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Introduction: The airway microbiota has been linked to specific paediatric respiratory
diseases, but studies are often small. It remains unclear whether particular bacteria
are associated with a given disease, or if a more general, non-specific microbiota
association with disease exists, as suggested for the gut. We investigated overarching
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patterns of bacterial association with acute and chronic paediatric respiratory disease
in an individual participant data (IPD) meta-analysis of 16S rRNA gene sequences from
published respiratory microbiota studies.

Methods: We obtained raw microbiota data from public repositories or via
communication with corresponding authors. Cross-sectional analyses of the paediatric
(<18 years) microbiota in acute and chronic respiratory conditions, with >10 case
subjects were included. Sequence data were processed using a uniform bioinformatics
pipeline, removing a potentially substantial source of variation. Microbiota differences
across diagnoses were assessed using alpha- and beta-diversity approaches, machine
learning, and biomarker analyses.

Results: We ultimately included 20 studies containing individual data from 2624
children. Disease was associated with lower bacterial diversity in nasal and lower airway
samples and higher relative abundances of specific nasal taxa including Streptococcus
and Haemophilus. Machine learning success in assigning samples to diagnostic
groupings varied with anatomical site, with positive predictive value and sensitivity
ranging from 43 to 100 and 8 to 99%, respectively.

Conclusion: IPD meta-analysis of the respiratory microbiota across multiple diseases
allowed identification of a non-specific disease association which cannot be recognised
by studying a single disease. Whilst imperfect, machine learning offers promise as a
potential additional tool to aid clinical diagnosis.

Keywords: microbiota (16S), respiratory tract, respiratory infection, paediatrics, meta-analysis, individual
participant data (IPD) meta-analysis

INTRODUCTION

The human respiratory tract has long been of interest to
clinicians and microbiologists, with a traditional focus on single,
putatively pathogenic microorganisms (Huang and Lynch, 2011).
More recent research, enabled by advances in DNA sequencing,
has revealed the existence of complex bacterial communities
(microbiota) throughout the airways of even healthy individuals
(Charlson et al., 2011; Man et al., 2017; Cox et al., 2019). While
a protective function of the respiratory microbiota has been
proposed (Man et al., 2017), it is increasingly apparent that
a microbiota imbalance, or dysbiosis, is frequently associated
with disease. Understanding how, or even if, patterns within
the microbiota correspond to different respiratory diagnoses is
a key challenge.

Respiratory disease in children is a known risk factor for
chronic disease in adulthood (Grimwood and Chang, 2015;
Bui et al., 2018; Zhang, 2020). As such, any reduction in
childhood disease burden could also improve the outlook for
adult respiratory health. In particular, respiratory infections in
children are associated with future impaired lung function as
adults (Zhang, 2020). While connections between paediatric and
adult respiratory disease remain enigmatic, it is likely that the
airway microbiota plays a role. Indeed, atypical development
of the infant upper airway microbiota has been linked to
unfavourable respiratory outcomes in older children (Biesbroek
et al., 2014; Teo et al., 2015), a pattern which may continue into

adulthood. These findings, together with the role of microbes
in early life immune education and evidence for a shared
core microbiota across different respiratory diseases in children
but not adults (van der Gast et al., 2014), suggest a potential
therapeutic window aiming at a beneficial microbiota (e.g., via
probiotics or targetted antibiotics). Although the microbiota of
the upper airway may not contribute directly to pathogenesis of
lower airway disease, it nonetheless demands consideration both
as a reservoir for lower airway microorganisms as well as being a
more clinically accessible site.

Studying the respiratory microbiota in children brings
challenges including logistical and ethical considerations with
sampling the paediatric lower airway and inherent difficulties
with low-microbial-biomass samples (Marsh et al., 2018).
Consequently, understanding of the paediatric respiratory
microbiota is not as developed as for other organs with more
accessible specimens, such as the bowel. However, with an
ever-increasing body of studies, and a field that is already
starting to look beyond the typical sequencing of amplified
bacterial 16S rRNA genes, it is both feasible and timely to
examine what these data as a whole reveal about the microbiota
and paediatric respiratory illness. Indeed, rigorous examination
of existing data should serve to guide future application of
approaches based on microbial function, such as metagenomics
and metatranscriptomics (Ritchie and Singanayagam, 2020).

Variation within the human microbiota is considerable, with
differences among individuals sometimes swamping signals
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from clinical factors such as disease (Biswas et al., 2015).
Further challenges arise due to a lack of standardisation among
studies, such as anatomical site sampled, collection technique,
DNA extraction method, 16S rRNA gene region sequenced,
and bioinformatics approach. This signals the need for large
sample numbers which are not always feasible in paediatric
respiratory studies. By combining individual participant data
(IPD) from multiple studies, IPD meta-analyses help identify
biologically and/or clinically relevant patterns that may not
otherwise be detected in small, unstratified studies. Standardised
bioinformatics pipelines for re-processing microbiota data from
multiple studies have been successfully applied to the human gut
(Duvallet et al., 2017), sinus (Wagner Mackenzie et al., 2017), and
cystic fibrosis (CF) lung microbiotas (Li et al., 2016).

The value of contextualising results across multiple diseases
was eloquently demonstrated by Duvallet et al. (2017) in a
recent IPD meta-analysis of the gut microbiota. As this approach
has never been done for respiratory microbiota across a range
of acute and chronic childhood diseases, we collated and re-
analysed published 16S rRNA gene-based microbiota data from
20 studies encompassing such diagnoses. We aimed to test
several hypotheses, namely that: (a) the airway microbiota differs
between health and disease; (b) there is a consistent microbiota
signature in children with lower airway disease, irrespective of
specific diagnosis; and (c) airway microbiota profiles can be used
to detect lower airway disease.

MATERIALS AND METHODS

Study Selection Strategy
To identify publications with 16S rRNA gene sequence data
from cross-sectional analyses containing paediatric respiratory
samples, Scopus and PubMed databases were searched on
January 2, 2018 using 25 search terms (Supplementary File A).
To be included in the analysis studies could only have a single
timepoint per individual within that publication and investigate
one of the following illnesses: bronchiolitis, bronchiectasis,
CF, asthma, wheeze, acute respiratory infections, chronic
suppurative lung disease, and protracted or persistent bacterial
bronchitis. Studies which focused on lung transplants, individuals
undergoing mechanical ventilation, contained 10 or fewer disease
samples, or where age, sex, or diagnosis were unclear, were
excluded. We also contributed new, at the time unpublished, data
of our own (Pillarisetti et al., 2019). Overall, we obtained data
from 4884 samples across 21 studies. Separate ethics approvals
had been obtained for each original study and the University of
Auckland Human Participants Ethics Committee deemed that
re-use of these published data did not require additional approval.

Sequence Data Processing
We used a uniform bioinformatics pipeline to analyze all
of the included studies (code is supplied in Supplementary
Material). The analysis pipeline utilised USEARCH (v.11.0667)
(Edgar, 2010) for quality filtering and, where applicable, merging
of paired-end reads, after which reference gene alignment
and chimaera removal (chimera.uchime) (Edgar et al., 2011)

were performed using mothur (v1.38.1) (Schloss et al., 2009).
Taxonomic classification (classify.otu) was performed in mothur
using the SILVA SSU database (v132) as reference (Quast et al.,
2012). Sequences assigned to non-bacterial lineages or that could
not be identified to genus level were removed. Reprocessing
of the data led to removal of 557 samples not containing
any reads which could be identified at genus level through
our uniform pipeline. The wide range of sequenced 16S rRNA
regions (Supplementary File A and Supplementary Figure E1)
necessitated a genus-level phylotype approach (Waite and Taylor,
2014; Callahan et al., 2017). Following data reprocessing,
our uniformly applied bioinformatics approach was able to
successfully recapitulate most testable claims identified in the
original papers, across multiple normalisation approaches and
rarefaction depths (Supplementary File C). Removal of samples
with <1000 sequences (348 total) resulted in removal of a
single study (Langevin et al., 2017), as retention of only 8% of
their samples meant this study could not be fairly represented.
Hence, only 20 studies were ultimately included. Following
normalisation, pseudoreplication bias (i.e., over-representation
of a particular bacterial community) was avoided by splitting data
into four broad anatomical sites with distinct physicochemical
features [nasal, oral, sputum, lower airways (bronchoalveolar
lavage or bronchial brushings)] (Marsh et al., 2016; Man et al.,
2017; Ronchetti et al., 2018), and avoiding cross-site comparisons.
Ultimately, 2789 samples (from 2624 individuals) were retained.

Defining Diagnostic Groupings
Given variations in how clinical diagnoses are reported across
studies, we grouped reported diagnoses into separate groups
on two levels. The first, broad level grouped diagnoses into (a)
controls, comprising individuals deemed healthy or suitable
to use as disease controls in the original study; and (b)
disease, comprising individuals with diagnosed respiratory
disease. For the second, more nuanced level we defined seven
mutually exclusive diagnostic groupings: acute infections,
asthma, CF, disease control, healthy, suppurative lung diseases
(e.g., bronchiectasis, protracted bacterial bronchitis), and
wheezing illness.

Data Analysis
Statistical analyses were performed in R (v3.6.2) (R Core Team,
2019), using vegan (Jari et al., 2015) for diversity calculations,
and ggplot2 (Wickham, 2016) for generating plots. Genus-level
phylotypes differing significantly between diagnostic groupings
were identified using linear discriminant analysis effect size
(LEfSe) (Segata et al., 2011). We identified the core microbiota
for specific anatomical sites and diagnostic groupings by applying
a prevalence threshold of ≥75% in the relevant samples, and an
abundance filter whereby a genus must represent ≥10% in at
least one sample.

Sensitivity Analyses
In addition to anatomical site and clinical condition, we
attempted to account for other factors affecting the respiratory
microbiota. In sensitivity analyses we examined effect of
participant age, data normalisation approach and influence of
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two specific studies on our overall findings. While results shown
here are based on rarefaction to 1000 sequence reads/sample,
we also considered a size factor-based normalisation approach
(GMPR) (Chen et al., 2018). This allowed for an accounting
of the flaws in each method, namely data compositionality in
rarefaction and bias caused by differing sequencing depths in
GMPR. The data from one study (Wang et al., 2016) formed
a distinctly separate cluster in ordination (principle coordinates
analysis, multidimensional scaling) analyses (Supplementary
Figure E6). The second study (Luna et al., 2018) represented
such a large proportion of the overall dataset that we
had concerns our findings could simply reflect that study’s
original findings. To test for any such effects, we: (a)
eliminated all samples from a particular category (e.g., a
specific age group/study) then repeated the analyses; and (b)

retained only samples pertaining to the single category in
question and re-analysed these independently. Both approaches
aimed to determine whether our initial overall findings could
be recapitulated.

Machine Learning
To determine whether diagnostic groups could be identified
based only on microbiota composition, machine learning trials
were performed on rarefied data in python (Pedregosa et al.,
2011). For this, 60% of samples from a given anatomical site
were selected at random to use as training data, with the
remaining 40% used for validation. Of five different initial
approaches [random forest; neural network; support vector
machine (SVM): linear; SVM: radial bias function; SVM:
polynomial], random forest was most successful across the

FIGURE 1 | Schematic showing protocol for selecting meta-analysis studies.
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majority of trials. Success in this context was determined
by the accuracy value (the fraction of correct calls over all
calls) (Sokolova et al., 2006). The random forest approach was
then applied independently to both the rarefied and GMPR-
normalised datasets using the training and validation strategy
outlined above. In addition, for both normalisation methods
we generated a sample dataset in which the contribution of
different diagnostic groupings was set as equivalent to account
for differences in sample numbers. These final machine learning
approaches were assessed for both their positive predictive value
(defined as the fraction of calls of a diagnostic grouping which
are correct) and sensitivity (defined as the fraction of samples
within a diagnostic grouping which are correctly identified) for
all specific diagnostic groupings.

For more details see Supplementary File A.

RESULTS

In total, 1806 potentially eligible studies were identified by
literature database searches, of which 347 required screening
and evaluation against specific criteria (Supplementary File A).
Thirty eligible datasets were ultimately interrogated, and we

were able to access 16S rRNA gene sequences and essential
metadata for 20 of these, in addition to our own new data
(Pillarisetti et al., 2019; Figure 1). After removal of one study
(Langevin et al., 2017) due to low sample retention, ultimately
20 datasets were included.

Bioinformatic processing using a uniform analysis pipeline
resulted in a final dataset comprising 2789 samples, from
2624 individuals. Following sequence data reprocessing,
the assembled dataset encompassed 20 unique studies
(Table 1) spanning chronic and acute diagnoses, multiple
anatomical sites, and 11 countries. Technical, clinical, and
demographic heterogeneity were considerable (Table 2).
While use of a uniform bioinformatics pipeline is expected
to reduce some underlying data variation, other technical
factors such as sequencing technology used, 16S rRNA gene
region sequenced, and DNA extraction method could not
be readily controlled. This was evident in that the variables
“Study,” “Extraction method,” “16S rRNA gene region,” and
“sequencing platform” accounted for 12.4, 6.75, 4.76, and
0.438% of underlying data variation, respectively, according
to PERMANOVA analysis (Table 3). The most substantial
of these technical factors was DNA extraction method, as
accounting for this factor could reduce the explanatory power

TABLE 1 | Summary of studies which contributed to the final dataset; for more detailed summaries see Supplementary File A (Supplementary Tables E2–E5).

Studys Age (years) Sample site(s) Disease N disease Control
individuals

N control

Cardenas et al., 2012 0.5–1.083 OP Early onset wheeze 21 Healthy 23

Cuthbertson et al., 2017 0.8–15.4 Bronchial brushings PBB 23 Healthy 19

de Steenhuijsen Piters et al., 2016 0.025–1.83 NP RSV infections 105 Healthy 26

Hampton et al., 2014 9.86–17.58 IS Cystic fibrosis 13

Kelly et al., 2017 0.083–1.99 NP Pneumonia
URI symptoms

374
82

Control 90

Kim et al., 2017 6–14 NP Asthma
Asthma remission

26
17

Healthy 21

Lu et al., 2017 0.1–12.7 NP, OP Pneumonia 120 Healthy 113

Luna et al., 2018 0.027–1 NP Bronchiolitis 814

Marsh et al., 2016* 0.4–10.1 BAL, NP, OP Bronchiectasis
CSLD
PBB

46
6

21

Disease control 9

Perez-Losada et al., 2016 6–17 NP Asthma 29

Pettigrew et al., 2016 0.50–17.25 IS Pneumonia 310

Pillarisetti et al., 2019* 0.9–16 Anterior nares, BAL Bronchiectasis 54 Healthy 26

Ruokolainen et al., 2017 14–17 Anterior nares Asthma 9 Healthy 118

Sakwinska et al., 2014 0.2–5.0 NP Pneumonia 14 Healthy 2

van der Gast et al., 2014 0.63–16.85 BAL, sputum Bronchiectasis
Cystic fibrosis

PBB

12
18
9

Wang et al., 2016 0.3–9 BAL Pneumonia 22 Tracheomalacia 12

Williamson et al., 2017 1.5–1.7 ES, OP CFTR-related
Cystic fibrosis

1
68

Yi et al., 2014 0–13 OP Acute infection 25

Zemanick et al., 2015 8.49–17.89 ES, IS, OP, saliva Cystic fibrosis 30

Zemanick et al., 2017 0.166–17.0 BAL Cystic fibrosis 50 Disease control 11

*Denotes inclusion of multiple samples for some individuals. Diagnoses are as reported in the original papers.
BAL, bronchoalveolar lavage; CFTR, cystic fibrosis transmembrane conductance regulator; CSLD, chronic suppurative lung disease; ES, expectorated sputum; IS,
induced sputum; NP, nasopharyngeal; OP, oropharyngeal; PBB, protracted bacterial bronchitis; RSV, respiratory syncytial virus; URI, upper respiratory infection.
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TABLE 2 | Summary of technical factors associated with each of the included studies.

Studys Sampling
site(s)

Sampling
method

% eligible
samples retained

DNA extraction method 16S rRNA gene
region

Sequencing
technology

Cardenas et al., 2012 OP Swab 91.7 QIAamp V3–V5 454

Cuthbertson et al., 2017 LA Brushings 66.7 MPBio FastDNA Spin Kit for Soil V4 MiSeq

de Steenhuijsen Piters et al., 2016 NP Swab 99.2 NucliSENS V5–V7 454

Hampton et al., 2014 SP Induced 100 Gentra PureGene Yeast/Bact. Kit V4–V6 454

Kelly et al., 2017* NP Swab 99.6 In-house protocol V3 MiSeq

Kim et al., 2017 NP Swab 69.6 PowerMag RNA/DNA Isolation Kit V1–V3 454

Langevin et al., 2017** NP Unknown 8.3 NucliSENS V1–V3 MiSeq

Lu et al., 2017 NP Swab 98.3 PowerSoil V3–V4 MiSeq

OP Swab 97.5 PowerSoil V3–V4 MiSeq

Luna et al., 2018*** NP Aspirate 99.9 PowerSoil V4 MiSeq

Marsh et al., 2016 NP Swab 7.8 QIAamp V1–V3 454

OP Swab 71.8 QIAamp V1–V3 454

LA BAL 26.3 QIAamp V1–V3 454

Perez-Losada et al., 2016 NP Aspirate 96.7 QIAamp V4 MiSeq

Pettigrew et al., 2016**** SP Induced 100 NucliSENS V4 MiSeq

Pillarisetti et al., 2019 AN Swab 97.3 Qiagen AllPrep V3–V4 MiSeq

LA BAL 61.4 Qiagen AllPrep V3–V4 MiSeq

Ruokolainen et al., 2017 AN Swab 70.2 MPBio FastDNA Spin Kit for Soil V1–V3 454

Sakwinska et al., 2014***** NP Swab 32.7 In-house protocol V4 454

van der Gast et al., 2014 LA BAL 61.9 In-house protocol V1–V3 454

SP Unknown 74.3 In-house protocol V1–V3 454

Wang et al., 2016 LA BAL 100 E.Z.N.A Soil DNA Kit V3–V4 MiSeq

Williamson et al., 2017 OP Swab 48.8 Qiagen EZ1 V1–V2 MiSeq

SP Expectorated 35.9 Qiagen EZ1 V1–V2 MiSeq

Yi et al., 2014 OP Swab 37 Qiagen AllPrep V1–V3 454

NP Aspirate 47 Qiagen AllPrep V1–V3 454

Zemanick et al., 2015 SA Saliva 63.6 Qiagen EZ1 V1–V2 454

SP Induced 58.3 Qiagen EZ1 V1–V2 454

SP Expectorated 66.7 Qiagen EZ1 V1–V2 454

OP Swab 61.5 Qiagen EZ1 V1–V2 454

Zemanick et al., 2017 LA BAL 66.3 Qiagen EZ1 V1–V2 MiSeq

AN, anterior nares; LA, lower airways; NP, nasopharynx; OP, oropharynx; SA, saliva; SP, sputum.
*This study provided more data than were contained within the original paper.
**This study was removed from the analysis due to low sample retention following our processing.
***This study contained both anterior nare and nasopharyngeal samples from the same individual; to avoid pseudoreplication only nasopharyngeal samples were used in
the main analysis.
****This study contained both sputum and swab samples, however, only sputum samples were used.
*****This study sequenced two different 16S rRNA gene regions for each sample, however, we selected only the region with the highest average sequencing depth.

of “Study” to less than 1% (Table 3). Clinical and demographic
heterogeneity reflected the broad range of diagnoses included,
ages spanning infancy to near-adulthood (<18 years), and
diverse strategies regarding anatomical site sampled and sample
collection technique. For many clinically relevant factors, e.g.,
antibiotics and other medication usage, data were incomplete or
inconsistently reported.

Bacterial Diversity in Health and Disease
Reduced bacterial diversity, reflecting a lower number and/or
uneven distribution of bacterial taxa, is sometimes considered
a marker of human disease. We therefore calculated bacterial
alpha-diversity on aggregated disease vs. controls data, as well as
at a more granular level in which disease and control diagnoses
were separated into a total of seven groups (Figure 2). For the

aggregated data, alpha-diversity (described by multiple metrics)
was significantly higher in controls than disease for nasal and
lower airway sites, with the opposite trend for oral samples
(Figure 2A). Bacterial richness (observed phylotypes, ACE)
differed little between different anatomical sites, though nasal
samples did have lower evenness (Shannon, Gini–Simpson),
implying dominance by specific taxa. At diagnostic group level
(Figure 2B), findings varied depending on anatomical site and
whether richness or evenness were considered. One notable
finding was that of decreased bacterial diversity in the lower
airways of CF patients, although as these data were derived from
a single study – and reflect varied pulmonary statuses including
both clinical stability and exacerbations at the time of sampling
(Zemanick et al., 2017) – one must be circumspect if attempting
to infer a wider trend.
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TABLE 3 | PERMANOVA analysis of technical variables amongst microbiota
studies included in this meta-analysis.

Variable combination Variable % variation
explained

P-value

Study alone Study 12.4 0.001

Extraction method Extraction method 6.75 0.001

16S rRNA gene region Gene region 4.76 0.001

Sequencing platform Sequencing platform 0.438 0.001

Extraction method + study Extraction method 6.75 0.001

Study 5.62 0.001

Gene region + study Gene region 4.76 0.001

Study 7.61 0.001

Sequencing platform + study Sequencing platform 0.438 0.001

Study 11.9 0.001

Extraction method + gene
region + study

Extraction method 6.75 0.001

Gene region 4.74 0.001

Study 0.878 0.001

Extraction
method + sequencing
platform + study

Extraction method 6.75 0.001

Sequencing platform 0.416 0.001

Study 5.2 0.001

Gene region + extraction
method + study

Gene region 4.76 0.001

Extraction method 6.74 0.001

Study 0.877 0.001

Gene region + sequencing
platform + study

Gene region 4.76 0.001

Sequencing platform 0.0006 0.072

Study 7.56 0.001

Sequencing
platform + extraction
method + study

Sequencing platform 0.438 0.001

Extraction method 6.73 0.001

Study 5.2 0.001

Sequencing platform + gene
region + study

Sequencing platform 0.438 0.001

Gene region 4.38 0.001

Study 7.55 0.001

Percentage of microbiota variation explained was determined using the R2 score.

Microbiota Taxonomic Differences
Between Health and Disease
Having established that bacterial diversity differs between
respiratory diseases and controls, we sought to determine
which bacterial taxa drive these differences. While for oral
and lower airway sites the most abundant genera in samples
from diseased individuals largely mirrored those from controls
(Figure 3), there was far less concordance within the nasal
data: disease was associated with clear decreases in relative
sequence abundances of Corynebacterium_1, Staphylococcus, and
Dolosigranulum but substantial increases in Streptococcus and, to
a lesser extent, Haemophilus. Biomarker analysis of nasal samples
via LEfSe largely supported these findings, with Haemophilus
and Streptococcus identified as potential markers of disease,
while Corynebacterium_1, Staphylococcus, and Dolosigranulum
were associated with controls (Supplementary File B and
Supplementary Tables E10–16). Observed minor changes in
rank-abundance for oral samples were also supported by
LEfSe, with Veillonella identified as a marker for disease and
Prevotella_7 a marker for controls. In addition to the abundant
taxa, rare taxa – phylotypes present in ≤10% of samples

for a given anatomical site which never comprise ≥1% of
16S rRNA gene sequences within a single sample – were
more commonly identified by LEfSe as potential markers for
controls, though some could represent potential contaminants
(Marsh et al., 2018).

Core Microbiota
Clinical samples often contain a wide variety of microbial taxa
and identifying which, if any, of these could be relevant to disease
pathology is not straightforward. Core microbiota approaches
reduce complexity of microbiota analyses by focusing on only
the most prevalent (and in some cases abundant) members of a
bacterial community (Astudillo-García et al., 2017). Filtering data
to retain only genera present in ≥75% of samples with a relative
abundance of≥10% in at least one sample for a given anatomical
site revealed that members of the genus Streptococcus were
present in the core microbiota of almost all diagnostic groups,
irrespective of anatomical site (Figure 4). The genera Prevotella,
Haemophilus, and Granulicatella were also widespread. Notably,
there was no 75%-core microbiota for lower airway samples
from CF patients, although LEfSe did identify Pseudomonas as
a marker of this group. Intuitively, cores for specific diagnostic
groups were typically larger than those for overall disease or
control cores, potentially due to the lower number of samples
required to meet the prevalence threshold and/or other factors
common to samples within a given diagnostic group.

Microbiota Homogeneity Within and
Between Diagnostic Groupings
To determine the extent to which different clinical diagnostic
groupings overlap or differ in terms of their microbiota, we
analysed bacterial beta-diversity. Bray–Curtis dissimilarity (a
common measure of beta-diversity) was similar within and
between broad control vs. disease groupings regardless of
anatomical site (Supplementary File A and Supplementary
Figure E7). By contrast, in the finer diagnostic groupings Bray–
Curtis dissimilarity was highly dependent on both anatomical
site and diagnostic grouping. For instance, in nasal samples
values within and between groups were similar (indicating
equivalent levels of dissimilarity and overall general lack of
microbiota distinctiveness for a given diagnosis). In contrast, for
some oral (e.g., suppurative, wheezing illness) and lower airway
(e.g., acute infections, suppurative) groupings there was greater
microbiota homogeneity within compared to between groups,
suggesting a more distinct microbiota associated with these
diagnostic groupings. According to PERMANOVA analysis,
variables contributing most to variability in the microbiota
data were individual study (encompassing multiple technical
factors; 12.4% of variation explained), anatomical site (2.5%)
and diagnostic group (2.4%) (Supplementary File B and
Supplementary Table E17).

Detection of Lower Airway Disease
Based on Microbiota Profiles
A key aim was to determine whether lower airway disease
could be detected based on composition of upper- and/or
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FIGURE 2 | Bacterial alpha-diversity at broad disease (A) and specific diagnostic grouping levels (B). Significant differences in (A), as assessed by a Bonferroni
corrected t-test, are denoted by asterisks (p < 0.05). For clarity, statistical significance for (B) is presented in Supplementary Tables E6–9. Diamonds on each box
represent the mean value. Alpha-diversity across different anatomical sites (lower airways, sputum, oral, and nasal) was not explicitly compared. Below the plot the
number of studies (bold) and number of contributing samples is reported. AI, acute infections; AS, asthma; CF, cystic fibrosis; DC, disease control; HE, healthy; SU,
suppurative; WH, wheezing illness.

lower-airway microbiota. We thus developed a machine learning
(random forest) model to predict disease state based upon
bacterial distinctiveness of different clinical diagnoses, i.e., is
there a distinct microbiota “signature” that allows us to detect
different diseases? Machine learning predictions were assessed
according to positive predictive value (fraction of calls of a
diagnostic grouping which are correct) and sensitivity (fraction
of samples within a diagnostic grouping which are correctly
identified) for all specific diagnostic groupings. When attempting
to use microbiota data alone to predict from which diagnostic
group a sample came, success varied with both diagnostic
group and anatomical site (Figure 5). For example, sputum
samples were particularly effective at distinguishing among
diagnostic groupings (with both positive predictive value and
sensitivity scoring close to 1), while oral samples also performed
well. Lower airway samples were poorest overall at identifying
lower airway disease, while detection success of nasal samples
varied considerably.

Sensitivity Analyses
Sensitivity analyses investigating effects of participant age,
sequence data normalisation approach (rarefaction vs. GMPR),
and the Wang et al. (2016) and Luna et al. (2018) studies, yielded

results largely consistent with those presented above (for details
see Supplementary File A).

DISCUSSION

Our compilation and re-analysis of 16S rRNA gene data using
a uniform bioinformatic pipeline of specimens from >2500
individuals obtained from 20 distinct studies enabled testing of
three important hypotheses in childhood respiratory diseases.
Inclusion of multiple diseases in the same IPD meta-analysis
facilitated the search for overarching microbiota patterns of
health and disease. The importance of such an approach was
highlighted recently for the gut, where half of all genera linked
to specific diseases in a single study were in fact associated with
more than one disease (Duvallet et al., 2017). Application of
this approach to the respiratory microbiota yielded several novel
findings with potential clinical implications.

Airway Microbiota Diversity Differs
Between Health and Disease
Observed relationships between bacterial diversity and
respiratory disease are complex and vary among different
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FIGURE 3 | Rank-abundance plots showing the 15 most abundant bacterial phylotypes in control samples (blue) and their respective proportional relative
abundance in disease samples (red), for lower airway, oral, and nasal samples. Taxa are ranked based on their relative sequence abundance in controls.

conditions, clinical states and sample types (Man et al., 2017).
The primary literature is inconsistent, with reports of both
higher (Sakwinska et al., 2014; Cuthbertson et al., 2017) and
lower (Marsh et al., 2016; Kim et al., 2017) bacterial diversity
in controls compared to disease states. Our IPD meta-analysis
revealed significantly lower bacterial diversity with disease in
samples of nasal and lower airway origin, but the opposite
trend for the oral microbiota. In contrast to diversity, overall
microbiota profiles were similar for a given anatomical site,
with major bacterial taxa such as Moraxella, Streptococcus,
Haemophilus, and Neisseria prominent in both health and
disease. What did sometimes differ was relative abundances
of specific genera, with the ubiquitous Streptococcus notable
for its greatly increased abundance in nasal samples from
individuals with disease. Rather than a wholesale shift in
microbiota composition, disease may instead manifest more as
a decrease in bacterial community evenness, with one or more
“bloom” taxa increasing their abundance relative to others.
Antibiotic usage, while not explicitly tested here due to a lack
of comparable data, may contribute to observed reductions
in diversity. The most dramatic example of reduced diversity
was in the lower airways of children with CF. Although the
exacerbation status of these patients may contribute to this
low alpha-diversity, the dataset included a mixture of clinically

stable and exacerbating individuals with the original study
noting no differences in diversity with exacerbation (Zemanick
et al., 2017). Whilst speculative, arresting disease progression
via microbiota preservation and/or restoration, particularly
in long-term or permanent conditions such as CF in which
diversity loss may be most marked, may be feasible with
wider use of complementary, antibiotic-free approaches such
as physiotherapy, anti-inflammatory drugs, probiotics, and
vaccines as the first line of defence against disease.

Specific and Non-specific (Overarching)
Microbiota Signatures Across Diagnostic
Groups
Our analyses revealed that some findings, such as Pseudomonas
as a potential biomarker of CF in lower airway samples,
were specific to an individual diagnostic group and consistent
with previous literature (Emerson et al., 2002). We also saw
evidence for non-specific signatures of respiratory disease. LEfSe
biomarker analysis identified more putative markers for disease
overall than for any single diagnostic grouping. This highlights
the need for caution when comparing disease to controls for a
single condition, in that one may identify apparent markers of
that disease which are in fact more general markers of multiple
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FIGURE 4 | Representation of bacterial genus-level phylotypes in the core microbiota from nasal, oral, sputum, and lower airway samples. A core was defined as
presence in at least 75% of samples, based on the rarefied data. An abundance filter was also applied, whereby a genus must represent ≥10% in at least one
sample. Cross-hatching separates broad-level comparisons from those involving specific diagnostic groupings, within a given anatomical site. AI, acute infections;
AS, asthma; C, control; CF, cystic fibrosis; DC, disease control; DS, disease (any respiratory diagnosis); HE, healthy; SU, suppurative; WH, wheezing illness.

respiratory diseases. Moreover, shared phylotypes in the cores of
multiple diagnostic groupings, but not in control cores, provided
further evidence for a non-specific disease signature. Moraxella
within nasal samples is a standout example, being present in all
disease group cores but not corresponding control cores. These

findings are supported by previous research suggesting a shared
core microbiota among different diseases (van der Gast et al.,
2014). Caution should therefore be exercised when considering
specific bacterial taxa identified via microbiota analyses as
potentially diagnostic of particular diseases.
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FIGURE 5 | Average positive predictive value (fraction of calls of a diagnostic grouping which are correct) and sensitivity (fraction of samples within a diagnostic
grouping which are correctly identified) rates of sample assignments to both broad disease level (circles) and specific diagnostic groupings (diamonds), through use
of random forest machine learning. Data are displayed according to anatomical category: lower airways (A), sputum (B), oral (C), and nasal (D). Predictions were
made based on rarefied data in which the numbers of samples for each diagnostic grouping were made equal. The Control symbol (blue circles) in (D) is hidden
behind the red (Disease) circle. AI, acute infections; AS, asthma; CF, cystic fibrosis; DC, disease control; HE, healthy; SU, suppurative; WH, wheezing illness.

Microbiota-Based Detection of Clinical
Diagnoses
We used machine learning to evaluate the ability of microbiota
profiles to determine clinical diagnostic categories. Sputum and
to a lesser extent oral samples yielded the most promising
results. Whether this reflects true biological signal or technical
biases influencing the random forest model remains unclear. For
example, sputum was derived from only two distinct diseases
with underlying cohort differences, likely enhancing assignment
capabilities beyond that attributable to the microbiota. Indeed,
the fact that diagnostic groupings in this meta-analysis were
largely reflective of research groups, all of which had distinct
methodological characteristics, creates a largely unavoidable bias
within the data and presents a challenge for the machine learning
model. Such biases could explain the counter-intuitive finding
that the microbiota of lower airway specimens appeared to be
least effective for detecting lower airway disease, implying the
lack of a strong disease signal in the lower airway. However, this

result should be interpreted with caution and there is a need for
further studies using standardised analytic methods to support
or refute these preliminary findings. The previously mentioned
technical differences among studies may also explain some of
our findings, including that related to the lower airways, yet
there was still a detectable signal of diagnostic grouping. Parallel
PERMANOVA analyses identified a significant albeit minor
contribution of diagnostic grouping to underlying variability
within the data, even after accounting for technical factors.
Ongoing validation of machine learning (using larger datasets
and greater standardisation of approaches) may ultimately lead
to a complementary diagnostic strategy for diagnosing paediatric
lower airway disease via relatively non-invasive sampling and
analysis of the upper airway microbiota.

Methodological Considerations
While the meta-analysis approach is a powerful one, it does
have constraints. Some combinations of diagnostic grouping and
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anatomical site were represented by a single study, limiting more
general conclusions. Moreover, even with such a large dataset
(∼2800 samples from >2600 individuals) power is quickly
lost when attempting to split the data into specific categories.
Applying a uniform bioinformatics pipeline removes a potentially
substantial source of variation, but clinical (e.g., exacerbation
vs. clinical stability) and technical factors (e.g., sampling,
DNA extraction) will still contribute to variability within the
microbiota data where there is methodological heterogeneity
between studies. Indeed, the high explanatory power assigned
to individual study by PERMANOVA corroborates the pervasive
influence of laboratory-specific approaches and highlights the
benefits of a more standardised, cross-laboratory approach. The
application of batch correlation tools, particularly where both
case and control data are available (Gibbons et al., 2018),
also warrants further investigation in an attempt to account
for some of these factors. Another useful aspect would be
the routine inclusion of both negative technical controls (to
detect contaminants) and quantitative approaches such as real-
time PCR or droplet digital PCR (to estimate bacterial load).
The limited taxonomic resolution of genus-level phylotypes is
also noteworthy. The phylotype approach was necessary due
to the different 16S rRNA gene regions sequenced, preventing
application of operational taxonomic unit or amplicon sequence
variant approaches (Callahan et al., 2017). Species- or strain-
level differences are likely to be important clinically, and a
future focus on deciphering such interactions is warranted.
Streptococcus provides a salient example: this genus was prevalent
and abundant throughout the assembled dataset, but our analyses
based on short-read 16S rRNA gene sequences cannot determine
whether this was a single species (e.g., pneumococcus) or, more
likely, many different species. This is an inherent limitation of 16S
rRNA approaches more generally, due to the conserved nature
of this gene and the short-read sequences generated by amplicon
sequencing techniques. Additionally, while we relied on LEfSe for
detecting differential abundance between controls, disease and
different diagnostic groups, this is but one of many techniques
for identifying differential taxa. Recent comparative studies of
various differential abundance approaches have highlighted both
considerable variation in outcomes when different techniques
are applied and the lack of a clear-cut candidate for the best
available tool at present (Nearing et al., 2021; Wallen, 2021).
Finally, in our analysis we only considered bacterial members of
the respiratory microbiota, whereas viruses and fungi also likely
play key roles within the respiratory tract (Wylie, 2017; Cox et al.,
2019; Cuthbertson et al., 2020).

CONCLUSION

Despite some limitations, our IPD meta-analysis offered key
advantages not available through other approaches. Ethical and
logistical considerations associated with sampling the airway
microbiota contribute to a paucity of case-control studies (only
60% of included studies contained both cases and controls),
constraining the ability of individual studies to explicitly compare
health and disease. While this complicates interpretation of
broader patterns within the airway microbiota, especially

compared with the more accessible microbial communities
sampled from human faeces (Duvallet et al., 2017), this meta-
analysis enabled disease samples from studies lacking controls
to be compared to controls from other studies. Additionally,
using sensitivity analyses and the twofold (rarefaction and
GMPR) normalisation approach, we were able to evaluate the
association of various factors presumed to affect microbiota
profiles. Re-analysis of multiple studies also enabled comparison
of many more diseases than would be feasible in a single study.
While airway bacterial diversity differed between health and
disease, other differences were more subtle with a combination
of non-specific and anatomical site-dependent contributions
to microbiota signatures of any specific diagnostic grouping.
Identifying such factors via meta-analyses is a further step
toward development of novel treatments aimed at rebalancing the
airway microbiota, in a manner analogous to faecal transplants
and other interventions focused on the gut (Ali and Sweeney,
2020). Moreover, our analysis provides a platform to build future
prospective studies where diagnostic categories are uniform.
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