusted 
for clustering at county level. Temperature is in degrees Celsius (o C), relative 
humidity in percentage (%), and wind speed is in meters per sec (m/s). Outcome 
variable is growth rate of infection (GRI). 
***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level. 

14 Results of further robustness tests can be found in the Supplementary 
Information. 
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4.2.2. Outliers influence 
To confirm that the results are not driven by states with very high 

cases of covid infections, I purge the sample data of all counties in the 
two states with the highest cumulative covid cases as of October 31 - 
California and Florida. Row 2 in Table 3 shows that the states with large 
cases do not principally drive the results as the estimates are still very 
similar to the baseline results. 

4.2.3. Lower frequency data 
Further, I test if the main estimates are due to noise by re-analyzing 

equation (1) with lower frequency data. I aggregate the covid cases 
while averaging weather measures to (i) weekly and (ii) monthly levels. 
The results displayed in Row 3 of Table 3 show similar significant signs 
as the baseline, however with larger estimates. The large coefficients are 
not surprising given the use of lower frequency data in this scenario. 

4.2.4. Smoothening effect 
Next, the paper subjects the baseline model to smoothening test 

using two moving averages: 3-day, 7-day. I use these moving averages to 
smoothen the covid data before deriving the growth rate of infection 
index. Row 4 shows that the results are not principally affected by 
smoothening as they appear to be very stable across specifications. 

Overall, the alterations to the baseline specification do not signifi-
cantly alter the estimated impact of daily weather fluctuations on cu-
mulative daily growth rate of covid infections in the U.S. 

4.3. Investigating channels and sources 

Next, the research investigates if there are particular areas in the 
country where the impacts of environmental factors on covid are 
greater. I start by showing the results of the estimated model specific to 
each (i) region (ii) division (iii) hot/cold area, and (iv) state in the U.S. 

Table 4 shows that every region will benefit from temperature rise; 
however, the impact is more noticeable in the Northeast and South than 
in other regions. The large point estimates associated with both regions 
imply that reduction in the growth rate of infection is highest in areas 
with extreme temperatures. On the other hand, there is more hetero-
geneity in the impact of relative humidity and wind speed. An increase 
in relative humidity will reduce GRI in the South and the Northeast 
regions. These regions possess higher relative humidity than other re-
gions, as seen in Fig. 1. Similarly, the impact of a marginal rise in wind 
speed is not uniform across regions. Its effect is positive in the Northeast 
where wind speed is the lowest and negative in other regions with high 
average wind speed. 

Similarly, the second column in Table 4 shows that the largest 
negative impacts of temperature are found in divisions within regions 
with extreme temperatures. For example, South Atlantic and West South 
Central divisions are in the South region while New England and Middle 
Atlantic divisions are in the Northeast region. Divisions with mild 
temperatures may not experience as much decline as those in cooler and 
very hot regions. Relative humidity also exhibits similar heterogeneous 
trends as in the regional analysis. Divisions in high humid areas benefit 
more from a further humidity increase. On the other hand, the effect of a 

Table 3 
Robustness results.   

Temperature Relative 
humidity 

Wind 
speed 

Different Start 
Dates (I) 

February 1 − 0.057 
[0.003]*** 

− 0.013 
[0.003]*** 

− 0.084 
[0.007] 
*** 

April 1 − 0.041 
[0.001]*** 

− 0.007 
[0.001]*** 

− 0.050 
[0.004] 
*** 

Outliers Influence 
(II) 

Exclude CA − 0.056 
[0.003]*** 

− 0.015 
[0.003]*** 

− 0.075 
[0.006] 
*** 

Exclude CA & 
FL 

− 0.058 
[0.003]*** 

− 0.015 
[0.003]*** 

− 0.064 
[0.006] 
*** 

Lower Frequency 
(III) 

Weekly − 0.073 
[0.005]*** 

− 0.019 
[0.003]*** 

− 0.141 
[0.017] 
*** 

Monthly − 0.133 
[0.007]*** 

− 0.033 
[0.004]*** 

− 0.101 
[0.036] 
*** 

Smoothening (IV) 3-MvA − 0.055 
[0.003]*** 

− 0.011 
[0.003]*** 

− 0.078 
[0.006] 
*** 

7-MvA − 0.053 
[0.003]*** 

− 0.009 
[0.002]*** 

− 0.074 
[0.005] 
*** 

Baseline − 0.057 
[0.003]*** 

− 0.011 
[0.003]*** 

− 0.084 
[0.007] 
*** 

Notes: All specifications include county FE, state × day FE and are weighted by 
the county-level population. Robust standard errors are in parentheses, adjusted 
for clustering at county level. Temperature is in degrees Celsius(o C), relative 
humidity in percentage (%), and wind speed is in meters per sec (m/s). Outcome 
variable is growth rate of infection (GRI). For lower frequency analysis, weekly 
covid data is lagged by one week, whereas the weather data by two weeks. 
Monthly data is lagged by one month. See in-text for more details. 
***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level. 

Table 4 
Regression by location.   

Temperature Relative 
humidity 

Wind 
speed 

Region South − 0.114 
[0.005]*** 

− 0.021 
[0.004]*** 

− 0.070 
[0.012]*** 

West − 0.064 
[0.004]*** 

0.007 
[0.003]** 

− 0.199 
[0.029]*** 

Northeast − 0.138 
[0.009]*** 

− 0.081 
[0.010]*** 

0.090 
[0.029]*** 

Midwest − 0.044 
[0.006]*** 

0.003 
[0.004] 

− 0.102 
[0.010]*** 

Division Mountain − 0.044 
[0.004]*** 

0.004 
[0.004] 

− 0.201 
[0.040]*** 

New England − 0.143 
[0.019]*** 

− 0.072 
[0.018]*** 

0.041 
[0.061] 

Middle Atlantic − 0.140 
[0.007]*** 

− 0.096 
[0.013]*** 

0.102 
[0.038]*** 

East North Central − 0.053 
[0.014]*** 

0.054 
[0.006]*** 

− 0.121 
[0.020]*** 

West North 
Central 

− 0.037 
[0.002]*** 

− 0.021 
[0.004]*** 

− 0.021 
[0.012]* 

Pacific − 0.117 
[0.013]*** 

0.018 
[0.007]** 

− 0.216 
[0.054]*** 

South Atlantic − 0.120 
[0.009]*** 

0.019 
[0.005]*** 

− 0.136 
[0.032]*** 

East South Central − 0.098 
[0.008]*** 

0.048 
[0.011]*** 

− 0.146 
[0.024]*** 

West South 
Central 

− 0.104 
[0.005]*** 

− 0.036 
[0.009]*** 

0.042 
[0.012]*** 

Hotness Yes − 0.114 
[0.006]*** 

− 0.008 
[0.004]** 

− 0.071 
[0.011]*** 

No − 0.064 
[0.004]*** 

− 0.019 
[0.002]*** 

− 0.117 
[0.009]*** 

Notes: All specifications include county FE, state × day FE and are weighted by 
the county-level population. Robust standard errors are in parentheses, adjusted 
for clustering at county level. Temperature is in degrees Celsius (o C), relative 
humidity in percentage (%) and wind speed is in meters per sec (m/s). Outcome 
variable is growth rate of infection (GRI). 
***Significant at the 1 percent level. 
**Significant at the 5 percent level. 
*Significant at the 10 percent level. 
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further rise in humidity is positive in low humidity divisions like East 
North Central, and Pacific. The impact of increasing wind speed is 
generally negative in all divisions except New England, Middle Atlantic, 
and West South Central, where wind speed is very low. 

To further explore the source of the relationship, I divide all counties 
into two groups based on how hot they are relative to the U.S. median 
temperature. A county is classified as “hot” if its median temperature is 
above the national median; otherwise, it is classified as “cold”. After, the 
baseline equation is re-estimated separately for both groups. The results, 
displayed in Column 3, show that the beneficial effect of a further 
temperature rise is higher in hot counties than in cold counties. Spe-
cifically, hot counties are, on average, twice more likely to experience a 
reduction in GRI from a 1 ◦C temperature rise than their cold counter-
parts. On the contrary, the impacts of a marginal increase in relative 
humidity and wind speed are more felt in cooler counties. 

To further the assertion of an inverse relationship between daily 
weather fluctuations and growth rate of covid infection, I re-analyze 
equation (1) by state. The state regression results in Fig. 4 follow a 
comparable pattern as the previous sub-national regression results. The 
states with the highest impact of temperature are in the South and 
Northeast regions. Relative humidity shows some heterogeneity in terms 
of effects. States in humid regions benefit from an additional rise in 
relative humidity than those within low humid regions. Similarly, the 
impact of wind speed on GRI is higher for states with high wind speed, 

like Florida and Kentucky. On the contrary, low windy states such as 
New York and New Jersey may not benefit from a marginal increase in 
wind speed. 

Understanding the impacts of daily local weather fluctuations on 
covid, plus other socio-economic considerations, will help inform poli-
cymakers of the appropriate policies to implement in the fight against 
covid. While lockdowns, restrictions, and other NPIs are necessary to 
bend the curve, the enforcement of these measures should be tighter in 
areas with low temperature, humidity, or wind speed. These contain-
ment policies will help reduce the viral load in the atmosphere. Also, 
given that areas with low wind speed may experience infectious aerosols 
staying on surfaces for longer hours, sanitization of surfaces should be 
prioritized in these areas. As the race to get as much people vaccinated is 
on, the need to recognize priority people, periods, and places is impor-
tant. Governments should not only focus on getting the jab into 
vulnerable people’s or critical workers’ arms but also target areas where 
the transmission tends to be more rapid due to prevailing weather 
conditions. 

5. Conclusion 

This study investigates how environmental factors affect the growth 
rate of COVID-19 transmission in the country with the highest trans-
mission incidence. The study finds that in addition to changes in human 

Fig. 4. State Regression Results. Notes: All specifications include county FE, state × day FE and are weighted by the county-level population. Standard errors are 
robust to clustering at county level. Temperature is in degrees Celsius (o C), relative humidity in percentage (%), and wind speed is in meters per sec (m/s). Outcome 
variable is growth rate of infection (GRI). Only estimates that are significant at 5% level are displayed here. 
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behavior (Chernozhukov et al., 2021; Chang and Meyerhoefer, 2020) 
and mandated government policies (restrictions) (Acemoglu et al., 2020; 
Hsiang et al., 2020), the reduction in GRI could also be linked to un-
balance in environmental factors. Specifically, an additional increase in 
any of the weather measures considered will reduce GRI by a range of 
1–8 percent. Also, these effects differ by location. Hot regions benefit 
more from temperature rise, while cold areas will benefit more from 
increased humidity and wind speed. The paper fails to accept the null 
hypothesis by early studies that weather changes do not affect covid 
outcomes. One reason these studies may have found insignificant esti-
mates could be the use of (early) data with little within weather varia-
tion (see, Wooldridge, 2010). 

The results in this paper could also inform why countries in tropical 
regions (e.g., sub-Saharan Africa) report low case count. The intuition 
follows from Kalkuhl and Wenz (2020); Dell et al. (2012), who show that 
hot areas tend to be poorer than cold countries, and Adda (2016), who 
observes that viral infections spread faster during an economic boom. 
Tying these two pieces together implies the existence of a linkage be-
tween weather, wealth, and pandemic. The results, therefore, suggest 
that warmer (and poorer) countries may experience less growth rate of 
infection.15 

The findings do not infer that nature can handle the pandemic more 
than human interventions. Since weather is exogenous, we cannot rely 
on its random occurrence to save humanity from the virus. Although 
weather fluctuations impact GRI, I believe that non-pharmaceutical in-
terventions (NPIs) are more effective in bending the curve (reducing the 
GRI) due to their endogenous nature. However, while safety measures 
are very important, the study suggests that they be taken more seriously 
in places with mild temperature, low humidity, and low wind speed. For 
example, since infectious aerosols are suspended longer in the atmo-
sphere in low humid and windy areas, mask-wearing should be 
mandated in such areas to reduce the viral load going into the atmo-
sphere. Besides, the predicted second spike during the winter period 
suggests that a fall in temperature and humidity could drive up infection 
rates. 

Some limitations to the study are as follow. The paper could not 
investigate the heterogeneous effect of weather of covid growth rate 
across age, race, and sex due to data unavailability. It is possible to 
suspect that the risk of infection will be greater for certain classes such as 
the elderly (65+), male population, and black and ethnic minorities. For 
example, a calibrated study by Ferguson et al. (2020) reports that the 
infection fatality for 80+ population is 9.3%, 2.2% for those aged 60–69, 
and 0.03% for 20–29. 

Furthermore, the impact of certain climatological variables can be 
conflated with other environmental factors that could not be accounted 
for in this study. For example, hot weather tends to increase the primary 
sources of air pollution, and highly polluted areas are prone to higher air 
transmission of covid (Conticini et al., 2020). In addition, the interaction 
between the spillover effects from extreme temperatures and high hu-
midity, such as increased mortality (Barreca, 2012; Deschênes and 
Greenstone, 2011), migration (Zeng and Bao, 2020; Deschenes and 
Moretti, 2009), and reduction in covid transmission requires further 
investigation. 

Weather fluctuation is one of the largest modifiers of human 
behavior, affecting the way diseases spread. For example, people 
generally stay indoors during winter periods, unlike summer seasons, 
which may suppress the spread of viruses. In like manner, given that 

cold seasons, such as winter, tend to be associated with rifeness of viral 
infections like the flu, people may be extrinsically motivated to act 
cautiously, especially if effectively educated.16 The above scenarios 
depict that seasonal weather changes may affect viral spread by modi-
fying human behavior, an area that provides more opportunity for 
interesting research. 

More so, there are more than a thousand confirmed strands of SARS- 
CoV-2 genome in circulation globally. These strands may differ in life 
span, viability, and communicability, as communicated in Korber et al. 
(2020), and may vary in how they respond to weather factors. 

As with other empirical models, real-world infection processes are 
more complicated than what models assume. There is tremendous het-
erogeneity in several factors that predispose a person to be confirmed as 
infected, such as degree of exposure, severity of infection, etc. It is 
practically difficult for any single model to answer all the questions or 
account for all uncertainties. Therefore, this paper contributes to an 
emerging empirical epidemiological literature that applies econometric 
techniques to understand the interaction between weather factors and 
the pandemic’s growth rate. 
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