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a b s t r a c t 

Background: Most people with cystic fibrosis (pwCF) suffer from gastrointestinal symptoms and are at 

risk of gut complications. Gut microbiota dysbiosis is apparent within the CF population across all age 

groups, with evidence linking dysbiosis to intestinal inflammation and other markers of health. This pilot 

study aimed to investigate the potential relationships between the gut microbiota and gastrointestinal 

physiology, transit, and health. 

Study design: Faecal samples from 10 pwCF and matched controls were subject to 16S rRNA sequencing. 

Results were combined with clinical metadata and MRI metrics of gut function to investigate relation- 

ships. 

Results: pwCF had significantly reduced microbiota diversity compared to controls. Microbiota composi- 

tions were significantly different, suggesting remodelling of core and rarer satellite taxa in CF. Dissimi- 

larity between groups was driven by a variety of taxa, including Escherichia coli, Bacteroides spp., Clostrid- 

ium spp., and Faecalibacterium prausnitzii . The core taxa were explained primarily by CF disease, whilst 

the satellite taxa were associated with pulmonary antibiotic usage, CF disease, and gut function met- 

rics. Species-specific ordination biplots revealed relationships between taxa and the clinical or MRI-based 

variables observed. 

Conclusions: Alterations in gut function and transit resultant of CF disease are associated with the gut mi- 

crobiota composition, notably the satellite taxa. Delayed transit in the small intestine might allow for the 

expansion of satellite taxa resulting in potential downstream consequences for core community function 

in the colon. 

© 2021 The Authors. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Cystic fibrosis (CF) associated respiratory infections are the ma- 

jor cause of disease morbidity and mortality. However, a number 

of gastrointestinal (GI) problems may also arise, limiting the qual- 

ity of life, including meconium ileus at birth, distal intestinal ob- 

struction syndrome, small intestinal bacterial overgrowth (SIBO), 
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Engineering, John Dalton Building, Chester Street, Manchester M1 5GD, United King- 

dom. 
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increased risk of malignancy, and intestinal inflammation [ 1 , 2 ]. It 

is therefore unsurprising that people with CF experience persistent 

GI symptoms [ 3 , 4 ] with “how can we relieve gastrointestinal symp- 

toms in people with CF?” a top priority question for research [5] . 

Microbial dysbiosis at the site of the GI tract in CF patients has 

been described, with changes evident from birth through to adult- 

hood [6–10] . Moreover, the extent of this divergence from healthy 

microbiota, initially due to loss of cystic fibrosis transmembrane 

conductance regulator (CFTR) function [11] , is further compounded 

by routine treatment with broad spectrum antibiotics [10] . The re- 

shaping of the gut microbiota may have functional consequences 

that could further impact on patients. These include the reduction 
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Table 1 

Clincial characteristics of study participants. 

Study I.D Sex Age (Years) Group Pancreatic Status Calprotectin (μg/g) FEV1% BMI Antibiotic Usage 

P A M β S 

365 M 12 CF PI 4.22 87 16.18 – – – + –

431 M 12 HC PS 2.44 – 17.95 – – – – –

128 M 13 CF PI 27.59 97 17.72 + – – – –

296 ∗ M 13 HC PS – – 23.44 – – – – –

643 M 13 CF PI 9.77 90 21.83 – – + – –

159 M 13 HC PS 2.72 – 23.49 – – – – –

297 M 15 CF PI 27.61 126 20.83 – – – – –

947 ∗ M 15 HC PS – – 20.94 – – – – –

617 F 15 CF PI 21.15 72 18.42 – – + + + 

964 F 15 HC PS 12.71 – 19.15 – – – – –

167 M 19 CF PI 7.37 99 20.63 – – – – –

673 M 19 HC PS 0.94 – 20.34 – – – – –

279 F 19 CF PI 27.32 66 20.87 – – + – –

205 F 19 HC PS 3.84 – 31.91 – – – – –

596 F 21 CF PI 14.05 61 21.91 – – + – –

152 F 21 HC PS 4.22 – 21.26 – – – – –

610 ∗ M 23 CF PI – 66 18.64 – + + – –

548 M 24 HC PS 3.56 – 24.49 – – – – –

619 ∗ F 27 CF PI – 60 19.27 – – – – –

501 F 27 HC PS 7.19 – 28.66 – – – – –

259 M 30 CF PI 28.30 61 20.21 – – + + –

986 M 29 HC PS 4.96 – 22.64 – – – – –

681 F 36 CF PI 11.79 88 21.71 + – + – –

749 F 35 HC PS 3.00 – 19.57 – – – – –

Subjects marked with an asterisk ∗ indicate those who failed to produce a stool sample for subsequent metagenomic and metabolomic 

analysis and thus were excluded from downstream analyses. All participants with CF had the gene mutation p.Phe508del/p.Phe508del, 

with pancreatic insufficiency but no CF-related diabetes. For antibiotic usage, ‘ + ’ indicates routine administration of the given antibiotic 

class prior to sampling. Abbreviations: FEV1 – Percent predicted forced expiratory volume in 1 second, BMI – Body mass index, P –

Polymyxin, A – Aminoglycoside, M – Macrolide, β – β-lactam, S – Sulfonamide. Asterisks denote participants who did not provide any 

stool samples upon visitation, and thus were excluded from downstream microbiota analysis. 

of taxa associated with the production of short-chain fatty acids 

(SCFAs) which play key roles in modulating local inflammatory re- 

sponses and promoting gut epithelial barrier integrity [12–14] . Fur- 

thermore, studies of microbiota dysbiosis in CF have demonstrated 

its relationship with intestinal inflammation, intestinal lesions, and 

increased gene expression relating to intestinal cancers [15–18] . 

Whilst many of these clinical parameters have ties to gut micro- 

biota changes, they remain understudied exclusively past childhood 

despite advances in less invasive approaches to investigate CF gut 

physiology and function [19] . Our group has recently published on 

the use of magnetic resonance imaging (MRI) to assess gut transit 

time, along with other parameters, in adolescents and adults [20] . 

In this pilot study, we linked those MRI physiology metrics and 

clinical metadata directly to high-throughput amplicon sequenc- 

ing data identifying constituent members of the gut microbiota, 

to explore the relationships between microbial dysbiosis, intestinal 

function and clinical state. 

2. Materials and methods 

2.1. Study participants and design 

Twelve people with CF, homozygous for p.Phe508del along with 

12 healthy controls, matched by age and gender, were recruited 

from Nottingham University Hospitals NHS Trust. Participants were 

asked to provide stool samples when attending for MRI scan- 

ning, with the study design and MRI protocols described previ- 

ously [20] . A patient clinical features were also recorded upon vis- 

itation ( Table 1 ), including a three-day food diary preceding sam- 

ple collection (Table S1). Further descriptive statistics of the study 

population can be found in the Supplementary Materials, includ- 

ing MRI metrics (Table S2), and summary statistics on diet (Tables 

S3-S6). Faecal samples were only obtained from ten individuals in 

each group. Written informed consent, or parental consent and as- 

sent for paediatric participants, was obtained from all participants. 

Study approval was obtained from the West Midlands Coventry 

and Warwickshire Research Ethics Committee (18/WM/0242). All 

stool samples obtained were immediately stored at −80 °C prior 

to DNA extraction to reduce changes before downstream commu- 

nity analysis [21] . 

2.2. Targeted amplicon sequencing 

DNA from dead or damaged cells, as well as extracellular 

DNA was excluded from analysis via cross-linking with propidium 

monoazide (PMA) prior to DNA extraction, as previously described 

[22] . Next, cellular pellets resuspended in PBS were loaded into the 

ZYMO Quick-DNA fecal/Soil Microbe Miniprep Kit (Cambridge Bio- 

science, Cambridge, UK) as per manufacturer’s instructions, with 

the following amendments: ZR BashingBead Lysis Tubes were re- 

placed with standard 1.5 mL Eppendorf tubes loaded with ZYMO 

Beads for mechanical homogenisation with the use of a Retsch 

Mixer Mill MM 400 (Retsch, Haan, Germany). Samples were ho- 

mogenised for 2 min at 17.5/s frequency. Following DNA extraction, 

approximately 20 ng of template DNA was then amplified using 

Q5 high-fidelity DNA polymerase (New England Biolabs, Hitchin, 

UK) using a paired-end sequencing approach targeting the bacte- 

rial 16S rRNA gene region (V4-V5). Primers and PCR conditions can 

be found in the Supplementary Materials. Pooled barcoded ampli- 

con libraries were sequenced on the Illumina MiSeq platform (V3 

Chemistry). 

2.3. Sequence processing and analysis 

Sequence processing and data analysis were initially carried out 

in R (Version 4.0.1), utilising the package DADA2 [23] . The full pro- 

tocol is detailed in the Supplementary Materials. Raw sequence 

data reported in this study has been deposited in the European 

Nucleotide Archive under the study accession number PRJEB44071. 
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2.4. Faecal calprotectin 

Stool was extracted for downstream assays using the ScheBo®

Master Quick-Prep (ScheBo Biotech, Giessen, Germany), according 

to the manufacturer instructions. Faecal calprotectin was analysed 

using the Bühlmann fCAL ELISA (Bühlmann Laboratories Aktienge- 

sellschaft, Schonenbuch, Switzerland), according to the manufac- 

turer’s protocol. 

2.5. Statistical analysis 

Regression analysis, including calculated coefficients of determi- 

nation ( r 2 ), degrees of freedom (df), F -statistic and significance val- 

ues ( P ) were calculated using XLSTAT v2021.1.1 (Addinsoft, Paris, 

France). Fisher’s alpha index of diversity and the Bray-Curtis in- 

dex of similarity were calculated using PAST v3.21 [24] . Significant 

differences in microbiota diversity were determined using Kruskal- 

Wallis performed using XLSTAT. Analysis of similarities (ANOSIM) 

with Bonferroni correction was used to test for significance in mi- 

crobiota composition and was performed in PAST. Similarity of per- 

centages (SIMPER) analysis, to determine which taxa contributed 

most to compositional differences between groups, was performed 

in PAST. 

Redundancy analysis (RDA), was performed in CANOCO v5 

[25] . Following the determination of clinical variables signifi- 

cantly explanatory for microbiome composition, RDA biplots with 

these variables were plotted in PAST v3.21. Statistical significance 

for all tests was deemed at the p ≤ 0.05 level. Supplemen- 

tary information, including metadata, are available at figshare.com 

under https://doi.org/10.6084/m9.figshare.15073797.v1 and https:// 

doi.org/10.6084/m9.figshare.15073899.v1 . 

3. Results 

To investigate the contributions of common and rare bacte- 

rial taxa in the gut microbiota of individuals within and between 

study cohorts [ 26 , 27 ], taxa were partitioned into either com- 

mon and abundant core taxa or rarer and infrequent satellite taxa, 

based upon their prevalence and relative abundance across sam- 

ples within each cohort ( Fig. 1 ). Within the healthy control group, 

30 taxa were core constituting 60.5% of the total abundance, with 

the remainder accounted for by 386 satellite taxa. In the CF group, 

22 core taxa represented 34.7% of the abundance, with 323 satel- 

lite taxa constituting the remainder. Core taxa are listed in Table 

S7. The whole, core, and satellite microbiota demonstrated similar 

patterns in diversity, whereby there was significantly reduced di- 

versity in the CF group ( Fig. 2 A , Table S8). 

Within-group core microbiota similarity was higher within the 

healthy control group, with a mean similarity ( ± SD) of 0.60 ± 0.08 

compared to 0.40 ± 0.11 for the CF group ( Fig. 2 B). As expected, 

satellite taxa similarity within groups was much lower than for 

the core but was also significantly reduced in CF compared to con- 

trols, at 0.35 ± 0.08 and 0.21 ± 0.09 for the healthy control and CF 

group respectively. ANOSIM testing determined the whole micro- 

biota, core, and satellite taxa of the CF group were significantly dif- 

ferent in composition compared to healthy controls ( Fig. 2 B, Table 

S9). SIMPER analysis was implemented to reveal which taxa were 

responsible for driving this dissimilarity ( Table 2 ). Of the taxa con- 

tributing to > 50% of the differences between healthy control and 

CF groups, those within the genus Bacteroides were represented 

most. Escherichia coli contributed most towards the differences be- 

tween groups, despite satellite status, followed by Bacteroides sp. 

(OTU 3), Clostridium sp. (OTU 5), Faecalibacterium prausnitzii , and 

Bacteroides fragilis . 

Redundancy analysis (RDA) was used to relate variability in mi- 

crobiota composition to associated MRI metrics and clinical fac- 

Fig. 1. Distribution and abundance of bacterial taxa across different sample groups. 

(A) Healthy control. (B) Cystic fibrosis. Given is the percentage number of patient 

stool samples each bacterial taxon was observed to be distributed across, plotted 

against the mean percentage abundance across those samples. Core taxa are de- 

fined as those that fall within the upper quartile of distribution (orange circles), and 

satellite taxa (grey circles) defined as those that do not, separated by the vertical 

line at 75% distribution and labelled respectively. Distribution-abundance relation- 

ship regression statistics: (a) r 2 = 0.50, F 1, 414 = 407.3, P < 0.0 0 01; (b) r 2 = 0.29, 

F 1, 343 = 137.3, P < 0.0 0 01. Core taxa are listed in Table S7. 

tors ( Table 3 ). Pulmonary antibiotics and CF disease significantly 

explained the most variance across the whole and satellite micro- 

biota. Measurements of intestinal transit and function contributed 

to the whole microbiota variance, albeit to a lesser extent, with 

variation in OCTT and SWBC also contributing to satellite taxa vari- 

ance alongside faecal calprotectin levels. In the core taxa analysis, 

the presence of CF disease was the dominant factor in significantly 

explaining the compositional variability, followed by sex and body 

mass index (BMI). 

A species redundancy analysis biplot (RDA) was constructed to 

investigate how significant clinical variables from the whole micro- 

biota direct ordination approach explained the relative abundance 

of taxa from the SIMPER analysis ( Fig. 3 ). Certain taxa grouped 

away from many of the significant clinical variables shown in a 

similar manner. This effect was most pronounced for F. praus- 

nitzii, Eubacterium rectale and Ruminoccocus bromii . A combination 

of clinical factors, including CF disease, increased fasting colonic 

volume, increased SBWC and prolonged OCTT, explained the vari- 

ance observed in relative E. coli abundance, whilst a more modest 

effect was observed towards Streptococcus sp. (OTU 18), Dialister in- 

visus, Clostridium perfringens and Romboutsia timonensis . Species of 

Bacteroides , which was the most common genus within the top- 

contributing SIMPER analysis, were explained by the clinical vari- 

ables to high variability. 
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Fig. 2. Microbiome diversity and similarity compared across healthy controls and cystic fibrosis samples. Whole microbiota (black plots) and partitioned data into core 

(orange plots) and satellite taxa (grey plots) are given. ( A ) Differences in Fisher’s alpha index of diversity between healthy controls and cystic fibrosis samples. Black circles 

indicate individual patient data. Error bars represent 1.5 times inter-quartile range (IQR). Asterisks between groups denote a significant difference in diversity following use 

of Kruskal-Wallis tests ( P < 0.001). Summary statistics are provided in Table S8. ( B ) Microbiome variation measured within and between sampling groups, utilising the 

Bray-Curtis index of similarity. Error bars represent standard deviation of the mean. Asterisks indicate significant differences between sampling groups following the use of 

one-way ANOSIM testing ( P < 0.001). Summary statistics are provided in Table S9. 

4. Discussion 

In this pilot study, we investigated the relationships between 

clinical factors, MRI markers of GI function and the composition 

of faecal bacterial microbiota. Demonstrated previously for CF lung 

and Crohn’s gut microbiota [ 26 , 27 ], we have shown here that it 

is possible to partition the CF gut microbiota into core and satel- 

lite taxa to investigate potential community functions and relation- 

ships, with the notion that the core constituents contribute to the 

majority of functionality exhibited by the community [ 22 , 26 ]. As to 

be expected, the core taxa made up most of the abundance within 

the healthy control group. Whilst many taxa were also commonly 

represented in the CF group, the latter was dominated in abun- 

dance by the satellite taxa. Our findings of reduced diversity across 

the whole, core, and satellite microbiota are in agreement with 

previous findings described within the CF gut [ 7 , 8 , 10 ]. Along with 

reduced within group similarity in CF compared to healthy controls 

across all microbiota partitions, this suggests a perturbed com- 

munity harbouring greater instability, less subsequent resilience, 

and inherent challenges to the colonisation and establishment of 

normal commensals. CF associated factors such as varied antibi- 

otic usage will contribute to this reduced similarity, further aug- 

mented by the wide age range of pwCF within this study and 

variation across lifestyle factors. The combination of the aforemen- 

tioned may elicit stochastic community disruption and increased 

inter-individual variation as observed across other mammalian mi- 

crobiomes [28] . 

At the surface, a reduction in the number of taxa labelled as 

core within the CF group hinted at perturbation and restructur- 

ing, further evidenced by the occurrence of taxa exclusively core 

to this group. This included species of Streptococcus, Pseudomonas, 

Veillonella , and Enterococcus , all of which were significantly more 

abundant in the CF group (Table S7), and of which are implicated 

in both CF lung and gut microbiomes [ 8 , 11 , 18 , 26 , 29 , 30 ]. The con- 

cept of the “gut-lung axis” in CF arises from the direct translo- 

cation of the respiratory microbiota from sputum swallowing to 

the gut [31] , but also the emergence of species in the gut prior 

to the respiratory environment [30] . This apparent bidirectional- 

ity is further supported by the administration of oral probiotics 

to decrease pulmonary exacerbations in CF [32] . Aside from spu- 

tum swallowing, the increase in Streptococcus and Veillonella here 

could reflect an increased availability of simple carbohydrates from 

the observed dysmotility of the gut [20] . Streptococci are well 

equipped with numerous genes for rapid carbohydrate degradation 

in an environment usually fluctuating in substrate availability, with 

fermentation-derived lactic acid supporting the expansion of Veil- 

lonella species in the small intestine [33] . 

E. coli contributed most to the dissimilarity between healthy 

and CF groups despite maintaining satellite status throughout both 

the healthy and CF groups, seemingly resultant of the wide age 

range of our study participants, of which the higher relative abun- 

dances were observed in the younger adolescent patients ( Table 2 ). 

In childhood studies, a significantly higher relative abundance of 

Proteobacteria is often reported in relation to dysbiosis, with E. coli 

abundance associating with poor growth outcomes and intestinal 

inflammation [34–36] . Other notable taxa contributing to the dis- 

similarity observed between groups encompassed a variety of key 

species associated with SCFA production in the colon. This included 
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Table 2 

Similarity of percentage (SIMPER) analysis of microbiota dissimilarity (Bray-Curtis) between Healthy Control (HC) and Cystic Fibrosis (CF) stool samples. 

Taxa identified as core are highlighted in orange, whereas satellite taxa are highlighted in grey. Mean relative abundance (%) is also provided for each group. 

Percentage contribution is the mean contribution divided by the mean dissimilarity across samples (73.79%). Cumulative percent does not equal 100% as the 

list is not exhaustive. Given the sequencing length of 16S gene regions, taxon identification should be considered putative. 

Table 3 

Redundancy analysis to explain percent variation in whole microbiota, core taxa and satellite taxa between all subjects from significant 

clinical variables measured. 

Microbiota Core taxa Satellite taxa 

Var. Exp (%) pseudo- F P (adj) Var. Exp (%) pseudo- F P (adj) Var. Exp (%) pseudo- F P (adj) 

Antibiotics 21.5 5.4 0.002 27.1 7.3 0.002 

BMI 7.0 2.0 0.042 

Calprotectin 5.9 1.8 0.050 

CF Disease 10.9 2.2 0.002 28.9 7.3 0.002 10.3 2.1 0.006 

Colon Fasting Vol. 7.5 2.0 0.016 

OCTT 7.4 2.1 0.012 6.7 1.9 0.046 

SBWC 5.6 1.7 0.048 7.2 2.4 0.048 

Sex 7.9 2.1 0.010 

Total 52.9 43.8 57.2 

Var. Exp (%) represents the percentage of the microbiota variation explained by a given parameter within the redundancy analysis model. 

P (adj) is the adjusted significance value following false discovery rate correction. Antibiotics is the presence/absence of recurrent antibiotic 

regimes for a given patient. BMI – Body mass index, Colon Fasting Vol – Colon volume at baseline corrected for body surface area, OCTT –

Oro-caecal transit time, Antibiotics, SBWC – Small bowel water content corrected for body surface area. 

F. prausnitizii and E. rectale, both of which were significantly de- 

creased in abundance within the CF group, but also R. bromii and 

B. luti . These taxa have all been previously reported to decrease in 

the CF gut [ 8 , 29 , 37 ] alongside other inflammatory conditions [38] . 

There were also notable contributions to the dissimilarity between 

groups by Clostridium sp. (OTU 5) (significant difference in rela- 

tive abundance) and D. invisu s (not significant). Clostridium OTU 5 

aligned exclusively with cluster I members at the 97% threshold, of 

whom demonstrate the capacity to generate lactate, acetate, pro- 

pionate, and butyrate via carbohydrate fermentation [39] , whilst 

D. invisu s is an intermediary fermenter capable of both acetate 

and propionate production. This may lend support to the theory 

that alternate species can retain some functional redundancy in the 

presence of perturbation to the local community in the CF gut [40] . 

Variance across the whole microbiota and satellite taxa was sig- 

nificantly explained by the use of antibiotics ( Table 3 ), of which 

most pwCF are administered on a routine basis to supress lung in- 

fection [41] . The occurrence of both OCTT and SBWC accounting 

for significant explanation in both the whole microbiota and satel- 

lite, but not core taxa analysis, underpins the strong impact of gut 

physiology and transit on the microbiota in CF. Faecal calprotectin 

also explained the variance across the satellite taxa, and has been 
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Fig. 3. Redundancy analysis species biplots for whole microbiota. The 20 taxa contributing most to the dissimilarity (cumulatively > 50%) between healthy and cystic fibrosis 

groups from the SIMPER analysis ( Table 2 ) are shown independently of the total number of ASVs identified (345). Orange circles represent core taxa within the CF group, 

whilst grey circles denote satellite taxa. Biplot lines depict clinical variables that significantly account for the total variation in taxa relative abundance within the whole 

microbiota analysis at the p ≤ 0.05 level as seen in Table 3 , with species plots indicating the strength of explanation provided by the given clinical variables. ‘OCTT’ –

Oro-caecal transit time, Antibiotics, ‘SBWC’ – Small bowel water content corrected for body surface area, Colon Fasting Volume corrected for body surface area, CF disease. 

For example, biplot lines depicting the MRI metrics represent how changes in the metric influences the relative abundance of each of the taxa shown. Those taxa shown in 

the same direction of the metric label are considered to have a higher value than those taxa that are not. The percentage of microbiome variation explained by each axis is 

given in parentheses. 

associated with increased abundances of Escherichia, Streptococcus, 

Staphylococcus and Veillonella , of which contained satellite species 

significantly increased in our CF group [ 29 , 42 ]. Acidaminococcus sp. 

have also associated with increased faecal calprotectin levels [18] , 

with Acidaminococcus intestinii another constituent of the CF satel- 

lite microbiota that was not present in healthy controls (data not 

shown). The core taxa was only largely explained by the presence 

of CF disease itself, perhaps relating to the direct disruption of 

CFTR function which alone can influence changes in the micro- 

biome [42] . 

Perhaps unsurprisingly, the species ordination biplots of the 

taxa from SIMPER analysis demonstrated clustering of the key SCFA 

producers mentioned previously away from the significant disease- 

associated clinical factors, with antibiotic usage and transit metrics 

previously shown to reduce the abundance of such taxa [ 15 , 43 ]. 

Similarly affected were taxa from genera that are associated with 

better outcomes in other similarly pro-inflammatory intestinal en- 

vironments, such as Crohn’s disease or ulcerative colitis, including 

Oscillibacter and Fusicanterbacter [ 44 , 45 ]. 

C. perfringens has been associated with disease exacerbation 

in ulcerative colitis [38] , SIBO in the CF mouse small intestine 

[46] and increased deconjugation of bile salts leading to further 

fat malabsorption by the host [47] . Here it was completely absent 

from our healthy control group, whilst in the CF group was found 

to associate with a variety of CF-induced clinical factors as well as 

OCTT. Also strongly associating with OCTT and impacted substan- 

tially more, was E. coli . Increased bacterial load relates to slower 

transit within the CF mouse small intestine [47] . Concurrently with 

the observed increase in SWBC reported prior [20] , this in theory 

allows for the expansion of such facultative anaerobes in the small 

intestine that could potentially affect downstream community dy- 

namics and functional profiles in the colon, given that PMA treat- 

ment was utilised to select for viable living taxa from faecal sam- 

pling. 

Although dietary profiles were similar between groups (Tables 

S3–6) and did not contribute to significant variation in the micro- 

biota, increased fat intake to meet energy requirements is a staple 

of the CF diet [48] . The infant gut metagenome demonstrates en- 

richment of fatty acid degradation genes [34] whilst CF-derived E. 

coli strains exhibit improved utilisation of exogenous glycerol as a 

growth source [49] . Finally, the genus Bacteroides , which has been 

reported to both increase and decrease within CF disease across 

different age groups [ 8 , 11 , 15 ], displayed high variability within the 

species ordination biplot ( Fig. 3 ), perhaps resultant of the varying 

antimicrobial susceptibility within the genus [50] . 

We acknowledge the small sample size of this pilot study lim- 

its the power of specific analyses, with the absence of within- 

group direct ordination approaches which would have allowed for 

investigation of CF group antibiotic usage and extra clinical fac- 

tors such as lung function. However, the principle strength of this 
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study is the valuable insight into the relationships between mi- 

crobiota composition and intestinal physiology and function in CF. 

Future studies should encompass larger cohorts in a longitudinal 

fashion with the combination of both lung and faecal microbiota 

data to elucidate such relationships better, including the impact of 

pulmonary antibiotic usage on the gut microbiota, and the aptly 

termed gut-lung axis. Evaluation of associations between the mi- 

crobiota, physiology and the immune response would also improve 

our understanding of the mechanisms contributing to GI health in 

CF. Given their possible beneficial effect on intestinal inflammation 

[51] , the impact of CFTR modulator therapy will provide further in- 

sights. 

5. Conclusion 

This cross-sectional pilot study has identified relationships be- 

tween markers of clinical status, gastrointestinal function and bac- 

terial dysbiosis in the CF population. By partitioning the commu- 

nity into core and satellite taxa, we were able to reveal the rela- 

tive contributions of CF-associated lifestyle factors and elements of 

intestinal function to these subcommunity compositions, and how 

specific taxa were affected by these clinical factors. Further, as the 

first study to combine high-throughput gene amplicon sequencing 

with non-invasive MRI to assess underlying gut pathologies, we 

demonstrate the potential for future collaborations between gas- 

troenterology and microbiology with larger cohort recruitment to 

investigate these relationships between gut function and the mi- 

crobiome further. 
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