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4 1Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of
5 Mashhad, Mashhad, Iran,
6 2Department of Engineering, School of Mechanical Engineering, Manchester Metropolitan 
7 University, Dalton Building, Chester Street, Manchester, M1 5GD, UK

8 Abstract

9 Bioplastic biodegradation showed varying behavior during the process of biodegradation. The 

10 First-order and Gompertz models are the most prevalent models for monitoring biodegradation in 

11 an anaerobic digestion (AD) process, which do not suit adequately bioplastics fermentation 

12 modeling. This research aimed at studying the kinetics of methane production during AD of starch-

13 based bioplastic by using a large library of non-linear regressions (NLRs) and an artificial neural 

14 network (ANN). Although 26 NLR models (25 were outlined in the AD literature + 1 modified by 

15 authors) have been analyzed, 9 of them were proper predictors for the whole AD process for 

16 methane production. In the end M9, which has been proposed by authors, was selected owing to 

17 the simplicity of regression as well as good statistical criteria. Moreover, MLP-ANN could 

18 outperform the NLR model and has been selected as the superior model that can define the kinetics 

19 of bioplastic AD. 

20 Keywords: Anaerobic Digestion; Bioplastic; Kinetic Study; Modeling

21 1. introduction

22 Bioplastics have attracted considerable interest ever since the 1970s (Nair et al., 2017). They 

23 supply multiple waste management options and are effective in limiting greenhouse gas emissions 

24 by reducing carbon footprint and fossil fuel applications (Shrestha et al., 2020). Bioplastics are not 
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1 just a single substance. In fact, they consist of various materials with different properties and 

2 applications. Plastic material is defined as bioplastic if it is either biodegradable or biobased or 

3 embeds both properties. The term "biobased" means that the substrate originated from biomass, at 

4 least to some extent. This biomass can include corn starch, sugarcane, or cellulose 

5 (Europeanbioplastics, 2016). Biodegradable polymers in which starch is used either as the main 

6 material or as an additive are called starch-based polymers. The starch content of these polymers 

7 can vary between 5% and 90% of total weight (Davis & Song, 2006). 

8 The European bioplastics market report reveals a huge growth in the global production capacity of 

9 biodegradable bioplastics recently. This capacity is estimated to be increased from 1.2 million 

10 tonnes to 1.8 million tonnes by 2025 (Europeanbioplastics, 2020). Due to differences in their 

11 composition, these materials showed different behaviors during the process of biodegradation. 

12 Consequently to their unknown behaviors, many bioplastics are not digested and lead to 

13 environmental pollution hence the management of these materials at the end of life is critical for 

14 sustainability (Ryan et al., 2017), and studying their biodegradation should be prioritized. This has 

15 drawn researchers’ attention to survey the biodegradability of bioplastics under varied aerobic and 

16 anaerobic conditions. Among available experimental methods for measuring the biodegradation 

17 of polymers (Shah et al., 2008), Anaerobic Digestion (AD) of bioplastics has not received 

18 extensive attention (Bátori et al., 2018; Cho et al., 2011). AD produces a reliable form of energy 

19 (biogas) with a shorter retention time in comparison to aerobic digestion (Shrestha et al., 2020). 

20 Also, AD of bioplastic (PLA) leads to more greenhouse gas savings (Piemonte, 2011). Chemical 

21 and physical properties of bioplastics are determinative factors for biodegradation. Hydrophilic 

22 nature, surface area, chemical structure and composition, crystallinity, molecular weight and 

23 microbial community are among important parameters (Bátori et al., 2018; Muniyasamy et al., 
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1 2017). Among parameters associated with biodegradability of bioplastics, surface area (García-

2 Depraect et al., 2022) and microbial community (Wang et al., 2018; Yagi et al., 2009) have major 

3 roles. In this context, however, the particle size (PS) has showed different, and even sometimes 

4 conflicting behavior in AD of bioplastics i.e. (Massardier-Nageotte et al., 2006) and (Yagi et al., 

5 2012). The authors have previously reported successful degradation of starch-based bioplastics 

6 with 23% energy efficiency (Ebrahimzade et al., 2021). A growing body of literature in this field 

7 has focused on higher biogas yield/biodegradation (Shrestha et al., 2020) (i.e. (Mohee et al., 2008; 

8 Weiwei et al., 2016; Zhang et al., 2018)) and only a few studies have dealt partially with the 

9 kinetics of bioplastic biodegradation. Kinetic analysis helps evaluate the AD performance by 

10 obtaining maximum methane production, production rate and lag phase 

11 (Andriamanohiarisoamanana et al., 2020). 

12 A striking feature of the First-order and Gompertz models is simplicity which makes them the 

13 most prevalent models for monitoring the AD process (Maleki et al., 2018). In the literature, the 

14 applicability of 5 kinetic models for anaerobic degradation of poly(hydroxybutyrate-co-

15 hydroxyvalerate) (PHBV) was studied and concluded that the Gompertz model well described the 

16 system for PSs larger than 0.8 mm (Ryan et al., 2017). On the other hand, researchers stated the 

17 inadequacy of common kinetic models in some AD processes (Andriamanohiarisoamanana et al., 

18 2020). These models are not suitable for complex substrates as well as those affected by inhibition 

19 (Ware & Power, 2017). Starch-based bioplastics are partially degraded in AD (Quecholac-Piña et 

20 al., 2020) while its starch content undergoes rapid degradation (Russo et al., 2009). Also, some 

21 bioplastics contain inorganic materials such as Polypropylene and Polystyrene. Taken as a whole, 

22 it can be conceivably hypothesized that the traditional models would not fit adequately to the AD 

23 of starch-based bioplastics. In this context, the authors have previously reported that the modified 
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1 Gompertz might not be a valid approximator owing to R2 = 0.94 for PS: 4.3, ISR: 4 (Ebrahimzade 

2 et al., 2021). 

3 Mathematical modeling of AD is a fast and cost-effective method for the prediction and 

4 optimization of fuel processing engineering and waste industry design 

5 (Andriamanohiarisoamanana et al., 2020). In this context, non-linear models seem to be 

6 compatible with AD processes, since the growth of microorganisms and as a result, the kinetics of 

7 production are more often nonlinear (Khamis, 2005). Within this framework, different non-linear 

8 regressions (NLRs) were retrieved through AD experiments. The procedure of fitting nonlinear 

9 models involves multi-steps. The principal characteristics of nonlinear models are parsimony, 

10 interpretability, and prediction. On the other hand, key drawbacks are reduced flexibility compared 

11 to linear models and lack of an analytical solution for estimating the parameters. Also, an 

12 appropriate selection in a large library of functions is of great importance (Archontoulis & Miguez, 

13 2015). More to the point, samples must be representatively large as well as accurate to obtain the 

14 desired results through the regression model. Therefore, this method is highly sensitive and may 

15 lead to errors (Wang et al., 2011).

16 Besides non-linear models, artificial neural networks (ANN) showed magnificent results in 

17 biological applications (Abunama et al., 2019; Saghouri et al., 2020). Neural networks can 

18 accurately predict biogas production with R2 from 0.87 to 1 (Guo et al., 2020). ANN matrices have 

19 the ability to estimate non-linear relationships existing between independent and dependent 

20 variables to a great degree of reliability (Shojaeimehr et al., 2014). They are independent of 

21 mathematical relationships and perform as a black box (Saghouri et al., 2020). Thus, this method 

22 could be a promising alternative for covering NLR disadvantages. One of the most common types 

23 of neural networks is the multilayer perceptron (MLP).
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1 Further research is required to elucidate the kinetic model of bioplastic biodegradation. A thorough 

2 search of the relevant literature confirms that no study has been carried out on the monitoring 

3 methane yields from the AD of starch-based bioplastics using NLRs and ANN. This paper 

4 addresses critical knowledge gaps that relate to the rates and performance of bioplastic 

5 biodegradation, particularly if starch-based in anaerobic conditions. To reach this ambitious goal, 

6 new models have to be developed efficiently considering wide ranges of ISR and PSs. A crucial 

7 role in this modeling has been played by “NLRs” and “ANN”. Therefore, this study aimed at i) 

8 studying different NLR models and describing models that are proper for monitoring the AD of 

9 bioplastics, ii) investigating MLP-ANN as a promising alternative for modeling the bioplastic 

10 biodegradation.

11 2. Material and methods

12 2.1. Data collection and laboratory experiment 

13 To conduct a kinetic modeling study that could explain the metabolic pathways involved in AD of 

14 starch-based bioplastic, 729 data were obtained from the authors’ previous study (Ebrahimzade et 

15 al., 2021). AD was performed in mesophilic conditions (37 ̊C) with three replicates following the 

16 steps outlined by Holliger et al. (2016). The average PSs of bioplastics were 0.72, 4.30, and 7.87 

17 mm which were employed in each sample with the following ISRs: 2, 3, and 4 (Table 1). 

18 Microcrystalline cellulose (Merck-Germany) was used as a positive control to assess the quality 

19 of inoculum (Holliger et al., 2016). The inoculum was supplied from a pilot-scale digester which 

20 was fed daily with food waste after the digester achieved a steady state of methane production. 

21 The produced biogas was stored in a gas-tight bag that was thoroughly checked for any leak while 

22 measuring of methane was performed daily with a syringe according to Stoddard (2010). Then 

23 data were normalized as proposed by Nielfa et al. (2015). The applicability of the kinetic model is 
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1 preponderantly affected by AD’s operational parameters, the type of inoculum, and the 

2 compositional properties of the substrates (Andriamanohiarisoamanana et al., 2020). Additionally, 

3 the chemical composition of the bioplastics affects biodegradation (Bátori et al., 2018). Thus, the 

4 results of elemental analyses, acidity and total solid (TS) of media were reported to facilitate the 

5 repeatability of experiment. For this purpose, CHNO and pH analyzes were conducted in the 

6 experiment via a Thermo Finnigan (FLASH EA 1112 SERIES) and a digital pH meter (EDT 

7 directION RE357) respectively. The substrate was Nooraste® starch-based bioplastic with 0.45 

8 mm thickness that contained about 60% of corn starch. The CHNO analysis showed this substrate 

9 contained 53.83% C, 7.81% H, 0.53% N, and 37.83% O. The pH of the inoculum and substrate 

10 was approximately 7.4. The TS and volatile solid (VS) were 97.78 and 86.16 for bioplastic, 4 and 

11 71 for inoculum respectively. Finally, the TS of all treatments was adjusted to 5%.

12 2.2. Kinetic evaluation

13 In this section, various NLR models and MLP neural networks were used to estimate the methane 

14 production from the treatments. Then, based on these models, their methane production process 

15 was investigated.

16 2.2.1. Non-linear regression (NLR)

17 The use of nonlinear models leads to the estimation of parameters such as degradation rate, the 

18 volume of gas resulting from the degradation of each nutrient, and the lag phase of the fermentation 

19 process (Schofield et al., 1994). For an NLR model, equation 1 was used to describe the system’s 

20 behavior.

𝜙𝑖 = 𝑓(𝑡𝑖,𝛽) + 𝜀𝑖 (1)

21 where  is the response variable (methane production), t is the independent variable (time), β is 𝑓
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1 the vector of parameters βj to be estimated (β1, β2, …, βk), εi is a random error term, k is the number 

2 of unknown parameters and i = 1, 2, …, n, is the number of the observation. The estimators of βj’s 

3 were found by minimizing the sum of squares error (Khamis, 2005). Model coefficients were 

4 obtained through MATLAB function (fitnlm) which was based on the prediction error 

5 minimization by the Levenberg-Marquardt non-linear least-squares algorithm. It became apparent 

6 that cumulative gas production profiles vary in shape from steep diminishing returns to highly 

7 sigmoidal (France et al., 2000). For this reason, the profiles of cumulative methane yields were 

8 fitted with 25 conventional models which were capable of modeling shapes with no inflexion point 

9 and sigmoidal shapes with a variable inflexion point (France et al., 2000). Most NLR models, 

10 except the exponential ones, are sigmoidal. Among the sigmoid functions, Logistic and Gompertz 

11 functions are sigmoid curves with a fixed inflexion point. The logarithmic model also has a fixed 

12 inflexion point at half of the final gas volume, while the Generalized Mitscherlich, Richards, and 

13 Michael Menten are sigmoidal shapes without fixed inflexion points (Wang et al., 2011; Ware & 

14 Power, 2017). In addition, some models with shape parameter were used that would allow 

15 flexibility in the fitted curve (Ware & Power, 2017). The authors also provided a new model (M9) 

16 consisting in a modified form of Michael Menten’s model, which was also much simpler. The one-

17 pool model can be expanded to two-pool analysis, assuming that the potentially degradable 

18 substrate consists of fast and slow degradation parts (Wang et al., 2011). Thus, Two-pool 

19 exponential (M10) and Two-pool logistic (M11) were used. The remaining models which were 

20 obtained from biological studies, had a variety of features for modeling. All of the analyzed NLRs 

21 in this study, are detailed in Table 2. a, b, c and d represent model parameters while t stands for 

22 the independent variable (time) in the equations described in Table 2.

23 2.2.2. MLP neural network
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1 MLP is a supervised neural network consisting of several layers of processing components. This 

2 network consists of three types of layers i.e. input, hidden, and output (Rohani et al., 2011). The 

3 two variables PS and ISR were used as input (independent) variables to estimate the volume of 

4 produced methane. In MLP, each neuron communicates with the input layer and output through 

5 weights (W1 & W2). Structure of MLP-ANN has been illustrated (see supplementary material).  

6 The neural network processed the input variables in parallel although the transfer of information 

7 from one layer to another was conducted in series.

8 Train and test are two stages of MLP. Selecting the size of training dataset is a critical 

9 consideration. Too much data make the learning process so long following which is overfitting 

10 while too few training datasets follow inappropriate learning features, failure in generalization, 

11 and poor network performance to unseen patterns (Rafiq et al., 2001). Multiple research proposed 

12 several methods (i.e. (Rafiq et al., 2001)) for determining the minimum size of the training data 

13 although there is no generic principle in this matter. To fulfill this demand the performance of 

14 different sized training datasets has been evaluated. Success in training was measured by an error 

15 function (equation 2). During training, weights were according to equation 3 to reduce error, and 

16 training ended once the error was minimized. Consequently, the weights were adjusted so that the 

17 output of the model was sufficiently close to the target output. In the test phase, an input pattern 

18 was applied to the network, and the network calculated the corresponding output. The best results 

19 were obtained when the prediction error was minimum in both the training and test stages. The 

20 three factors of PS, ISR, and methane production have different ranges of variation. Therefore, in 

21 order to have an acceptable performance of the MLP, the data set was normalized in the range [-

22 1.1] using equation 4. This domain of normalization was due to the use of the sigmoid transfer 

23 function in latent layer neurons (Rohani et al., 2011).
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𝐸 =
1
𝑛

𝑛

∑
𝑖 = 1

(𝑉𝑝𝑖 ― 𝑉𝑒𝑖)2 (2)

𝑊𝑖 = 𝑊𝑖 ― 1 ― 𝜂
∂𝐸
∂𝑊

(3)

𝑥𝑛 =
2 × (𝑥 ― 𝑥𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥 ― 𝑥𝑚𝑖𝑛
― 1 (4)

1  and  stand for predicted methane volumes and laboratory methane volumes, respectively. 𝑉𝑝𝑖 𝑉𝑒𝑖

2 η is the learning rate,  is the normalized data,  and  are the minimum and maximum 𝑥𝑛 𝑥𝑚𝑎𝑥 𝑥𝑚𝑖𝑛

3 data, and i is the training iteration. 12 training algorithms were used to find the optimal weights 

4 between neurons. These algorithms were from 5 classes of Self‐adaptive learning rate (Traingdx, 

5 Traingd), Quasi‐Newton (Trainlm, Trainoss, Trainbfg), Bayesian regulation backpropagation 

6 (Trainbr), Conjugate gradient backpropagation (Trainscg, Traincgb, Traincgp, Traincgf), and 

7 Resilient backpropagation (Trainrp). The working steps of MLP-ANN has been demonstrated (see 

8 supplementary material).  

9 2.2.3. Comparing the eligibility of models 

10 Performance functions were employed to the achieved models to compare their prediction 

11 accuracy. These statistical functions are coefficient of determination (R2), root mean square error 

12 (RMSE), the total sum of squares error (TSSE) and model efficiency (EF), whose equations are 

13 described by equations (5-8).

𝑅2 = 1 ―
𝑁

∑
1

(𝑥𝑎 ― 𝑥𝑒)2/
𝑁

∑
1

(𝑥𝑎 ― 𝑥𝑒)2 (5)
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𝑅𝑀𝑆𝐸 =  ( 𝑁

∑
1

|𝑥𝑎 ― 𝑥𝑒|2)/ 𝑁 (6)

𝑇𝑆𝑆𝐸 =  
𝑁

∑
1

|𝑥𝑎 ― 𝑥𝑒| 2 (7)

𝐸𝐹 =
∑𝑁

1 (𝑥𝑎 ― 𝑥)2 ― ∑𝑁
1 (𝑥𝑒 ― 𝑥𝑎)2

∑𝑁
1 (𝑥𝑎 ― 𝑥)2

(8)

1 Where  indicates the actual value,  indicates the estimated value,  is the average value and N 𝑥𝑎 𝑥𝑒 𝑥

2 is the sample size. The selected model should be able to have a zero estimate of the biomethane 

3 production at the time point of zero otherwise the kinetic model is biologically unreliable (Wang 

4 et al., 2011). Therefore, another criterion was evaluated which was the primary point (PP). The 

5 model with high R2 and EF, low RMSE and TSSE, and PP = 0 was chosen as an appropriate model 

6 for predicting the kinetics of methane production. 

7 3. Results and Discussions

8 3.1.  Characteristics of methane yield

9 The experiment lasted for 26 days and methane yields were achieved in the range of 135 mL 

10 CH4/g.VS and 250 mL CH4/g.VS for specimens. Due to the good bioavailability of starch in 

11 bioplastic, rapid methane production was perceived. More details were included in the previous 

12 research (Ebrahimzade et al., 2021). 

13 3.2.  Kinetic evaluation

14 In this section, the best NLR model was selected from the presented models. Then, the model was 

15 used to investigate the kinetics of methane production from experimental treatments. RMSE, R2, 
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1 and PP values of 26 NLRs has been calculated (see supplementary material). The most remarkable 

2 finding to emerge from NLRs analysis was that only 8 NLRs (including M1, M3, M8, M9, M21, 

3 M23, M24, and M25) were sufficiently accurate to estimate the methane production from digestion 

4 over time, whereas a good agreement fell through for other NLRs. Because the estimated value of 

5 these models at zero time was opposite to zero (PP ≠ 0), while the models must pass the origin of 

6 the coordinate. However, the M17 model could be included among the suitable models' group 

7 subject to PP value at T1 and T7 treatments be ignored. Inaccuracy in the initial stage of 

8 biodegradation could exacerbate modeling experimentation due to more performance time, longer 

9 and non-convergence of the iteration, and possibly convergence to an undesirable local minimum 

10 sum of squares residual (Khamis, 2005). Formerly a group of scientists stated that the M5 and M6 

11 models exhibited a considerable gas volume at the initial stages of incubation (Wang et al., 2011). 

12 In general, the robustness of models declines as the number of phases increase (France et al., 2000), 

13 which is consistent with the results achieved in this study. The R2 value for M3, M4, M12, M23 

14 and M25 was 0.893, 0.992, 0.987, 0.986 and 0.986 respectively in the PHBV biodegradation study 

15 at 37 ̊C and ISR:1 (Ryan et al., 2017). The fitting results in the current study for M3 were more 

16 accurate. Recently Chinaglia et al. (2018) described the enzyme kinetics involved in aerobic 

17 biodegradation of Polybutylene sebacate through M8 considering different surface area (R2 ≥ 

18 0.98).

19 Among the most favorable models, M3 and M23 resulted to be inconsistent with the laboratory 

20 data of T4 (R2 = 94%) and T7 (R2 = 92%) treatments. On the other hand, other models exhibited 

21 identical capabilities. For example, the M1, M8, and M9 had almost equal capabilities due to 

22 having almost the same RMSE and R2 values. Moreover, no significant differences were observed 

23 between M9 and M21 as far as statistical criteria were concerned. The M9 however was selected 
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1 as the best model for estimating the methane kinetics of all 9 treatments over time due to the 

2 simplicity of the model. The M9 model, which is appropriate for enzyme kinetics, possess fixed 

3 inflexion point with various curve shapes (Wang et al., 2011). This model exhibited a decrease in 

4 residuals as the incubation time progressed (Huhtanen et al., 2008). As a result of the considerable 

5 incubation time in the study, the fit performance of the M9 is deemed reliable. Huhtanen and 

6 colleagues (2008) reported that M9 series models had the highest gas yield. An overestimation of 

7 this parameter as well as underestimation of fractional rate was observed, though (Huhtanen et al., 

8 2008). In another study that was performed recently, M21 had the best fit to data in the kinetic 

9 study of antibiotics inhibition in the AD of dairy manure (Andriamanohiarisoamanana et al., 2020). 

10 There is an assumption that Gompertz models are capable to define the methane production rate 

11 as proportional to substrate level as well as microbial mass (Schofield et al., 1994). Thereby, M5, 

12 M12, and M14 models were mainly used to explain the methane production of different substrates. 

13 For example, in a study for describing the co-digestion kinetics of food waste with poultry manure, 

14 the modified Gompertz model presented better results than the Logistic model (Deepanraj et al., 

15 2017). The use of the Gompertz model, especially for PHBV, has already been validated in such a 

16 way that it can predict methane production based on the surface area and PS (Ryan et al., 2017). 

17 Likewise, García-Depraect et al. (2022) reported 0.99 goodness of fit for PHB and PHBV.

18 However, current findings do not support previous researches in this area. The M5, M12, and M14 

19 models were seldom practical to be a good indicator for the AD kinetics of starch-based bioplastic 

20 due to PP ≠ 0. The important point was that these models only in ISR: 2 could predict the methane 

21 production rate with a negligible PP and an acceptable approximation (p  0.05). Also, it should 

22 be noted that the lack of lag phase made their statistical results identical more or less. Therefore, 
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1 it is recommended that researchers be used M12 exclusively at the ISR: 2 due to the possibility of 

2 lag phase calculation.

3 Calculating the kinetic parameters is valuable for BMP tests, particularly biodegradation patterns 

4 (Ware & Power, 2017). Table 3 shows the values of M9 coefficients along with their standard 

5 deviation for each treatment. a, b and c represent cumulative methane production, time at  
𝑎
2

6 respectively, and shape parameter. The foremost result from this table is that all the treatments 

7 were significant at the 1% significance level. According to this model, the highest amounts of 

8 methane were obtained for T3 and T6, which were about 15% and 8% more than their laboratory 

9 value, respectively. c could be helpful when dealing with substrates that accumulate intermediate 

10 fermenters like fatty acids (Ware & Power, 2017). In principle c≤1 implies that the fractional 

11 degradation rate decreases continuously while c˃1 indicates this rate increases first and later 

12 decreases during digestion (France et al., 2000). This is in line with the results provided in Table 

13 3 and Figure 2(b). An explanation for this interpretation of c can be associated with the multiplied 

14 microbial population and colonization to create a ‘biofilm’ before the maximum degradation rate 

15 was reached (Groot et al., 1996). Also it could be attributed to the accessibility of the substrate, 

16 and completion of the rapidly degradable substrate as well (Huhtanen et al., 2008). It can be further 

17 derived from the table that with increasing ISR, the shape parameter decreased for all treatments 

18 except T3. On the other side with increasing PS at each level of the ISR, the value of b increased 

19 except for T8. 

20 The cumulative diagram of each treatment along with the upper (UB) and lower (LB) boundaries 

21 is plotted in Figure 1. To predict this production process, laboratory data in triple replications (R1 

22 to R3) were fitted to M9. This simple model provided a proper visual fit and was able to predict 

23 the methane production of all treatments with a suitable approximation (R2  0.97). Nevertheless, 
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1 the visual fit for T1 still revealed an overestimation of methane production between the 8th and 

2 10th day, indicating defective conversion of short chain fatty acids (Streitwieser & Cabezas, 2018) 

3 and consequently the inhibition of methanogens. Intense production between the first and fourth 

4 day supports this result. Rapid solubilization of starch could be a plausible reason that was also 

5 reported for thermoplastic starch: Polyvinyl alcohol blends (Russo et al., 2009). Fast hydrolysis 

6 and acidogenesis, and VFA accumulation in the last step of methanogenesis is also stated 

7 (Streitwieser & Cabezas, 2018). Degradation patterns for T4 and T7 were elongated S-shape, 

8 which can be attributed to the low bioavailability of the substrate and insufficient count of 

9 microorganisms for decomposing polymer, causing low degradation in the initial step. All other 

10 treatments had a reverse L-shape that accounts for the high daily production in the initial phase 

11 (Ware & Power, 2017).

12 The cumulative productions of treatments are shown in Figure 2 (a). As it can be observed, T3 and 

13 T6 produced the highest yield of methane. T6 produced less methane than T3 until the 9th day, 

14 following which, the yield produced gradually exceeded T3. It is apparent that a lag phase could 

15 be omitted for describing the kinetics of methane production for starch-based bioplastics. Lack of 

16 lag phase has a direct relationship with the nature of the substrate (hydrophilicity of starch 

17 polymer), the microbial species, and the amount of inoculum added (France et al., 2000). 

18 Generally, during the first step of biodegradation, discoloration happened and the polymer surface 

19 was broken with abiotic factors (heat and water) that facilitated the conversion of large molecules 

20 to smaller oligomer and monomers by enzymes and free radicals (primary degradation). After 

21 reduction of polymer molecular size, they passed the cell walls of microbes through specific 

22 membrane carriers or biotransformation reactions (mineralization). During this stage biogas is 

23 produced (Lucas et al., 2008; Muniyasamy et al., 2017). The first step could not be demonstrated 
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1 by the proposed model due to lack of lag phase, although mineralization has been shown 

2 thoroughly.

3 Figure 2 (b) also shows the methane production rate from the treatments over 26 days. Three 

4 phases can be distinguished in sigmoid gas production curves: 1) stage of slow or absent gas 

5 production (initial stage), 2) rapid gas production stage (exponential stage), and 3) stage during 

6 which the quantity of gas production is slowed down and at last reaches zero (asymptotic stage). 

7 Throughout the initial phase, water uptake, binding, and colonization of insoluble substrates by 

8 rumen microbes occur. Once the substrate is saturated with microbes or enzymes, the exponential 

9 gas production step is achieved. During this stage, the foremost simply degradable part of the 

10 insoluble substrate is first broken down and leaves a much less digestible substrate. Eventually, 

11 undegradable materials remain and the rate of gas production drops to zero (Beuvink & Kogut, 

12 1993). In other words, the last two stages were corresponding to the attacking of microorganisms 

13 to amorphous and semicrystalline/crystalline zones of starch polymer, respectively (Li et al., 

14 2007). Thus, a preliminary growth in the fractional rate reflects particle hydration, microorganism 

15 attachment, and increase in microbial population count which are attributed to a rise in substrate 

16 accessibility, while the decrease could be justified by the imposition of chemical and structural 

17 constraints (France et al., 2000). The methane production rate in most treatments, except PS: 7.87 

18 mm, was close to the cellulose one until the third day. This result correlated favorably with Gómez 

19 & Michel Jr (2013) study during the first 7 days of Plastarch biodegradation (Gómez & Michel Jr, 

20 2013). The maximum rates of biodegradation for trials were between 22 and 40 mL CH4/g.VS.day. 

21 These values were much higher than Wang et al. (2018) study for Poly(3-hydroxybutyrate-co-3-

22 hydroxyhexanoate), but they were lower for T5, T8 and T9 trials comparing to Ryan et al. (2017) 

23 research. Likewise, this parameter for T1, T2 and T3 was higher when it comes to large PS of 
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1 García-Depraect et al. (2022) study (0.5-1mm). T6 in comparison to T3 had lower access of 

2 microorganisms to the nutrients in bioplastics (starch) and a lower surface area of bioplastic 

3 particles as well. An upshot of this was that the production rate of T6 to the second day was lower 

4 than T3. In the initial stage of the process (after the second day) a sharp drop in production rate 

5 was observed for T1. Meanwhile, the percentage of methane in biogas decreased to 42% (see 

6 supplementary material). Gradually, however, it regained its methane production after the 8th day 

7 and took a steady trend. Easily degraded material, as well as insufficient ISR, incurred the 

8 connotation of this decreasing trend (Zhang et al., 2019). Though all the PSs had unique 

9 thicknesses, the specific surface area (SSA) differed widely. For instance, the SSA of PS:0.72 was 

10 1.85 times higher than PS:4.3. This ratio was 1.1 for PS:4.3 by comparison of PS:7.87. It is worthy 

11 to mention that the calculation of SSA was based on the hypothesis that all of the surfaces were 

12 smooth squares without any roughness. In reality, bioplastic surfaces have porosity that the 

13 application of mechanical pretreatment intensifies. Thus higher specific surface area and the 

14 greater availability of these particles to microorganisms could be another reason that led to rapid 

15 hydrolysis of these fine particles and accumulation of fatty acids (Ryan et al., 2017). The final pH 

16 of T1 (6.6) was in favor of this founding. Weiwei and colleagues (2016) put forward similar results 

17 between the 3rd and 8th days on starch / PVA compounds with natural amylose (Weiwei et al., 

18 2016). The researchers also reported that volatile fatty acid (VFA) production was high on days 1 

19 to 4, although there was no inhibition (Guo et al., 2011). Thus, great care must be taken when 

20 dealing with bioplastics that are plausible for large amount production of VFAs as if these 

21 intermediate products had a determinant role in the validation of kinetic models for bioplastic AD 

22 (Ryan et al., 2017).

23 3.3.  MLP neural network design
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1 Although NLR could model changes in methane production over time with high accuracy and 

2 appropriate R2, it depended only on the time variable. Also, an NLR model was used for the 9 

3 treatments, even though different coefficients were obtained for each treatment. For these reasons, 

4 the MLP-ANN was used as another alternative to have a model that can estimate the kinetics of 

5 methane production in terms of PS and ISR changes over time. To design an MLP neural network, 

6 selecting the appropriate training algorithm is mandatory. The training algorithm finds the 

7 relationship between independent and dependent variables according to the training process 

8 through repetition. Figure 3 shows the predicted RMSE result of the methane production for train, 

9 test, and total steps using 12 common types of ANN training algorithms. The algorithms were 

10 sorted by the total RMSE value. The Levenberg-Marquardt training algorithm (trainlm) showed 

11 improved predictive performance than other algorithms. Of course, the Bayesian Regularization 

12 training algorithm (trainbr) had a slight discrepancy from the trainlm training algorithm however, 

13 the trainlm training algorithm was used to train MLP neural network. This algorithm was of Quasi-

14 Newton class, which overcame the complexity of computing the Hessian matrix issue. 

15 The performance result of using different datasets is detailed in Table 4. These datasets were 

16 randomly selected. This table showed a steady improvement in test accuracy as the training set is 

17 increased. Also small differences were observed for 80% and 60% of data. It means that with 

18 decreasing the dataset, there were no RMSE intense changes. Thus, the generalization of the model 

19 was verified. In the end, 80% of total data were used to learn the network and the remaining of it 

20 were enough for testing the model. In addition to the type of training algorithm, the number of 

21 neurons in the hidden layer is another important parameter in the design of the MLP neural 

22 network. The results of the RMSE prediction changes in two stages of the ANN according to the 

23 number of neurons has been demonstrated (see supplementary material). The network prediction 
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1 performance improved by increasing the number of neurons to 15 in the hidden layer for both 

2 training and testing. In other words, the RMSE value decreased from about 14 to approximately 3 

3 and 1 for test and train steps respectively, but then no substantial change was observed. Fewer 

4 numbers of neurons were used to prevent the increase in computational volume and to have a 

5 simpler neural network. Therefore, 15 neurons in the hidden layer were used to design the MLP-

6 ANN. Figure 4 shows the graph of laboratory data versus the predicted data by the model in two 

7 stages of training and testing. These data were slightly different from the y = x line and there was 

8 an exceptional agreement between the model prediction and the experimental data. Consequently, 

9 the model was of good quality. The process of producing methane from starch-based bioplastics 

10 over time in each ISR is illustrated in Figure 5. MLP-ANN well predicted the PP parameter as well 

11 as cumulative methane production. It could also be inferred from the figure that methane 

12 production increased with increasing ISR, and particles between 1 and 5 mm had the highest 

13 methane production. Moreover, the gradient of the graph tended to be high in the early stage of 

14 degradation, as there was a considerable amount of gas production, which resulted in the lack of 

15 lag phase. Subsequently the diagram approached the upper asymptote with a constant increase as 

16 the substrate depleted. Thereby, all of the biological findings in NLR analysis could be described 

17 based on this figure.

18 3.4.  Comparison of NLR with MLP-ANN

19 This section provides a comparison of the best NLR and MLP-ANN identified. Unlike the NLR 

20 model, a single model that included all the parameters of PS, ISR, and time was achieved using 

21 the MLP-ANN. In other words, one model replaced the previous nine models to define the kinetics 

22 of methane production. Following this advantage, statistical criteria have indicated that the MLP-

23 ANN was a superior model to monitor biodegradation over time. Table 5 illustrates data regarding 
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1 statistical results for NLR and the best dataset of MLP-ANN. The most conspicuous observation 

2 to emerge from the data comparison was that both of them had a good agreement with the data. 

3 Though the R2 results were relatively close for the two models, MLP-ANN had the edge on M9 

4 concerning EF. Also, MLP-ANN displayed marginally lower RMSE and TSSE compare to M9.

5 3.5.  Sensitivity analysis

6 Sensitivity analysis was used to investigate the impact of model input parameters on methane 

7 production. For this purpose, by deleting each of the model parameters and re-executing it, the 

8 effect of the deleted parameter on the accuracy of the model was evaluated. The sensitivity 

9 coefficient of the MLP model is shown in Figure 6. Evidently, time had the greatest effect on 

10 kinetics, which is evidenced by the fact that faster digestion rates corresponded to higher substrate 

11 consumption by microorganisms. This figure also confirms the authors' previous results on the 

12 impact of ISR being a more influential parameter on AD performance than PS reduction 

13 (Ebrahimzade et al., 2021). 

14 4. Conclusion

15 In this study, 9 models that had good potential for investigating the kinetics of the AD of starch-

16 based bioplastics were introduced. Among them, M9 had the best performance in estimating the 

17 methane production kinetics of each of the 9 treatments over time. On the other hand, the MLP-

18 ANN was used as another alternative to cover the deficiencies of NLRs. This model had an 

19 agreement in enough depth (R2 = 0.99, PP = 0) and was taken as the superior model. It could be 

20 suggested that future researches be focused on the validation of the proposed models using 

21 different bioplastic substrates. 

22 E-supplementary data for this work can be found in e-version of this paper online.
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Figure 1: The diagrams of cumulative methane production of treatments using Modified MM (M9)
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Figure 5: The kinetics of cumulative methane production over time in ISRs 2 (a), 3 (b), and 4 (c)
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1 Table 1. experimental treatments and their relevant symbols
PS (mm) ISR Treatment

0.72 2 T1
0.72 3 T2
0.72 4 T3
4.30 2 T4
4.30 3 T5
4.30 4 T6
7.87 2 T7
7.87 3 T8
7.87 4 T9
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1 Table 2. NLRs for kinetic study
Name Form Model

Logistic-Exponential without 
LAG

f(t) = a
1 ― exp ( ― bt)

1 + exp (ln (1
d) ― bt) M1

Logistic-Exponential with 
LAG

f(t) = a
1 ― exp ( ― b(t ― c))

1 + exp (ln (1
d) ― b(t ― c)) M2

Exponential without LAG f(t) = a(1 ― exp ( ―bt)) M3

Exponential with LAG f(t) = a(1 ― exp( ― b(t ― c))) M4

Gompertz f(t) = aexp( ― exp (1 ― b(t ― c))) M5

Logistic f(t) = a
1

1 + exp (2 + b(c ― t))
M6

Generalization of the 
Mitscherlich f(t) = a(1 ― exp ( ―b(t ― c) ― d( t ― c))) M7

Michaelis-Menten (MM) f(t) = a
tc

tc + bc M8

Modified MM f(t) = a
tc

tc + b
M9

Two-pool exponential f(t) =
2

∑
i = 1

ai(1 ― exp ( ― bi(t ― c))) M10

Two-pool logistic f(t) =
2

∑
i = 1

ai
1

(1 + exp (2 ― 4bi(t ― c))) M11

Modified Gompertz f(t) = a exp( ― exp(2.71
b
a(c ― t) + 1) M12

Logistic f(t) = a
1

1 + bexp ( ― ct)
M13

Gompertz f(t) = aexp( ― bexp ( ―ct)) M14

Richard f(t) = a
1

(1 + b × exp ( ― ct))
1

d
M15

Double-Sigmoid f(t) = a
1

1 + exp ( ― (b + ct + dt2 + et3))
M16

Monomolecular- logistic f(t) = a(1 ― exp ( ― bt)) +
c

1 + exp ( ― d(t ― e))
M17

Chapman-Richard f(t) = a(1 ― b × exp ( ― ct))
(

1
1 ― d) M18

Exponential-linear f(t) =
a
b × ln(1 + exp(b(t ― ct))) M19

LinBiExp f(t) = a × ln(exp(
b(t ― c)

d )) + exp(
e(t ― f)

g ) + f M20

Cone f(t) = a(
1

1 + (bt) ―c) M21

Contois f(t) = a(1 ―
b

ct + b ― 1) M22

Fitzhugh f(t) = a(1 ― exp( ―bt)c) M23

France f(t) =
a(1 ― exp ―bt)

(1 + c exp ―bt)
M24
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Monod without LAG f(t) = a
bt

bt + 1
M25

Monod with LAG f(t) = a
b(t ― c)

b(t ― c) + 1
M26
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1 Table 3: The values of Modified MM (M9) parameters for each treatment
coefficient T1 T2 T3 T4 T5 T6 T7 T8 T9

a 154 ± 
1.65**

207 ± 
5.46**

284 ± 
6.98**

161 ± 
1.11**

204 ± 
6.63**

270 ± 
5.46**

131 ± 
0.75**

179 ± 
4.17**

196 ± 
4.61**

b 2.03 ± 
0.12**

1.16 ± 
0.07**

1.15 ± 
0.06**

3 ± 
0.14**

1.91 ± 
0.12**

1.55 ± 
0.08**

3.36 ± 
0.15**

1.59 
0.09**

1.61 ± 
0.1**

c 10.1 ± 
1.55**

5.34 ± 
0.4**

6.11 ± 
0.37**

79.9 ± 
16.5**

21.6 ± 
21.6**

13.1 ± 
1.49**

108 ± 
23.3**

15.9 ± 
2.11**

15.1 ± 
2.14**
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1 Table 4: RMSE results of using different datasets in ANN steps
Dataset (percentage of 

total data) Train Test Total

80% 1.22 2.49 1.55
60% 1.37 2.81 2.08
40% 3.06 5.26 4.51
20% 3.87 9.39 8.57
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1 Table 5: statistical results of NLR and MLP-ANN
Criteria NLR (M9) MLP-ANN

T1 T2 T3 T4 T5 T6 T7 T8 T9 train test total

R2 0.97 0.98 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.99 0.99 0.99

RMSE 10.44 8.29 7.73 6.06 9.37 9.54 4.44 6.99 8.53 1.22 2.49 1.55

TSSE 8825 5565 4835 2969 7106 7369 1599 3953 5895 289 296 586

EF 0.94 0.97 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.99 0.99 0.99

PP 0 0 0 0 0 0 0 0 0 0 0 0

2
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1

2
3
4

5

6

7 Highlights:

8  The kinetics of bioplastics biodegradation have not been dealt with in depth. 

9  9 out of 26 analyzed NLRs, were proper for monitoring the AD of bioplastics.

10  M9 selected as the best NLR owing to the simplicity and good statistical criteria.

11  MLP-ANN had an agreement in enough depth to data and picked as the superior model.

12


