
PARALLELISED AND VECTORISED
ANT COLONY OPTIMIZATION

J PEAKE
PhD 2021

PARALLELISED AND VECTORISED
ANT COLONY OPTIMIZATION

JOSHUA PEAKE

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF

MANCHESTER METROPOLITAN UNIVERSITY

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Department of Computing and Mathematics
Manchester Metropolitan University

2021

Contents

Abstract x

Declaration xi

Acknowledgements xii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Aims and Objectives . 2
1.3 Contributions . 4
1.4 Thesis Structure . 5

2 Literature Review 6
2.1 Evolutionary Computation & Swarm Intelligence 6
2.2 Ant System . 11
2.3 The Ant Colony Optimisation metaheuristic 13
2.4 Parallel Ant Colony Optimisation . 14

2.4.1 Distributed Systems . 14
2.4.2 GPGPU . 17

2.5 Single Instruction Multiple Data . 21
2.6 The Scalability of Ant Colony Optimisation 25
2.7 ACO on Real World Problems and Virtual Machine Placement 30

3 Ant Colony Optimization 36
3.1 Initialisation Phase . 37
3.2 Solution Construction Phase . 39

3.2.1 Roulette Wheel Selection . 40
3.3 Local Search . 41

iii

3.4 Pheromone Deposit Phase . 43
3.5 Determine Best Solution . 44

4 Vectorized Candidate Set Selection for Parallel Ant Colony Optimization 45
4.1 Background and Motivation . 45

4.1.1 Traveling Salesman Problem 46
4.1.2 Single Instruction Multiple Data 47
4.1.3 Selection Methods . 48

4.2 Proposed Algorithm . 49
4.2.1 Nearest neighbour List Construction 50
4.2.2 Instance Preprocessing . 51
4.2.3 Tour Construction . 52
4.2.4 Random Number Generation 53
4.2.5 Vectorised Candidate Set Selection (VCSS) 55
4.2.6 Parallel Reduction . 55
4.2.7 Pheromone Update . 59

4.3 Experimental Evaluation . 60
4.3.1 Experimental Environment 60
4.3.2 ACO Parameters and Problem Instances 60
4.3.3 Execution Time . 61
4.3.4 Solution Quality . 61
4.3.5 Discussion . 62

4.4 Conclusion . 66

5 Scaling Techniques for Parallel Ant Colony Optimisation on Large Prob-
lem Instances 69
5.1 Background and Motivation . 70

5.1.1 AVX2 SIMD Instructions 71
5.2 Restricted Pheromone Matrix . 73

5.2.1 Tour Construction . 74
5.2.2 Heuristic Fallback . 76
5.2.3 Pheromone Map Fallback 77
5.2.4 Pheromone Distribution . 77
5.2.5 Local Search . 78

5.3 Experimental Evaluation . 79
5.3.1 ACO Parameters and Problem Instances 80

iv

5.3.2 Fallback Comparison . 80
5.3.3 Results . 83
5.3.4 Local Search Analysis . 84
5.3.5 Discussion . 86

5.4 Conclusions . 89

6 PACO-VMP: Parallel Ant Colony Optimisation for Virtual Machine
Placement 90
6.1 Background & Related Work . 90

6.1.1 Virtual Machine Placement Problem 90
6.2 Parallel ACO for Virtual Machine Placement 93

6.2.1 Initialisation Phase . 93
6.2.2 Solution Construction . 94
6.2.3 Pheromone & Heuristic Definition 96
6.2.4 Local Search . 98
6.2.5 Pheromone Distribution . 98

6.3 Experimental Results . 99
6.3.1 Parameter Tuning . 101
6.3.2 Instance Set A: Large-scale Homogeneous Environment with

Bottleneck . 103
6.3.3 Instance Set B: Small-scale Homogeneous Environment with

Bottleneck . 106
6.3.4 Instance Set C: Heterogeneous Environment with Bottleneck . 108
6.3.5 Discussion . 109

6.4 Conclusions & Future Work . 114

7 Conclusions and Future Work 115
7.1 Subsequent Developments . 116
7.2 Suggested Future Work . 118

A Vector Class 136
A.1 Vector.h . 136
A.2 Vector.cpp . 145

B Candidate Set Roulette 159

C Paper: Vectorised Candidate Set Selection for Ant Colony Optimisation 162

v

D Paper: Scaling Techniques for Parallel Ant Colony Optimization on Large
Problem Instances 170

E Paper: PACO-VMP: Parallel Ant Colony Optimization for Virtual Ma-
chine Placement 179

vi

List of Tables

2.1 Parallelisation Techniques . 35

4.1 VCSS Execution Time . 62
4.2 Used Vector Instructions . 67

5.1 Pheromone Matrix memory requirements 74
5.2 Fallback comparison . 80
5.3 Average execution times for PartialACO (100,000 iterations) and Re-

stricted Pheromone Matrix (1000 iterations). Note that the iterations
are significantly different in terms of required processing: RPM creates
an entire tour each iteration, whereas PartialACO only modifies 1% of
a tour each iteration, making 1000 RPM iterations roughly equivalent
to 100,000 PartialACO iterations. 85

6.1 List of symbols and notations used in this chapter 95
6.2 PACO-VMP experiment results . 110

vii

List of Figures

2.1 Double Bridge Experiment . 11
2.2 Parallelisation approaches . 15
2.3 Master-worker parallelisation . 16
2.4 I-Roulette . 19
2.5 Xeon Phi . 22
2.6 UVRoulette . 25
2.7 PartialACO . 27
2.8 Candidate Set . 28

3.1 Ant Colony Optimisation Flowchart 37
3.2 Roulette Wheel Selection . 41
3.3 2-opt . 42
3.4 3-opt . 42

4.1 TSP Example . 47
4.2 Nearest Neighbour data structure . 51
4.3 Nearest Neighbour list example . 52
4.4 Masked Load . 53
4.5 Sample TSP . 54
4.6 Parallel Reduction of Weights . 57
4.7 Parallel Reduction of Index . 58
4.8 VCSS Execution Times . 63
4.9 VCSS Solution Quality . 64

5.1 Nearest Neighbour Mask . 75
5.2 Fallback techniques . 76
5.3 Art TSPs . 81
5.4 Pheromone map size . 82
5.5 RPM Solution Quality . 84

viii

5.6 RPM Convergence . 86
5.7 Local Search solution quality . 87
5.8 Local Search time . 87

6.1 VMP Instance . 92
6.2 vRoulette-1 . 94
6.3 PACO-VMP flowchart . 100
6.4 Parameter tuning: α, β and ρ . 102
6.5 PACO-VMP Solution Quality: Set A 104
6.6 PACO-VMP Execution Time: Set A 105
6.7 PACO-VMP Solution Quality: Set B 106
6.8 PACO-VMP Execution Time: Set B 107
6.9 PACO-VMP Solution Quality: Set C 109
6.10 PACO-VMP Execution Time: Set C 111

ix

Abstract

Ant Colony Optimisation (ACO) is a versatile population-based optimisation meta-
heuristic based on the foraging behaviour of certain species of ant, and is part of the
Evolutionary Computation family of algorithms. While ACO generally provides good
quality solutions to the problems it is applied to, two key limitations prevent it from
being truly viable on large-scale problems: A high memory requirement that grows
quadratically with instance size, and high execution time. This thesis presents a paral-
lelised and vectorised implementation of ACO using OpenMP and AVX SIMD instruc-
tions; while this alone is enough to improve upon the execution time of the algorithm,
this implementation also features an alternative memory structure and a novel candi-

date set approach, the use of which significantly reduces the memory requirement of
ACO. This parallelism is enabled through the use of Max-Min Ant System, an ACO
variant that only utilises local memory during the solution process and therefore risks
no synchronisation issues, and an adaptation of vRoulette, a vector-compatible variant
of the common roulette wheel selection method. Through the use of these techniques
ACO is also able to find good quality solutions for the very large Art TSPs, a prob-
lem set that has traditionally been unfeasible to solve with ACO due to high memory
requirements and execution time. These techniques can also benefit ACO when it
comes to solving other problems. In this case the Virtual Machine Placement problem,
in which Virtual Machines have to be efficiently allocated to Physical Machines in a
cloud environment, is used as a benchmark, with significant improvements to execu-
tion time.

x

Declaration

No part of this project has been submitted in support of an
application for any other degree or qualification at this or
any other institute of learning. Apart from those parts of the
project containing citations to the work of others, this project
is my own unaided work. This work has been carried out
in accordance with the Manchester Metropolitan University
research ethics procedures, and has received ethical approval
number SE171844C .

Signed:

Date:

xi

Acknowledgements

Firstly, I would like to sincerely thank my Principal Supervisor Dr. Huw Lloyd for
the extensive amount of assistance provided throughout the entire PhD, and for always
being there to answer any questions I might have.

I would also like to thank Prof. Martyn Amos, who inspired my initial interest and
passion for research and without whom I probably would not even be doing this PhD,
as well as Dr. Paraskevas Yiapanis, Prof. Rene Doursat, Dr. Nicholas Costen and Dr.
Giovanni Masala for the extremely valuable assistance and feedback provided during
this process.

My thanks also go to Antoine Gaget and Jamie Webster, who went through their
PhD journeys alongside me and were always there for mutual discussion, feedback and
support.

I would also like to thank my partner, Jade, who has done a fairly decent job of
keeping me sane throughout this process, and will hopefully continue to do so in the
future.

My final and probably most important thanks go to Juno, my cat, who has stepped
on my keyboard frequently throughout the writing of this thesis and therefore probably
deserves a co-author credit.

xii

Chapter 1

Introduction

1.1 Background and Motivation

Nature has always been an inspiration for humankind, not just in art and literature,
but also in engineering (Helms, Vattam, and Goel 2009). Artificial Intelligence is one
such field that takes inspiration from nature, not just by trying to replicating human
behaviour as Turing initially focused on when he introduced the Turing test (Turing
1950), but by replicating the behaviour seen by plants and animals. Thousands and
even millions of years of evolution have contributed to the behaviour of the species in
the world today, with some of them exhibiting behaviour that is optimised for a spe-
cific activity. This optimisation is especially clear in swarming creatures, who are able
to thoroughly forage for food in an efficient and organised manner despite the limited
intelligence of each individual swarm member. One such example of this is bee hives
(Tereshko and Loengarov 2005), in which individual bees are are “foragers”, either em-
ployed (currently exploiting a found food source) or unemployed (either searching for
a new source to exploit, or waiting at the hive for information from employed foragers).
In order to communicate information to other bees, a “waggle dance” is performed by
employed foragers, informing unemployed foragers of the food source. Another exam-
ple is that of the ant, which has developed the ability to communicate through the use
of pheromones (Wilson 1962). Through pheromones, ants are able to leave trails for
other members of the ant colony to allow them to quickly and efficiently travel between
the nest and a food source. This is achieved through an initial exploratory search in
which the ant colony distributes itself throughout a wide area, with ants that find food
returning to the nest while leaving behind a pheromone trail that will lead other ants to
that same food source. This exploratory behaviour in which ants initially search for an

1

CHAPTER 1. INTRODUCTION 2

optimum route inspired an optimisation algorithm, Ant Colony Optimisation (ACO)
(Dorigo, Maniezzo, and Colorni 1991).

Naturally, ACO was initially applied to the Traveling Salesman Problem (TSP), a
route optimisation problem focusing on finding the minimal possible distance to tour
every city in a given set of cities. While optimising the TSP resembles the route-
finding behaviour that ACO was initially based on, the algorithm was soon proven to
be applicable to a much wider range of problems. Over the years ACO became a staple
technique used for solving NP-hard problems, ranging from other route optimisation
techniques such as the Vehicle Routing Problem (Bell and McMullen 2004) to feature
selection (Ghosh et al. 2019) and cost estimation (Zhang et al. 2020).

While ACO is able to find good quality to solutions to a vast array of problems,
the length of time it takes to reach a good quality solution can be a prohibitive factor,
especially for large problems. This thesis focuses on utilising parallel hardware and
readily-available vectorisation instructions to optimise the execution time of the ACO
algorithm, attempting to improve execution time while retaining the technique’s ability
to find good quality solutions to problems.

The motivation to optimise the execution time of the algorithm is not merely a
case of doing it to prove that a faster execution is possible. When it comes to real-
world problems, low execution time can be vital for several reasons: Reactivity is
vital in certain problem domains, such as route planning, where a change in conditions
can lead to a route needing to be calculated as quickly as possible; Lowering runtime
also increases energy efficiency for demanding computational tasks, and in the case of
multithreading it is more efficient to have higher utilisation on multiple threads for a
shorter period of time than lower utilisation on a single thread for a longer period of
time (Li, Brooks, et al. 2004).

1.2 Aims and Objectives

The aim of this thesis is to increase the efficiency of Ant Colony Optimisation, pri-
marily through parallelisation and vectorisation, but also through the use of other tech-
niques. Parallelisation allows for the simultaneous processing of data, or in this case,
“ants”, which can lead to substantial savings in execution time providing that syn-
chronisation issues are avoided. Vectorisation allows for the use of Single Instruction
Multiple Data (SIMD) instructions to perform operations on multiple items of data
simultaneously, which again can lead to substantial savings in execution time. The

CHAPTER 1. INTRODUCTION 3

traveling salesman problem is traditionally used for investigating new developments to
the core ACO algorithm, and so that will be the initial benchmark problem. However,
in order to demonstrate the general applicability of the techniques developed using
TSP, another benchmark problem will be chosen, a problem with a real-world focus.
Comparisons will be made to other algorithms, both alternative ACO implementations
and other optimisation algorithms. As other techniques exist to parallelise and vec-
torise ACO, the first step will be to try and improve upon these implementations.

• Aim 1: Develop an implementation of ACO that utilises the AVX-512 instruction
set and the hardware of the Intel Xeon Phi. This instruction set has never been
applied to ACO before, so using it in this implementation will be a proof of the
viability of the instruction set.

• Aim 2: Develop a novel nearest neighbour list structure to take advantage of the
available vectorisation potential. While candidate sets have seen extensive use
in previous ACO iterations, none have developed an implementation that makes
full use of vector instructions.

• Aim 3: Develop a technique to reduce the memory complexity of ACO. One
of the main obstacles when it comes to solving large problems with ACO is the
significant memory requirements of the pheromone matrix structure, so over-
coming this obstacle would allow ACO to scale to much larger problems than
were previously possible.

• Aim 4: Apply a parallelised and vectorised ACO implementation to a real-world
focused problem in which solution time is crucial. Previous work on vectorised
ACO has largely been restricted to TSP, so implementing a vector-enabled ACO
algorithm on a real-world problem would demonstrate the general applicability
of the vectorised approach.

Each of these aims contributes to the overall objective of this thesis, which is the
development of an ACO implementation that makes full use of parallelisation and vec-
torisation, as well as other techniques that take advantage of the presence of these
technologies, and demonstrate the benefit of these technologies on multiple problem
domains.

CHAPTER 1. INTRODUCTION 4

1.3 Contributions

• Contribution 1: The development of an ACO implementation that makes use of
the AVX-512 instruction set in order to make use of 16-wide vectors of single-
precision floating point values.

• Contribution 2: A novel candidate set structure allowing for a more efficient
selection phase, designed for effective vectorisation.

• Contribution 3: A novel memory structure allowing ACO to solve very large
Traveling Salesman Problem instances effectively, with the core ACO algorithm
remaining intact.

• Contribution 4: Demonstrated the general applicability of the vectorisation tech-
niques developed in Contribution 1 by porting them to be AVX2-compatible, a
more widely-available vector instruction set.

• Contribution 5: The development of the first parallelised and vectorised im-
plementation of ACO for the Virtual Machine Placement problem, in order to
demonstrate that the benefits of this approach can be applied to problem domains
other than the Traveling Salesman Problem.

The contributions above are described in the following publications:

• Peake, J., Amos, M., Yiapanis, P. and Lloyd, H., 2018, July. Vectorized Can-
didate Set Selection for Parallel Ant Colony Optimization. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion (pp. 1300-
1306).

• Peake, J., Amos, M., Yiapanis, P. and Lloyd, H., 2019, July. Scaling Techniques
for Parallel Ant Colony Optimization on Large Problem Instances. In Proceed-
ings of the Genetic and Evolutionary Computation Conference (pp. 47-54).

• Peake J., Amos M., Costen N., Masala G., Lloyd H., 2021. PACO-VMP: Parallel
Ant Colony Optimization for Virtual Machine Placement. In Submission.

I contributed the majority of the work for each of these papers, with the other authors
acting in a supervisory capacity.

CHAPTER 1. INTRODUCTION 5

1.4 Thesis Structure

Chapter 2 provides a comprehensive literature review of the technologies utilised in
order to fulfil the aims of this thesis, focusing on Ant Colony Optimisation and looking
at the origins of the metaheuristic, different variants of the technique, the history of
parallelising ACO and different problem domains that the technique has been applied
to.

Chapter 3 discusses Ant Colony Optimisation in-depth, describing each phase of
the algorithm as well as discussing the different approaches taken by each ACO variant.

Chapter 4 introduces an AVX-512 enabled ACO implementation, as well as de-
scribing the novel Vectorised Candidate Set Selection technique which makes use of
a novel Candidate Set structure and a vectorised selection method to make best use of
the new structure. This is compared to the previous best-performing vectorised ACO
implementation, as well as benchmarked against a standard sequential implementation.

Chapter 5 discusses the novel Restricted Pheromone Matrix data structure, a novel
implementation of ACO’s core data structure, the pheromone matrix. An ACO imple-
mentation utilising this data structure is benchmarked on a well-known set of very large
Traveling Salesman Problem instances, the Art TSPs. Compared to the implementa-
tion described in Chapter 4, local search is also utilised in order to improve solution
quality. This is compared with the only previous ACO implementations that have been
able to solve these very large instances.

Chapter 6 describes a parallelised and vectorised ACO implementation designed
to solve the Virtual Machine Placement (VMP) problem, a problem with real-world
applications. This is compared with the previous best performing ACO solver for
VMP, as well as a recently developed Genetic Algorithm implementation.

Chapter 7 concludes the thesis with a general discussion of the results obtained
in the previous chapters, as well as discussing ideas for further work and specifically
discussing work that has since been published that iterates upon the ideas presented in
Chapter 5.

Chapter 2

Literature Review

2.1 Evolutionary Computation & Swarm Intelligence

Evolutionary Computation is a wide-ranging and diverse family of optimisation algo-
rithms largely consisting of nature-inspired trial-and-error based approaches. A gen-
eral structure for Evolutionary Computation algorithms consists of a population of
problem solving agents, which attempt to solve a given problem over a number of gen-

erations, with each generation consisting of a number of attempts to solve that prob-
lem. Once a generation has finished solving the problem, the population of solutions
will go through a selection process and/or mutation, depending on the given algorithm.
Over time, this leads to an evolution of the population, which will gradually increase
the fitness of the solutions found, with the definition of fitness varying depending on
the given problem. Over time, the solutions will improve and the end solution of the
algorithm will ideally be superior to the solutions found in the earlier generations of
the algorithm.

Evolutionary Computation was initially proposed in the late 1950s. Friedberg
(1958) proposes a program called “Herman” containing 64 instructions, each of which
is a 14 bit number. These instructions all modify an array of 64 bits, with the state of
the array at the end of the program’s execution being the end result of the program.
An outside agent, the “Teacher”, inspects the output data and determines whether the
program has been a success or a failure based on the criteria of a given “problem”. The
first problem used in this experiment, simply known as Problem 1, had a single bit of
“input data”, the first bit of the 64 bit array, and a single bit of “output data” which was
the final bit of the array. If the input and output bits match at the end of the program,
the solution is defined as a success, otherwise it is defined as a failure. The teacher

6

CHAPTER 2. LITERATURE REVIEW 7

randomly generates the input bit, either 0 or 1. For each of the 64 instructions, two in-
structions actually exist, and at any one time one will be active and one will be inactive.
If an instruction is active during a successful run, this is recorded, so each instruction
has an attributed number of successes. A second outside agent, the “learner”, regularly
switches between the active and inactive instructions, as well as occasionally randomly
replacing the instruction entirely with a new instruction. These switches are governed
by the success number of each instruction. Over time, the instructions with a high
number of successes will be switched out less often, until a variation of the program is
present that successfuly solves the problem in a high percentage of attempts. In prac-
tice, every 10,000 runs of the Herman program are considered as a “block”, and by the
16th block of runs Problem 1 is successfully solved 100% of the time. Problems with
more difficult success criteria were also tested, with a perfect program being found for
2 of them, while 3 were unable to be perfectly solved. While the results of the exper-
iments were mixed, enough were successful to prove that evolutionary computation is
able to solve some problems by gradually evolving an algorithm.

The foundation of modern Evolutionary Computation was laid by three separate
techniques: Evolutionary Programming (Fogel, Owens, and Walsh 1966), Genetic Al-
gorithms (Holland 1975), and Evolution Strategies (Bremermann et al. 1962). Initially
developed independently, these techniques were later unified as seperate branches of
Evolutionary Computation. Further Evolutionary Computation techniques have been
developed over time, such as Artificial Immune System (Farmer, Packard, and Perelson
1986), Memetic Algorithms (Moscato et al. 1989) and Cultural Algorithms (Reynolds
1994) among many others.

While differing in the details, most Evolutionary Computation techniques retain the
same base structure. The techniques utilise a population of individuals, which either
represent a solution or a problem solving agent. These individuals are then subjected to
probabilistic operations such as selection, mutation and/or recombination (crossover).
These operations are applied in a loop, with each iteration of the loop being known as
a generation. A fitness evaluation process will determine the quality of each solution
based on one or several parameters that the algorithm aims to optimise. The decisions
made based on this fitness value vary depending on the approach used in a given al-
gorithm: An elitist approach may only retain or make use of the solution(s) with the
highest fitness value, while a fitness proportionate approach will still have the ability
to retain solutions with lower fitness, albeit with a lower chance of retention, usually

CHAPTER 2. LITERATURE REVIEW 8

for the purposes of maintaining population diversity and preventing premature conver-
gence through the perturbation of existing solutions (an example of this is an algorithm
that uses mutation and recombination operations, such as a Genetic Algorithm).

The differences between the various Evolutionary Computation techniques are
largely down to differences in the operations. For example, Genetic Algorithms are
far more focused on the crossover phase, in which the “genes” of two “parent” solu-
tions are exchanged up to a certain crossover point, with the offspring of this crossover
being added to the population of solutions and some of these offspring being subject
to random gene mutations. Evolutionary Programming, on the other hand, does not
utilise a crossover operation, instead focusing on mutation. The encoding of genes
as bits and chromosomes as sequences of bits is also unique to Genetic Algorithms.
Evolutionary Programming and Evolution Techniques are more similar, both utilising
self-adaptation and real-valued representation of search points. However, Evolution-
ary Programming uses a probabilistic selection mechanism while Evolution Strategies
uses deterministic selection.

These techniques have all been applied to combinatorial optimisation problems,
namely the Traveling Salesman Problem (TSP). Genetic Algorithms initially per-
formed poorly on TSP, though performed well on other combinatorial problems such as
Assembly Line Balancing (Anderson and Ferris 1994). Over time, Genetic Algorithms
have been adapted to perform well on TSP problems through the use of local search
techniques (Braun 1990), adaptations to the crossover methodology such as Sequential
Constructive Crossover (Ahmed 2010) and Edge-Assembly Crossover (Honda, Na-
gata, and Ono 2013), and changes to the quantity of offspring (Wang, Ersoy, et al.
2016), with the Edge-Assembly Crossover approach providing the best known solu-
tions to two of the very large Art TSP instances.

One particularly significant family of Evolutionary Computation sub-techniques is
Swarm Intelligence. While Evolutionary Computation takes inspiration directly from
evolution, Swarm Intelligence instead focuses on the problem-solving and collective
intelligence exhibited by swarms or colonies of social organisms. Ant Colony Optimi-
sation (ACO), the focus of this thesis, was one of the first iterations of Swarm Intelli-
gence, and will be covered in future sections of the Literature Review. Another signif-
icant Swarm Intelligence algorithm is Particle Swarm Optimisation (PSO) (Kennedy
and Eberhart 1995). PSO takes inspiration from bird flocks, and how they are able
to identify the locations of food in a wide area despite none of the flock having any
prior knowledge of the location of food sources. In PSO, the individual solutions are

CHAPTER 2. LITERATURE REVIEW 9

referred to as “particles”, with the population of solutions referred to as the “swarm”.
The system is initialised with a population of random solutions, much like Genetic Al-
gorithms and Evolutionary Programming. Each particle is also assigned a “velocity”,
which determines the speed at which the particle navigates the search space. The be-
haviour of these particles is influenced by two values, pbest - the highest fitness value
achieved by the individual particle - and gbest - the highest fitness value achieved by
any particle in the swarm. The particle also records the search space co-ordinates as-
sociated with high fitness values. For each step of the PSO algorithm, the velocity of
a particle is altered to accelerate it towards the gbest and pbest values. Both of these
values have a separate acceleration value, which is weighted with a random number.
The velocity of a particle in both directions is clamped to a maximum value, Vmax.
The value of Vmax is crucial to PSO as an unsuitable Vmax value could lead to par-
ticles moving too quickly past good solutions, or moving too slowly to fully explore
beyond locally good regions, trapping them in local optima. The addition of the inertia
weight value in later iterations of PSO (Shi and Eberhart 1998) eliminated the problem
of finding a good Vmax value, as it allowed Vmax to be set at the dynamic range for
each variable and reliably perform well, with the inertia weight value w becoming the
value that needs to be optimised (though it was quickly determined that relatively high
w values perform well).

While this section has described the original PSO algorithm and early adjustments,
PSO is now a hugely diverse subject area with many variants such as Binary PSO
(Kennedy and Eberhart 1997), Dynamic PSO (Eberhart and Shi 2001), and a large
number of hybrid variants (Robinson, Sinton, and Rahmat-Samii 2002; Hendtlass
2001; Zhao et al. 2005; Shi, Li, et al. 2010). PSO has been used to solve a large
number of optimisation problems, a selection of which are Antenna Design (Donelli
et al. 2006; Boeringer and Werner 2004; Khodier and Christodoulou 2005), Biomed-
ical(Selvan et al. 2006), Solar Energy (Elsheikh and Abd Elaziz 2019), Geotechnical
Engineering (Hajihassani, Armaghani, and Kalatehjari 2018) and Traveling Salesman
Problem (Wang, Huang, et al. 2003).

Another significant Swarm Intelligence technique is Artificial Bee Colony (ABC)
(Karaboga 2005). As the name suggests, the algorithm is inspired by the previously
discussed behaviour of honey bee swarms, specifically the food foraging process. The
swarm consists of three essential components: Food sources, employed foragers and
unemployed foragers. Employed foragers are associated with a particular food source
they are “employed” at, while unemployed foragers are either scouting for new food

CHAPTER 2. LITERATURE REVIEW 10

sources, or waiting in the nest for information from employed foragers. In order to
communicate, bees perform a “waggle dance” which communicates information about
food sources to other onlooking bees. The waggle dance can cause unemployed for-
agers to be “recruited” to a certain food source, becoming “employed” by that food
source. The employed bee will then take nectar from the food source, return to the
hive and unload the nectar to a food store. The bee will then either return to unem-
ployment, perform the waggle dance to recruit other bees to the food source, or return
to forage without recruiting other bees.

In the ABC algorithm, the artificial bee colony consists of three groups: Employed
bees, onlookers and scouts. Each “food source”, representing a possible solution, em-
ploys a single bee. The amount of “nectar” in each food source corresponds to the
solution quality of the solution represented by that food source. The employed bee
moves to other food sources in the neighbourhood of its current food source, and de-
termines the nectar level. If the nectar level is higher than their previous food source,
they forget their previous source and instead become employed by the new, better food
source. A limit parameter is used to determine how many times a bee can fail to find a
better food source before their current source becomes abandoned. Once this happens,
employed bees become scouts. The onlooker bees are placed on food sources in the
vicinity of the food source they are being recruited to using roulette-wheel selection
(Goldberg 1989). The probability is influenced by the amount of nectar in the food
source of the bee that is recruiting them. The scout bees explore the rest of the search
space looking for food sources, generally finding low-quality solutions but occasion-
ally discovering a new high quality solution. Throughout this process, the global best
solution is recorded and updated when a new global best is found. Once the algorithm
reaches its termination state, this global best solution is returned.

As with PSO, ABC now has many variants and hybrids to solve a vast array of
problems. Applications of ABC include training neural networks (Karaboga and Akay
2007; Karaboga, Akay, and Ozturk 2007; Karaboga and Ozturk 2009), nuclear power
plant accident diagnosis (Oliveira, Schirru, and Medeiros 2009), subway route optimi-
sation (Yao et al. 2010), traveling salesman problem (Karaboga and Gorkemli 2011;
Li, Li, et al. 2011) and vehicle routing (Szeto, Wu, and Ho 2011). Notably, many of
these problems are combinatorial rather than the numerical problems that ABC was
initially designed to solve.

CHAPTER 2. LITERATURE REVIEW 11

2.2 Ant System

Rather than being influenced by every aspect of a species’ behaviour, nature-inspired
algorithms generally take inspiration from one or a small number of specific behaviours
exhibited by that species. For ants, this is the act of pheromone distribution, which
was first observed in the late 1940s and 1950s. Wilson (1962) observed the foraging
behaviour of Fire Ants, in which solitary workers move away from the ant nest in
irregular, looping paths. Once an ant finds a food source that it is unable to move by
itself, it inspects the source and then returns to the nest, leaving a chemical trail as it
travels. Once the ant reaches the perimeter of the nest and makes contact with other
ants, it turns around and follows the trail back to the food source, doubling the strength
of the trail. Most other worker ants that encounter the trail are drawn to follow it in an
outward direction, towards the food source. This is an example of stigmergy, indirect
co-ordination between agents through the environment (Grassé 1986).

This was proven with the use of the double bridge experiment, as seen in Figure
2.1, which presented ants with two paths of differing lengths. Over time, the ants
stopped using the longer path until they were solely using the short path. The shorter
path allows for a shorter journey, and an ant returning to the hive more quickly means
a stronger pheromone trail, as the ant reinforces the trail while returning to the hive.
This stronger pheromone trail attracts more ants, until the trail is so strong that ants no
longer consider the trail on the longer path.

Figure 2.1: The double bridge experiment, designed to determine which path an ant
would take given the choice of two paths with differing lengths (Dorigo and Birattari
2011)

An optimisation technique based on this behaviour was first proposed as Ant Al-

gorithms (Colorni, Dorigo, Maniezzo, et al. 1991), and later expanded upon as Ant

System (Dorigo and Gambardella 1997a). The technique makes use of software agents
(or “Ants”) that each attempt to find a solution to a given problem. The problem used

CHAPTER 2. LITERATURE REVIEW 12

to demonstrate these algorithms is the Traveling Salesman Problem (TSP). The TSP
(Lawler 1985) is an NP-hard problem presented in the form of a set of cities, with the
end goal being to create the shortest Hamiltonian cycle that visits every city. While
many variants exist, the two most prominently featured TSP variants in ACO research
are symmetric TSP, the default form of TSP in which the distance between two cities
is the same in both directions, and asymmetric TSP (ATSP) in which the distance be-
tween two cities is different in both directions. The basic structure of the Ant System is
as follows:

• An ant’s starting city is selected at random

• The ant selects which city to move to next with a probability based on distance
between the target city and the current city, the pheromone value for the edge
between the two cities (which will initially be the same for every path, and will
change over time), and a randomly generated number.

• Ants are unable to visit the same city twice through use of a tabu list

• Once an ant has completed its tour, it updates the pheromone value for the edges
traversed in its tour, with the size of the pheromone value increase being indi-
rectly proportional to the quality of the solution (length of the tour, with shorter
tours being considered better solutions).

The AS algorithm is divided into iterations, with each iteration containing a certain
amount of ants. Once every ant in an iteration completes its tour, pheromone evapora-

tion takes place which reduces pheromone globally by a pre-defined amount. As more
ants perform tours, the pheromone values for paths that lead to high-quality solutions
increase, making it more likely that ants will travel on these edges and produce their
own high-quality solutions. AS algorithms can continue until either convergence is
reached, or a pre-defined number of iterations have been executed. The shortest tour at
this point is considered the best solution. This basic structure persists through all fu-
ture iterations and variations of the Ant System algorithm. (Colorni, Dorigo, Maniezzo,
et al. 1991; Dorigo, Maniezzo, and Colorni 1996; Colorni, Dorigo, Maniezzo, and Tru-
bian 1994; Gambardella and Dorigo 1995; Maniezzo, Muzio, et al. 1994)

CHAPTER 2. LITERATURE REVIEW 13

2.3 The Ant Colony Optimisation metaheuristic

The development of multiple variants of the original Ant System algorithm prompted
the definition of the Ant Colony Optimisation meta-heuristic in (Dorigo and Di Caro
1999), which establishes a common framework shared by these techniques and al-
lows for a unified view of the ACO research area. This framework contains char-
acteristics shared by each different ACO technique including ant behaviour, suitable
problem characteristics and the three phases of ACO algorithms: tour construction,
pheromone distribution and daemon actions. Variants of ACO used with TSP and not
previously mentioned are: Elitist Ant System (Dorigo, Maniezzo, and Colorni 1991),
a precursor to MMAS which only distributes pheromone for the best-so-far tour;
ANTQ (Gambardella and Dorigo 1995), a version of Ant System that takes inspiration
from Q-Learning (Watkins and Dayan 1992); Rank-based AS (Bullnheimer, Hartl, and
Strauss 1997), which ranks ants based on tour lengths and only distributes pheromone
to the top n ants; and Best-Worst Ant System (Cordón Garcı́a, Fernández de Viana,
and Herrera Triguero 2002), which implements a pheromone mutation phase in the AS
algorithm. Additionally, while TSP was the problem used for initial benchmarking,
ACO has been successfully applied to many other problems domains including Vehi-

cle Routing (Gambardella, Taillard, and Agazzi 1999), Quadratic Assignment (Stützle
and Hoos 2000), Multiple Knapsack (Leguizamon and Michalewicz 1999) and Protein

Folding (Shmygelska and Hoos 2005).
The next variant of the AS algorithm is Ant Colony System(ACS) (Dorigo and Gam-

bardella 1997a), which has three key differences compared to the original AS. Firstly,
while Ant System updates the pheromone trails of every ant in the global pheromone

update process, ACS only updates the path of the ant that found the best tour in the
current and every previous iteration (the global-best ant). Alongside this change, a
local pheromone update process is introduced which is carried out by ants, updating
pheromone levels as they move around the TSP. The third and final main distinction
between ACS and AS is a change to the state transition rule (the rule that determines
which city an ant will visit next). The change introduces the idea of exploration vs ex-
ploitation, with exploration focusing on visiting cities not currently in the best tour and
exploitation making use of the current best tour to select the next city. This is chosen
randomly each time an ant is selecting the next city to visit, weighted by the value of
the parameter q0 which is a number between 0 and 1 which indicates the probability of
exploitation. Additionally, ACS is the first variant of ACO to make use of local search,
using the 3-opt technique to attempt to improve already completed tours.

CHAPTER 2. LITERATURE REVIEW 14

A further improvement to Ant System was then proposed in (Stützle and Hoos
2000). MAX -MIN Ant System (MMAS) introduces several new techniques into
the Ant System algorithm. Like ACS, only the best ant distributes pheromone after tour
completion. However, in order to counteract the potential for stagnation that comes
with this approach, pheromone levels are bound between a maximum and minimum
value. The implementation of the minimum bound prevents paths from having no
pheromone, meaning that no path will ever be fully excluded from the tour. The maxi-
mum value prevents a particular edge of the graph from amassing so much pheromone
that it will be traveled on whenever possible by an ant, as while this may lead to a
good tour, better tours may require the edge to be ignored. The results of experimenta-
tion withMMAS determined that it performed at least as well as ACS, and regularly
outperformed the algorithm. A key difference betweenMMAS and ACS is the local
pheromone update, which does not take place inMMAS. This allowsMMAS to be
easily parallelised, which will be discussed further in later sections.

2.4 Parallel Ant Colony Optimisation

2.4.1 Distributed Systems

While ACS andMMAS were being developed, the possibility of parallel ACO was
also being looked into for the first time. This would allow the computationally expen-
sive ACO algorithm to divide its workload, leading to reduced execution time which
comes with the added effect of bringing the execution time of larger problems down
to a feasible level. Two separate approaches to parallelised ACO were investigated
(Figure 2.2). The first, which was described as a fork-join algorithm (Bullnheimer,
Kotsis, and Strauß 1998a), involved having individual ants solving the TSP instance
in parallel and then updating pheromone levels once every ant had completed its tour.
This is possible due to the lack of communication between ants when they’re carrying
out a tour. Limited hardware availability at the time meant that in most cases there
were more ants required than available workers, which required each worker to han-
dle more than one ant, increasing the granularity of the application. This approach
also still requires some communication between ants (sending tours back to a master
process and receiving updated pheromone levels from said process), which decreases
efficiency. To attempt to prevent this, a partially asynchronous (Bullnheimer, Kot-
sis, and Strauß 1998a) approach was also investigated. This approach introduces the

CHAPTER 2. LITERATURE REVIEW 15

idea of local updates, where processes (ants) within each worker update pheromone
trails locally within the worker rather than globally, with global updates between all
workers happening far less frequently. A drawback of this approach is that ants in
different workers will only be made aware of a good quality tour in another worker
once a global update happens, delaying the impact of the good tour. A fine balance
between local and global updates is required for this technique to be effective. While
the experiments using these approaches were simulated rather than tested on a prob-
lem, the results indicated that the asynchronous technique performed better than the
synchronous technique, as it benefitted from reduced idle time due to the lower com-
munication overhead. However, the benefits of the asynchronous approach are less
prominent on larger problem sizes.

Figure 2.2: Diagram of the two parallelisation approaches used in (Bullnheimer, Kot-
sis, and Strauß 1998a), synchronous (or fork-join, L) and partially asynchronous (R).
The arrows indicate the sending of tour information and/or pheromone information
between the master processor and worker processers. The worker processors each
compute a tour and send it back to the master processor, which updates the pheromone
matrix and checks for the best tour found so far.

The approach of dividing ants between workers is also discussed in (Stützle 1998),
which parallelises theMMAS algorithm. This approach differs from Bullnheimer’s
approach in that there is no communication between workers; each worker executes
ACO sequentially and the only interaction with other workers occurs when the best

CHAPTER 2. LITERATURE REVIEW 16

tour is being determined at the end of execution. Along with this, an entirely new
approach is presented, focusing on speeding up individual runs using parallelisation
rather than having many ants running in parallel, which allowed the contemporary
hardware to more efficiently make use of parallelisation. This master-worker approach
(Figure 2.3) involves using one processor (the master processor) to update the data
structures, create solutions that will be improved by local search, and send the solutions
on to other processors (worker processors) which then perform local search on the
solutions. Once the solutions have been improved by the workers, they are returned
to the master who updates the pheromone matrix appropriately. The structure of the
master-worker system can vary depending on the problem instance it’s being applied
to. In situations where local search only takes 75% - 80% of processing time, some
worker processors may instead be given the task of constructing new tours, which are
then sent to the local search workers, which then send their improved tours back to the
master processor. The more coarse-grained asynchronous approach performed better
than the synchronous approach due to reduced idle time.

Figure 2.3: Diagram of the master-worker parallelisation approach (Stützle 1998)

Research on parallel ACO continued to focus on coarse-grained methods, which
were performing better at the time than fine-grained techniques, and while fine-grained
techniques were still being developed (Randall and Lewis 2002) communication over-
head was still proving to be an issue. This was due to techniques largely being devel-
oped on distributed systems as this was the most viable method of parallelisation at
the time. This would continue to be the case until performance gains would minimise
the impact of this overhead, as well as developments in hardware allowing paralleli-
sation to be carried out by a single machine. Coarse-grained algorithms continued
to follow the structure of the master-worker approach, with new techniques focus-
ing on optimising communication between independent worker ant colonies. Rather
than communicating the pheromone matrix between colonies, these solutions opt to

CHAPTER 2. LITERATURE REVIEW 17

communicate single solutions between colonies as this significantly reduces commu-
nication time. In (Middendorf, Reischle, and Schmeck 2002), different methods of
communication are tested to determine the most efficient way to communicate best
tours between ant colonies. The best performing technique has two communication
policies: circular exchange of local best solutions, where ant colonies are organised in
a directed ring structure with each ant colony periodically sending its best tour to the
next colony in the ring; and migration, which uses the same ring structure but com-
pares a pre-defined number of best ants between a colony and the next colony in the
ring, with the best ants in the comparison being used to update the pheromone ma-
trix. This technique performs well on the TSP, as do several other implementations
of multi-colony parallel ACO (Doerner et al. 2006) (Chen and Zhang 2005) (Twomey
et al. 2010). While these techniques significantly reduce the communication overhead
of parallel ACO, further developments were being made in the previously established
technique of independent Ant Colonies (Stützle 1998), which has no communication
at all and therefore no overhead. This technique is compared against several commu-
nicating multi-colony techniques in (Manfrin et al. 2006), and performs considerably
better than all other techniques in terms of solution quality despite having no commu-
nication between ant colonies, although the author notes that this may not be the case
with some kind of anti-stagnation mechanic implemented. However, this does demon-
strate that communication between multiple colonies isn’t necessary for an effective
parallel implementation of ACO, though running individual ants in parallel was still a
long way from being a viable technique at this point.

2.4.2 GPGPU

In 2007, NVidia released CUDA, a parallel computing architecture allowing for gen-
eral purpose use of GPUs (known as GPGPU). This allowed developers and researchers
to make use of the processing power provided by GPUs for a wide range of applica-
tions. Due to the much higher level of parallelism available through the use of GPUs
rather than CPUs, as well as the ability to research parallel computing on a single
machine rather than a distributed system, many researchers began to take advantage
of this new architecture. A GPU-based variant of theMMAS algorithm (known as
GMMAS) was developed in (Bai et al. 2009), making use of the CUDA framework
and a GeForce 8800 GTX GPU. This GMMAS solution divides the ants into multiple
colonies, with each colony using slightly different parameters and each colony corre-
sponding to a thread block. Each colony is also parallelised, with ants divided onto

CHAPTER 2. LITERATURE REVIEW 18

threads in that colony’s block. This implementation shows speedups of just over 2x
versus the sequential implementation, performing better than (Jiening, Jiankang, and
Chunfeng 2009), which does not make use of CUDA. One issue with this approach
is the use of a consumer-level GeForce GPU which is significantly less powerful than
Nvidia’s range of Tesla GPUs which are specifically designed for GPGPU. While the
8800 GTX features 128 CUDA cores, the Tesla C1060 used in (You 2009) has 240
CUDA cores available, as well as being generally more powerful. This allows the
Tesla implementation to reach speedups of around 12x on the same 400 city instances
used in (Bai et al. 2009), and 21x on 800 city instances.

While previous techniques focused on parallelising the already existing techniques
developed for ACO, (Cecilia, Garcı́a, Ujaldón, et al. 2011) is the first of many papers
to begin to address the need for new, parallel-specific techniques that would further
improve ACO on parallel architectures. The new technique forgoes the traditional
“roulette wheel” approach employed by sequential ACO algorithms and instead utilises
a data-parallel approach. A thread block is associated with each ant, with each thread
representing a city that an ant is able to visit. These threads load the heuristic value
associated with the city it represents, generate a random value between 0 and 1, and
check the tabu list to see whether the city has already been visited or not (a city will
have a value of 0 if it has been visited, and 1 if it has not). These values are multiplied
together and stored in a shared memory array, which is then reduced to determine the
next city that an ant will visit. This technique would later be called I-Roulette (Figure
2.4) (Cecilia, Nisbet, et al. 2013), and shows speedups of up to 21.71x against the
sequential CPU implementation on the pr2392 TSP instance.

Another technique developed for parallel ACO is Double Spin Roulette (DS-
Roulette) (Dawson and Stewart 2013b), which like I-Roulette aims to replace roulette-
wheel selection with a technique more suited for parallel architecture. DS-Roulette
aims to improve on I-Roulette in several ways, including removing the need for costly
random number generation and reducing dependence on shared memory. DS-Roulette

is divided into three stages: in the first stage, each thread checks whether the city it
represents has been visited in the current tour, similar to the tabu list in I-Roulette.
If valid cities remain within a thread sub-block, the heuristic information is retrieved
from shared memory and multiplied by the tabu value. A block-wide reduction is
then performed on these values, with the results from each sub-block being stored in
shared memory. At this point there is a list of sub-block probabilities. A selection is
then made from these sub-block probabilities using roulette wheel selection. Once a

CHAPTER 2. LITERATURE REVIEW 19

Figure 2.4: Diagram of I-Roulette technique (Cecilia, Nisbet, et al. 2013)

sub-block has been selected, another roulette wheel selection is performed, this time
selecting a thread within the sub-block. The selected thread represents the city that
will be traveled to next. DS-Roulette shows speedups of up to 8.5x against I-Roulette

on the pcb442 TSP, although speedup drops to 4.06x for pr2392. When compared to a
sequential CPU implementation, DS-Roulette is up to 82x faster.

While developments in parallel ACO largely focused on adapting the MMAS
technique, the ACS technique was also parallelised (Skinderowicz 2016). As with
other parallel ACO implementations, each ant corresponds to a single thread block,
and a candidate set of equivalent size to the GPU’s warp (groups of stream processors)
size, which in this case is 32. Due to the size restriction of potential destination cities
being limited to 32 due to the candidate set, I-Roulette and other methods are ignored
in favour of a more straightforward roulette wheel selection. The global pheromone
update is performed by a separate kernel using 128 threads, with the local pheromone
update being performed as part of the tour construction process. Two versions of this
code have been designed, one (ACS-GPU) which executes in a similar fashion to the
sequential code, with an ant taking a step in its tour, then performing local pheromone
update. This is a single step of the process, which corresponds to one GPU kernel
execution. The other (ACS-GPU-Alt) implementation aims to maximise speedup by

CHAPTER 2. LITERATURE REVIEW 20

constructing a whole tour and performing local distribution in a single kernel execu-
tion. One of the drawbacks of this method is potential loss of solution quality due
to simultaneous memory reads and writes which may cause updated pheromone val-
ues to be lost. These methods have also been tested with the use of the previously
mentioned selective pheromone memory technique (ACS-GPU-SPM) (Skinderowicz
2012). These techniques were compared with the base ACOTSP code, with ACS-
GPU showing speedups of between 2x and 6x, and ACS-GPU-Alt showing speedups
of between 13x and 17x. However, as expected, the average solution quality of the
ACS-GPU-Alt technique is poorer than ACS-GPU, though it is better than the base
ACOTSP code. ACS-GPU-SPM outperforms ACS-GPU in terms of speedup, but has
a lower speedup than ACS-GPU-Alt, though the SPM technique produces better qual-
ity solutions.

Dı́az et al. (2020) proposed a parallelisation techique, referred to as the “Multiverse
method”, which could be widely applied to a range of optimisation techniques, includ-
ing ACO. Rather than parellelising a single instance of an algorithm (such as dividing
ants in an ACO algorithm between threads), Multiverse instead runs multiple instances
of an algorithm in parallel. One of these instances has special status, and is referred
to as “The Collector”. The Collector receives updates of the best solutions from ev-
ery other instance, and can apply this knowledge to its own instance. As this is just a
one way injection of information from the other instances to The Collector, overhead
is minimal. The results of the Multiverse method were compared with the Multistart
method, which operates similarly to Multiverse but without the Collector, meaning
there is no communication between instances. Both methods were tested using the
asymmetric TSPs available in the TSPLIB package. For both the ACO and GA vari-
ants of the experiments, Multiverse provides identical or superior solutions compared
to Multistart. In terms of solution time, Multiverse is generally slightly faster than
Multistart, though not for every experiment. This demonstrates that the overhead time
of Multiverse is negligible. Overall, the Multiverse technique outperforms Multistart.

While CUDA simplified research into parallelisation, GPGPU applications re-
quired a significant amount of CUDA-specific code which severely limited the porta-
bility of these techniques. With the release of their first manycore co-processor, Intel
provided a parallel computing platform that could run native x86 code with minimal
changes.

CHAPTER 2. LITERATURE REVIEW 21

2.5 Single Instruction Multiple Data

Single Instruction Multiple Data (SIMD) instructions were initially restricted to su-
percomputers in their earliest history, first used in 1966, and this continued to be the
case through the 1970s and most of the 1980s, until Multiple Instruction Multiple Data
(MIMD) instructions became more accessible in the late 1980s. With this develop-
ment, the future of SIMD lay in the desktop market, with early desktop SIMD instruc-
tion sets such as Hewlett-Packard’s MAX instructions and Sun Microsystems’ VIS
instructions being developed to satisfy the increasing demand for video codec process-
ing and real-time gaming. Intel soon followed suit, introducing their MMX instruction
set in 1997. Intel would continue to supplement the MMX instruction set, with several
releases of their Streaming SIMD Extensions (SSE) adding to the SIMD capabilities
of their processors. SSE allows for instructions to be carried out simultaneously on a
four-wide vector of single-precision floating point numbers, with available instructions
including loading from memory to a vector (and vice-versa), arithmetic instructions,
and comparisons between two vectors, among many others. The SSE2 instruction set,
released in 2000, adding integer, double-precision float and character compatibility to
SSE, as well as adding instructions that were compatible with these data types. SSE3,
released in 2004, added the ability to perform instructions within a vector. Two fur-
ther expansions of the instruction set, SSSE3 and SSE4 were released in 2006, shifting
focus away from multimedia applications.

In 2012 Intel released the first of their new range of manycore processors, the Intel
Xeon Phi (Figure 2.5) (Chrysos 2014). The Xeon Phi began as a derivative of In-
tel’s Project Larabee, which was intended to be a GPGPU micro-architecture. While
Project Larabee was cancelled in 2010, development of the Xeon Phi continued. The
first publicly available generation of Xeon Phi processors, Knight’s Corner, contained
between 57 and 61 cores each, with each core having 4 processing threads available.
The cores themselves, being modified versions of the original Pentium processor, have
low clock speeds, ranging from 1GHz to 1.2GHz. A key feature of the Xeon Phi is
the Vector Processing Unit (VPU), which features a novel 512-bit Single Instruction

Multiple Data (SIMD) instruction set known as Intel Many Core Instructions (IMCI)
(Lomont 2011). The notable addition in this instruction set was the ability to perform
fused multiply-add instructions, which executes 32 single-precision float or 16 double-
precision float operations in a single cycle. The Extended Math Unit featured in the
Knights Corner’s VPU allows for vectorised square root and log operations. This in-
struction set only ever featured on the Knights Corner architecture, and was not carried

CHAPTER 2. LITERATURE REVIEW 22

forward to the next generation of Xeon Phi, Knights Landing. Instead, Knights Land-
ing featured the AVX-512 instruction set, a 512-bit extension of the AVX2 instruction
set. Unlike previous instruction sets, which required every instruction from the set to
be implemented, AVX-512 consists of many extension sets which may be optionally
implemented, with only the core extension AVX-512F being mandatory. This leads
to the AVX512 instruction set available on Knights Landing being more limited than
the IMCI instructions available on the previous generation. However, AVX-512 will
be available on future generations of desktop processors such as AMD’s Zen 4 archi-
tecture, while IMCI is limited to the expensive and fairly uncommon Knights Corner
architecture. This VPU allows for the execution of 16 single-precision floating point
operations per processor cycle. Prior to Xeon Phi, a solely CPU-based implementa-
tion of ACO had no chance of performing as well as a GPU implementation, but the
high number of available threads provided by Xeon Phi greatly increase the potential
of CPU-based parallel ACO techniques.

Figure 2.5: A diagram of the Xeon Phi

Initial experimentation using ACO with the Xeon Phi gave poor results, although
this was for the quadratic assignment problem rather than TSP (Sato et al. 2014). This
solution also fails to make proper use of the Xeon Phi’s SIMD capability, which is
crucial for good performance. The first research on solving the TSP using ACO was
in (Tirado, Urrutia, and Barrientos 2015), which includes useful experiments in deter-
mining the best way to make use of the Xeon Phi’s hardware. As with previous work,
this research focuses on the tour construction phase of the ACO algorithm as this is the
main bottleneck. Firstly, the choice info matrix is calculated, which is size n2. Two

CHAPTER 2. LITERATURE REVIEW 23

methods have been created to calculate the matrix, with the only difference being the
use of the C++ pow() function. While v1 of the method uses pow(), v2 instead uses
several consecutive multiplications using IMCI.

The second development in this technique is the calculation of the probability ma-
trix, which makes use of the previously calculated choice info matrix. The rows and
columns of this matrix represent ants and cities respectively, with the value of a cell
indicating the chance of a specific ant visiting a specific city. As with the choice info

calculation, two separate methods were developed for this task. Method one divides
the calculation task between available cores rather than available threads, meaning four
threads work simultaneously to determine the probability for one ant. Method two di-
vides the task between threads rather than cores, which was implemented to make use
of the Xeon Phi’s VPU.

The experimental results of these techniques give a useful insight into how to get
the most efficiency from the Xeon Phi. Firstly, choice info v2 outperforms choice info

v1, demonstrating that making use of several multiplication IMCI instructions is more
efficient than using the C++ pow() method, although the advantage is a very slim one.
A more promising discovery is the huge advantage that the second, thread-based prob-
ability method has over the first, core-based method, with speed ups that are around 5x
greater than the speedups demonstrated by the first method. The fact that the second
method is designed to make the most efficient use of the Xeon Phi’s VPU demonstrates
how powerful it can be when fully utilised. Overall, the two techniques combined pro-
vide a speedup of up to 41x vs the sequential counterpart. Contrary to the initial work
on ACO with Xeon Phi (Sato et al. 2014), this work indicates that the Xeon Phi is
viable platform for further ACO research.

In (Lloyd and Amos 2016), the aim is to further increase the efficiency of ACO on
Xeon Phi and achieve greater speedups. As with the previous paper, the tour construc-
tion phase is the main focus. However, this time the aim is to increase the efficiency of
the edge selection process. Two techniques have been developed, both based on the two
best performing techniques for GPU: vRoulette-1, based on I-Roulette, and vRoulette-
2, based on DS-Roulette. Unlike I-Roulette’s original implementation, vRoulette-1 is
a task-based approach. Rather than thread blocks representing ants and threads repre-
senting cities, ants are each represented by a single thread. When selecting the next city
to visit, each ant loops through potential cities 16 at a time by making use of 16-wide
vectors and IMCI instructions. Three 16-wide vectors are created for each loop, one
containing the probability of an ant visiting the city, one containing a random number

CHAPTER 2. LITERATURE REVIEW 24

and one containing the tabu value. Due to the IMCI instruction set this process can be
done in two process cycles, with a masked load of 16 cities from the weight matrix be-
ing one process, and multiplying 16 cities by 16 random numbers being another. This
would be done until every city that can be traveled to has been processed, with a reduc-
tion being performed on the resulting edge weights. The edge with the largest weight
is then traveled to, and the process repeats until a complete tour is formed. The IMCI
instruction set and number of threads available to the Xeon Phi (240 in this paper)
make this approach preferable to the data-based approach of the original I-Roulette.

Unlike vRoulette-1, vRoulette-2 selects cities with probabilities that are propor-
tionate to the weights (cities with higher weights are more likely to be selected in
vRoulette-1 but it isn’t exactly proportionate). In vRoulette-2 cities compete against
each other in trials in which their weight is multiplied by a random number and their
tabu value, with the winning city in a trial accumulating the weight of the losing city.
These trials are carried out 16 at a time using the IMCI instructions, with weights and
indices being stored in 16-wide vectors. The winning weights from each vector are
then compared against each other sequentially, with the winning city at the end of this
process being traveled to next.

The other significant parallelisation done in this code is in the pheromone update
stage. As the base ACO technique used here is MMAS only one ant distributes
pheromone at the end of an iteration, meaning that there isn’t any scope for paralleli-
sation with this process. Pheromone evaporation and clamping between the maximum
and minimum values, however, takes place in a nested for loop, with the outer loop
being distributed amongst available threads using OpenMP and the inner loop being
vectorised using IMCI.

The results of the experiments performed on these techniques show that vRoulette-1
very slightly outperforms vRoulette-2 on all tested instance sizes in terms of execution
time, though the time difference on the largest tested instance, pr2392, was less than a
hundredth of a second per iteration. Where vRoulette-1 really has an advantage over
vRoulette-2 is in solution quality, which ideally would be as close to optimal as possible
despite not being the focus of the paper. Both techniques are an order of magnitude
faster than the technique presented in (Tirado, Urrutia, and Barrientos 2015), although
Tirado’s technique was based on Ant System without a nearest neighbour list which
had a significant impact on execution time compared to the reference ACOTSP code
(Stützle 2004), which usesMMAS and a nearest neighbour list.

CHAPTER 2. LITERATURE REVIEW 25

Figure 2.6: Diagram of the UVRoulette method

A similar vectorised implementation of I-Roulette is demonstrated in (Tirado, Bar-
rientos, et al. 2017). This method, known as UVRoulette (Figure 2.6), makes use of the
same 16-wide vectors as vRoulette-1, with one each for probability, random number
and tabu value, with these values being multiplied together. When combined with the
techniques developed in (Tirado, Urrutia, and Barrientos 2015), this method produces
speedups of up to 42x vs the sequential version of the code, which is slightly higher
than the results measured without using UVRoulette. While this doesn’t produce a no-
table new technique due to UVRoulette’s similarity with vRoulette-1, it does include
a useful comparison with results measured by GPU techniques. While it’s difficult to
directly compare the Xeon Phi’s hardware with the GTX580 and Tesla C2050 used
in the GPU experiments, a speedup of 1.53x and 2.43x respectively is predicted on
the Xeon Phi based on hardware alone. Against I-Roulette, these techniques begin to
outperform this expected speedup on instances of size 783 and up, whereas against
DS-Roulette the outperformance begins at pr1002. This proves that Xeon Phi is able to
outperform GPU implementations of ACO even when hardware differences are taken
into account.

2.6 The Scalability of Ant Colony Optimisation

While parallelisation significantly reduces the execution time of ACO, one of the main
limitations of using ACO with TSP, especially on large instances, is the dependence

CHAPTER 2. LITERATURE REVIEW 26

on the pheromone matrix. While the size is manageable on smaller instances (the
pheromone matrix for the pr442 TSP, a TSP instance from the widely-used TSPLIB
library, contains 195,364 32-bit floats, meaning that overall the pheromone matrix re-
quires 0.7MB), on larger instances the memory requirements become a significant
obstacle. The Mona Lisa TSP, which contains 100,000 cities, has a pheromone matrix
memory requirement of around 40GB, far more memory than most computers are able
to allocate. In order to enable ACO to effectively solve very large problem instances
an alternative to the pheromone matrix needs to be used. Several steps have been made
to remove the need for a pheromone matrix.

The first development in removing the need for the pheromone matrix is
Population-based ACO (P-ACO) (Guntsch and Middendorf 2002). This technique in-
stead adds the best ant in each given generation to a solution population. The ants
consult this population when performing edge selection, using paths from their current
city that exist in tours in the solution population to decide the city that will be traveled
to next. Once a pre-defined number of solutions is reached, the weakest tour in the
population is removed after every new generation as well as the best new solutions
being added to the population, maintaining the number of solutions in the population.
When a solution is removed, the pheromone of that solution is no longer used by ants
when performing edge selection. This technique was developed for use with dynamic
TSPs which require a more reactive pheromone matrix in order to quickly adapt to
changes in the problem. While by itself this technique isn’t too useful in solving larger
instances, it forms the basis of further work that seeks to eliminate the pheromone
matrix altogether.

PartialACO (Figure 2.7) (Chitty 2017) is inspired by P-ACO, but makes several
modifications. Firstly, the solution population is replaced by each ant having a local
memory of the best tour that the ant has found. This is used during the edge selection
phase. The pheromone provided by these local best tours is equal to the solution
quality of the global best tour divided by the solution quality of the local best tour.
Another change is the use of the I-Roulette technique (Cecilia, Nisbet, et al. 2013) to
parallelise the algorithm. As with most new ACO techniques, particular attention is
paid to the tour construction phase, as it is the most computationally expensive phase
with a computation time that increases as the number of cities increases.

The main difference between PartialACO and previous techniques is that while
previous techniques have each ant create a full tour every iteration, PartialACO in-
stead has ants take a previous good quality tour and change a small part of it. At

CHAPTER 2. LITERATURE REVIEW 27

each iteration an ant randomly selects a starting city, and also randomly selects section
of the local best tour to remain unchanged, with the remaining part of the tour con-
structed as normal. This greatly reduces the amount of steps an ant needs to take while
constructing a tour, reducing computation time of each ant.

Figure 2.7: Illustration of PartialACO demonstrating the area of the tour which is able
to be changed (dashed section) and area of tour that will be unchanged (solid section)
(Chitty 2017)

PartialACO was evaluated against the P-ACO technique that it was based on, and
then evaluated on very large TSP instances. In the first stage of testing, PartialACO

is proven to be faster than P-ACO with speedups of up to 2.8x as well as providing
better quality solutions. Further evaluations were carried out that restrict the amount
of the local best tour that an ant is able to to modify, with speedup increasing as less
of the tour was able to be modified. However this has the opposite effect on solution
quality, with solution quality decreasing as the restriction percentage increased. In
order to counteract this effect, 2-opt local search is used which improves solution
quality while slightly reducing speedup amount. For the tests on the very large TSP
instances (ranging from 100,000 to 200,000 cities), each ant can change only 1% of
the local best tour, significantly reducing the problem size faced by each individual
ant, which in turn reduces computation time. Each ant also has a 0.001% chance of
performing a 2-opt local search. The execution time for this technique ranges from an
average of 1.07 hours for the 100,000 city TSP to 5.06 hours for the 200,000 city TSP.
This is a speedup of up to 1199x against P-ACO on the same problems, while also
greatly increasing solution quality against P-ACO. This approach uses just one quad-
core i7 CPU, so utilising this technique on more powerful hardware could lead to even

CHAPTER 2. LITERATURE REVIEW 28

greater speedups. Despite these promising results, it should be noted that the quality of
solutions found by the P-ACO technique is still much poorer on these very large TSP
instances than the current state documented state of the art (TSP Art Instances n.d.),
which makes use of genetic algorithms (Honda, Nagata, and Ono 2013).

While the memory complexity of large TSP instances is the focus of techniques
that replace the pheromone matrix, time complexity is still a key focus, as even with
a reduced matrix, the instances are still very large. An important development in this
regard is the use of candidate sets (Figure 2.8). While candidate sets were used by
both ACS andMMAS in the context of local search, only in later versions of ACS
andMMAS are candidate sets used by ants in the tour construction phase in order to
reduce the complexity of larger TSP instances (Stützle and Dorigo 1999). In this case a
static approach to candidate set is employed, in which the nearest neighbor list for each
vertex is determined before the ants begin their tours and remains constant throughout
execution. A dynamic approach to candidate sets has also been investigated (Randall
and Montgomery 2002), and while this was shown to perform better on complex prob-
lems like quadratic assignment, more basic problems like TSP are simple enough that
the extra processing time required for a dynamic approach actually increases process-
ing time as the benefits of a dynamic approach are outweighed by the higher amount
of computation required.

Figure 2.8: Illustration of a candidate set within a TSP - red cities are the 5 closest and
are in the nearest neighbour list of the green city

The first variant of ACO to make use of candidate sets is ACS, for experiments
with large TSP instances. This initial implementation constructs a list for each city of

CHAPTER 2. LITERATURE REVIEW 29

the fifteen closest cities. When an ant is attempting to determine which city to move
to next, it can only select from cities in the candidate set. If there are no available
cities in the candidate set, the ant is able to move to a city outside of the candidate

set instead. Candidate sets prove very useful for larger TSP instances as they restrict
the number of possible decisions an ant has to take, causing only slightly more than
linear growth in solution time rather than the quadratic growth that occurs without the
use of candidate sets. For symmetric TSPs, ACS performs comparably to other con-
temporary solutions that were considered “very good”, such as the large step Markov
chain algorithm, while being outperformed by genetic algorithms (Dorigo and Gam-
bardella 1997b). More recently, the use of nearest neighbour candidate lists has shown
significant promise in solving large instances of the TSP using ACO (Cecilia, Garcı́a,
Ujaldón, et al. 2011; Dawson and Stewart 2013a). This refinement is based on the
assumption that good solutions to the TSP avoid travelling between distant vertices, an
assumption reinforced by results (Dorigo and Gambardella 1997b), and that they can
generally be found by making only relatively local transitions from vertex to vertex.
This assumption can be reinforced by examining methods of solving TSPs which lead
to good solutions: The Lin, Kerninghan and Helgsaun (LKH) (Helsgaun 2000) tech-
nique focuses on k-opt moves, replacing k edges with k other edges - replacing long
edges with short edges always leads to an improvement in solution quality. While this
assumption makes sense on most TSPs, several - such as pr2392, a TSPLIB problem
used in future sections - feature clusters of cities with long distances between clus-
ters. In these instances, the assumption may not be valid, and when the assumption
is not valid it is safe to assume that the use of candidate sets can overly restrict the
search space, leading to reduced solution quality. Candidate sets still have a place in
these clustered algorithms through the substitution of the standard euclidian distance
metric with other metrics. An example of this is the POPMUSIC technique (Taillard
and Helsgaun 2019), a metaheuristic designed to solve clustered TSP problems, uses
tour merging to generate candidate edges. Although candidate lists are now a standard
component of parallel ACO-based algorithms (Cecilia, Garcı́a, Ujaldón, et al. 2011;
Dawson and Stewart 2013a), previous implementations of this feature have failed to
take advantage of the vector processing capabilities of processors such as the Xeon
Phi. A modified representation of the nearest neighbour list can fully utilise vector
processing, yielding significant performance improvements. Moreover, the speedup
obtained increases as the problem size grows, suggesting that this method will be a re-
quired component of future ACO-based algorithms for large-scale instances of similar

CHAPTER 2. LITERATURE REVIEW 30

problems.

2.7 ACO on Real World Problems and Virtual Ma-
chine Placement

While ACO is most commonly benchmarked using the Traveling Salesman Problem,
it has been applied to a wide range of optimisation problems. From traditional opti-
misation problems such as the Quadratic Assignment Problem (Maniezzo and Colorni
1999) and Vehicle Routing Problem (Bell and McMullen 2004), to pencil puzzles such
as Sudoku (Lloyd and Amos 2020) and Nurikabe (Amos, Crossley, and Lloyd 2019),
ACO is proven to be a dynamic and versatile algorithm that has produced good results
on a wide range of problems.

ACO is also being used to solve modern real-world problems, one of which is Fi-
nanicial Crisis Prediction (FCP) (Uthayakumar et al. 2020), a process undertaken by
financial firms. FCP aims to calculate risk and allow firms to avoid new credit pro-
posals when risk is higher than a pre-defined acceptance level. This process involves
analysing high-dimensional financial data, which can lead to extremely high compu-
tational complexity. This issue can be solved through the use of feature selection,
identifying a subset of the features of the data which are key to the FCP and removing
noisy features. The ACO-FCP model consists of two stages: Feature selection and
data classification. For feature selection, a feature’s heuristic is based on the number
of times the feature appears in a pre-existing set of best solutions. In the data classifi-
cation phase, the aim is to determine the best value for each of the attributes that are
included in the feature subset, with “best” in this context meaning the value which is
most likely to lead to a more accurate classification. The heuristic value for this stage is
the entropy associated with a given term (with a term being a part of the classification
rule). For the feature selection stage, ACO-FS outperformed Genetic Algorithm, Par-
ticle Swarm Optimisation and Grey Wolf Optimisation (Mirjalili, Mirjalili, and Lewis
2014) based on the computational cost of the selected subsets. The ACO-based classi-
fication method is competitive with other significant classification methods.

Another modern real-world problem that has been solved with ACO is the Electric
Capacitated Vehicle Routing Problem (E-CVRP) (Mavrovouniotis, Menelaou, et al.
2020), a variant of the well known Vehicle Routing Problem that deals with electric
vehicles. E-CVRP includes additional constraints compared to VRP that are specific
to electric vehicles. The most significant constraint is the need for vehicles to regularly

CHAPTER 2. LITERATURE REVIEW 31

visit charging stations. The problem involves a fleet of electric vehicles each with a
limited battery charge level and limited cargo capacity. These vehicles must be used
to satisfy the delivery demands of a set of customers as efficiently as possible. The
current cargo load of a vehicle also affects the speed at which the battery drains. Every
customer must be visited a single time by a single vehicle, and each vehicle must start
and end at a depot. Vehicles start fully charged and fully loaded, and visits to charging
stations fully charge the vehicle.MMAS is utilised to solve this problem. Ants begin
at the depot, and each complete a full E-CVRP solution. They are unable to travel to
nodes that would cause negative cargo, negative power, or lead to the ant being too far
from a charging station. As with TSP, the heuristic value represents distance. ACO was
compared with a mixed-integer linear program (MILP) approach, and while the ACO
solutions qualities were generally worse for smaller problems, the MILP approach was
unable to solve larger problems in the allocated time, meaning ACO provided the sole
results for large problem instances.

An increasingly relevant real-world problem is Virtual Machine Placement (VMP),
in which the aim is to maximise the efficiency of virtualisation. Hardware virtualisation
in cloud computing allows for many separate machine instances to be created that are
distinct from the host machine they are utilising. These instances, known as Virtual
Machines (VMs), essentially act as a completely separate computer, distinct from the
other VMs on their host. These VMs are managed by a hypervisor (also known as a
Virtual Machine Monitor, VMM) which creates VMs, optimises their performance and
monitors them. Each host machine has its own hypervisor.

VMP was selected as a benchmark problem for the techniques developed in this
thesis for several reasons: firstly, it is a highly relevant problem, with cloud comput-
ing becoming increasingly prominent especially in the wake of the COVID-19 pan-
demic which has caused many businesses to depend on remote working (Alashhab
et al. 2020); secondly, it is a highly time-sensitive problem, with VMs needing to be
allocated efficiently and quickly in order to minimise the time spent in an inefficient
configuration, needlessly wasting energy and money for the host; finally, it is a prob-
lem that has not yet been solved using a parallelised ACO implementation, and so
the results of these new techniques can provide a benchmark for any potential future
experimentation on VMP.

Many companies such as Amazon (AWS) and Microsoft (Azure) provide access to
Virtual Machines hosted on their own servers. Due to the sheer size of these operations
a significant amount of hardware is required to offer these services to customers. In

CHAPTER 2. LITERATURE REVIEW 32

order to actively run as little physical hardware as possible, a process called Virtual

Machine Migration is often used to move Virtual Machines from one Physical Ma-
chine to another without any disruption for the user (Clark et al. 2005). This ability to
seamlessly migrate VMs allows the mass migration of many VMs to more efficiently
allocate VMs to PMs. For scenarios where a small number of servers are available,
determining the most efficient layout of VMs can be trivial. However, services such as
AWS have millions of users and hundreds of thousands of servers which significantly
complicates this process.

VMP is an NP-hard problem (Stillwell et al. 2010) in which the aim is to allocate
Virtual Machines (VMs) to Physical Machines (PMs) as efficiently as possible (the
definition of “efficient” may be expressed in terms of energy usage, or some other met-
ric). Unlike other problems, VMP currently does not have a widely accepted problem
definition as small variations exist between implementations. The problem defined in
(Liu et al. 2016) is a straightforward version of the VMP problem, and is variant used
in this thesis. While VM requirements differ between implementations, the two most
typical requirements are RAM and CPU. RAM requirements are generally measured in
Gigabytes (GB), while CPU requirements are generally measured in either processor
cores or MIPS (million instructions per second). Every VM will have its own spe-
cific requirements, which means it occupies its own resource “footprint”. The aim of
the problem is to allocate every VM to a PM in such a way that the number of PMs
required is minimised (this may be thought of as a bin packing problem). Here, the
static variant of the VMP problem is focused on, where a fixed set of VMs needs to
be allocated to PMs. A more detailed definition of the VMP problem can be found in
Chapter 6.

Feller et al. (Feller, Rilling, and Morin 2011) developed an early implementa-
tion of ACO for VMP. This treated VMP as a multi-dimensional bin-packing problem
(MDBP), with the Physical Machines representing the bins and the VMs representing
the item to be packed. As reducing the number of used PMs is the most effective way
of reducing energy usage, the objective of the algorithm is to minimise the number of
bins used. The algorithm fills PMs one-at-a-time, with each bin being closed when no
remaining VMs can fit inside. Pheromone is deposited on Item-Bin pairs, with VMs
being linked to the specific PM they were allocated to. The heuristic is based on the
total resource utilisation of the PM if the current VM were to be assigned to it, and
the pheromone is based on the average utilisation of all utilised PMs. The Feller ACO

CHAPTER 2. LITERATURE REVIEW 33

technique outperforms FFD in terms of energy usage, saving 4.1% on average. How-
ever, execution time for the algorithm is significant, ranging from 37.46 seconds for
100 VMs to 2.01 hours for 600 VMs.

A more recent ACO-based VMP solving algorithm is OEMACS (Liu et al. 2016),
named for the combination of the Ordering Exchange and Migration (OEM) local
search it utilises, and the Ant Colony System (ACS) algorithm used for solution con-
struction. The most significant changes between OEMACS and FellerACO are the
switch from anMMAS based implementation to an ACS-based implementation, and
the addition of two Local Search procedures: an exchange procedure similar to a lo-
cal search procedure used for Bin Packing Problems (Alvim et al. 1999) which swaps
VMs between PMs in an attempt to find a more efficient configuration, and an inser-
tion/migration procedure which attempts to remove a VM from one PM and insert it
into another. OEMACS outperforms FellerACO in both solution quality and execution
time.

Aside from ACO, other techniques have been applied to the VMP problem. As
well as heuristic-based approaches such as Next Fit, First Fit, First Fit Decreasing
(FFD) and Best Fit (BF) (Jr, Garey, and Johnson 1996), more advanced optimisation
techniques have been successfully applied to the VMP problem; these include Genetic
Algorithms (GA) (Gao et al. 2013; Mi et al. 2010; Tao et al. 2015), Particle Swarm
Optimisation (Wang, Liu, et al. 2013), and Q-Learning (Masoumzadeh and Hlavacs
2013).

A recently-published method for VMP is the Improved Genetic Algorithm for
Permutation-based Optimisation Problems (IGA-POP) (Abohamama and Hamouda
2020). IGA-POP frames the VMP as a Variable-Sized Bin Packing Problem (VSBPP),
a variant of the Bin Packing Problem (Friesen and Langston 1986). VSBPP differs
from the classic Bin Packing Problem by allowing containers to have differing capaci-
ties, rather than having a set container type with identical capacities across the board.
As the IGA-POP algorithm deals with three resources, RAM capacity, CPU capacity
and Bandwidth, it can also be considered a Multi-dimensional Bin Packing Problem.
In IGA-POP, a solution (contained within a chromosome) encodes an ordering of VM
assignments to PMs.

A population of random chromosomes is generated and then each chromosome se-
quence is assigned to PMs. This assignment is done using the Best Fit (BF) greedy
search algorithm. Once each of the initial chromosomes have undergone the BF as-
signment process, the M best are determined and added to a separate set, with M

CHAPTER 2. LITERATURE REVIEW 34

being equal to the number of PMs. Crossover or Mutation then takes place, with each
of these operations having an equal probability of being selected. Crossover combines
the current chromosome with a randomly selected chromosome from the M best set,
and the best of these 3 chromosomes (original, M best and child) is retained and added
to the solution population. If crossover is not selected, a mutation operation is then
performed, of with there are three types. These are swap (two VMs in the chromo-
some are randomly selected and swapped), reversion (a subset of the chromosome is
randomly selected and then reversed) and displacement (a subset of the chromosome is
randomly selected and then moved to another position within the chromosome), again
chosen with equal probability. This process is then repeated until the algorithm reaches
its end condition, after which the best chromosome is selected as the final results.

The fitness function for this algorithm prioritises low power usage, and it performs
competitively in terms of solution quality against the BF and First-Fit (FF) greedy algo-
rithms, the Sine-Cosine Optimisation Algorithm (SCA) (Mirjalili 2016) and a generic
GA.

This chapter discussed the ACO algorithm as well as the inspiration, origins and
variants of the algorithm. Also discussed were a wide array of problem domains that
the ACO algorithm has been successfully applied to, as well as other ideas, such as
parallelisation, that have been successfully applied to ACO. This chapter demonstrates
the large impact that the ACO algorithm has had and continues to have within the
Evolutionary Computation research area, emphasising the continuing relevance of the
technique and the general applicability that the technique has. The next chapter will
discuss the technical details of the ACO algorithm, as well as describing the different
approaches taken by the main ACO variants, ACS andMAX -MIN Ant System.

CHAPTER 2. LITERATURE REVIEW 35

Table 2.1: Summarising table of all discussed ACO parallelisation techniques
Title Description Reference
Fork-join Distributed system featuring ants solving problems independently, updating

global pheromone once all ants had completed solution.
(Bullnheimer,
Kotsis, and
Strauß
1998b)

Asynchronous Evolution of Fork-join approach, with ants assigned to “worker” machines
that update pheromone locally between ants on that “worker”, with infrequent
global updates.

(Bullnheimer,
Kotsis, and
Strauß
1998b)

Independent Colonies Independently run ant colonies on seperate machines, with no communication
at all

(Stützle
1998)

Master-worker Similar to asynchronous approach but with no global updates - only global
communication is determination of best solution at end of algorithm.

(Stützle
1998)

Parallel Ants Variant of the master-worker approach with each ant (or cluster of ants) as-
signed to a seperate processor and global pheromone updates

(Randall and
Lewis 2002)

Multiple Colony Several colonies are run in parallel, with differing methods of information
exchange between colonies tested - circular exchange between colonies per-
formed best

(Middendorf,
Reis-
chle, and
Schmeck
2002)

GMMAS A GPU-based variant of MMAS utilising the CUDA framework, dividing
ant colonies amongst GPU thread blocks

(Bai et al.
2009)

I-Roulette An ACO implementation replacing the roulette wheel selection mechanism
with a data-parallel selection technique, using CUDA

(Cecilia,
Garcı́a,
Ujaldón,
et al. 2011)

DS-Roulette Another implementation demonstrating a new selection technique, Double
Spin Roulette, which performs a roulette wheel to select a GPU thread block,
and then a thread within the block

(Dawson
and Stewart
2013b)

ACO for Xeon Phi The first Xeon Phi implementation of ACO - fails to make proper use of SIMD (Sato et al.
2014)

ACO for Xeon Phi (TSP) The first Xeon Phi implementation of ACO for TSP, focusing on vectorising
the tour construction process

(Tirado,
Urrutia, and
Barrientos
2015)

ACS-GPU A parallelised implementation of the ACS technique, with each ant corre-
sponding to a single thread block, and a candidate set with a size equal to the
GPU’s warp size

(Skinderowicz
2016)

ACS-GPU-Alt A variant of ACS-GPU that features ants that construct a whole tour in a single
kernel execution

(Skinderowicz
2016)

vRoulette-1 A SIMD implementation of I-Roulette, task-based rather than data-based.
Each thread represents a single ant.

(Lloyd and
Amos 2016)

vRoulette-2 A SIMD implementation of DS-Roulette, which makes use of a tournament
selection, with vectors of ants competing against each other.

(Lloyd and
Amos 2016)

UVRoulette A SIMD implementation of I-Roulette, similar to vRoulette-1 (Tirado,
Barrientos,
et al. 2017)

Multiverse Method A variant of independent colonies, featuring a “collector” colony which re-
ceives pheromone information from the other colonies.

(Dı́az et al.
2020)

Chapter 3

Ant Colony Optimization

In this chapter, the framework of ACO is discussed, with more detail provided on
elements of the ACO algorithm that are referred to in the previous chapter, as well as
subsequent chapters. This will be broken down into the phases of the ACO algorithm,
and includes some of the differences between the established variants of ACO, as well
as differences between approaches to various problems. The core ACO algorithm is
displayed in 3.1.

Algorithm 1: Pseudo-code for Vectorized Candidate Set Selection.
Input : Edge Weight array W0...N−1, Tabu Mask array T0...n−1, Maximum

number of nearest neighbours Np, nearest neighbour list L0...Np−1
Output: Selected Edge
// Variables in bold are p-vectors, superscripts indicate vector lanes
Wmax = (0...0);
Imax = (0...0);

for i = 0 to Np − 1 do
if L[i].ivec 6= −1 then

R = Random();
V = L[i].mask;
I = (pL[i].ivec...pL[i].ivec + p− 1);
w = ApplyMask(Vi,Wi × R, (−1...− 1));
w = ApplyMask(Ti, (−1...1),w);
max mask = w > Wmax;
Imax = ApplyMask(max mask,w,Wmax);

end
end
//Reduction
j = argmax(Wmax);
return Ijmax;

36

CHAPTER 3. ANT COLONY OPTIMIZATION 37

Figure 3.1: A flowchart demonstrating the core ACO algorithm. It should be noted that
Local Search is not always performed after every pheromone deposit phase; it may be
performed every n iterations, or never performed at all

3.1 Initialisation Phase

The initialisation phase has two major roles: the first being to initialise data structures
such as the pheromone matrix and the ants themselves, and the second is to load the
given problem into memory in a format that allows the ACO algorithm to solve it.
In the case of TSP and some other problems, this can lead to the creation of a sec-
ond heuristic matrix, usually identical in size to the pheromone matrix and containing

CHAPTER 3. ANT COLONY OPTIMIZATION 38

heuristic information used by ants to make decisions.
This phase is generally straightforward, as the only thing that needs to be decided

is the size of the pheromone matrix, which can vary depending on the problem. The
pheromone matrix is generally a float matrix, with the size defined by the number of so-
lution components in a given problem: For a TSP problem, the matrix size is n2, where
n is the number of cities. A key decision that has to be made when applying ACO to
a problem is how pheromone values are associated with the components of a solution.
For example, when solving the Traveling Salesman Problem, pheromone values are as-
sociated with the edges between nodes in the graph, representing the distance between
cities. The Virtual Machine Placement problem has multiple definitions, depending on
the chosen approach, and pheromone can either be associated with the link between a
Physical Machine and a Virtual Machine, or a link between two Virtual Machines. In
order for ACO to function, the solution components that are selected from in the solu-
tion construction phase must also be the solution components on which pheromone is
distributed. For the Traveling Salesman Problem, the size of the pheromone matrix is
set to the number of cities in the problem squared, as this allows for pheromone data to
exist between every city in the problem. A heuristic matrix also usually exists which
for static TSP stores the distances between cities, and is the same size of the pheromone
matrix. Like the pheromone matrix, the heuristic matrix is a float matrix. As the cities
in the static TSP are constant, there will never be any change in the distances between
them, meaning all distance calculation can be done on load and no further calcula-
tion is needed, saving time during the solution construction phase. A third matrix, the
weight matrix, also exists for TSP, which stores the probability (weight) of moving
between cities. As with the previous matrices, it stores float values and has a size of
n2. In the case of VMP, there are two options for the matrix size, as two different ap-
proaches for laying pheromone exist for the Virtual Machine Placement problem: the
first lays pheromone between VMs that are allocated to the same PM, and the second
lays pheromone between VMs and the PMs that they’re allocated to. In the first case,
the matrix size is the number of virtual machines squared, and in the second case the
number of virtual machines is multiplied by the number of physical machines.

A key consideration for the construction of the pheromone matrix is the initial
pheromone value. This can differ by technique, as ACS uses a low initial pheromone
value whileMMAS has a high initial value. A smaller initial pheromone value leads
to higher exploitation of the initial best solutions, whereas a higher initial value leads
to a more explorative approach. The original Ant System does not specify an initial

CHAPTER 3. ANT COLONY OPTIMIZATION 39

value.
As discussed in the previous section, these matrix structures can be prohibitive in

regards to the scalability of ACO. Techniques such as P-ACO and PartialACO con-
struct no matrices at all, so the initialisation phase for those techniques will only in-
volve the initialisation of the ants and potentially other small data structures.

3.2 Solution Construction Phase

This phase has each ant agent independently attempt to construct a valid solution to the
given problem. While this phase can differ between different problems, the majority
of ACO algorithms represent their problems as a graph structure, meaning that most
ACO algorithms will have a similar solution construction phase. An ant starts with an
empty solution stored in local memory, and chooses a new solution component to add
to that solution in every “step” of the solution construction phase

The first step of this phase is the selection of a random starting node, a simple
process in which a starting node is selected randomly with no pheromone or heuristic
input - each node will be traversed, meaning starting node selection will have no impact
in overall solution quality.

For each subsequent node selection step, the ant makes a probabilistic choice, con-
sidering either the full set of solution components or a subset if candidate sets are
being utilised. The selection process has three key influencing factors: heuristic (η),
pheromone (τ) and a random number (as well as an influence from the current partial
solution, prohibiting ants from selecting invalid solution components, i.e. a city in a
TSP problem that has already been visited). The initial probabilistic rule developed
for the original Ant System algorithm is still widely in use. The probability of ant k,
currently at city i visting city j is given as:

pki,j =

ταi,j ·η

β
i,j∑

i∈Nk
i
ταi,j ·η

β
i,j

i ∈ Nk
i

0 otherwise.
(3.1)

Where Nk
i is the feasible region for city i, the collection of cities that the ant is

able to visit from i, α and β are a priori values that dictate the relative influence of
pheromone and heuristic respectively, and τi,j and ηi,j are the pheromone and heuristic
value respectively of the edge between cities i and j. Roulette Wheel selection (Gold-
berg 1989) is then used, with each possible city assigned an area of the roulette wheel

CHAPTER 3. ANT COLONY OPTIMIZATION 40

proportionate to their probability as per equation 3.1.
The Ant Colony System variant of ACO uses a selection technique based on the

concept of exploration vs exploitation. It makes use of a random number q in the range
[0,1] and a parameter q0 (0 ≤ q0 ≤ 1). If q > q0, the selection is conducted using a
roulette wheel and equation 3.1, but if q ≤ q0, the solution component with the highest
probability is selected. Therefore, a higher q0 value leads to a greedier solution with
more exploration.

In the scenario where a candidate set is in use, the choice will be restricted further to
solution components within that candidate set. By restricting the number of available
cities, the time complexity of the solution construction phase can be reduced; rather
than O(n2), the time complexity is n ·m, where m is the size of the candidate set. The
size of this candidate set varies by problem; the first ACO implementation to make use
of a candidate set was ACS, which used a candidate set size of 20.

3.2.1 Roulette Wheel Selection

The selection method almost universally used with ACO is Roulette Wheel selection,
a fitness proportionate selection technique initially developed for use with Genetic Al-
gorithms (Goldberg 1989). The motivating factor behind the development of Roulette
Wheel selection was to create a selection technique in which the chance of an outcome
being selected is directly proportional to the fitness of that outcome, while preserving
the stochastic nature of the selection, as a less fit outcome is still able to be selected.
The selection method is illustrated in Figure 3.2.

The roulette wheel selection used in the initial version of Ant System (Dorigo,
Maniezzo, and Colorni 1996) operates as follows: firstly the sum of the weight values
of all potential outcomes is calculated; then a random number uniformly distributed
between 0 and 1 is created, and multiplied by the sum of weights; the weight array
is then looped through, with weights being added to a running weight total during
the loop; finally, once this running weight total is greater than or equal to the random
number, the outcome associated with the current loop position is selected as the next
outcome, or in this case, the next city to be visited.

While the Roulette Wheel selection method works well for sequential implementa-
tions of ACO, the technique is difficult to parallelize as it is a fully sequential operation.
I-Roulette (Cecilia, Garcı́a, Nisbet, et al. 2013) and DSRoulette (Dawson and Stewart
2013b), both discussed in the previous chapter, were developed as parallel-friendly
alternative selection methods.

CHAPTER 3. ANT COLONY OPTIMIZATION 41

Figure 3.2: An illustration of roulette wheel selection, with each potential outcome
being allocated a segment of the wheel

The Solution Construction phase ends when the current step, j, is greater than the
number of traversable nodes in the graph, n. In the case that the ant is solving a TSP,
the final step of the solution is set to be equal to the first step, creating a complete tour.

3.3 Local Search

While technically a separate technique, the pairing of Local Search with ACO is rec-
ommended for decreasing execution time, particularly with TSP (Dorigo, Birattari, and
Stutzle 2006). Local search algorithms aim to reduce the length of a tour by finding
local optimum in a particular neighbourhood, the contents of which vary depending
on the specific Local Search algorithm used. A widely-used group of Local Search
algorithms used for improving TSP solutions is the k-opt group. The k-opt local search
methods eliminate crossover in a TSP tour, meaning that no edge of the tour directly
crosses another edge, as the shortest route will never have crossing edges. In the 2-opt
algorithm, demonstrated in Figure 3.3, 2 edges are removed and the alternate way of
connecting the 4 cities while still keeping a continuous tour is analysed - if the new
tour is shorter, it is saved to the solution and becomes a part of the ant’s solution. This
process is repeated throughout the entire solution. 2.5-opt is similar to 2-opt, but it also
considers two node shifts, in which a city is removed from its current position in the

CHAPTER 3. ANT COLONY OPTIMIZATION 42

Figure 3.3: An example of the 2-opt local search procedure, deleting the red edges and
replacing them with blue edges, creating a more optimal route in this case

tour and inserted between two other connected cities. This allows for a pseudo-3-opt
local search, with a significant reduction in execution time vs regular 3-opt. 3-opt,
demonstrated in 3.4 removes 3 edges rather than 2, and examines the 7 ways in which
those edges can be reconfigured. As with 2-opt, any improvements are saved to the
ant’s solution.

Figure 3.4: An example of the 3-opt local search procedure, deleting the red edges and
replacing them with blue edges. The newly created tours are examined to determine if
they are shorter than the original tour (not every potential tour is shown in this diagram)

Depending on the efficiency and execution time of the local search, the frequency
at which local search takes place can vary. 2-opt is less complex than 3-opt, with
a complexity of O(n2) compared to the O(n3) complexity of 3-opt (with n in these
cases representing the number of cities in a given TSP problem), so it could feasibly
be performed after every ant completes a tour. The increased complexity of 3-opt
makes it more suited to performing on an iteration-best or global-best tour once per
iteration.

CHAPTER 3. ANT COLONY OPTIMIZATION 43

3.4 Pheromone Deposit Phase

Once each ant has constructed a solution, pheromone is deposited. This phase consists
of two sub-phases: pheromone distribution and pheromone evaporation. In the original
Ant System, every ant deposited pheromone at the end of its solution construction
phase, with the amount of pheromone being inversely proportional to the length of the
tour. This meant that shorter tours would received a higher amount of pheromone.
Later variants of the algorithm, ACS and MAX -MIN Ant System instead opt to
distribute pheromone only on either the global-best or iteration-best ant. In these cases,
the pheromone deposit formula for ACO on TSP can be given as:

τi,j = τi,j + ∆τi,j∀(i, j) ∈ L (3.2)

where L is the set of edges in the ant’s solution and ∆τi,j is given as:

∆τi,j =

1/C if edge(i, j) ∈ T

0 otherwise
(3.3)

where T is the set of edges in the iteration-best or global-best tour, and C is the length
of the tour.

Once the deposit has taken place, global pheromone evaporation is performed:

τi,j = (1− ρ)τi,j∀(i, j) ∈ L (3.4)

with the parameter ρ controlling the evaporation rate. As with the previous formulae,
this evaporation formula is designed for ACO on TSP.

In an effort to combat stagnation, which can be a result of large amounts of
pheromone accumulating on certain edges and preventing other edges being explored,
MMAS uses a pheromone clamping mechanic, imposing a maximum and minimum
pheromone value. These values, τmin and τmax, are defined as:

τmax =
1

pCbest
(3.5)

τmin = τmax
2(1− a)

a(nneighbours + 1)
(3.6)

where nneighbours is the number of nearest neighbours in the candidate set,a is an
MMAS constant value defined as a = exp(log(0.05)/n), and pCbest is the solution

CHAPTER 3. ANT COLONY OPTIMIZATION 44

quality of an initial greedy tour.
Once evaporation has taken place, any values higher than τmax are set to τmax, and

values lower than τmin are set to τmin.

3.5 Determine Best Solution

If the current iteration I is less than or equal to the pre-determined number of itera-
tions I(max), the Solution Construction Phase is repeated with the updated pheromone
levels determined in the Pheromone Deposit Phase. Otherwise, the best solution is de-
termined. For the Pheromone Deposit Phase, each ant retains the value of the best
solution, whether that be tour distance or energy usage, in local memory. This makes
it straightforward to loop through every ant to determine which ant has found the best
solution. This solution can then be output to the console or saved to a file.

Chapter 4

Vectorized Candidate Set Selection for
Parallel Ant Colony Optimization

The work presented in this chapter was published in GECCO ’18: Proceedings of the
Genetic and Evolutionary Computation Conference Companion (Peake, Amos, et al.
2018).

Nearest Neighbour lists, or candidate sets, are frequently used in conjunction with
ACO in order to reduce the search space of the given problem, and therefore the execu-
tion time. Previous work on vectorised ACO, while featuring the use of candidate sets,
made no attempt to vectorise the candidate set construction or loading process, instead
focusing on improving solution quality. This chapter presents an MMAS-based ACO
implementation for manycore SIMD architectures featuring a candidate set system that
makes full use of AVX512 instructions, enabled through a vectorisation compatible
construction phase in which novel Nearest Neighbour data structures are constructed,
which can then be efficiently loaded into the selection phase. These techniques were
evaluated using the Traveling Salesman Problem (TSP), and experimentation was per-
formed using the manycore Intel Xeon Phi Knight’s Landing processor. The results of
these experiments show a significant speedup over existing selection methods on the
well-known ACOTSP set of problems.

4.1 Background and Motivation

Because of the inherently distributed nature of ACO (whereby ants work independently
of each other, guided only by a shared global pheromone network), the ACO algorithm
presents significant opportunities in terms of its implementation on high-performance

45

CHAPTER 4. VCSS FOR PARALLEL ACO 46

parallel hardware (Cecilia, Garcı́a, Ujaldón, et al. 2011; Cecilia, Garcı́a, Nisbet, et
al. 2013; Dawson and Stewart 2013c; Dawson 2015; Fu, Lei, and Zhou 2010; Ce-
cilia, Garcı́a, Ujaldón, et al. 2011; Skinderowicz 2016). Performance improvements
are made possible by the vector processing capabilities of chips such as the Intel®
Xeon Phi (Tian et al. 2013; Sodani et al. 2016), which have instructions that operate
on one-dimensional arrays of data (vectors), rather than on single data items. In the
case of Xeon Phi, these Single Instruction Multiple Data (SIMD) instructions operate
simultaneously on 16 floating point registers.

4.1.1 Traveling Salesman Problem

The Traveling Salesman Problem (Lawler 1985) is the selected problem domain for
demonstrating the techniques described in this chapter. The problem is typically used
when benchmarking new algorithmic changes to ACO due to its wide use in the lit-
erature, with it being used for the initial demonstration of ACO (Colorni, Dorigo,
Maniezzo, et al. 1991), as well as the ACS (Dorigo and Gambardella 1997a) and
MMAS (Stützle and Hoos 2000) variants, and many other techniques since then. TSP
also has an established set of benchmarking problems, TSPLIB (Reinelt 1991), the
wide use of which makes establishing context against other techniques more straight-
forward in cases where recreating the technique is not viable. TSP also has a number
of “challenge” instances, typically very large instances where the optimal tour will re-
veal an image such as the 100,000 to 200,000 city Art TSPs (TSP Art Instances n.d.),
or is based on real-world geography such as the 1,904,711 city World TSP (World TSP

n.d.). In recent years a set of 3D challenge TSPs, based on the positions of stars, has
been created (Star Tours n.d.). The wealth of available problem instances and the his-
torical connection with ACO make TSP an obvious choice for the demonstration of the
technique described in this chapter. The TSP is a well-known NP-hard combinatorial
optimisation problem, in which the shortest “tour” , between a given number of “cities”
needs to be found. Each city has associated co-ordinates, allowing the problem to be
modelled as an undirected (in the case of the symmetric TSP problem) weighted graph
G = (N,E) with N being the set of nodes, or vertices, that represent the cities and E
being the set of edges, representing the paths between the cities. Each edge (i, j) ∈ E
is assigned a distance value dij , representing the distance between cities i and j. In
the symmetric TSP, dij is always equivalent to dji. The goal of the TSP is to find a
minimum length Hamiltonian circuit of the graph, with each of the nodes in set N is
visited exactly once. An example of a TSP provided by the TSPLIB package, pr1002,

CHAPTER 4. VCSS FOR PARALLEL ACO 47

is displayed in Figure 4.1.

Figure 4.1: A visual representation of the pr1002 TSP problem (L), and the optimal
tour for the problem (R)

4.1.2 Single Instruction Multiple Data

ACO features many instances of operations being performed within loops, particularly
within the selection phase, which leads to a large potential performance gain from
vectorisation. As the selection phase is by far the most time-complex area of the ACO
algorithm, any speedup achieved will have a significant impact on the overall execution
time of the algorithm. A particularly important AVX-512 instruction is the mask mov

instruction, which moves the contents of one vector to another vector if the correspond-
ing lane in a given mask vector is set to true - if the lane is false, the corresponding
value from a second vector is moved instead. This is particularly useful when check-
ing the tabu list, a data structure which indicates whether a node has been visited in
the current solution. Rather than checking every node individually against the tabu list
when deciding if a move to that node is valid, the use of the masked move instruction
allows for the checking of 16 nodes at a time against the tabu list. This allows for the
selection phase to consider 16 nodes simultaneously (with 16 being the maximum vec-
tor width available in AVX-512), rather than each node individually. Another useful
instruction is cmp, which allows for a comparison between two vectors and generates
a mask vector based on that comparison. This functionality can be used when attempt-
ing to find the largest weight when the next node is being selected: two vectors, the

CHAPTER 4. VCSS FOR PARALLEL ACO 48

previous 16 best nodes and 16 best nodes of the current loop, are compared using the
cmp instruction, with the generated mask (indicating if the value from the new vector
is greater than the value of the current vector) being used with the previously men-
tioned masked move instruction, with values from the new vector being moved to the
results vector if they are greater than the values in the current vector, and values from
the current vector being moved if they are not. These are just two examples of how
useful AVX-512 instructions can be in reducing execution time, but many more are
used throughout the code to essentially reduce what would be 16 individual processes
to a single process.

While the AVX-512 instruction set is a significant feature of the Knights Landing
processor, another key feature is the thread count. Much like the predecessor architec-
ture Knights Corner, Knights Landing features 4-way hyperthreading, allowing for 4
logical threads per CPU core. Combined with the high number of cores (ranging from
64-72), Knights Landing processors can feature as many as 288 threads. In combina-
tion with the AVX-512 instructions allowing for 16-wide vectors of single-precision
floats, KNL processors can hypothetically perform up to 1152 processes simultane-
ously, with a peak double-precision compute speed of up to 3456 GFLOPS. For an
algorithm like ACO that has many processes running simultaneously, this parallelisa-
tion capacity can be very useful.

4.1.3 Selection Methods

The independent-roulette technique (iRoulette) was introduced by Cecilia et al. (Ce-
cilia, Garcı́a, Ujaldón, et al. 2011) as a parallel alternative to the traditional roulette-
wheel selection method commonly used in sequential ACO algorithms. Roulette wheel
selection is used whenever an ant must choose the next edge to traverse (and, thus, the
next city to visit), with the probability of an edge being selected being proportional
to its pheromone concentration. Although this is straightforward in the sequential al-
gorithm, control flow and synchronisation issues mean that it is more challenging in a
parallel setting. Dawson and Stewart subsequently proposed an alternative double-spin

roulette (DSRoulette) technique (Dawson and Stewart 2013c). For an in-depth analysis
of the properties of iRoulette, see (Lloyd and Amos 2017). F With the availability of
the Xeon Phi came new variants of iRoulette, due to the potential for vectorisation of-
fered by the its Vector Processing Unit (VPU). The algorithm described in (Lloyd and
Amos 2016) (referred to as vRoulette-1) is one example of this; the basic principles
remain the same, but this variant makes use of intrinsic instructions available on the

CHAPTER 4. VCSS FOR PARALLEL ACO 49

Xeon Phi to vectorise the iRoulette process, which yields improved performance over
the original method (as well as over a vectorised version of the DSRoulette algorithm).
Along with their vRoulette-1 method, Lloyd and Amos (Lloyd and Amos 2016) utilised
nearest neighbour information in their scheme for selecting cities. However, in this im-
plementation, the candidate lists were used only to improve solution quality, and did
not yield any speedup. Vectorised Candidate Set Selection (VCSS) is an amended ver-
sion of the algorithm described in (Lloyd and Amos 2016), which replaces vRoulette-1

with a properly vectorised nearest neighbour list. VCSS brings significant performance
benefits in terms of execution time, especially with larger problem instances.

4.2 Proposed Algorithm

The key contribution in this work is a vectorised algorithm (and associated data struc-
ture) to accelerate vertex selection using candidate sets (nearest neighbour lists). The
selection procedure is modified (compared to previous versions) so that only vertices
in the nearest neighbour list for the current vertex are considered. Only in cases where
all of these are tabu will the remainder of the feasible region be considered. Typically,
the nearest neighbour maximum list length is set to ∼20; for large instances (with
thousands of vertices) this can speed up the selection process significantly by reducing
the number of evaluations made by the ant - for a TSP with 1000 cities, each ant would
typically have to evaluate 1000 cities on each of the 1000 steps of the tour construction
process - with a nearest neighbour list of size 20, each ant instead evaluates 20 cities
on each of the 1000 steps of the process, reducing the total evaluations made by the
ant from 1,000,000 to 20,000 (not considering the occasional fallback to a non-nearest
neighbour city, which happens infrequently).

The algorithm implementation is based on the Xeon Phi code described in (Lloyd
and Amos 2016). The code has been ported to use the AVX512 vector instruction set
rather than the IMCI data set, which as previously mentioned is only available on the
Knights Corner architecture. The use of AVX-512 makes the algorithm more generally
applicable than the IMCI variant, as while AVX-512 is currently largely exclusive to
high-end processors, it will gradually be introduced to more entry-level processors in
the next few years.

The main focus of this algorithm is to replace the standard selection process, which
loops through every single potential city that an ant can visit next during their solution

CHAPTER 4. VCSS FOR PARALLEL ACO 50

construction, and instead only consider nearest neighbours. While this would be rel-
atively trivial in a sequential implementation, the use of AVX instructions introduces
certain limitations. The AVX load instruction can only load in a 16-wide block of a
memory structure, rather than loading 16 values from various locations in an array.
This prevents simply loading the pheromone and weight values from the index of a
given city’s nearest neighbours, and instead necessitates the use of a novel Nearest
Neighbour object which denotes which 16-wide block of the pheromone matrix rele-
vant to one or more nearest neighbour. The algorithm itself remains largely similar to
MMAS elsewhere, with slight changes needed in places such as the selection phase
and pheromone distribution phase to make use of the new Nearest Neighbour structure.

4.2.1 Nearest neighbour List Construction

During the setup phase of the algorithm, the distance matrix (an n×n matrix encoding
the edge lengths of the complete TSP graph) is used to calculate a vectorised nearest
neighbour list data structure. This is performed as follows:

Let the number of nearest neighbours be Nnn, and the width of a SIMD vector (in
floats) be p. Then let

Np = dNnn/pe,

the maximum number of SIMD vectors required to store one line of the nearest neigh-
bour data structure. The data structure then comprises an array (while other data struc-
tures may allow for faster searches, C++ arrays are directly compatibile with AVX512
instructions) of up to Np Nearestneighbour objects (one per vertex) with each Near-

estneighbour entry containing an integer index ivec and a p-wide bitmap mask. To
add a vertex j to the nearest neighbour list, it must first be ensured that there exists an
entry with ivec = bj/pc, and set the bit in mask corresponding to j mod p.

The data structure for a vertex is filled as follows: first, the other vertices are sorted
by distance, and the first Nnn of these are processed. For each of these vertices, ivec
is determined by dividing the index of the city by the vector width (which C++ then
floors to the integer value). The remainded of this division is also calculated, as it
represents the vector lane of the city. If a Nearestneighbour entry already exists for
this value of ivec, the appropriate bit (indicated by the remainder) is set in mask.
If not, a new Nearestneighbour is added to the end of the list, and the appropriate bit
set in mask. The combination of the ivec value and the vector lane can be used to
determine the index of the stored nearest neighbour cities - ivec multiplied by 16,

CHAPTER 4. VCSS FOR PARALLEL ACO 51

added to the vector lane of the nearest neighbour bit. For example, a nearest neighbour
object with an ivec of 2 contains cities with indexes between 32 and 47 - if the third
vector lane is set to 1, this indicates that the city with the index of 34 is a nearest
neighbour. The data structure is illustrated in Figure 4.2, for a vector width of 16 (the
width used in AVX-512), and an example is illustrated in Figure 4.3.

Figure 4.2: Nearest neighbour data structure, with each vertex having an associated
array of nearest neighbour objects containing a vector index ivec and a bit mask. A
sentinel value of ivec = −1 is used to indicate the end a line in the data structure. n
is the number of vertices and n16 is the maximum number of entries for a vertex (for
16-wide vectors, the width used in AVX-512)

4.2.2 Instance Preprocessing

A potential performance problem is caused by the distribution of nearest neighbours
in the problem instance. The relative proximity of vertices in space is not necessarily
correlated with the vertex indices (that is, two vertices that are spatially adjacent might
have indices that are widely separated, and vice versa; see Figure 4.5). If the indices
of nearest neighbours tend to be close together, the nearest neighbour list can be kept
short. Conversely, in the worst case, the nearest neighbour list will contain the full set

CHAPTER 4. VCSS FOR PARALLEL ACO 52

Figure 4.3: An example of the nearest neighbour list structure (with a vector width of
8 in this example) created for vertex 17 on the TSP on the left - the dark blue cities
are nearest neighbours, so need to be included in the nearest neighbour list. The three
objects contained in the list for vertex 17 have ivec values of 0 (representing vertices 0-
7), 1 (representing vertices 9-16), 2 (representing 17-24) and -1 (indicating the end of
the list for vertex 17). The bit masks are set to represent the specific nearest neighbour
cities, with 0 indicating that the city is not a nearest neighbour (i.e. cities 9, 12, 13, 14
and 15 for the second NN object) and 1 indicating that the city is a nearest neighbour
(i.e. city 7 for the first NN object)

of Np entries. In order to keep the size of the nearest neighbour list relatively low, the
problem instance is pre-processed before constructing the nearest neighbour list, by
sorting the vertices into greedy tour order. This is done with the use of a basic greedy
algorithm that starts at the first city given in the TSP input file and moves to the nearest
city; this process repeats, with the nearest available city being selected on every step
until the TSP is fully traversed. The indexes associated with each city in the TSP input
file are then changed to reflect this tour order (i.e. if the tour proceeds as city 1 - city 5
- city 8 etc, city 5 and city 8 will be relabeled as city 2 and city 3.). This increases the
likelihood that cities in close proximity to each other will be in the same vector index,
reducing the size of the nearest neighbour object list.

4.2.3 Tour Construction

OpenMP is used to assign each ant’s tour construction process to a single thread. As
no updates are made to any of the values used by the ants until the end of an iteration,
and ants only write to their own local memory, no synchronisation is required. Once
a starting city has been randomly selected for an ant, it begins the Tour Construction
phase. At each stage of tour construction, the ant evaluates which city to visit next (and

CHAPTER 4. VCSS FOR PARALLEL ACO 53

Figure 4.4: Masked load process using the nearest neighbour list to retrieve the weights
of nearest neighbour vertices. The AVX2 vector width of 8 is used in this example.

hence the next edge in the graph to traverse) based on a combination of heuristic and
pheromone information, only considering cities that have not already been visited by
that ant in its current tour (the ant maintains a tabu list in local memory to keep track of
visited cities). To make this decision, it used an edge selection function, which is called
repeatedly to determine the ant’s path around the graph. In the experiments described
below, two vectorised edge selection functions are evaluated: vRoulette-1 (which ex-
amines every vertex in the feasible region) and Vectorised Candidate Set Selection

(VCSS), the new vectorised procedure, which uses nearest neighbour information.

4.2.4 Random Number Generation

As well as heuristic and pheromone information, random numbers are also utilised
when an ant is selecting the next city to visit. Seeds for the random number gener-
ator used in this implementation are themselves generated by a RANLUX generator
(Shchur and Butera 1998), seeded by an input parameter. Through the use of the RAN-
LUX generator 16 unrelated seeds can be generated using a single input seed, which

CHAPTER 4. VCSS FOR PARALLEL ACO 54

Figure 4.5: Sample TSP graph, with the current city (labelled 0) in the center, and five
nearest neighbour cities highlighted in the dashed containing region.

are then used to seed 16 random number generators, one for each vector lane. The ran-
dom number generator itself is a linear congruential generator (Thomson 1958), with
generated seed values each being multiplied 1664525 and then added to 1013904223,
the widely-used ranqd1 values given in Numerical Recipes (Teukolsky et al. 1992).
This generates a pseudo random float between 0 and 1. Through the use of AVX-512
add and multiply instructions, these numbers can be generated 16 at a time and then
stored in a 16-wide vector. This is done by filling 3 AVX vectors, one vector with the
generated seeds from RANLUX using the load instruction, one vector with 1664525
(C0) and one vector with 1013904223 (C1), both using the set1 instruction. The seed
vector is then multiplied by C0 using the multiply instruction, and the resulting vec-
tor is then added to C1 with the add instruction. The resulting vector has its values
converted to a float between 0 and 1 using the convert instruction to convert the in-
tegers into floats, with the resulting vector being multiplied by a vector containing
2.3283064e-10f in order to bring the value of those floats between 0 and 1. The main
benefit of using this configuration of linear congruential generator is the speed, as it
only uses a single addition and multiplication operation, though the conversion from
integer to float does add further operations. The fused multiply-add instruction intro-
duced in the AVX-512 4FMAPS extension would improve execution time further, but
Knights Landing does not feature this extension. The seeds themselves are only gener-
ated once by the RANLUX generator, meaning the runtime impact of seed generation
is minimal.

CHAPTER 4. VCSS FOR PARALLEL ACO 55

4.2.5 Vectorised Candidate Set Selection (VCSS)

Vectorised Candidate Set Selection, based on iRoulette (Cecilia, Garcı́a, Ujaldón, et al.
2011), selects from candidate set drawn from the nearest neighbour list data structure.
If this fails to produce a selection (which will only happen when all the nearest neigh-
bours have already been visited in the tour), the vRoulette-1 procedure is used to select
a vertex from the remaining feasible region.

VCSS takes the tabu list, nearest neighbour list and an array of weights and then
proceeds as follows (assuming a vector width p): first, p-wide vectors representing the
running maximum weight and corresponding vertex indices are initialised. The algo-
rithm then iterates over the nearest neighbour list. For each Nearestneighbour object,
the edge weights for the corresponding vertices are loaded as a single p-wide vector.
The bitmask in the Nearestneighbour object is used to mask this weight vector such
that only the vertices in the nearest neighbour list remain (illustrated in Figure 4.4).

A vector of consecutive integers is also constructed, corresponding to the vertex
indices in the vector. The weight vector is multiplied by a p-wide vector of random
deviates (produced using a simple linear congruential generator). The modified weight
vector is compared, on an element-wise basis (in a single instruction), with the run-
ning maximum. This produces a bit mask which is used to update both the running
maximum and the corresponding index vector. A reduction is then performed over the
vector lanes to produce the maximum weight and corresponding index (in the VCSS
implementation, this reduction is performed in log2 p steps using bit-swizzling instruc-
tions). This reduction is described further in the next section. If no edge has been
selected, the vRoulette-1 algorithm is used by default on the complete set of weights.

The algorithm is formally described in Algorithm 2. Here, Random() is a func-
tion which returns a p-wide vector of uniform deviates, and ApplyMask(mask, a, b)

is a function which returns a vector filled with values from a in positions where the
corresponding value of mask is set, and values from b where the mask value is not set.

4.2.6 Parallel Reduction

In order to find the greatest weight value in the results vector, a reduction is performed,
setting all lanes of the vector (and the corresponding vector of indexes) to the value of
the highest weight. While with more modern data structures, this would merely be a
case of using a max() function call or something similar, AVX vectors require manual

CHAPTER 4. VCSS FOR PARALLEL ACO 56

Algorithm 2: Pseudo-code for Vectorised Candidate Set Selection.
Input : Edge Weight array W0...N−1, Tabu Mask array T0...n−1, Maximum

number of nearest neighbours Np, nearest neighbour list L0...Np−1
Output: Selected Edge
// Variables in bold are p-vectors, superscripts indicate vector lanes
Wmax = (0...0);
Imax = (0...0);

for i = 0 to Np − 1 do
if L[i].ivec 6= −1 then

R = Random();
V = L[i].mask;
I = (pL[i].ivec...pL[i].ivec + p− 1);
w = ApplyMask(Vi,Wi × R, (−1...− 1));
w = ApplyMask(Ti, (−1...1),w);
max mask = w > Wmax;
Imax = ApplyMask(max mask,w,Wmax);

end
end
//Reduction
j = argmax(Wmax);
return Ijmax;

comparison between each vector lane in order to determine the max value. Fortu-
nately, the AVX-512 instruction set contains several instructions which allow for sim-
ple “shuffling” of vectors, allowing for comparisons using the previously mentioned
mask instruction between the original vector and shuffled vector in order to find the
greatest value in each lane. The benefit of using this procedure rather than simply
looping through the vector to find the highest value is the reduction in complexity -
log 2n rather than n. This reduction can be demonstrated by considering the number
of steps required to perform the parallel reduciton process, visualised for an 8 wide
vector in Figure 4.6 - looping and comparing each value would require 8 evaluations
(comparing each value to the smallest-so-far), while the parallel reduction method re-
quires 3 evaluations (comparisons of swizzled vectors), with 3 being equal to log 2(8).
For a 16-wide vector, 16 evaluations would be required to loop and compare each
value, while only a single additional comparison would be necessary for the parallel
reduction method, for a total of 4 evaluations - log 2(16). While technically 16 values
are being compared with 16 other values in each of these evaluations, AVX512 instruc-
tions allows for this to happen simultaneously, making it equivalent in computation to
a single function evaluation.

CHAPTER 4. VCSS FOR PARALLEL ACO 57

Figure 4.6: A diagram of the parallel reduction technique used to determine the max-
imum weight in the results vector. This is shown on an 8-wide vector and therefore
features one less step than the 16-wide vector implementation.

The first step is to copy the original result vector, and then to perform a swizzle

transformation. The AVX-512 swizzle instruction shuffles values within blocks of 4
floats, the order of which is determined by a given parameter (in this case, CDAB,
which swaps float 1 with float 3 and float 2 with float 4). The original vector is then
compared with this shuffled vector using the mask instruction, and this mask then used
with the mask mov instruction to create a combined vector consisting of the greatest
value in each comparison. The same mask is also used to combine the original index
vector with a shuffled copy, shuffled in the same way as the results vector.

The resulting vector now contains the 8 highest weight values. Another shuffled
copy is created, again using the swizzle instruction, this time using the BADC parame-
ter which swaps float 1 with float 2 and float 3 with float 4. The two vectors are again
compared, and a mask is created. The mask is then used with the mask mov method
to combine the two vectors, with the resulting vector containing the 4 highest weight
values. The same operations are carried on on the corresponding index vector.

For the next phase, the swizzle instruction is replace by the permute4f128 instruc-
tion, which exchanges blocks of 4 floats rather than exchanging within the float. Like
the swizzle instruction, a parameter is used to determine the order of the exchanges,

CHAPTER 4. VCSS FOR PARALLEL ACO 58

Figure 4.7: A diagram of the parallel reduction technique used to determine the index
of the maximum weight determined in Figure 4.6. This is shown on an 8-wide vector
and therefore features one less step than the 16-wide vector implementation. The val-
ues of the “mask” vector are determined by the comparison carried out in the weight
reduction, the indices are never directly compared to each other, with the “mask” in-
stead determining whether a value is retained or discarded - 0 indicates the retention
of the original value, and 1 indicating replacement with the value in the shuffled copy.

in this case 0xB1 which represents exchanging block 1 with block 3 and block 2 with
block 4. The mask and combine procedure is carried out once again, and again the
operations are also applied to the index vector.

The resulting vector now contains the 2 highest weight values. The permute4f128

instruction is used once again, this time exchanging block 1 with block 2 and block
3 with block 4. A final comparison is carried out, generating a final mask, and the
vectors are combined again into a final results vector, containing the highest weight
value in all 16 lanes. Once the procedure has been carried out on the index vector,
shown in Figure 4.2.6, the final index vector will contain the index corresponding to
the highest weight in all 16 lanes.

CHAPTER 4. VCSS FOR PARALLEL ACO 59

4.2.7 Pheromone Update

The pheromone update process is split into four phases: Deposit, evaporation, clamp-
ing and edge probability calculation. The deposit phase is carried out by a single
thread, with little potential for vectorisation, but subsequent phases make further use
of the AVX-512 vector instruction set.

The remaining phases are carried out in a pair of nested loops, with the outer loop,
which cycles through each city individually, being parallelised with OpenMP. The in-
ner loop, which cycles through the pheromone values between the outer loop’s city
and every other city, iterates over the pheromone matrix 16 values at a time. The first
step is to perform the evaporation, which is straightforward. 16 pheromone values are
loaded into an AVX vector and are then multiplied by another AVX vector using the
multiply instruction, with every lane in the second vector set to 1 − ρ using the set1

instruction. This evaporates all 16 pheromone values simultaneously. For the clamping
phase each value is defined to be consistent with the clamping values defined in , the
maximum value is defined as (Lloyd and Amos 2016).

τmax =
1

ρDs

, (4.1)

withDs equalling distance of the shortest tour in the current iteration, and the minimum
value is defined as the maximum value multiplied by the MMAS constant value, which
itself is defined as

τmin = τmax
1− a

0.5(n+ 1)a
, (4.2)

where
a = exp(log 0.05)/Nv), (4.3)

Nv representing the number of vertices in the current instance. These values are then
loaded into AVX arrays, with the max and min instructions used. If a pheromone value
is higher than τmax, it is set to τmax; if a pheromone value is lower than τmin, it is set
to τmin.

The edge probability calculation is also vectorised, with the pheromone AVX vec-
tor being multiplied by an AVX vector containing the inverse of the distance between
the outer loop city and the 16 cities that correspond to the section of the pheromone
matrix that is currently stored in the pheromone vector. Once the multiplication is
complete, both the pheromone AVX vector and weight AVX vector are stored in their
respective matrices.

CHAPTER 4. VCSS FOR PARALLEL ACO 60

4.3 Experimental Evaluation

The aim of these experiments is to measure both the solution quality of the VCSS
algorithm, and more crucially to measure the execution time. Execution time will be
the main focus, as the objective of the algorithm itself is to use the novel Candidate Set
structure to reduce execution time as much as possible, but it is also important to prove
that in doing so the solution quality is not negatively affected at all. As there is no
major competitor to this algorithm in the literature currently, comparison will instead
focus on vRoulette, the precursor to VCSS. As the main difference between the two
algorithms is the Nearest Neighbour list structure and the associated changes made to
the code to accomodate it, this is a useful comparison to make in order to truly highlight
the difference that VCSS makes versus a version of the algorithm which makes only
limited use of candidate sets. The base ACOTSP code will also be used for comparison,
running sequentially, in order to demonstrate the difference that parallelisation and
vectorisation can make to the ACO algorithm.

4.3.1 Experimental Environment

Three variants of ACO are compared: the first is CPU reference code, the widely
used ACOTSP implementation of ACO (Stützle 2004) a sequential implementation of
MMAS the second uses the previously discussed vRoulette-1 implementation; and
the third uses the VCSS method. Experiments were carried out on a machine with an
Intel Xeon Phi 7210 processor with 64 cores and 4 threads per core (for a total of 256
threads), running at a base speed of 1.3GHz. The code was compiled with the Intel®
C++ compiler (icc) at -O3 optimiation level. The code was run under Linux, with
timings obtained using the gettimeofday() function. The CPU reference code used is
ACOTSP version 1.03 (Stützle 2004), compiled with gcc (with optimisation -O3) and
run on a Linux machine containing an 8-core Intel Xeon E5-2650 v2 at a base speed
of 2.6GHz.

4.3.2 ACO Parameters and Problem Instances

The number of Nearest Neighbours is set to 32, which is both in line with Dorigo and
Stützle’s recommended list size (Dorigo, Birattari, and Stutzle 2006), and a convenient
power of two for the purposes of data alignment. The values of theMMAS param-
eters used, based on the recommended values given in (Dorigo, Birattari, and Stutzle

CHAPTER 4. VCSS FOR PARALLEL ACO 61

2006; López-Ibáñez, Stützle, and Dorigo 2016) are as follows: α = 1, β = 2, ρ = 0.02

In all cases, the number of ants is set to 256 (so that all available threads are used when
assigning ants to threads). ACOTSP was run with local search switched off, as neither
VCSS nor vRoulette-1 make use of local search techniques.

The problem instances used in these experiments are taken from the TSPLIB li-
brary(Reinelt 1991), and include all instances solved in (Lloyd and Amos 2016) and
(Tirado, Urrutia, and Barrientos 2015). Also included are larger instances, in order
to investigate the performance of the algorithm as the problem size increases. The
instances used are: lin318, pcb442, rat783, pr1002, fl1577, pr2392,
fl3795, rl5934, pla7397, and rl11849, all of which are symmetric TSP prob-
lems with the number of cities specified in the problem name. For each instance, 50
runs of 1024 iterations are performed, with each run using a different seed.

4.3.3 Execution Time

Execution time is measured on a per-iteration basis, which is calculated as the mean of
the execution times for all 50 runs on the instance divided by the number of iterations,
in this case 1024. Results are shown in Figure 4.8, which (log) plots the mean time per
iteration over all instances for VCSS and vRoulette-1 on the Xeon Phi, and ACOTSP
on CPU, and Table 4.1, which gives the numerical values, along with the speedup.

While vRoulette-1 and VCSS have similar execution times on the smaller instances,
as the instance size grows, the execution time for VCSS grows more slowly than that of
vRoulette-1. For the largest instance, rl11849, VCSS is faster than vRoulette-1 by an
order of magnitude, and is faster than the reference code by two orders of magnitude.
On the other hand, vRoulette-1, while performing two orders of magnitude faster than
the reference code on smaller instances, shows a declining speed-up compared to the
CPU as the instance size grows.

4.3.4 Solution Quality

In Figure 4.9 box plots of solution quality of each algorithm are shown (where solu-
tion quality is measured as the ratio of the length of the best tour found to the known
optimum for the problem instance). Differences between the solution quality obtained
with the CPU code and the two Xeon Phi variants are expected due to the modified se-
lection probabilities in the iRoulette scheme compared with those in the roulette wheel
selection used by ACOTSP. It is already known that iRoulette can affect the solution

CHAPTER 4. VCSS FOR PARALLEL ACO 62

Table 4.1: Execution time per iteration in milliseconds, and speedup relative to CPU.
Speedup is computed by dividing the VCSS time by the vRoulette-1 time.

CPU vRoulette-1 VCSS
Instance t/ms t/ms Speedup t/ms Speedup
lin318 18.1 0.73 24.8 0.52 34.8
pcb442 29.2 1.37 21.3 0.74 39.5
rat783 68.3 5.65 12.1 1.37 49.9
pr1002 94.1 9.01 10.4 1.85 50.9
fl1577 176.7 20.9 8.45 3.5 50.1
pr2392 371.0 46.4 8.00 7.02 52.9
fl3795 785.7 143.3 5.48 13.5 58.2
rl5934 2088.9 426.8 4.90 27.9 74.9
pla7397 3388.3 724.3 4.68 43.04 78.7
rl11849 10578.8 1975.0 5.36 97.47 108.5

quality on individual instances, although its average behavior does not significantly
affect the quality of solution (Lloyd and Amos 2017). There is some variation between
the solution qualities obtained using vRoulette-1 and VCSS. It should be noted that this
experiment used a relatively small sample of instances, with 50 runs per instance. In
order to measure effects on solution quality, a larger sample of instances (with one
run per instance) would be better. Additionally, for the larger instances, the number
of iterations (1024) is relatively small and the algorithms may not be converged at the
point where the experiment is stopped. However, the focus of this chapter is the effi-
ciency measured in terms of time per iteration: in order to investigate any effects on
solution quality, more extensive experiments would be required. Given that VCSS is
formally equivalent to the nearest-neighbour list algorithms already widely studied in
serial ACO, it would not be expected to see large systematic effects on the solution
quality arising from the use of VCSS, although this will be a topic for further investi-
gation.

4.3.5 Discussion

Significant speedups are obtained using the VCSS technique. The speedup over
vRoulette-1 grows as the instance size increases. Without the nearest neighbour list,
the tour construction process has time complexity O(n2) (since at each of n vertices,
n−1 vertices are included in the selection process). The nearest neighbour list reduces
this complexity to O(n) (since the workload per vertex is constant, determined only

CHAPTER 4. VCSS FOR PARALLEL ACO 63

Figure 4.8: Execution times for ACOTSP, vRoulette-1 and VCSS.

by the size of the nearest neighbour list), and though the time complexity of construct-
ing the nearest neighbour list in itself is O(n2), this is a significantly shorter process
than the tour construction phase and has little effect on the execution time. The input
parameters have no effect on the time complexity of the VCSS selection method. In
terms of raw time, there are two factors that are likely to effect execution time: Nearest
neighbour list size, and nearest neighbour usage. As previously discussed, the nearest
neighbour list object (assuming 32 nearest neighbours and a vector width of 16) has a
feasible minimum size of two nearest neighbour objects, and a maximum feasible size
of 32 nearest neighbour objects (though the instance pre-processing described previ-
ously reduces this maximum to 10). Though the time complexity is still linear, the

CHAPTER 4. VCSS FOR PARALLEL ACO 64

Figure 4.9: Solution quality for ACOTSP, vRoulette-1 and VCSS.

difference between a minimum feasible and maximum feasible runtime for the selec-
tion method is around 5×. In terms of nearest neighbour usage, every time a nearest
neighbour is unavailable, a full vRoulette-1 selection is performed, the complexity of
which IS affected by the size of the input TSP. Analysis of the results during the run-
ning of the algorithm indicated that the nearest neighbour list was selected from at
least 97% of the time, with the previously mentioned vRoulette-1 fallback being used
in the <3% of scenarios where no nearest neighbour was available, leading to a small
portion of the algorithm having O(n2) time complexity. However, the vast majority of
the algorithm remains as a linear time complexity.

The speedup, relative to the CPU code, also increases with the instance size. This
demonstrates the advantage of the Nearest Neighbour list structure, with the AVX-512

CHAPTER 4. VCSS FOR PARALLEL ACO 65

instructions allowing for multiple nearest neighbours to be considered simultaneously.
While the ACOTSP code also has a fixed size nearest neighbour list, it is only able
to process them sequentially. As the instance size increases, so does the number of
selection phases required to create a full tour, which amplifies the time saving effect
of VCSS and the Nearest Neighbour structure when compared to a standard nearest
neighbour list. While the use of OpenMP parallelisation and AVX-512 vector instruc-
tions would be expected to always provide a significant constant speedup at the very
least, the fact that the speedup grows as the instance size grows is a sign of the pos-
itive change made by VCSS. In contrast to this, the reduction of speedup in the case
of vRoulette-1 demonstrates the severe execution time reduction caused by lack of a
nearest neighbour list.

While it has been shown that the performance of VCSS improves with increasing
instance size, there is a limit to how far this can be pursued. One of the inherent
limitations of the general ACO algorithm is its O(n2) space complexity, due to the
need to store a square pheromone matrix, which can be multiplied further due to the
general usage of an additiona weight matrix. Around 500MB of memory is required
for the largest instance used in these experiments, and to move to the next order of
magnitude (a 100,000 city instance) around 37GB would be required. This limitation
must be overcome before the speed gains obtained using the latest parallel and vector
ACO techniques can be fully exploited on larger instances. In contrast to this, the
space complexity of Genetic Algorithms is generally defined by the population size
rather than the instance size, leading to linear growth rather than quadratic growth.

VCSS may also benefit further from the inclusion of local search, which is often
used to accelerate convergence (Dorigo and Stützle 2004). While local search may

be parallelised, there are currently no vectorised algorithms which can utilise the full
power of many-core SIMD hardware.

While the focus of this work was to improve execution time rather than solution
quality, the difference in solution quality between ACO-TSP and VCSS is noteworthy.
The algorithms themselves are essentially identical at all levels aside from the used
selection method, with ACOTSP using the traditional roulette wheel selection tech-
nique. As vRoulette-1 and VCSS are both based on the I-Roulette technique, these
results suggest that I-Roulette leads to better solutions than the Roulette Wheel se-
lection method, which is consistent with the findings of the original I-Roulette paper
(Cecilia, Garcı́a, Nisbet, et al. 2013). Also notable is the solution quality of pr2392, the
only clustered TSP of the experiment set. The potential issues with clustered TSPs and

CHAPTER 4. VCSS FOR PARALLEL ACO 66

distance-based candidate sets were discussed in section 2, but based on these results it
seems that the assumption holds true even for a clustered TSP - while it isn’t possible
to establish a solid trend from Figure 4.9, the fact that pr2392 doesn’t show a signifi-
cant reduction in solution quality indicates that the VCSS technique is also applicable
to clustered TSPs.

While TSP was used to demonstrate the effectiveness of the VCSS technique, it
could also feasibly to applied to a wide range of problems. Any problem with a format
that supports the usage of a candidate set or nearest neighbour list would be solvable
with the VCSS technique, ranging from problems that are similar to the TSP such
as the Vehicle Routing Problem (VRP) (Toth and Vigo 2002) and Route Inspection
Problem (Thimbleby 2003), extending to any problem with a heuristic function such
as the Bin-Packing Problem (which items are the closest size to the remaining capacity
of a bin?) (Friesen and Langston 1986) and Job-shop Scheduling (Manne 1960). (using
Johnson’s rule (Cheng and Lin 2009)).

While VCSS performs well on the TSP instances used in these experiments, the
instances are all static TSPs. Were the technique to be applied to dynamic TSP or
any other dynamic problem, it would struggle in its current state due to the way in
which the nearest neighbour list is constructed, at the beginning of execution using
the initial form of the TSP instance. While this works well in a static context, the
nearest neighbour list would become inaccurate as soon as a node is added or removed
from the instance. As new nodes would not feature on any nearest neighbour list, they
would likely be left until every nearest neighbour has been travelled to, which would
lead to poor solution quality. In order to apply VCSS to dynamic TSP, the nearest
neighbour list requires recalculation every time a new city is added to the TSP. Cities
being removed from the TSP would cause less of an issue but a mechanism would need
to be in place (similar to the tabu list used currently) to prevent travel to cities that are
no longer present.

4.4 Conclusion

This chapter has discussed VCSS, a technique that introduces a novel Nearest
Neighbour structure to vectorised and parallelisedMMAS. The technique performs
favourably compared to the previous best performing vectorised implementation,
vRoulette-1, which used candidate sets only to improve solution quality rather than
execution time. While the solution quality is largely the same as vRoulette-1, in

CHAPTER 4. VCSS FOR PARALLEL ACO 67

Table 4.2: Table listing the AVX-512 instructions used in this implementation, a brief
description of the purpose of the instruction, and the AVX2 and NEON alternatives

Description AVX-512 AVX2 NEON
Add mm512 add ps mm256 add ps vaddq f32
Subtract mm512 sub ps mm256 sub ps vsubq f32
Multiply mm512 mul ps mm256 mul ps vmulq f32
Load mm512 load ps mm256 load ps vld4q f32
Store mm512 store ps mm256 store ps vst4q f32
Min mm512 min ps mm256 min ps vmin f32
Max mm512 max ps mm256 max ps vmax f32
Broadcast Value mm512 set1 ps mm256 set1 ps vdupq n f32
Masked Load mm512 mask load ps mm256 blendv ps vbslq f32
Int to Mask mm512 int2mask mm256 setr ps vset lane f32
Masked Move mm512 mask mov ps mm256 blendv ps vbslq f32
> Mask mm512 cmp ps mask mm256 cmp ps vcgt f32
< Mask mm512 cmp ps mask mm256 cmp ps vclt f32
Float to Int mm512 cvt roundepu32 ps mm256 cvtepi32 ps vcvtnq u32 f32
Swizzle mm512 swizzle ps mm256 permute ps vrev64q f32
Permute Block mm512 permute4f128 ps mm256 permute2f128 ps vrev64q f32

terms of execution time speedups of almost 20x can be achieved through use of the
VCSS technique. Crucially, this chapter demonstrated that the vectorisation achieved
by vRoulette using the IMCI instructions restricted to the Knights Corner architecture
can also be achieved using AVX-512, an instruction set with much more general ap-
plicability, especially in upcoming generations of Intel and AMD desktop CPUs. The
AVX-512 instructions used by VCSS are also fairly standard instructions that have
largely been ported from AVX and AVX2, meaning that the same techniques can be
implemented in 8-wide vectors on an instruction set that has been included on the
majority of desktop CPUs released in the last decade.

While this chapter has focused on AVX-512, the vectorisation techniques are more
broadly applicable, being compatible both with AVX2 instructions and ARM’s NEON
instruction set, designed for ARM’s Cortex range of microprocessors. NEON is par-
ticularly useful for edge computing, allowing IoT devices to be more capable at doing
tasks locally rather than offloading tasks to the cloud. Table 4.2 lists the AVX-512 in-
structions used in the VCSS implementation along with a brief description of what the
instruction does, as well as alternative instructions for both AVX2 and ARM’s NEON
instructions.

It should be noted that, while all of the listed instructions apply to single-precision
floating point values only, integer variants of the instructions exist for each of the

CHAPTER 4. VCSS FOR PARALLEL ACO 68

instruction sets, with AVX-512 integer instructions also used in the VCSS implemen-
tation. Additionally, it is important to note that these instructions may not be strictly
equivalent. While many instructions, such as add, subtract and multiply, among others,
perform largely identical functions for each instruction set, there are several instruc-
tions that work differently, which must be kept in mind if they are to be used: Masked
load, which loads and applies the mask in one step for AVX-512, must be reproduced
using a separate load instruction for AVX2 and NEON, with the listed instruction only
applying the mask; Int to Mask, which is again a single instruction for AVX-512, re-
quires the mask integer to be converted to an integer array for AVX2 and NEON, with
that integer array then being used to set every lane of the mask vector individually; Fi-
nally, the swizzle and permute functions don’t exist for NEON, with the listed reverse
function being the closest approximation - the parallel reduction process which uses
swizzle and permute would likely need to be altered in order to function correctly with
NEON instructions.

Chapter 5

Scaling Techniques for Parallel Ant
Colony Optimisation on Large
Problem Instances

The work presented in this chapter was published in GECCO ’19: Proceedings of the
Genetic and Evolutionary Computation Conference Companion (Peake, Amos, et al.
2019).

As mentioned in the previous chapter, while the VCSS structure provided signifi-
cant speedup to ACO for TSP, memory constraints are still a significant issue when it
comes to solving larger TSP problems. As problem size increases, so does the memory
requirement. The most significant cause of this is the pheromone matrix, and the asso-
ciated weight matrix, which has to store float data between every city in the TSP. The
largest TSP used as a benchmark in the previous chapter, rl11849, requires 140398801
float values to be stored in the pheromone matrix, and an identical amount in the weight
matrix. In order to allow ACO to efficiently solve larger TSP problems in a reasonable
time frame, these matrices need to be replaced by a more efficient data structure. This
chapter presents the Restricted Pheromone Matrix (RPM), a technique which iterates
upon the VCSS technique of the previous chapter. Rather than having pheromone be-
tween every single city stored in the pheromone matrix, the RPM instead only stores
pheromone between a city and its nearest neighbours. In situations where no nearest
neighbours are valid destinations for an ant, two fallback methods are evaluated which
allows the ant to consider non-neighbour cities. These techniques lead to a signifi-
cant reduction in memory requirement for large TSPs, and allow for the very large Art
TSP instances to be efficiently solved by a true ACO implementation for the first time.

69

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 70

AVX2 instructions are also utilised to demonstrate that the SIMD techniques used in
the previous chapter can also be achieved using a more widely available instruction set
than AVX-512.

5.1 Background and Motivation

While ACO is capable of finding good quality solutions for TSP instances of vary-
ing sizes, it has not been used on instances larger than a few tens of thousands of
cities. This is due to its reliance on a pheromone matrix, the data structure containing
pheromone levels for (in this example) each pair of cities. The size of this matrix grows
quadratically with the instance size. Assuming that a pheromone level is stored as a
32-bit float, a TSP instance of size 10,000 requires a matrix occupying around 380MB,
which can be easily handled by most modern hardware. However, for a 100,000 city
TSP, approximately 37GB is required, which is much less practical. In order to al-
low ACO to effectively solve these large-scale instances, fundamental changes to the
ACO data structure are required. Previous work in this area has focused on adopting
a population-based ACO approach (Guntsch and Middendorf 2002; Chitty 2017). A
combination of alternative techniques may be used to enable ACO to effectively solve
large-scale TSPs.

While reducing the size of the pheromone matrix is a significant step towards in-
creasing the practicality of ACO for very large problems, the use of candidate sets is
also crucial for reducing execution time (Dawson and Stewart 2013a), as discussed in
the previous chapter. These restrict the number of options available to an ant at any
time step to a pre-determined number of nearest neighbours. This significantly reduces
processing time without impacting on solution quality.

Combining candidate sets with a reduced pheromone matrix is an effective ap-
proach to increasing the scalability of ACO, by restricting the matrix to each city’s
group of nearest neighbours (as opposed to all pairs of cities). The fundamental under-
lying assumption is that high quality solutions to the TSP generally avoid long-range
jumps between cities. This restriction allows ACO to solve, to near optimality, TSP
instances that are significantly larger than those previously solved using this method,
without compromising the basic principles of ACO. The principal contributions of
this work are: (1) a scalable method for pheromone matrix representation with linear
memory complexity, based on a candidate set approach, (2) two alternative fallback
techniques for choosing edges outside of the candidate set, and (3) the first evaluation

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 71

ofMAX -MIN Ant System on large (> 105 city) TSP instances.
Parallelisation and candidate sets, addressed in the previous section, are both im-

portant techniques for improving the scalability of ACO. The third highlighted op-
portunity for improvement is reducing the memory complexity of ACO. The baseline
memory requirement for a pheromone matrix on a problem with n vertices is O(n2),
which becomes prohibitive (on current hardware) for solving instances with ∼ 105

vertices or larger. One previous attempt to overcome this restriction is Population-
based ACO (P-ACO) (Guntsch and Middendorf 2002), although this was motivated
by a need to solve dynamic problems, rather than very large problems per se. P-ACO
removes the pheromone matrix entirely, replacing it with a population of good tours
that are deleted once they reach a certain “age”. Rather than using pheromone in de-
cision making, ants consult the population of good tours when selecting the next city
to visit. P-ACO inspired the PartialACO technique (Chitty 2017), which instead re-
placed the pheromone matrix with local memory for each ant (storing the best tour
found by that ant). PartialACO also represents a radical departure from the traditional
ACO tour construction phase, by having each ant change only part of a good previous

tour, rather than producing a new tour at every iteration. At the start of an iteration, an
ant selects a starting city and a number of cities to retain from the local best tour. The
PartialACO technique enabled the first recorded results for ACO on four of the well-
known Art TSPs, six very large TSP instances ranging from 100,000 to 200,000 cities.
PartialACO found tours that were within 7% of the best known, in times ranging from
around 1 hour to around 7.4 hours. However, although this technique performs well
on very large TSP instances, it is still possible to achieve improved solution qualities
whilst retaining the core features of the traditional ACO algorithm.

5.1.1 AVX2 SIMD Instructions

While the AVX-512 instructions used to vectorise VCSS in the previous chapter let to
significant speedups, the instruction set itself is currently only available on a limited
range of hardware. While the instructions are intended to be released on AMD’s Zen
4 architecture, and already features on Intel’s recent Cascade Lake, Copper Lake, Ice
Lake and Tiger Lake architectures, it is still yet to feature on a consumer-level CPU.
Combined with Intel’s sunsetting of the Xeon Phi line of manycore processors, the
general applicability of AVX-512 is currently low. In order to prove the general appli-
cability of the techniques demonstrated by VCSS, the ACO implementation described
in this chapter instead makes use of AVX2, an instruction set widely available on most

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 72

Intel and AMD CPUs released since 2013 (excluding the Pentium and Celeron lines,
which generally do not feature AVX capability).

The most significant difference between AVX2 and AVX-512 is the vector width:
AVX2’s 256-bit register width allows for 8-wide vectors of single-precision floating
point values, compared to the 16-wide vectors made possible by AVX-512. The in-
structions themselves also differ slightly: while core instructions such as load, store

and arithmetic functions perform identically, certain instructions such as AVX-512’s
swizzle are not present in AVX2. Certain instructions also have syntactical differences.
Therefore, certain changes were required:

• The int2mask instruction, which converts an integer value to a vector of 0 and
1s corresponding to the binary value of the integer, is not available as a sin-
gle instruction in AVX2. Instead, the mask integer is loaded into a C++ array
by looping from 0 to 8, shifting the integer bits to the right during each loop,
and comparing the least significant bit with the integer 1 using the & operator
(therefore checking if the LSB is 1 or 0). If the LSB is 1, the corresponding
array value to the current loop is set to 1; otherwise the value is set to -1. The
mm256 setr ps instruction is then used to individually set each vector lane to

the corresponding value in the array.

• The masked move instruction, which moves values from two vectors into a
single vector based on a the corresponding lanes in a mask vector, known as
mm512 mask mov ps for AVX-512, is instead called mm256 blendv ps in

AVX2, though the behaviour is identical (aside from the input parameters for
the instruction being in a slightly different order).

• The swizzle instruction, mm512 swizzle ps which exchanges within 4-wide
blocks of the 16-wide AVX-512 vector, does not exist in AVX2. However, the
mm256 permute ps AVX2 instruction performs largely the same operation, ex-

changing within the 4-wide blocks of the 8-wide AVX2 vector. Similarly,
the alternative to the AVX512 mm512 permute4f128 ps instruction, which ex-
changes the 4-wide blocks with other 4-wide blocks, is instead replaced by the
mm256 permute2f128 ps instruction, which functions identically but with only

2 blocks to exchange.

• The masked load instruction, mm512 mask load ps, which loads data from
memory if the corresponding lane of a mask vector is set to 1, does not ex-
ist as a single instruction in AVX2. The behaviour can be easily replicated by

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 73

simply loading the whole vector from memory using mm256 load ps, and then
performing a masked move as described previously.

Rather than using the AVX2/AVX512 instructions inline, they are abstracted to a
seperate vector class file, allowing for simple switching between AVX-512, AVX2 and
sequential versions of the methods. Of the 22 functions in this vector class, only 4 re-
quired changes during the creation of the AVX2 variants of the methods, demonstrating
the general applicability of the techniques employed by both VCSS and RPM.

5.2 Restricted Pheromone Matrix

Removing or significantly adapting the pheromone matrix is an important and neces-
sary step towards establishing ACO as an effective solution for very large problems.
Previous work on P-ACO (Guntsch and Middendorf 2002) and PartialACO (Chitty
2017) focused on removing the pheromone matrix entirely, relying instead on a pop-
ulation of solutions. The key contribution of the work presented in this chapter is the
creation of a new, candidate-set based memory structure, the Restricted Pheromone

Matrix (RPM), to reduce the memory complexity of ACO from quadratic to linear in
instance size, thus allowing large problem instances to be solved in a reasonable time.
This data structure stores only the pheromone information between the current ver-
tex and its nearest neighbours, as well as other vertices stored in the nearest neighbour
structure for efficient vectorisation. Two other structures of the same size also exist: the
distance matrix, containing the heuristic information which in this case is the inverse
square of the distance between cities, and the weight matrix, containing the weight
data calculated by combining pheromone and heuristic information. In a regular ACO
implementation, these other matrices would also contain data between every city in a
TSP instance, so memory requirement savings made on the reduced pheromone matrix
are also applicable to these other matrices. If nNN is the number of nearest neighbours,
n is the number of vertices and v is the vector size available on the used hardware, the
restricted pheromone matrix requires n × nNN × v real numbers, compared to n2 for
the full pheromone matrix. For a constant vector width and nearest-neighbour list size
(with the recommended nearest neighbour list size, regardless of problem size, being
20 (Dorigo, Birattari, and Stutzle 2006; López-Ibáñez, Stützle, and Dorigo 2016)), the
nearest amount that can be effectively utilised by both AVX2 and AVX-512 instruc-
tions is 32, which is the value used in all experiments in this chapter), the memory
complexity of the proposed algorithm is therefore O(n). This significantly reduces the

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 74

Table 5.1: Memory requirements for Pheromone Matrix and Restricted Pheromone
Matrix on various TSP sizes, with a nearest neighbour list size of 32.

Instance Size Pheromone Matrix Restricted Matrix
100 39 KB 12.5 KB

1000 3.8 MB 125 KB
10, 000 381.5 MB 1.22 MB

100, 000 37.3 GB 12.2 MB

memory requirements of ACO, especially on very large instances, as demonstrated in
Table 5.1. For a 100,000 city TSP instance, the restricted matrix occupies only 0.26%

of the space required by the standard pheromone matrix.
While later phases of the algorithm involving the RPM make used of the Nearest

Neighbour list structure described in the previous chapter, the initial construction is
fairly straightforward. An empty array of n× nNN is created, and each position of the
array is set as

τij =
1

ρdNN

where dNN is the length of a greedy tour performed during the loading of the TSP
problem file. The associated weight matrix, which has the same dimensions as the
RPM, is filled with

wij =
τij
ηij2

where ηij is the heuristic value, in this case the squared inverse of the distance between
city i and city j. This same formula is used to recalculate the weight values after every
iteration of the algorithm.

5.2.1 Tour Construction

The tour construction phase is parallelised using OpenMP, with each ant being allo-
cated to an available thread. No synchronisation is required, as ants write only to local
memory during a tour, and global memory is only written to once per iteration, when
all ants have completed their tours. Each ant selects a starting vertex randomly, and
then repeatedly calls the edge selection function. The first stage of the edge selection is
similar to VCSS, with the only difference being that weights are directly loaded (rather
than having to check a nearest neighbour data structure to look up indices in the matri-
ces), since the pheromone and distance matrices only contain nearest neighbours. The

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 75

process of applying the nearest neighbour mask to obtain a vector of valid weights is
shown in Figure 5.1.

Figure 5.1: Applying the NN mask to filter out non-NN weights

Once this vector of valid weights has been filled, the tabu mask is then applied in
order to filter out any cities that have already been visited. The weights are then mul-
tiplied by a vector of random numbers between 0 and 1, generated in the same manner
as described in the previous chapter. The randomised weights are then compared with
the running maximum weights vector on a lane-by-lane basis, with larger values in the
current weights vector replacing values in their line in the maximum weights vector.
This process is repeated until all the vectors of weights in the nearest neighbour list
have been considered. A reduction is then performed on the maximum weights vector
to find the highest overall weight, again performed in an identical manner as described
in the previous chapter. One key difference between this selection method and the
method used with VCSS is that the resulting index does not directly correspond to the
next city in the tour, but instead points to the entry in the nearest neighbour list which
contains the index of the next city to be visited. The index of this city is loaded from
the nearest neighbour list, and added to the tour as the next city to be visited. At this
point, it is possible that no city is selected, if all the cities in the nearest neighbour list
are tabu; in this case, one of the two “fallback” methods described in Sections 5.2.2
and 5.2.3 is used to select the next city.

The process continues until every city has been visited, at which point the ant
returns to the starting city. While VCSS falls back to vRoulette-1 when no nearest

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 76

neighbour vertices are available, here two alternative fallback methods are proposed.
The proposed methods are described in Figure 5.2

Figure 5.2: Flow charts displaying the Pheromone Map fallback (L) and Heuristic
Fallback (R)

5.2.2 Heuristic Fallback

In standard ACO, the highest-weighted vertex is usually chosen when all nearest neigh-
bours are tabu. When using the restricted pheromone matrix, however, no pheromone
is available for vertices outside the nearest neighbour list. The first fallback algorithm
proposed is the Heuristic Fallback, a greedy method that selects the nearest vertex not

yet visited. Since the pre-computed distance matrix also extends only to the nearest
neighbour list, the distances must be directly computed from the vertex coordinates.
As the different variants of calculating distance between cities in a TSP (as specified
by each TSP file, though generally Euclidian Distance is used) generally involve using

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 77

a costly square root function to determine the true distance, the squared distance is
used when selecting the next city, as the true distance is not actually necessary and it
is possible to determine the closest available city without using the square root func-
tion. While a greedy algorithm is not the best choice as a solution strategy for TSP,
since a series of local optimal choices are unlikely to lead to the best global solution,
this fallback will be used infrequently, only in cases where no nearest neighbours are
available, so any negative effect that the greedy search will have on solution quality
will be minimised. The effect that this has on solution quality will be discussed in a
later subsection.

5.2.3 Pheromone Map Fallback

The Pheromone Map Fallback method aims to faithfully reproduce theMMAS algo-
rithm by ensuring that all edges make use of a varying level of pheromone (not just
the nearest neighbour edges), but without compromising on memory requirements. A
C++ map object (an associative array) is used, which stores data in key-value pairs.
This stores a pheromone value for every edge that forms part of a best ant’s tour and
which is not a nearest neighbour edge (a hash map has previously been used to replace
the pheromone matrix (Alba and Chicano 2007)).

The key for map entries objects is an integer that uniquely identifies one edge, and
the value is the weight of that edge. The unique identifier is calculated with the simple
formula of (A × N) + B, where A is the current vertex, B is the next vertex, and N
is the overall number of vertices (A and B are swapped if B is a higher index than A).
This is a straightforward way to guarantee uniqueness.

Since this fallback is used only when all nearest neighbours are tabu, it may be
assumed that if an edge is found in the map then it has an associated pheromone value,
otherwise the pheromone value is taken as τmin. Each vertex is iterated over, and the
hash value corresponding to the edge is looked up in the map. The edge weight is
computed using the pheromone and distance, and compared with the current highest
weight, becoming the highest weight if it is greater. After iterating over all vertices,
the vertex associated with the overall highest weight is visited next.

5.2.4 Pheromone Distribution

The pheromone distribution phase of the algorithm differs depending on the fallback
method that is used in the tour construction phase. If the Heuristic fallback is used,

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 78

pheromone levels on edges between nearest neighbours are adjusted. Edges traversed
by the best ant in the current iteration have their pheromone levels increased by an
amount determined by the pheromone deposit formula. However, as pheromone is not
stored for non-nearest-neighbour values, no pheromone is deposited on those edges.
While pheromone value is stored for certain non-nearest neighbour vertices that are in
the NN object of NN values, these weights are never actively used, so their pheromone
is not updated. Pheromone reduction, as well as clamping between maximum and
minimum values, takes place after the pheromone has been deposited.

If the Pheromone Map fallback method is being used, the pheromone distribu-
tion phase is largely identical to the Heuristic fallback, with one additional step: If
pheromone is to be distributed on an edge where at least one vertex is a non-nearest-
neighbour value, a new entry is created in the pheromone map. If the hash already
exists in the map, the associated pheromone value is increased, but if it does not exist,
a new map entry is created with the hash as the key. As with the Restricted Pheromone
Matrix, the map is iterated over, and every value in the map is evaporated and clamped.

5.2.5 Local Search

Variants of the local search (Aarts and Lenstra 2003) technique have been successfully
paired with ACO implementations on multiple occasions (Dorigo and Di Caro 1999;
Chitty 2017; Mavrovouniotis, Müller, and Yang 2017). Local search is used with ACO
to improve completed tours by finding the local optimum with respect to some neigh-
bourhood (2-opt, 2.5-opt or 3-opt). The 3-opt operator removes three edges in a tour,
and evaluates the seven possible ways of reconnecting the tour. If any of these seven
possibilities lead to a shorter tour distance, the original three edges are replaced with
the new optimum configuration, and this process is repeated until no further improve-
ment is found. Here, the 3-opt local search code from ACOTSP Stützle 2004 is used,
and this operator is applied to all tours created in an iteration. The local search phase
is parallelised across the threads owned by the ants; each ant performs local search on
its own thread at the end of tour construction. This local search implementation makes
use of two specific techniques in order to optimise the 3-opt algorithm, which in its
default form is computationally intensive, with a time complexity of O(N3), where
N is the number of cities in the given TSP. Firstly, it restricts swaps to cities within a
given city’s nearest neighbour list, greatly reducing the computational complexity of
the local search procedure. This does lead to a small reduction in final solution quality

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 79

compared to the unrestricted 3-opt (0.1 or 0.2% difference on average between us-
ing 20 nearest neighbours and 80 nearest neighbours), but the running time reduction
is significant, with a time complexity reduction from O(N3) to O(N) (Johnson and
McGeoch 1997). The second technique used in this 3-opt implementation is the use of
don’t-look bits(Bentley 1992). This technique was created to take advantage of the fact
that if an improving move was previously not found for a city, and it remains directly
linked to the same neighbours, it is unlikely than an improving move will be found for
that city in the solution’s current iteration. Therefore, it will not be considered for 3-
opt exchanges until it is no longer linked to the same neighbours. This is done through
a list of don’t-look flags, which are initially turned off for every city. If a search for
an improvement begins in city c, and an improvement cannot be found, the flag for
c is switched on, meaning it will no longer be considered as the starting point for an
exchange. However, if c is involved in a later successful exchange as an endpoint for
one of the exchanged edges, the bit is turned off again, meaning it can once again be
considered as the start point for an exchange (Bentley 1992).

5.3 Experimental Evaluation

The results of experiments to evaluate the two proposed fallback methods are pre-
sented, and the results of the better-performing of the two are compared with the pub-
lished results for PartialACO and P-ACO, which are the only other ACO methods in the
literature which have been applied to large-scale TSP instances. Results are compared
on solution quality with published results using P-ACO and PartialACO and, although
this is not a direct comparison since the original runs used different hardware, these
published results represent the best solutions found to date using ACO on these large
instances. Experiments on the Heuristic and Pheromone Map fallbacks were run on a
machine with an Intel® Xeon E5-2640 v2 processor with 20 cores of 2 threads each
(for a total of 40 threads), and a clock speed of 2.4 GHz. The code was compiled using
the GNU C++ compiler (g++), with O2 optimisation enabled. The RPM implementa-
tion makes use of 3-opt local search, which each ant conducts at the end of solution
construction. The PartialACO implementation described in (Chitty 2017) utilises 2-opt
with each ant having a 0.001 probability of applying the local search.

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 80

Table 5.2: Solution quality and mean execution time results for Heuristic (HF)
and Pheromone Map (PMF) fallbacks over 10 runs each of 1000 iterations on the
mona-lisa100k instance. Solution quality is measured as the percentage differ-
ence of tour length from best known.

Solution Quality (%)
Method Min Median Mean Max Time (hrs)

HF 1.684 1.704 1.698 1.712 1.07
PMF 1.689 1.7 1.7 1.709 5.15

5.3.1 ACO Parameters and Problem Instances

For each experiment, 40 ants are used. Conveniently, this number is equal to both the
number of threads available, and the generally recommended number of ants (López-
Ibáñez, Stützle, and Dorigo 2016). The MMAS parameter values are set to α =

1, β = 2, ρ = 0.02. Each ant has a Nearest Neighbour list of size 32, in line with
the recommended list size in (Dorigo, Birattari, and Stutzle 2006). Each run of the
algorithm consists of 1000 iterations.

The problem instances used in these experiments are taken from the well-known
Art TSP collection (TSP Art Instances n.d.) of Traveling Salesman Problem instances,
created by Robert Bosch, a creator of TSP art. These instances are widely utilised
as “challenge” TSP instances, as they are significantly larger than any of the TSPs
available in the TSPLIB benchmarking set, and the unique appearance of their opti-
mal tours, which are shown in Figure 5.3, are particularly memorable compared to
the functional tours of most TSP problems. As the optimal tours are still maintained
and updated for the Art TSPs, they are a good benchmark for solvers aimed at large
TSP problems. Results are compared with the best-known tour for each of these in-
stances. All of the best known solutions were found using a genetic algorithm with
Edge-Assembly Crossover (EAX) (Honda, Nagata, and Ono 2013).

5.3.2 Fallback Comparison

The first experiment was performed to determine which of the two fallback methods
performs best, and to evaluate whether or not the use of the heuristic fallback (which
disregards the pheromone on edges outside the candidate set) has a detrimental effect
on solution quality.

10 runs of 1000 iterations were carried out for each fallback method, using the

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 81

Figure 5.3: Best known tours for the Art TSP instances: mona-lisa100k (top left),
vangogh120k (top right), venus140k (middle left), pareja160k (middle right),
courbet180k (bottom left) and earring200k (bottom right).

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 82

Figure 5.4: Pheromone map size over time

mona-lisa100k instance. The results are given in Table 5.2. The solution qualities
for both fallback methods are consistent with each other, and within each ensemble
of runs; in all cases the tours found are around 1.7% longer than the best known. A
Wilcoxon signed-rank test on the two sets of solution qualities gives a p value of 0.959,
indicating that the data cannot support the conclusion that one fallback produces a
better solution quality on average. However, the Heuristic fallback constructs tours in
significantly shorter time, with the runs taking on average around an hour, compared
to around 5 hours for the Pheromone Map fallback. The extra overhead in querying
the pheromone map dominates the time to solution in this case.

Figure 5.4 shows the mean memory consumption of the pheromone map as a func-
tion of iteration. Although this grows steadily, the map consumes a relatively small
part of the overall memory budget for pheromone data (less than 1 MB out of a total
of 13 MB). The slowing of the growth rate over time can be explained by the more
explorative nature of ACO in the initial iterations (more even pheromone levels mean

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 83

ants are more likely to traverse new edges), as well as the fact that the map is com-
pletely empty at the start of the algorithm, meaning that there is a higher chance that
an edge traversal needs adding to the map at the beginning of the algorithm. As the
map becomes full, this chance decreases, and the pheromone is less evenly distributed
and more concentrated on a subset of edges, meaning new paths are less likely to be
traversed and ultimately leads to fewer new edges being added to the map.

An additional observation that can be made from this comparison is the effect of
the greedy fallback on solution quality: As mentioned previously, greedy tours are not
the best choice as a solution strategy for TSP, but used infrequently they have little
effect on solution quality compared to the pheromone map, which takes pheromone
into account. This makes sense, as infrequently travelled edges will generally have a
pheromone level equal to τmin, the minimum level of allowed pheromone, meaning that
pheromone will rarely make a substantial difference in the fallback decision making
process, essentially reducing both fallback methods to greedy methods in the majority
of cases.

As both of the discussed fallback methods only take place in a scenario where no
nearest neighbours are available to travel on, their frequency is the same. Analysing the
algorithm during run time indicated a fallback rate of around 2.1% - 2.3%, regardless
of instance size. This is consistent with the <3% fallback frequency of the VCSS
algorithm discussed in the previous chapter, although the larger instance sizes seem to
refine the fallback rate to a more consistent value than the smaller instances used in the
VCSS experiments.

5.3.3 Results

While there is no significant difference between the tour lengths for either fallback
method, the difference in execution time makes the Heuristic fallback a much more
practical method for evaluating the restricted pheromone matrix on the five larger Art
TSP instances, and is therefore the fallback method used in the subsequent experi-
ments.

For each instance 10 runs, with different seeds, of 1000 iterations are performed.
Solutions are compared with those found by PartialACO and P-ACO (Chitty 2017),
where these exist. The RPM technique produces solutions that are approximately 1-
2% longer than the shortest recorded tours for these instances, which is a significantly
smaller difference than P-ACO and PartialACO (see Figure 5.5 for a comparison).
It is difficult to directly compare solution times due to hardware differences, and the

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 84

Figure 5.5: Plot of the solution quality difference between P-ACO, PartialACO
(results taken from Chitty 2017 and Restricted Pheromone Matrix against shortest
known tour. No P-ACO or PartialACO results are available for pareja160k and
courbet180k.

fact that the PartialACO technique does not create full tours for each iteration, but,
for completeness, a comparison of execution times is given in Table 5.3. These are
broadly comparable times to solution, in both cases using recent commodity hardware.

Figure 5.6 plots solution quality over time for each of the instances. Although
small reductions in tour size are still being made when the RPM runs are terminated,
improvements are significantly less common than in earlier iterations of the algorithm,
indicating that the runs are close to convergence.

5.3.4 Local Search Analysis

While the results discussed in the previous subsection made extensive use of 3-opt local
search, with one local search per ant per iteration, further analysis has subsequently
been performed on the configuration of local search, specifically the occurance rate.

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 85

Table 5.3: Average execution times for PartialACO (100,000 iterations) and Restricted
Pheromone Matrix (1000 iterations). Note that the iterations are significantly different
in terms of required processing: RPM creates an entire tour each iteration, whereas
PartialACO only modifies 1% of a tour each iteration, making 1000 RPM iterations
roughly equivalent to 100,000 PartialACO iterations.

Instance Execution Time (Hours)
PartialACO Restricted Matrix

mona-lisa100k 1.07 1.36
vangogh-120k 1.45 1.92

venus140k 2.09 2.63
pareja160k N/A 3.45

courbet180k N/A 4.5
earring200k 5.06 6

This experimentation aims to determine the difference in both solution quality and
execution time that takes place if the number of performed local searches is reduced,
which in turn will indicate whether the potential reduction in solution quality can be
deemed as acceptable when the time saving is taken into account.

The RPM technique was tested with different occurance rates of local search, every
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, or 100 iterations, with each ant performing a local
search. The setup of these experiments is identical to the previous experiments in terms
of hardware, parallelisation and the ACO parameters, with the only difference being
the number of runs performed of each configuration, 5 rather than 10.

As demonstrated by Figure 5.7, performing a 3-opt local search every iteration
leads to significantly worse worse solution qualities than less frequent local searching,
even up to one local search per 100 iterations. For the Mona Lisa TSP instance, be-
tween 6 and 10 iterations per local search leads to results that are more consistently
closest to the optimum, though the overall best solution quality is found when local
search is only performed every 100 iterations. The potential reasoning for this is dis-
cussed in the following subsection.

Figure 5.8 demonstrates the impact that reducing Local Search occurence rate has
on execution time, with a decrease of around 500 seconds between an occurence rate
of 1 and 2, and a further decrease for each subsequent reduction of the occurence rate.

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 86

Figure 5.6: Solution quality versus iteration for the Art TSP instances using the heuris-
tic fallback.

5.3.5 Discussion

The feasibility of scaling up ACO to solve large (> 105 city) instances of TSP has
been demonstrated, and it has been shown that ACO can produce tours within 2% of
the best known on a selection of well-known large instances. Comparison of execution
time between RPM and the state-of-the-art GA techique (Honda, Nagata, and Ono
2013) is difficult due to the significant differences in hardware. RPM solution qualities
degrade only slightly between the mona-lisa100k and earring200k instances,
with only a minimal difference of ∼ 0.2% (compared to the almost 2% degradaFtion
seen using PartialACO). This consistency of solution qualities suggests that the RPM

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 87

Figure 5.7: The average solution quality of 5 ACO runs with differing local search
frequencies, with error bars

Figure 5.8: The average execution time of 5 ACO runs with differing local search
frequencies

technique could potentially be used to obtain good quality tours for problem instances
that are even larger than the Art TSPs.

It should be noted that local search plays a significant part in both the execution
time and solution quality. RPM, with 40 ants that are guaranteed to perform 3-opt,

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 88

performs 40 3-opt local searches per iteration, whereas PartialACO, with 16 ants that
each have a 0.001 chance to perform a 2-opt local search, performs 0.016 local searches
per iteration. It should be noted that the 3-opt local search used in the RPM implemen-
tation, as discussed previously, makes use of the nearest neighbour list and don’t-look
bit optimisation techniques, meaning that the 3-opt used by RPM is actually more
efficient than the 2-opt used by PartialACO and P-ACO, which appears to use neither.

While it is perhaps intuitively obvious that the Pheromone Map fallback should
produce better quality solutions (due to the availability of more accurate edge weight
information through the use of pheromone), ignoring pheromone on edges outside the
candidate set has little impact. It should be noted that, as previously mentioned, the
fallback rate is very low, with fewer than 3% of tour construction selections being
made using either fallback method. While pheromone is an integral part of ACO, these
experiments suggest that it is less important when the cities being traveled between
are significantly far apart. Quantifying the effect of pheromone at varying distances in
the nearest-neighbour list is an area for future work. Given the negligible difference in
solution quality, the much faster execution time of the Heuristic fallback makes it a far
more practical technique than the Pheromone Map fallback.

In terms of Local Search, the fact that performing a 3-opt local search every iter-
ation leads to poor results compared to a lower Local Search occurance rate demon-
strates that performing a local search for every single iteration is leading the ACO
algorithm to become stuck in local minima, while allowing the algorithm to initially
find poorer solutions to improve upon using ACO with no local search interference
leads to a better quality of solution in the long run. The exact occurance rate is likely
to vary depending on the TSP instance used, with the Mona Lisa TSP having an ideal
occurance rate of 6 for pure solution quality, or10 for a solution quality that is almost
as good with the added benefit of a shorter execution time. The erratic nature of the
solution quality when local searches are performed every 100 iterations is potentially
caused by the dependence of local search on the ACO algorithm itself - if the ACO
performs well, the local search improves it further, whereas the lack of local search
more regularly can clearly lead to poor quality solutions. While the execution time
results for the main experimentation in which RPM was compared with PartialACO
indicates the RPM is unable to improve upon the execution time of PartialACO, the
results of the subsequent Local Search experiments indicate that RPM is in fact able
to comfortably out-perform PartialACO in terms of execution time as well as solution
quality. Further experimentation is required to determine the full reasoning behind

CHAPTER 5. SCALING ACO FOR LARGE PROBLEM INSTANCES 89

the superior performance of the 6-10 range of occurance rates, and how the optimal
occurance rate relates to the properties of the TSP instance itself.

5.4 Conclusions

While the substantial reduction in memory size allows for the solving much larger
instances than previously possible, the time complexity of ACO remains a limiting
factor. Though the execution time is greatly reduced through the use of parallel and
vector methods such as the VCSS selection technique, substantial changes to the core
ACO algorithm would be required to reduce this complexity. However, neither of the
fallback techniques currently uses the vector instructions employed by, for example,
I-Roulette and VCSS, and a significant speedup could be obtained by vectorising the
fallback algorithms.

Finally, it should be noted that many problems to which ACO has been success-
fully applied share with the TSP the properties of quadratic memory complexity and
the use of candidate sets to accelerate the solution. Examples include the Quadratic
Assignment Problem (López-Ibáñez, Stützle, and Dorigo 2016), Resource-constrained
project scheduling problems (Merkle, Middendorf, and Schmeck 2002), and vehicle
routing problems (Bell and McMullen 2004). The methods presented in this chapter
could be also be applied in these cases, where the solution of large instances is limited
by memory.

Chapter 6

PACO-VMP: Parallel Ant Colony
Optimisation for Virtual Machine
Placement

The work presented in this chapter is currently in submission (Peake, Costen, et al.
2021).

The improvements made to ACO using OpenMP parallelisation and AVX vector
instructions are promising, though limited to TSP, which can be considered the tradi-
tional testing ground for improvements to the core ACO algorithm. In order to demon-
strate the general applicability of these techniques, a different problem with a more
significant real-world impact must be solved with ACO. In this case, the previously
discussed Virtual Machine Problem has been selected.

6.1 Background & Related Work

This Section describes the Virtual Machine Placement Problem, discusses a range of
existing methods for its solution, and provide some motivating background on Ant
Colony Optimisation, which forms the basis of this own algorithm.

6.1.1 Virtual Machine Placement Problem

The real world impact of VMP becomes more significant as time goes on. Cloud com-
puting (Hayes 2008) is an increasingly prevalent paradigm, especially as COVID-19
is forcing companies to more heavily rely on cloud-based software (Alashhab et al.

90

CHAPTER 6. PACO-VMP 91

2020). The cloud computing paradigm is a key enabler for a number of recent devel-
opments, such as the Internet of Things (Botta et al. 2014), Edge Computing (Satya-
narayanan 2017), and Big Data Analytics (Al-Fuqaha et al. 2015), all of which in turn
enable important societal developments such as Smart Cities (Zanella et al. 2014) and
Intelligent Transportation Systems (Guerrero-ibanez, Zeadally, and Contreras-Castillo
2015). However, data centres now represent a significant proportion of global energy
usage; this figure currently stands at around 2%, and it is set to rise (Fernández-Cerero,
Fernández-Montes, and Jakóbik 2020). There is, therefore, an urgent need to optimise
the software infrastructure underpinning modern data centres.

Resource requirements are expressed in terms of Virtual Machine (VM) instances,
each of which carries its own overhead. A key benefit of cloud computing for users
is its scalability, which is derived from the ability to dynamically increase and reduce
resource usage depending on demand. While this elasticity is beneficial for users, it
provides challenges for cloud computing providers. With constantly changing demand,
the assignment of VMs to servers (or Physical Machines, PMs) can quickly become
inefficient, leading to unnecessary usage of servers. This can cause providers to use
more of their hardware resources than are necessary, which has both an economic and
environmental impact. The solution to this is virtual machine consolidation, which
allocates currently in-use VMs to as few PMs as possible. This increases server util-
isation and energy efficiency, and lower power consumption equates to lower energy
costs for the host. This also incentivises efficient re-allocation of servers to ensure that
they operate in an efficient configuration for a longer amount of time, which leads to
a further reduction in energy usage. A number of algorithms have been proposed to
address this problem; here, the focus is on methods based on Ant Colony Optimisa-

tion, specifically parallel Ant Colony Optimisation, which takes advantage of modern
multi-core hardware to significantly reduce the time required to find satisfactory solu-
tions. The use of the AVX2 instruction set, available on the vast majority of modern
CPUs, further reduces execution time in an already parallelised approach.

An instance of the VMP is defined by a set V of virtual machines V = {Vi, i ∈
[1, Nvm]} with CPU requirements and RAM requirements Creq

i , Rreq
i ∀i ∈ [1, Nvm],

and a set P of physical machines P = {Pj, j ∈ [1, Npm]} with CPU capacities and
RAM capacities Ccap

j , Rcap
j ∀j ∈ [1, Npm]. A feasible solution to an instance of the

VMP is a mapping of the indices of virtual machines i to physical machines j such
that ∀j,

∑
iC

req
i ≤ Ccap

j and
∑

iR
req
i ≤ Rcap

j where the sums are taken over the
indices of all virtual machines i which are mapped to the physical machine j. The

CHAPTER 6. PACO-VMP 92

optimisation problem seeks to find a feasible solution which maximises the number of
empty physical machines, which is equal to the cardinality of the set of indices j which
are not mapped from any virtual machines i.

Figure 6.1: Instance of the Virtual Machine Placement problem, with arrows showing
allocation of VMs (top) to PMs (bottom). Virtual Machine requests are efficiently
allocated to Physical Machines

As the method presented in this chapter is based on Ant Colony Optimisation
(ACO), another ACO-based VMP solver, OEMACS (Liu et al. 2016), is selected
for comparison. OEMACS treats the VMP problem as a Variable-Sized Bin Pack-
ing Problem (VSBPP), a variant of the Bin Packing Problem in which the container
elements have differing capacities. OEMACS significantly outperforms FellerACO
(Feller, Rilling, and Morin 2011), the first ACO-based VMP solver, in terms of both
solution quality and execution time. A further description of OEMACS is available
in 2.

In addition to OEMACS, IGA-POP (Abohamama and Hamouda 2020) is also se-
lected for comparison. IGA-POP also frames the VMP as a VSBPP. In IGA-POP, a
solution (contained within a chromosome) encodes an ordering of VM assignments
to PMs. The fitness function for this algorithm prioritises low power usage, and it
performs competitively in terms of solution quality against the BF and First-Fit (FF)
greedy algorithms, the Sine-Cosine Optimisation Algorithm (SCA) (Mirjalili 2016)
and a generic GA. For this reason, IGA-POP is selected as being representative of the
“evolutionary” algorithm class of solutions for VMP. A full description of IGA-POP
can be found in 2.

CHAPTER 6. PACO-VMP 93

6.2 Parallel ACO for Virtual Machine Placement

Parallel ACO for Virtual Machine Placement (PACO-VMP) is a novel ACO variant that
uses parallelisation techniques and SIMD vector operations to efficiently solve VMP
problems. The algorithm uses the clamping and pheromone behaviour of theMMAS
variant of ACO, as this is most amenable to parallelisation (due to the absence of
communication between ants during an iteration). Complete reference code is available
online 1. The notation used in this chapter is defined in Table 6.1, and the algorithm is
summarised in Figure 6.3.

The key underlying data structure for the vast majority of ACO implementations is
the pheromone matrix, which in this case stores the pheromone information indicating
the preferability of two given virtual machines being allocated to the same physical
machine as each other, stored as a floating-point number. The size of this matrix is
dependant on the number of VMs in the given VMP instance, always being the square
of the number of VMs. The pheromone matrix as well as the majority of the more
minor data structures in the algorithm (such as PM capacity list, VM capacity list,
VM demand list etc.) are stored using a standard C++ array for compatibility with the
AVX2 vector instructions, which allow the loading of data from C++ arrays to AVX
vectors, and vice-versa.

6.2.1 Initialisation Phase

In this phase, the parameters and structures required by the algorithm are created and
initalised. An important step is to ensure that all of the arrays that will later be vec-
torised are padded correctly, which prevents errors when they are loaded into vectors.
As this implementation uses the Intel AVX2 instructions, which operate on 8 32-bit
values at a time, the size of the arrays must be a multiple of 8. The arrays also need
to be aligned in memory correctly in order to be correctly loaded into AVX2 vectors.
The pheromone matrix is a matrix of size NVM × NVM , with NVM being the number
of Virtual Machines in the problem instance. The values of the pheromone matrix are
initially set to τ0 = 1/NPM, where NPM is the number of Physical Machines. In this
phase the value of theMMAS constant a (see equation 6.8) is also set, which is later
used to determine the maximum and minimum pheromone values. The number of PMs
is initially set to be equal to the number of VMs.

1https://github.com/jnpeake/PACO-VMP

https://github.com/jnpeake/PACO-VMP

CHAPTER 6. PACO-VMP 94

6.2.2 Solution Construction

The first step of the solution construction phase is to randomly shuffle the VMs. This
happens at the beginning of each iteration in order to prevent VMs being allocated the
same PM purely due to their position in the array. OpenMP is used to allocate each
ant’s construction process to a separate thread. As each ant only reads from global
pheromone memory during the construction phase and does not write to memory, syn-
chronisation is not required. During the construction phase, the ants loop through every
VM and allocate it to a PM, unless the current VM is unable to fit in any remaining
PM. Any VMs left un-allocated at the end of the loop are then allocated to the PM with
the most available capacity, creating an infeasible solution. A Local Search procedure,
which will be fully described in a later section, is applied to the solution in an attempt
to make it feasible.

Figure 6.2: A demonstration of how the vRoulette-1 technique combines the heuris-
tic and pheromone values of a PM with a random number between 0 and 1. AVX2
instructions allows operations to be carried out on each Vector lane (numbered 0-7)
simultaneously.

The selection procedure used to allocate VMs is based on the vRoulette-1 tech-
nique developed by Lloyd & Amos (Lloyd and Amos 2016). This is demonstrated in
Figure 6.2, which shows how the Heuristic and Pheromone values (which is described
in detail later) of the PM in each vector lane are combined with a random number
between 0 and 1. This is then multiplied by a Tabu value, which is set to 0 or 1 (the
value is only set to 0 in the instance that the “PM” in that lane is actually just a place-
holder used to pad the PM list to a multiple of 8), and then masked by vectors (denoted
MaxCPUMask and MaxRAMMask) that filter out any PMs that do not have enough
available capacity for the current VM. This is done on a vector-by-vector basis, with 8

CHAPTER 6. PACO-VMP 95

Table 6.1: List of symbols and notations used in this chapter
Symbol Definition
Sgb The global best solution
Sib The best solution from the current iteration
Pgb Power usage of the global best solution
Pib Power usage of the iteration best solution
τ0 The initial pheromone value
Ns The number of PMs ants are able to use
Ngb The number of PMs used in Sgb
Nib The number of PMs used in Sib
Nvm The number of VMs in the current instance
Npm The number of PMs in the current instance
k Current iteration number
kmax Maximum number of iterations permitted
icur The current VM
jcur The current PM
α Pheromone influence
β Heuristic influence
ρ Pheromone decay rate
ηij Heuristic value between VM i and PM j
τij Pheromone value between VMs i and j
P Power usage of current solution
Pmax
j Maximum power usage of PM j

P idle
j Idle power usage of PM j

fC CPU usage ratio for current PM
fR RAM usage ratio for current PM
Cused
j Current CPU usage on PM j

Rused
j Current RAM usage on PM j

Creq
i CPU requirement of VM i

Rreq
i RAM requirement of VM i

Ccap
j Total CPU capacity on PM j

Rcap
j Total RAM capacity on PM j

τmax Maximum pheromone value
τmin Minimum pheromone value
a MMAS constant value
Nmin Theoretical lower limit of current VMP
NB Number of type B servers
Ccap
A CPU capacity of type A servers

Ccap
B CPU capacity of type B servers

Rcap
A RAM capacity of type A servers

Rcap
B RAM capacity of type B servers

PMs being processed for selection in parallel. The 8 current PM values are compared
lane-by-lane with a vector of the highest PM values in the current selection process.

CHAPTER 6. PACO-VMP 96

Once every PM has been processed, a parallel reduction (with the max operator) is car-
ried out on this vector and the PM corresponding to the highest value is then assigned
the current VM. If the highest value is lower than 0, this indicates that no PMs had
enough capacity available for the current VM, and the VM is added to the unassigned
list to be allocated once the solution construction procedure has been completed.

While the original vRoulette-1 implementation made use of the AVX512 instruc-
tion set, which allows for 16-wide vectors and features additional instructions com-
pared to AVX2, it is not currently as widely available as the AVX2 instruction set,
which is available on most Intel CPUs released since 2013, and most AMD CPUs re-
leased since 2015. For the implementation evaluated here, AVX2 instructions were
used.

6.2.3 Pheromone & Heuristic Definition

As with any ACO implementation, the definition of the pheromone and heuristic values
is crucial for the consistent construction of good-quality solutions.

The heuristic is a problem-specific value which indicates the favourability of as-
signing a VM to a PM. The definition of the heuristic value can differ significantly
even within ACO implementations that aim to solve the same problem. A key dif-
ference between calculating the heuristic value for VMP is the need for a dynamically
calculated heuristic which differs depending on the current state of the PM that is being
assigned to, and this requires the heuristic to be calculated at every step of the solution
for every VM, which increases the solution time compared to the more static heuristic
values of problems such as the Traveling Salesman Problem.

The heuristic definition is designed to ensure that the fewest possible number of
PMs are used, by prioritising both resource utilisation balance and total resource util-
isation. The prioritisation of total utilisation makes it more likely that an ant will
allocate the current VM to a PM that already contains other VMs, while the resource
balance will attempt to keep the available RAM and CPU on a PM as even as pos-
sible, which will prevent PMs exhausting one resource capacity while still having a
large available capacity for the other resource. The heuristic value, ηij , associated with
placement of virtual machine i on physical machine j is given by

ηij =
1− |fC − fR|
1 + fC + fR

(6.1)

CHAPTER 6. PACO-VMP 97

where

fC =
Cused
j + Creq

i

Ccap
j

(6.2)

and

fR =
Rused
j +Rreq

i

Rcap
j

. (6.3)

Here, Cused
j and Rused

j are, respectively, the current CPU and RAM usage of physical
machine j, Creq

i and Rreq
i are the CPU and RAM requirements of virtual machine i,

and Ccap
j and Rcap

j are the CPU and RAM capacities of physical machine j.
Implementations of ACO for VMP generally use one of two pheromone trail defi-

nitions: the first defines the trail as being between VMs and the PMs to which they are
allocated, and the second defines trails as being between VMs that are allocated the
same PMs, meaning that VMs are more likely to be allocated to a PM with VMs that
they have previously shared with in good solutions. For PACO-VMP, the pheromone
trail associates VMs with other VMs. The pheromone distributed is based on solution
quality, which in this case is the energy consumption of the solution. Pheromone is
updated as

τij ← τij +
KP

P
(6.4)

where KP is a constant, for all pairs of VMs i, j which are allocated to the same
PM in the global best solution, where P is the power usage of the solution. In these
experiments, KP is set to 365, which brings the power usage down from an annual rate
to a daily rate. In practice, this is a constant which scales power usage into the typical
range of values for τmin and τmax, defined below. The actual value of this parameter
may be varied depending on the units used for power in the instance definition, and
can be considered a hyper-parameter of the method. The power usage is defined as:

P =

NPM∑
j=1

(
(Pmax

j − P idle
j)

Cused
j

Ccap
j

+ P idle
j

)
(6.5)

where NPM is the number of PMs in the current instance and Pmax
j and P idle

j are the
maximum and idle power usage of physical machine j respectively. Once pheromone
has been deposited, the trail is globally decayed by a fixed factor, ρ. The choice of
value of ρ will be discussed in Section 6.3. The definition of pheromone is based on
power usage as it will reflect the positive impact of a lower number of PMs while still
measuring differences between solutions with the same number of PMs used.

CHAPTER 6. PACO-VMP 98

As the selection process of the PACO-VMP algorithm attempts to allocate VMs
to PMs, directly loading pheromone from the pheromone matrix is insufficient when
it comes to deciding which PM to allocate a VM to. Instead, the average amount of
pheromone between the current VM and the VMs that are currently allocated to the
PM being evaluated is calculated (the amount of pheromone between VM and PM is
initially set to τ0, and remains at that level until a VM is added to the PM).

6.2.4 Local Search

The Local Search used in the presented algorithm is based on a technique developed
by Alvim et al. (Alvim et al. 1999) for the Bin Packing Problem, and also utilised by
Liu et al. (Liu et al. 2016) for the VMP. In this algorithm, after each solution is found,
one bin is destroyed, or a PM in the case of the VMP problem. If a subsequent solution
is then able to successfully fit all items in the remaining bins, it is considered feasible.
However, if no feasible solution can be found, the local search technique is applied.
There are two phases of the local search technique, the swap phase and the insertion
phase. Any PM that has been allocated more VMs than it has capacity for is marked
as overloaded. In the swap phase an overloaded PM is compared with every non-
overloaded PM, and the algorithm attempts to swap each VM in the overloaded PM
with each VM in the non-overloaded PM. This continues until either a successful swap
takes place, or every non-overloaded PM has been compared to the overloaded PM.
Regardless of the outcome, the process is carried out again for the next PM, and this
continues until every overloaded PM has been compared. If the swap phase is unable
to successfully find a feasible solution, the insertion phase is then performed. In this
phase, each overloaded PM attempts to allocate each of its VMs to a non-overloaded
PM. While this is far less likely to produce positive results than the swap phase, it is
still able to occasionally make progress where the swap phase cannot. A drawback of
this Local Search technique is the fact that it is non-trivial, leading to significant cost
in processing time, and it runs serially, rather than in parallel. Due to this, local search
is performed only on the iteration-best solution.

6.2.5 Pheromone Distribution

The final phase of the PACO-VMP algorithm is the pheromone distribution. As the
algorithm is based on the MMAS ACO variant, pheromone is only deposited by
either the global-best or iteration-best ant. As mentioned previously, pheromone is

CHAPTER 6. PACO-VMP 99

distributed between VMs allocated to the same PM. The global amount of pheromone
then decays by a static amount.MMAS utilises a clamping procedure to prevent stag-
nation, by restricting the level of pheromone to be between maximum and minimum
values. The maximum and minimum values are defined as

τmax =
1

ρNglobal
best

(6.6)

τmin = τmax
2(1− a)

(NVM + 1)a
(6.7)

whereNVM is the number of VMs in the current instance, Pmin is the global lowest PM
usage, and

a = exp(ln(0.05)/NVM). (6.8)

6.3 Experimental Results

The performance of the PACO-VMP algorithm is investigated by comparing with an
implementation of the OEMACS algorithm, which is an ACO-based method that gen-
erally out-performs conventional heuristics and evolutionary algorithms for this prob-
lem (Liu et al. 2016), and a state-of-the-art genetic algorithm, IGA-POP (Abohamama
and Hamouda 2020). Code for OEMACS is publicly available2. All algorithms were
implemented in C++, and all tests were carried out on a machine with an Intel® Xeon
E5-2640 v4 processor with 20 cores running at a base frequency of 2.4 GHz and a max-
imum frequency of 3.4 GHz. Code was compiled using the GNU C++ compiler (g++),
with O2 optimisation enabled. The initial comparative tests will compare a sequential
implementation of PACO-VMP with OEMACS and IGA-POP, as OEMACS is unable
to be parallelised in its current form without synchronisation issues. Two variants of
IGA-POP will be used: the first, referred to as GA1, uses the fitness function also used
by PACO-VMP and OEMACS; the second, referred to as GA2, uses a slightly modified
version of the fitness function used in the initial IGA-POP experiments (Abohamama
and Hamouda 2020). To demonstrate the impact of OpenMP parallelisation, a paral-
lelised PACO-VMP using OpenMP was also used for comparison, using one ant per
each of the 20 available cores. While the execution time differs, solution quality is
identical to the sequential version.

All problem instances used in these experiments were randomly generated. For

2https://github.com/Budding0828/OEMACS

CHAPTER 6. PACO-VMP 100

Figure 6.3: A flow chart detailing the PACO-VMP algorithm

each instance, the initial number of Physical Machines is set to be equal to the number
of Virtual Machines. The problem instance dataset consists of 600 VMP instances,
split into 6 sets of 100 instances with 100, 200, 300, 400, 500 and 1000 VMs. One run

CHAPTER 6. PACO-VMP 101

is performed using each instance. One run per instance is used with a larger number
of instances, rather than multiple runs on a smaller number of instances; a proof in
(Birattari 2004) shows that given a budget of N runs, selecting a K instances and
performing n runs on each with N = Kn is a suboptimal choice and that the best
statistical estimate of algorithm performance is obtained from a single run on each of
N independently selected instances, contrary to popular belief.

For each experiment 20 ants are used for PACO-VMP, as this allows for one ant
to be allocated to each available core in the OpenMP-enabled variant. For the PACO-
VMP algorithm, the ACO parameter values specified in the next section are used, and
for OEMACS the default values as specified in (Liu et al. 2016) are used. Both PACO-
VMP and OEMACS are run for 50 iterations. For GA1 and GA2, the parameters
specified in (Abohamama and Hamouda 2020), 200 iterations and a population size of
the number of PMs multiplied by 4, are used. These results are compared against the
First Fit (FF) algorithm in order to provide a baseline greedy algorithm implementa-
tion. FF was selected over the more widely used First Fit Decreasing(FFD) algorithm
due to better results on the problem instance data sets. It should be noted that the solu-
tion construction time for FF is near-instantaneous for all instance sizes, and thus has
been omitted from all execution time plots.

The First Fit algorithm is a straightforward algorithm initially developed for the
Bin Packing Problem (Ullman 1971). The algorithm maintains 2 lists, PMs and VMs.
It loops through the VMs, allocating them to the first available PM that has sufficient
capacity for the demand of the VM. While this greedy approach is unlikely to lead to
the best solution for a problem, it can provide a solid baseline for comparison against
other algorithms.

6.3.1 Parameter Tuning

Before running the experiments, parameter tuning is performed on the three main ACO
parameters (α, β and ρ) in order to determine the optimum values of these values for the
PACO-VMP algorithm. For both α and β integer values in the range 0-6 inclusive were
used. This range was selected as values higher than 5 lead to floating point underflows
in the code, and typical values of α and β in other problem domains are < 5. Values
are restricted to integers as the powers are evaluated by multiplication to avoid the use
of the pow function; no AVX2 pow function exists. For ρ, the available values were
0.1, 0.2, 0.3, 0.4, 0.5 and 0.6, complying with the range suggested in (López-Ibáñez,
Stützle, and Dorigo 2016).

CHAPTER 6. PACO-VMP 102

For the parameter tuning experiments problem instances with 1000 VMs were used
from instance set B, which will be described in detail later in this section.. The larger
variance in solution quality for this problem set allows for the impact of changing
parameters to be more easily observed. Each possible combination of parameters were
used, totalling 216 sets, and each set was run with 5 different random seeds on 8
problem instances, meaning that 8640 tests were run in total. Consistent with the
experiments described in the next subsection, 20 ants and 50 iterations were used per
run.

Figure 6.4: Solution quality is displayed, presented as a percentage value over the
minimum possible value, with each z-axis plane of the plot displaying the results of a
set ρ value.

The results shown in Figure 6.4 provide several points of discussion. Firstly is the

CHAPTER 6. PACO-VMP 103

optimal values of the parameters themselves - it is clear that a high β value combined
with a low α value lead to the best solution quality, while ρ has little, if any, perceivable
impact. Referencing the raw data of the experiments indicates that an α value of 1, β
value of 6 and ρ value of 0.6 lead to the best solutions on average.

The parameter tuning process also shows an interesting trend of poorly configured
parameters leading to very poor quality solutions, and investigation of the raw data
reveals that ACO is incapable of improving upon the initial baseline tour, set by the
greedy FF algorithm, with low β and high α values. In the context of these experi-
ments, this makes sense; 50 iterations is a very small number of iterations for an ACO
solver, as it does not allow the pheromone mechanic sufficient time to make an impact.
Higher β values allow the heuristic to have a higher influence on the decisions made by
ants, which leads to better solutions in a low iteration count scenario. The justification
for this low iteration count is given in the next subsection.

6.3.2 Instance Set A: Large-scale Homogeneous Environment with
Bottleneck

Set A is designed to test the performance of PACO-VMP in a straightforward scenario
where the PMs are identical and the demands of the VMs are fairly evenly divided
between RAM and CPU. This set consists of 1000 VMP instances equally divided
between 100, 200, 300, 400, 500 and 1000 VM instances. This dataset is similar to
the Set A data used by Liu et al. (Liu et al. 2016) in evaluating OEMACS, which was
initially created to benchmark the Reordering Grouping Genetic Algorithm (RGGA)
(Wilcox, McNabb, and Seppi 2011); however, this data is no longer publicly available.
In comparison to this data, a larger number of smaller instances were used in these
experiments. Additionally, the Set A data used for in (Liu et al. 2016) was deliberately
created to have equal resource distribution, despite the different ranges of CPU and
RAM demands; in contrast, the randomly generated nature of the Set A used in these
experiments leads to a CPU bottleneck, with CPU demand ratio of approximately 5:4
against RAM demand.

The VM requirements for this instance set are randomly generated in ranges of
[1,128] for CPU and [1,100] for RAM. Each PM has a capacity of 500 for both CPU
and RAM, leading to slightly higher average CPU utilisation than RAM but still close
to 1:1. As these instances are randomly generated, there is no known optimum, but a

CHAPTER 6. PACO-VMP 104

lower limit to the number of PMs used in the solution, Nmin, is calculated

Nmin = max

{∑NVM

j=1 Creq
j

Ccap
i

,

∑NVM

j=1 Rreq
j

Rcap
i

}
(6.9)

where i is the index of any physical machine; as the servers in Instance Set A are ho-
mogeneous, it does not matter which physical machine is used to evaluate this quantity.

Figure 6.5: Solution difference measured as percentage over theoretical optimum for
PACO-VMP, OEMACS, GA1, GA2 and FF for instance set A.

The results for instance set A in terms of solution quality are displayed in Fig-
ure 6.5. FF shows good results throughout, improving as the problem instances get
larger, which indicates that it is fairly simple for a the greedy FF solver to create good-
quality solutions for the large-scale version of the VMP problem. In all but one in-
stance, OEMACS is able to match or exceed the solutions created by FF. Likewise,
PACO-VMP outperforms or matches OEMACS on 5 sizes of instances including the
largest instances. It should be noted that the PACO-VMP algorithm utilises the FF
result as its initial best tour, meaning that it is not able to find worse tours than FF. A
distinction between the results of set A and the other instance sets is that FF is compet-
itive with the two ACO algorithms. For the other instance sets this is not the case, but

CHAPTER 6. PACO-VMP 105

Figure 6.6: Average time to solve (seconds) for 100 instances of a given instance size
for PACO-VMP, OEMACS, GA1 and GA2 for instance set A.

as the large-scale problem is fairly straightforward, it allows FF to find good quality
solutions. GA2 also performs well on this dataset, outperforming PACO-VMP on all
but a single dataset. On the other hand, GA1 struggles, remaining moderately compet-
itive for the smaller instances but performing dramatically worse on the 400, 500 and
1000 VM instances.

Execution time results for instance set A are shown in Figure 6.6. From this plot
it is clear to see that PACO-VMP has a significant advantage over OEMACS when
it comes to execution time, beginning at around 1 order of magnitude for the size
100 instances, and increasing to an advantage of around 3 orders of magnitude for
the 1000 VM instance sets. An even larger advantage is held over the two IGA-POP
algorithms, beginning at around 2 orders of magnitude for the 100 VM instances and
increasing to around 3 orders of magnitude for the 1000 VM instances. Interestingly,
despite beginning with a sizeable time advantage over IGA-POP, OEMACS performs
similarly to GA1 for the 1000 VM instance set. The parallelised version of PACO-
VMP increases the time difference between it and the sequential variant of PACO-
VMP, increasing from a speedup of 2.2× for the 100 VM instances to a speedup of
3.47× for 1000 VM instances.

CHAPTER 6. PACO-VMP 106

6.3.3 Instance Set B: Small-scale Homogeneous Environment with
Bottleneck

Set B introduces a bottleneck resource to the problem instances, testing the perfor-
mance of PACO-VMP in a slightly more complicated scenario which will lead to more
overloaded servers. As with the previous instance set, Set B consists of 1000 VMP
instances equally divided between 100, 200, 300, 400, 500 and 1000 VM instances.
VM requirements are randomly generated, in the range of [1-4] for CPU (measured
in cores) and [1-8] for RAM (measured in GB). PM capacity is 16 cores for CPU and
32GB for RAM. As the VM requirements are evenly distributed, the probability of a 4
core CPU requirement is 0.25, whereas the probability of an 8GB RAM requirement
is 0.125, leading to a slight CPU bottleneck, though less severe than Set A, with a
ratio of approximately 10:9. The main differing factor between Set B and Set A is the
scale of the capacity and demand - smaller capacities lead to less flexibility in the local
search process, though the reduced demands still lead to some flexibility. As with Set
A, these instances have no known optimum, and a lower limit is calculated using the
same formula.

Figure 6.7: Solution difference measured in percentage over theoretical optimum for
PACO-VMP, OEMACS, GA1, GA2 and FF for instance set B.

CHAPTER 6. PACO-VMP 107

Figure 6.8: Average time to solve (seconds) for 100 instances of a given instance size
for PACO-VMP, OEMACS, GA1 and GA2 for instance set B.

Unlike instance set A, the results for instance set B displayed in Figure 6.7 show
a clear difference between PACO-VMP and OEMACS. FF’s poor results also indicate
that a greedy solver has more difficulty finding a good solution for the bottlenecked
VMP problem than for the non-bottlenecked variant. While OEMACS significantly
outperforms FF, PACO-VMP outperforms it for every problem size, finding solutions
that range from 1%-2% closer to the theoretical lower limit. Additionally, the solu-
tion quality in terms of percentage is actually worse for the size 1000 instances with
OEMACS, whereas PACO-VMP continues to improve. In contrast to Set A, GA1
performs very well in this bottle-necked scenario, with PACO-VMP returning better
results for the 100 VM instances but then returning very slightly worse results for the
larger instances. Conversely, GA2 performs poorly, initially returning similar results
to OEMACS before worsening on the larger instances, and even being outperformed
by FF for the 1000 VM instances.

In terms of execution time, displayed in Figure 6.8, the results for PACO-VMP
are near-identical to the results for instance set A, demonstrating that the bottleneck
led to no additional execution time. This is also the case for OEMACS, which also
achieved near-identical execution times to the instance set A results. The execution

CHAPTER 6. PACO-VMP 108

time advantage held by PACO-VMP is maintained, with OEMACS once again losing
the advantage it holds over IGA-POP as the solution size increases. The difference
between sequential and parallel PACO-VMP is also near-identical to instance set A,
though the speedup increase is slightly smaller, from 2.2× to 3.27×.

6.3.4 Instance Set C: Heterogeneous Environment with Bottleneck

Set C further complicates the problem instances by introducing non-identical servers,
simulating a scenario in which a cloud host has multiple server types. Two types of
server are defined, A and B. Server type A has a CPU capacity of 16 cores and a RAM
capacity of 32GB. Server type B has a CPU capacity of 32 cores and a RAM capacity
of 64GB. However, type B servers only make up 10% of the total PMs in each problem
instance, meaning that VMs will have to use both types of servers. This will test the
ability of PACO-VMP to prioritise the high capacity servers while still allocating the
VMs efficiently. The VM requirements are in the range of [1,8] for CPU and [1,32]
for RAM, meaning that the bottleneck resource in this case is RAM. Set C utilises the
same instance sizes as the previous sets.

Due to the heterogeneous servers in this instance set, an alternative formula is
required for calculating the lower limit to the number of PMs

Nmin = NB + max

{∑NVM

j=1 Creq
j −NBC

cap
B

Ccap
A

,

∑NVM

j=1 Rreq
j −NBR

cap
B

Rcap
A

}
(6.10)

where NB is the number of type B servers, Ccap
A and Ccap

B are the CPU capacities of
type A and B servers respectively, Rcap

A and Rcap
B are the RAM capacities of type A

and B servers respectively, and Creq
j is the CPU requirement of virtual machine j.

The results shown in Figure 6.9 indicate that FF performs very poorly on in-
stance set C, with the heterogeneous servers causing issues for the greedy technique.
OEMACS significantly outperforms FF once again, but is itself outperformed by
PACO-VMP, with solution quality improvement ranging from 5% for 100 VM in-
stances to around 10% for 1000 VM instances. While OEMACS performs signifi-
cantly worse on instance set C than the other sets, PACO-VMP is able to capably solve
the heterogeneous instances. As with instance set B, while OEMACS begins to return
worse solution qualities for the size 1000 instances, PACO-VMP continues to improve
as the instance size increases. The performance of the GA variants is also consistent
with set B, with GA1 slightly outperforming PACO-VMP in all but one instance size,

CHAPTER 6. PACO-VMP 109

Figure 6.9: Solution difference measured in percentage over theoretical optimum for
PACO-VMP, OEMACS, GA1 and GA2 and FF for instance set C.

and GA2 performing poorly, showing even poorer results on instance set C.
Execution time for instance set C, as displayed in Figure 6.10, is similar to the

other instance sets, with the execution time of PACO-VMP being near identical. How-
ever, OEMACS takes slightly longer to solve the instances in set C, further increasing
the execution time advantage held by PACO-VMP. Additionally, the execution time of
OEMACS is now closer to the time of GA2 than GA1 for 1000 VM instances, empha-
sising the increased difficulty that OEMACS has when trying to solve the bottlenecked,
homogeneous problem. As with the previous instance sets, the time difference between
the sequential and parallel PACO-VMP increases slightly as the instance sizes increase,
from 2.6× to 3.78×.

6.3.5 Discussion

The significant execution time reduction that can be enabled through the use of paral-
lelisation and vectorisation techniques on a wide range of different problem instance
sets that represent three realistic Cloud Computing scenarios has been demonstrated.

CHAPTER 6. PACO-VMP 110

Table 6.2: Results of the experiments on FF, OEMACS and PACO-VMP. Entries in the
Set column represent the 100 instances of the specified size from the specific instance
set. Solution Quality is the average percentage over the theoretical minimum for all
100 problem instances for each size within each set with values in bold being the best
result, on the condition that it is significantly different when results are analysed with
the Wilcoxon signed-rank test. Execution Time is the average time per run in seconds
for all 100 problem instances for each size within each set. The sequential and parallel
versions of PACO-VMP are included as PACO(S) and PACO(P) respectively

Solution Quality (%) Execution Time (seconds)
Set FF OEMACS GA1 GA2 PACO OEMACS GA1 GA2 PACO(S) PACO(P)

A100 10.3 8.98 8.70 8.54 8.25 0.936 9.098 15.05 0.125 0.055
A200 5.03 4.71 5.13 4.4 4.47 12.22 60.23 107.9 0.423 0.154
A300 3.68 3.26 4.21 2.92 3.32 51.81 194.4 354.3 0.892 0.265
A400 2.98 2.78 4.78 2.46 2.78 158.8 440.0 817.7 1.528 0.499
A500 2.58 2.39 5.54 1.92 2.42 369.9 832.8 1575 2.387 0.759

A1000 1.58 1.96 11.3 1.26 1.58 5450 5711 10478 10.37 2.986
B100 16.0 8.24 6.49 7.75 6.24 1.082 9.044 15.32 0.121 0.054
B200 12.7 5.05 3.01 4.78 3.08 14.14 59.15 109.2 0.422 0.154
B300 11.5 3.72 2.05 5.36 2.11 58.75 189.7 358.6 0.902 0.266
B400 11.0 3.47 1.64 6.77 1.69 181.1 426.2 829.1 1.514 0.499
B500 10.4 2.89 1.25 6.30 1.37 414.8 805.4 1596 2.351 0.756

B1000 9.83 2.82 0.78 11.39 0.91 6080 5546 10321 9.594 2.904
C100 34.8 13.7 6.96 23.9 7.67 1.656 9.733 16.98 0.135 0.056
C200 31.6 11.9 5.03 31.4 6.10 22.14 63.66 116.7 0.464 0.158
C300 32.1 11.7 4.46 37.2 5.39 88.56 205.0 383.7 0.980 0.274
C400 31.0 12.1 4.07 41.3 4.66 270.3 456.8 874.7 1.663 0.511
C500 29.2 12.0 3.93 43.0 4.44 633.0 858.4 1665 2.623 0.771

C1000 26.3 12.8 3.70 54.5 3.62 8873 5753 10347 10.69 2.873
Average 15.7 6.92 4.61 16.4 3.89 1260 1201 2221 2.621 0.777

Rank 4 3 2 5 1 4 3 5 2 1

CHAPTER 6. PACO-VMP 111

Figure 6.10: Average time to solve (seconds) for 100 instances of a given instance size
for PACO-VMP, OEMACS, GA1 and GA2 for instance set C.

PACO-VMP outperforms OEMACS in each instance set, very slightly in set A and sig-
nificantly in sets B and C, and while it is matched by GA1 in set B and C, it performs
significantly better in instance set A. The opposite is true of GA2, which outperforms
PACO-VMP in set A, but significantly underperforms in sets B and C. The consistency
demonstrates the versatility of ACO compared to IGA-POP: while IGA-POP performs
well, it requires two separate fitness functions in order to match PACO-VMP. This
is confirmed by the averages displayed in Table 6.2, which clearly show that PACO
has the best average solution quality in terms of percentage above optimum. Upon
further analysis of the IGA-POP results, the issue stems from the tendency of the al-
gorithm to assign VMs to empty PMs even when currently used PMs have enough
capacity remaining, which happens regardless of fitness function. Both PACO-VMP
and OEMACS enforce a limit on the number of PMs than can be used (the previous
best number of PMs) which prevents this behaviour. Additionally, it is worth nothing
that despite a 10x increase of instance size in the experiments, the quality of the solu-
tions produced by PACO-VMP remains consistent. The percentages above the lower
limit of PM utilisation decrease with each increase in instance size, which in terms
of raw numbers indicates a fairly consistent number of PMs over the minimum. This

CHAPTER 6. PACO-VMP 112

suggests that the PACO-VMP implementation could still produce good results for even
larger VMP problem instances. This is an advantage over OEMACS, which provides
degrading solution quality for size 1000 instances, a trend which would potentially
continue as instance sizes increase.

The main focus of PACO-VMP is to improve execution time, and it succeeds at
this objective. While PACO-VMP and OEMACS use similar pheromone definitions
and local search techniques, PACO-VMP produces better results both in terms of exe-
cution time and solution quality. This may be caused partly by the choice ofMMAS
algorithm over ACS, and also by differences in the selection probabilities due to the
use of independent roulette. It has been shown (Lloyd and Amos 2016) that inde-
pendent roulette algorithms (such as vRoulette) tend to make greedier selections than
the traditional roulette wheel algorithm, which may be a factor in the different solu-
tion qualities found between PACO-VMP and OEMACS. Clearly the areas in which
PACO-VMP and OEMACS differ are significant in terms of execution time, as PACO-
VMP has a time complexity of O(n2), whereas OEMACS is, experimentally, closer
to O(n4). The main contributing factor to this is the probability calculation: whereas
PACO-VMP uses the resource wastage formula as given in Formula 1 as the heuris-
tic value, OEMACS uses a much more complex formula that includes the resource
wastage, but also has extra sums over the VMs in both the numerator and denomina-
tor of the formula. Experimentally, the time complexity of the IGA-POP variants is
approximately O(n3).

The results are summarised in Table 6.1. This table shows the results for solution
quality and execution time, and for the solution quality results it is indicated which
results are statistically significant. The results of each algorithm on each instance of
a given size can be paired, and compared to each other using the Wilcoxon signed-
rank test, a non-parametric test which can be used to compare paired sets of readings.
Since an all-vs-all comparison of three tests is performed (all possible pairs of algo-
rithms) the Bonferroni correction is applied, and divide the significance threshold by
the number of tests (in this case 3). Bold values in the table show the solution quality
values which are significantly better than the other four algorithms, using a signifi-
cance threshold of 0.002 (that is, 0.01 after application of the Bonferroni correction).
In general, one of the two GA versions tends to produce the best solutions, however
although the differences are in many cases statistically significant, the magnitude of
the effect is small. For example, in the case of the A1000 instances, a comparison be-
tween GA2 and PACO shows that out of the 100 trials, GA2 is superior for 46 instances

CHAPTER 6. PACO-VMP 113

whereas ACO is superior for 3, with 51 ties. Although this is a statistically highly sig-
nificant difference, the magnitude of the difference is only 0.32% in solution quality.
This demonstrates that the experiments are very sensitive in detecting significant, but
small, differences in performance. Qualitatively, the results show that one of the two
GAs generally performs the best for any set of instances, but this is often accompanied
by the other GA performing the worst. Since the GA is used with the recommended
parameters for the population size and number of generations, this performance also
comes at a significant cost; for example in the 1000 VM instances, GA1 and GA2 will
perform 4000 evaluations per generation for 200 generations, compared to 20 evalua-
tions for 50 iterations in PACO. Furthermore, the difference in performance between
the two cost functions is very clear; using the original cost function proposed by (Abo-
hamama and Hamouda 2020) leads to poor performance on the B and C instance sets.
PACO-VMP on the other hand, achieves solution quality close to best (or best) across
all instance types, without any sensitivity to the algorithm parameters, and achieves
better average solution quality than the other ACO algorithm (OEMACS) in 15 out of
the 18 instance categories. There is also a clear advantage for PACO-VMP in both
scalability and execution time. The computational complexity of PACO is superior to
both OEMACS and GA1/2, and the execution time of the parallel version is several
orders of magnitude less in most cases. For the C1000 instances, the most challenging
instance set, PACO-VMP achieves the best solution quality of all algorithms in an av-
erage time of 2.873s, while GA1/2 and OEMACS require several hours of CPU time
to reach a solution.

As with the TSP problem discussed in previous sections, these experiments have
focused on the static variant of the VMP problem. The current algorithm would require
alteration in order to be able to solve the dynamic VMP problem, which more realis-
tically represents the scenario of Virtual Machine Placement. The main change that
would be required is to the pheromone and weight matrices; these are currently a static
size, and are restricted to standard C++ arrays in order to be compatible with AVX2
instructions, meaning they are inflexible. In the dynamic problem, VMs are added to
represent a new user starting up a VM, and removed to represent a user shutting down
a VM - each time this happens, the size of the array would have to be changed, which
for the C++ array means building a completely new array and moving all relevant in-
formation over to it. While this is possible, it is time consuming, and investigation into
using more flexible data types such as C++ vectors or maps with AVX vectors could
lead to a more efficient method of increasing and decreasing matrix sizes.

CHAPTER 6. PACO-VMP 114

6.4 Conclusions & Future Work

In this chapter PACO-VMP was presented, a parallelised and vectorised implemen-
tation of MMAS for solving the Virtual Machine Placement problem. The method
is several orders of magnitude faster than two current state-of-the-art ACO solvers,
OEMACS and IGA-POP while producing comparable or superior results. Since vir-
tual machine placement in the real world is a problem in which reducing time to so-
lution can have significant cost benefits, the improved execution time performance of
PACO-VMP

While PACO-VMP is capable of solving the static VMP problem, in reality this
problem is rarely static. Real-world cloud workloads have constantly changing de-
mand, with Virtual Machines being added and removed from the workload constantly.
As with the static VMP, execution time is vital for dynamic VMPs in order to min-
imise time spent in an inefficient configuration, and PACO-VMP’s positive results on
the static problem indicate that it could also be effectively used to solve the dynamic
problem. This is an area for further investigation.

The parameter tuning phase of the experiments revealed that the performance of
the algorithm is relatively insensitive to the parameter governing the importance of
pheromone information, further suggesting that analysing and improving pheromone
definition may lead to better solution quality from the underlying ACO mechanism.
This is a potentially fruitful area of further work.

Many assumptions were made in this implementation regarding the VMP problem,
including that there will always be as many PMs available as VMs, that performance
doesn’t degrade when the PMs reach 100% capacity, and that CPU and RAM are the
only requirements. These assumptions are commonly made to simplify the problem
solving process rather than having to consider a vast array of additional variables.
Another potentially fruitful area that is fairly to investigate is the use of additional
parameters for the VMP problem, rather than just CPU and RAM. Further work is
required to investigate the inclusion of these additional parameters.

Chapter 7

Conclusions and Future Work

Within this thesis, several novel contributions to Ant Colony Optimisation, particu-
larly in terms of execution time, have been presented. At the time that the publications
described throughout the thesis were written, the presented work represented the best
performing ACO implementation for the traveling salesman problem in terms of execu-
tion time, the first true ACO implementation capable of solving the Art TSP instances,
and the best performing ACO implementation for the Virtual Machine Placement prob-
lem, in terms of execution time (while remaining competitive with a contemporary Ge-
netic Algorithm based solver in terms of solution quality). While parallelisation is a
straightforward step that could fairly simply be reproduced for most ACO implementa-
tions, especially MMAS implementations with the lack of necessary synchronisation,
the AVX vector instructions used are more difficult to implement effectively, not to
mention the task of identifying areas of the code that are particularly amenable to vec-
torisation.

A key element of this thesis was the demonstration of the versatility of the vec-
torised techniques described in Chapter 4. Due to the low current availability of
AVX-512 on contemporary hardware, and the discontinuation of the Xeon Phi range of
manycore CPUs used for the experimentation in Chapter 4, the presented work risked
looking somewhat restricted to a high end platform. As shown in Chapter 5, the vec-
torised techniques can be ported to AVX2, an instruction set with a significantly larger
availability on current hardware, with only a small amount of work, largely centered
around the replacement of AVX512 instructions that have no AVX2 equivalent.

Versatility was also a key factor in the motivation for Chapter 6, as while TSP is
ACO’s traditional “proving ground” for new techniques, it is necessary to demonstrate
a technique’s effectiveness on other problems to demonstrate that the technique can

115

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 116

be utilised in other contexts. While the Vectorised Candidate Set Selection technique
and, by extension, the Restricted Pheromone Matrix were not carried over from TSP
due to no clear definition of what would constitute a “nearest neighbour” definition for
that problem, the parallelisation and vectorisation ideas used in previous work were
used again for VMP, again through the use of AVX2 vector instructions. The fact that
PACO-VMP was able to significantly outperform OEMACS, the previous best ACO
VMP implementation, demonstrates the effectiveness of vectorisation once again. The
key element of the AVX2 instructions is that they are not problem-specific - anywhere
an array exists in code, they can be used. This has been demonstrated on two seperate
problems in this thesis, and hopefully in future AVX instructions will see more use in
ACO implementations.

7.1 Subsequent Developments

In the time since the publication of the Restricted Pheromone Matrix technique, de-
scribed in Chapter 5, further work has been done to improve the scalability of ACO,
increasing the effectiveness on large problem instances. While RPM was designed to
allow ACO to solve the Art TSPs without substantially altering the core algorithm,
the execution time for the initial experimentation was slightly worse than other con-
temporary ACO techniques. The Memory-Friendly ACOTSP technique (Martı́nez and
Garcı́a 2021, which cites Peake, Amos, et al. 2019) improves further upon RPM, in-
troducing the concept of “backup cities”.

In the ACOTSP-MF algorithm, cities are grouped into three categories: Closest
neighbouring cities, the aforementioned backup cities, and other cities. The first struc-
ture is identical to the nearest neighbour list used in RPM, with the n nearest cities to
a given city being considered as its “nearest neighbours”. As with RPM, these cities
have full pheromone, weight and distance information stored in global memory. The
backup cities function as an extension to the nearest neighbour cities, with the memory
situation of those cities varying depending on which approach is selected: The conser-

vative mode treats the backup cities identically to the nearest neighbour cities, storing
weight, pheromone and distance information in global memory; the aggressive mode
retains neither weight nor pheromone data for the backup cities, instead only storing
distance information in global memory. In the aggressive case, if no nearest neighbour
city is available, the distance matrix will be used to find the closest backup city. This
functions similarly to the heuristic fallback method used in RPM, though with a much

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 117

smaller pool of cities to select from and distance information able to be loaded from
the matrix rather than calculated dynamically. In the rare occasion where neither a
nearest neighbour city nor a backup city is available, the closest other city is selected,
with the distance calculated dynamically. The use of the backup city data structure
increases the used memory when compared to RPM, though it is still much closer to
RPM’s memory usage than the default ACO memory usage.

One significant difference between ACOTSP-MF and RPM is the method of vec-
torisation - while RPM used hand-vectorised methods using the AVX2 instruction set,
ACOTSP-MF uses #pragma ivdep to automatically vectorise the loop. The differences
in execution time between these approaches are an area for future investigation. As
with RPM, the number of nearest neighbours used by ACOTSP-MF is set to 32, with
1024 backup cities. While this is quite a significant number of backup cities, the search
space of cities is still only 1% the size of the search space for the default ACO algo-
rithm. Another parallel with RPM is the use of 3-opt local search, which ACOTSP-MF
uses to improve solution quality. However, unlike RPM, with a default configuration of
one local search per ant per iteration, ACOTSP-MF instead opts to perform one local
search every 100 iterations, which reduces the performance impact of the operation.

Three factors have to be considered in the context of the ACOTSP-MF results:
Memory complexity, solution quality and execution time. In terms of memory com-
plexity, the use of the backup city structure is actually a backwards step compared
to RPM, although as previously mentioned the ACOTSP-MF memory requirement of
1024 backup cities is still significantly closer to the RPM memory requirement than the
standard ACO requirement. This increased memory usage does have a positive impact
on execution time though, as the backup city structure significantly reduces the amount
of time taken when no nearest neighbours are available. While the RPM fallback in-
volved calculating the distance for every single city in the TSP, ACOTSP-MF has a
much smaller search space, and every city in this search space already has a distance
calculated and stored in a matrix, making the time taken to retrieve that information
significantly less than RPM. In fact, ACOTSP-MF is able to find a solution to the
Mona-Lisa100k TSP in just 85 seconds, compared to the 1.36 hours needed by RPM,
a significant speedup. For solution quality, the ACOTSP-MF results were very similar
to the RPM results, which can be expected given the similarity of the core algorithm.

The existence of the ACOTSP-MF method shows that RPM has had a definite
impact in scalable ACO research, and hopefully it will lead to further techniques being
created that improve the scalability of ACO even further.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 118

7.2 Suggested Future Work

While the work presented in this thesis demonstrated the effectiveness of parallel and
vector techniques, further work is possible for each of the main contributions.

The Vectorised Candidate Set Selection method has currently only been demon-
strated using the Traveling Salesman Problem. While the technique is not applicable
to every potential problem domain due to the dependence on the concept of a near-
est neighbour, many problems do exist that could make use of the VCSS technique.
Problems that utilise distance as a heuristic, such as the Vehicle Routing Problem (Du
and He 2012), could be used as a benchmark for testing the VCSS problem. Nearest
neighbour lists are not restricted to distance, however, so the technique could also be
applied to problems such as Pattern Recognition (Cover and Hart 1967), Computer
Vision (Muja and Lowe 2014), and classification (Cunningham and Delany 2020), all
of which have previously utilised nearest neighbour techniques. Some way of deter-
mining what constitutes a “nearest neighbour”, or at least the use of some form of
candidate set, for problems such as Virtual Machine Placement would also allow the
technique to be more widely applicable.

The Restricted Pheromone Matrix technique is bound to problem domains in which
VCSS is also applicable, as the reduced size of the pheromone matrix itself is depen-
dant on the existence of a nearest neighbour list. Therefore, like VCSS, expansion
to other problem domains would help to prove the viability of RPM on a wide range
of problems. The previously discussed ACOTSP-MF technique has already improved
the technique fairly substantially, with only solution quality still being a relative weak
point. However, the heuristic and pheromone definitions for solving TSP with ACO
are well-established at this point, so any improvement to the solution quality of RPM
would require a substantial development to be made in discovering a more optimal
pheromone/heuristic definition.

Parallel Ant Colony Optimisation for Virtual Machine Placement (PACO-VMP)
has a lot of potential for future work, largely due to how fluid the current definition
of the VMP problem is.The definitions of the virtual machine problem in the literature
vary considerably; work on unifying the problem into one more widely-accepted defi-
nition would be useful for future VMP research. The creation of a set of test instances,
similar to the widely used TSPLIB set of TSP problems, would also be a significant
contribution to current VMP research as no public instance sets currently exist. In
terms of PACO-VMP itself, assumptions were made when the algorithm was created:
firstly, that RAM and CPU were the only two parameters used by both PMs and VMs;

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 119

secondly, that utilising 100% of the capacity of a PM would cause no performance
issues; and finally, that enough PMs would always be available to allow for the least
optimal configuration of PMs, i.e. one PM per VM. Eliminating these assumptions and
solving a more constrained version of the VMP would further demonstrate the benefit
of the PACO-VMP technique on a real-world VMP scenario.

Each of the three algorithms described in this thesis make use of either the AVX-
512 or AVX2 instruction set, the availability of which covers most modern desktop
and HPC CPUs. However, the expansion of the vector techniques used in these algo-
rithms to other instruction sets, such as Arm’s NEON instructions, would allow these
algorithms to be used in embedded systems. Increasing the efficiency of processes
on microprocessors is a key enabler of Edge Computing, a computing paradigm in
which devices associated with an IoT network perform computation locally rather than
relying on sending and receiving data to and from the cloud. This reduces memory
bandwidth and improves response times. The potential porting of the VCSS technique
to the NEON instruction set is briefly discussed at the end of Chapter 4.

A useful development during the creation of all three of these techniques was the
vector class, which abstracted the use of vector instructions into a separate class and al-
lows for vector instructions to be implemented as operators, rather than using the AVX
instructions inline. This allows for the definition of each vector function to be changed
depending on the AVX instructions available on any given hardware, with AVX-512
compatible hardware using AVX-512, AVX2 compatible hardware using AVX2, and
hardware compatible with neither instruction set using sequential versions of the func-
tions. This further allows for truly cross-platform vectorisation, whereas normally the
platform would have to be taken into consideration when using vector instructions.
This class could be extended to use the NEON instruction set and potentially even the
SSE instruction sets to allow compatibility for older hardware. A public release of this
class as a Vectorisation library would allow for simple, cross-platform hand-coded vec-
torisation without needing to be intimately familiar with the instructions themselves.
This vector class is included in Appendix A, which demonstrates the different defini-
tions of functions depending on the available instruction set. It should be noted that
while AVX-512 instructions are not included for every method, it is easily possible to
port over the AVX2 methods to AVX-512. The use of this vector class is demonstrated
in Appendix B, the selection method used for both the VCSS technique and the RPM
technique.

Bibliography

Aarts, Emile and Jan Karel Lenstra (2003). Local Search in Combinatorial Optimiza-

tion. Princeton University Press.
Abohamama, A.S. and Eslam Hamouda (2020). “A Hybrid Energy–Aware Virtual Ma-

chine Placement Algorithm for Cloud Environments”. In: Expert Systems with Ap-

plications 150, p. 113306. ISSN: 0957-4174. DOI: https://doi.org/10.
1016/j.eswa.2020.113306. URL: http://www.sciencedirect.
com/science/article/pii/S0957417420301317.

Ahmed, Zakir H (2010). “Genetic algorithm for the traveling salesman problem using
sequential constructive crossover operator”. In: International Journal of Biometrics

& Bioinformatics (IJBB) 3.6, p. 96.
Alashhab, Ziyad R., Mohammed Anbar, Manmeet Mahinderjit Singh, Yu-Beng Leau,

Zaher Ali Al-Sai, and Sami Abu Alhayja’a (2020). “Impact of Coronavirus Pan-
demic Crisis on Technologies and Cloud Computing Applications”. In: Jour-

nal of Electronic Science and Technology, p. 100059. ISSN: 1674-862X. DOI:
https : / / doi . org / 10 . 1016 / j . jnlest . 2020 . 100059. URL:
https : / / www . sciencedirect . com / science / article / pii /

S1674862X20300665.
Alba, Enrique and Francisco Chicano (2007). “ACOhg: Dealing with Huge Graphs”.

In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Com-

putation. GECCO ’07. London, England: ACM, pp. 10–17. ISBN: 978-1-59593-
697-4. DOI: 10.1145/1276958.1276961. URL: http://doi.acm.org/
10.1145/1276958.1276961.

Alvim, Adriana, Fred S Glover, Celso C Ribeiro, and Dario J Aloise (1999). Local

Search for the Bin Packing Problem.
Amos, Martyn, Matthew Crossley, and Huw Lloyd (2019). “Solving Nurikabe with

Ant Colony Optimization”. In: Proceedings of the Genetic and Evolutionary Com-

putation Conference Companion, pp. 129–130.

120

https://doi.org/https://doi.org/10.1016/j.eswa.2020.113306
https://doi.org/https://doi.org/10.1016/j.eswa.2020.113306
http://www.sciencedirect.com/science/article/pii/S0957417420301317
http://www.sciencedirect.com/science/article/pii/S0957417420301317
https://doi.org/https://doi.org/10.1016/j.jnlest.2020.100059
https://www.sciencedirect.com/science/article/pii/S1674862X20300665
https://www.sciencedirect.com/science/article/pii/S1674862X20300665
https://doi.org/10.1145/1276958.1276961
http://doi.acm.org/10.1145/1276958.1276961
http://doi.acm.org/10.1145/1276958.1276961

BIBLIOGRAPHY 121

Anderson, Edward J and Michael C Ferris (1994). “Genetic algorithms for combina-
torial optimization: the assemble line balancing problem”. In: ORSA Journal on

Computing 6.2, pp. 161–173.
Bai, Hongtao, Dantong OuYang, Ximing Li, Lili He, and Haihong Yu (2009). “MAX-

MIN Ant System on GPU with CUDA”. In: 2009 Fourth International Conference

on Innovative Computing, Information and Control (ICICIC). IEEE, pp. 801–804.
Bell, John E. and Patrick R. McMullen (2004). “Ant Colony Optimization Techniques

for the Vehicle Routing Problem”. In: Advanced Engineering Informatics 18.1,
pp. 41–48. ISSN: 1474-0346. DOI: https://doi.org/10.1016/j.aei.
2004.07.001. URL: http://www.sciencedirect.com/science/
article/pii/S1474034604000060.

Bentley, Jon Jouis (1992). “Fast Algorithms for Geometric Traveling Salesman Prob-
lems”. In: ORSA Journal On Computing 4.4, pp. 387–411.

Birattari, Mauro (2004). On the Estimation of the Expected Performance of a Meta-

heuristic on a Class of Instances. How Many Instances, How Many Runs? Tech.
rep. TR/IRIDIA/2004-001. Brussels, Belgium: IRIDIA, Université Libre de Brux-
elles.

Boeringer, Daniel W and Douglas H Werner (2004). “Particle Swarm Optimization
Versus Genetic Algorithms for Phased Array Synthesis”. In: IEEE Transactions on

Antennas and Propagation 52.3, pp. 771–779.
Botta, A., W. de Donato, V. Persico, and A. Pescapé (2014). “On the Integration of

Cloud Computing and Internet of Things”. In: 2014 International Conference on

Future Internet of Things and Cloud, pp. 23–30.
Braun, Heinrich (1990). “On solving travelling salesman problems by genetic algo-

rithms”. In: International Conference on Parallel Problem Solving from Nature.
Springer, pp. 129–133.

Bremermann, Hans J et al. (1962). “Optimization Through Evolution and Recombina-
tion”. In: Self-organizing Systems 93, p. 106.

Bullnheimer, Bernd, Richard F Hartl, and Christine Strauss (1997). “A New Rank
Based Version of the Ant System. A Computational Study.” In.

Bullnheimer, Bernd, Gabriele Kotsis, and Christine Strauß (1998a). “Parallelization
Strategies for the Ant System”. In: High Performance Algorithms and Software in

Nonlinear Optimization. Springer, pp. 87–100.
— (1998b). “Parallelization Strategies for the Ant System”. In: High Performance

Algorithms and Software in Nonlinear Optimization. Springer, pp. 87–100.

https://doi.org/https://doi.org/10.1016/j.aei.2004.07.001
https://doi.org/https://doi.org/10.1016/j.aei.2004.07.001
http://www.sciencedirect.com/science/article/pii/S1474034604000060
http://www.sciencedirect.com/science/article/pii/S1474034604000060

BIBLIOGRAPHY 122

Cecilia, José M, José M Garcı́a, Manuel Ujaldón, Andy Nisbet, and Martyn Amos
(May 2011). “Parallelization Strategies for Ant Colony Optimisation on GPUs”.
In: Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),

2011 IEEE International Symposium on, pp. 339–346. DOI: 10.1109/IPDPS.
2011.170.

Cecilia, José M., José M. Garcı́a, Andy Nisbet, Martyn Amos, and Manuel Ujaldón
(2013). “Enhancing Data Parallelism for Ant Colony Optimization on GPUs”. In:
Journal of Parallel and Distributed Computing 73.1, pp. 42–51. ISSN: 07437315.
DOI: 10.1016/j.jpdc.2012.01.002.

Cecilia, José M., Andy Nisbet, Martyn Amos, José M. Garcı́a, and Manuel Ujaldón
(2013). “Enhancing GPU Parallelism in Nature-inspired Algorithms”. In: The Jour-

nal of Supercomputing 63.3, pp. 773–789. ISSN: 0920-8542. DOI: 10.1007/
s11227-012-0770-1. URL: http://link.springer.com/10.1007/
s11227-012-0770-1.

Chen, Ling and Chunfang Zhang (2005). “Adaptive Parallel Ant Colony Algorithm”.
In: International Conference on Natural Computation. Springer, pp. 1239–1249.

Cheng, TC Edwin and Bertrand MT Lin (2009). “Johnson’s rule, composite jobs and
the relocation problem”. In: European Journal of Operational Research 192.3,
pp. 1008–1013.

Chitty, Darren M (2017). “Applying ACO to Large Scale TSP Instances”. In: UK Work-

shop on Computational Intelligence. Springer, pp. 104–118.
Chrysos, George (2014). “Intel® Xeon Phi™ Coprocessor - the Architecture”. In: Intel

Whitepaper 176, p. 43.
Clark, Christopher, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-

tian Limpach, Ian Pratt, and Andrew Warfield (2005). “Live Migration of Virtual
Machines”. In: Proceedings of the 2nd Conference on Symposium on Networked

Systems Design & Implementation-Volume 2, pp. 273–286.
Colorni, Alberto, Marco Dorigo, Vittorio Maniezzo, et al. (1991). “Distributed Opti-

mization by Ant Colonies”. In: Proceedings of the First European Conference on

Artificial Life. Vol. 142. Paris, France, pp. 134–142.
Colorni, Alberto, Marco Dorigo, Vittorio Maniezzo, and Marco Trubian (1994). “Ant

System for Job-shop Scheduling”. In: JORBEL-Belgian Journal of Operations Re-

search, Statistics, and Computer Science 34.1, pp. 39–53.

https://doi.org/10.1109/IPDPS.2011.170
https://doi.org/10.1109/IPDPS.2011.170
https://doi.org/10.1016/j.jpdc.2012.01.002
https://doi.org/10.1007/s11227-012-0770-1
https://doi.org/10.1007/s11227-012-0770-1
http://link.springer.com/10.1007/s11227-012-0770-1
http://link.springer.com/10.1007/s11227-012-0770-1

BIBLIOGRAPHY 123

Cordón Garcı́a, Oscar, Iñaki Fernández de Viana, and Francisco Herrera Triguero
(2002). “Analysis of the Best-Worst Ant System and its Variants on the TSP”. In:
Mathware & Soft Computing. 2002 Vol. 9 Núm. 2 [-3].

Cover, Thomas and Peter Hart (1967). “Nearest Neighbor Pattern Classification”. In:
IEEE Transactions on Information Theory 13.1, pp. 21–27.

Cunningham, Padraig and Sarah Jane Delany (2020). “K-Nearest Neighbour Classi-
fiers”. In: arXiv preprint arXiv:2004.04523.

Dawson, Laurence (2015). “Generic Techniques in General Purpose GPU Program-
ming with Applications to Ant Colony and Image Processing Algorithms”. PhD
thesis. Durham University, UK.

Dawson, Laurence and Iain Stewart (2013a). “Candidate Set Parallelization Strategies
for Ant Colony Optimization on the GPU”. In: International Conference on Algo-

rithms and Architectures for Parallel Processing. Springer, pp. 216–225.
— (2013b). “Improving Ant Colony Optimization Performance on the GPU using

CUDA”. In: Evolutionary Computation (CEC), 2013 IEEE Congress on. IEEE,
pp. 1901–1908.

Dawson, Laurence and Iain A Stewart (June 2013c). “Improving Ant Colony Opti-
mization performance on the GPU using CUDA”. In: 2013 IEEE Congress on Evo-

lutionary Computation, pp. 1901–1908. DOI: 10.1109/CEC.2013.6557791.
Dı́az, Diego, Pablo Valledor, Borja Ena, Miguel Iglesias, and César Menéndez

Fernández (Sept. 2020). “Improved Method for Parallelization of Evolutionary
Metaheuristics”. In: Mathematics 8, p. 1476. DOI: 10.3390/math8091476.

Doerner, Karl F, Richard F Hartl, Siegfried Benkner, and Maria Lucka (2006). “Par-
allel Cooperative Savings Based Ant Colony Optimization—Multiple Search and
Decomposition Approaches”. In: Parallel Processing Letters 16.03, pp. 351–369.

Donelli, Massimo, Renzo Azaro, Francesco GB De Natale, and Andrea Massa (2006).
“An Innovative Computational Approach Based on a Particle Swarm Strategy for
Adaptive Phased-arrays Control”. In: IEEE Transactions on Antennas and Propa-

gation 54.3, pp. 888–898.
Dorigo, Marco and Mauro Birattari (2011). “Ant Colony Optimization”. In: Encyclo-

pedia of Machine Learning. Springer, pp. 36–39.
Dorigo, Marco, Mauro Birattari, and Thomas Stutzle (2006). “Ant Colony Optimiza-

tion”. In: IEEE Computational Intelligence Magazine 1.4, pp. 28–39.

https://doi.org/10.1109/CEC.2013.6557791
https://doi.org/10.3390/math8091476

BIBLIOGRAPHY 124

Dorigo, Marco and Gianna Di Caro (1999). “Ant Colony Optimization: a New Meta-
heuristic”. In: Proceedings of the 1999 Congress on Evolutionary Computation.
Vol. 2.

Dorigo, Marco and Luca Maria Gambardella (1997a). “Ant Colonies for the Travelling
Salesman Problem”. In: BioSystems 43.2, pp. 73–81.

— (1997b). “Ant Colony System: a cooperative learning approach to the Traveling
Salesman Problem”. In: Evolutionary Computation, IEEE Transactions on 1.1,
pp. 53–66.

Dorigo, Marco, Vittorio Maniezzo, and Alberto Colorni (1991). “The Ant System: An
Autocatalytic Optimizing Process”. In.

— (1996). “Ant System: Optimization by a Colony of Cooperating Agents”. In: IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 26.1, pp. 29–
41.

Dorigo, Marco and Thomas Stützle (2004). Ant Colony Optimization. Scituate, MA,
USA: Bradford Company.

Du, Lingling and Ruhan He (2012). “Combining Nearest Neighbor Search with
Tabu Search for Large-scale Vehicle Routing Problem”. In: Physics Procedia 25,
pp. 1536–1546.

Eberhart, Russell C and Yuhui Shi (2001). “Tracking and Optimizing Dynamic Sys-
tems with Particle Swarms”. In: Proceedings of the 2001 Congress on Evolutionary

Computation (IEEE Cat. No. 01TH8546). Vol. 1. IEEE, pp. 94–100.
Elsheikh, AH and M Abd Elaziz (2019). “Review on Applications of Particle Swarm

Optimization in Solar Energy Systems”. In: International Journal of Environmental

Science and Technology 16.2, pp. 1159–1170.
Farmer, J Doyne, Norman H Packard, and Alan S Perelson (1986). “The Immune Sys-

tem, Adaptation, and Machine Learning”. In: Physica D: Nonlinear Phenomena

22.1-3, pp. 187–204.
Feller, Eugen, Louis Rilling, and Christine Morin (2011). “Energy-aware Ant Colony

Based Workload Placement in Clouds”. In: 2011 IEEE/ACM 12th International

Conference on Grid Computing. IEEE, pp. 26–33.
Fernández-Cerero, Damián, Alejandro Fernández-Montes, and Agnieszka Jakóbik

(2020). “Limiting Global Warming by Improving Data-centre Software”. In: IEEE

Access 8, pp. 44048–44062.
Fogel, Lawrence J, Aalvin J. Owens, and Michael John Walsh (1966). Artificial Intel-

ligence through Simulated Evolution.

BIBLIOGRAPHY 125

Friedberg, Richard M (1958). “A Learning Machine: Part I”. In: IBM Journal of Re-

search and Development 2.1, pp. 2–13.
Friesen, Donald and Michael Langston (Feb. 1986). “Variable Sized Bin Packing”. In:

SIAM Journal on Computing 15, pp. 222–230. DOI: 10.1137/0215016.
Fu, Jie, Lin Lei, and Guohua Zhou (2010). “A Parallel Ant Colony Optimization

algorithm with GPU-acceleration based on All-In-Roulette selection”. In: Ad-

vanced Computational Intelligence (IWACI), 2010 Third International Workshop

on, pp. 260–264.
Al-Fuqaha, A., M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash (2015).

“Internet of Things: A Survey on Enabling Technologies, Protocols, and Applica-
tions”. In: IEEE Communications Surveys Tutorials 17.4, pp. 2347–2376.

Gambardella, Luca M and Marco Dorigo (1995). “Ant-Q: A Reinforcement Learning
Approach to the Traveling Salesman Problem”. In: Machine Learning Proceedings

1995. Elsevier, pp. 252–260.
Gambardella, Luca Maria, Éric Taillard, and Giovanni Agazzi (1999). “MACS-

VRPTW: A Multiple Colony System for Vehicle Routing Problems with Time
Windows”. In: New Ideas in Optimization. Citeseer.

Gao, Yongqiang, Haibing Guan, Zhengwei Qi, Yang Hou, and Liang Liu (2013). “A
Multi-objective Ant Colony System Algorithm for Virtual Machine Placement in
Cloud Computing”. In: Journal of computer and system sciences 79.8, pp. 1230–
1242.

Ghosh, Manosij, Ritam Guha, Ram Sarkar, and Ajith Abraham (2019). “A Wrapper-
filter Feature Selection Technique Based on Ant Colony Optimization”. In: Neural

Computing and Applications, pp. 1–19.
Goldberg, David E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning. 1st. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.
ISBN: 0201157675.

Grassé, Pierre-Paul (1986). Termitologia. Anatomie, physiologie, biologie-

systematique des termites. Tome III: Comportement, socialite, ecologie, evolution,

systematique.
Guerrero-ibanez, J. A., S. Zeadally, and J. Contreras-Castillo (2015). “Integration

Challenges of Intelligent Transportation Systems with Connected Vehicle, Cloud
Computing, and Internet of Things Technologies”. In: IEEE Wireless Communica-

tions 22.6, pp. 122–128.

https://doi.org/10.1137/0215016

BIBLIOGRAPHY 126

Guntsch, Michael and Martin Middendorf (2002). “A Population Based Approach
for ACO”. In: Workshops on Applications of Evolutionary Computation. Springer,
pp. 72–81.

Hajihassani, M, D Jahed Armaghani, and R Kalatehjari (2018). “Applications of Parti-
cle Swarm Optimization in Geotechnical Engineering: a Comprehensive Review”.
In: Geotechnical and Geological Engineering 36.2, pp. 705–722.

Hayes, Brian (2008). Cloud Computing.
Helms, Michael, Swaroop S Vattam, and Ashok K Goel (2009). “Biologically Inspired

Design: Process and Products”. In: Design studies 30.5, pp. 606–622.
Helsgaun, Keld (2000). “An effective implementation of the Lin–Kernighan traveling

salesman heuristic”. In: European journal of operational research 126.1, pp. 106–
130.

Hendtlass, Tim (2001). “A Combined Swarm Differential Evolution Algorithm for
Optimization Problems”. In: International Conference on Industrial, Engineering

and Other Applications of Applied Intelligent Systems. Springer, pp. 11–18.
Holland, John H (1975). “Adaptation in Natural and Artificial Systems. An Introduc-

tory Analysis with Applications to Biology, Control and Artificial Intelligence”. In:
anas.

Honda, Kazuma, Yuichi Nagata, and Isao Ono (2013). “A Parallel Genetic Algorithm
with Edge Assembly Crossover for 100,000-City Scale TSPs”. In: Evolutionary

Computation (CEC), 2013 IEEE Congress on. IEEE, pp. 1278–1285.
Jiening, Wang, Dong Jiankang, and Zhang Chunfeng (Aug. 2009). “Implementation

of Ant Colony Algorithm Based on GPU”. In: 2009 Sixth International Confer-

ence on Computer Graphics, Imaging and Visualization. IEEE, pp. 50–53. ISBN:
978-0-7695-3789-4. DOI: 10 . 1109 / CGIV . 2009 . 20. URL: http : / /
ieeexplore.ieee.org/document/5298367/.

Johnson, David S and Lyle A McGeoch (1997). “The Traveling Salesman Problem: A
Case Study in Local Optimization”. In: Local Search in Combinatorial Optimiza-

tion 1.1, pp. 215–310.
Jr, EG Co man, MR Garey, and DS Johnson (1996). “Approximation Algorithms for

Bin Packing: A Survey”. In: Approximation Algorithms for NP-hard Problems,
pp. 46–93.

Karaboga, D. (2005). An Idea Based on Honey Bee Swarm for Numerical Optimization.
Tech. rep.

https://doi.org/10.1109/CGIV.2009.20
http://ieeexplore.ieee.org/document/5298367/
http://ieeexplore.ieee.org/document/5298367/

BIBLIOGRAPHY 127

Karaboga, Dervis and Bahriye Akay (2007). “Artificial Bee Colony (ABC) Algorithm
on Training Artificial Neural Networks”. In: 2007 IEEE 15th Signal Processing

and Communications Applications. IEEE, pp. 1–4.
Karaboga, Dervis, Bahriye Akay, and Celal Ozturk (2007). “Artificial Bee Colony

(ABC) Optimization Algorithm for Training Feed-forward Neural Networks”.
In: International Conference on Modeling Decisions for Artificial Intelligence.
Springer, pp. 318–329.

Karaboga, Dervis and Beyza Gorkemli (2011). “A Combinatorial Artificial Bee
Colony Algorithm for Traveling Salesman Problem”. In: 2011 International Sym-

posium on Innovations in Intelligent Systems and Applications. IEEE, pp. 50–53.
Karaboga, Dervis and Celal Ozturk (2009). “Neural Networks Training by Artificial

Bee Colony Algorithm on Pattern Classification”. In: Neural Network World 19.3,
p. 279.

Kennedy, J. and R. Eberhart (1995). “Particle Swarm Optimization”. In: Proceedings

of ICNN’95 - International Conference on Neural Networks. Vol. 4, 1942–1948
vol.4.

Kennedy, James and Russell C Eberhart (1997). “A Discrete Binary Version of the
Particle Swarm Algorithm”. In: 1997 IEEE International Conference on Systems,

Man, and Cybernetics. Computational Cybernetics and Simulation. Vol. 5. IEEE,
pp. 4104–4108.

Khodier, Majid M and Christos G Christodoulou (2005). “Linear Array Geometry Syn-
thesis with Minimum Sidelobe Level and Null Control Using Particle Swarm Op-
timization”. In: IEEE Transactions on Antennas and Propagation 53.8, pp. 2674–
2679.

Lawler, Eugene L (1985). “The Traveling Salesman Problem: A Guided Tour of Com-
binatorial Optimization”. In: Wiley-Interscience Series in Discrete Mathematics.

Leguizamon, Guillermo and Zbigniew Michalewicz (1999). “A New Version of Ant
System for Subset Problems”. In: Proceedings of the 1999 Congress on Evolution-

ary Computation-CEC99 (Cat. No. 99TH8406). Vol. 2. IEEE, pp. 1459–1464.
Li, Wei Hua, Wei Jia Li, Yuan Yang, Hai Qiang Liao, Ji Long Li, and Xi Peng Zheng

(2011). “Artificial Bee Colony Algorithm for Traveling Salesman Problem”. In:
Advanced Materials Research. Vol. 314. Trans Tech Publ, pp. 2191–2196.

BIBLIOGRAPHY 128

Li, Yingmin, David Brooks, Zhigang Hu, Kevin Skadron, and Pradip Bose (2004).
“Understanding the Energy Efficiency of Simultaneous Multithreading”. In: Pro-

ceedings of the 2004 International Symposium on Low Power Electronics and De-

sign, pp. 44–49.
Liu, Xiao-Fang, Zhi-Hui Zhan, Jeremiah D Deng, Yun Li, Tianlong Gu, and Jun Zhang

(2016). “An Energy Efficient Ant Colony System for Virtual Machine Placement
in Cloud Computing”. In: IEEE Transactions on Evolutionary Computation 22.1,
pp. 113–128.

Lloyd, Huw and Martyn Amos (2016). “A Highly Parallelized and Vectorized Im-
plementation of Max-Min Ant System on Intel® Xeon Phi™”. In: 2016 IEEE

Symposium Series on Computational Intelligence (SSCI). IEEE, pp. 1–6. ISBN:
978-1-5090-4240-1. DOI: 10.1109/SSCI.2016.7850085. URL: http:
//ieeexplore.ieee.org/document/7850085/.

— (2017). “Analysis of Independent Roulette Selection in Parallel Ant Colony Opti-
mization”. In: Proceedings of the Genetic and Evolutionary Computation Confer-

ence. GECCO ’17. Berlin, Germany: ACM, pp. 19–26. ISBN: 978-1-4503-4920-8.
DOI: 10.1145/3071178.3071308. URL: http://doi.acm.org/10.
1145/3071178.3071308.

— (2020). “Solving Sudoku With Ant Colony Optimization”. In: IEEE Transactions

on Games 12.3, pp. 302–311.
Lomont, Chris (2011). “Introduction to Intel Advanced Vector Extensions”. In: Intel

White Paper 23.
López-Ibáñez, Manuel, Thomas Stützle, and Marco Dorigo (2016). “Ant Colony Op-

timization: A Component-Wise Overview”. In: Handbook of Heuristics. Ed. by
Rafael Martı́, Pardalos Panos, and Mauricio G.C. Resende. Cham: Springer Inter-
national Publishing, pp. 1–37. ISBN: 978-3-319-07153-4. DOI: 10.1007/978-
3-319-07153-4_21-1. URL: https://doi.org/10.1007/978-3-
319-07153-4_21-1.

Manfrin, Max, Mauro Birattari, Thomas Stützle, and Marco Dorigo (2006). “Parallel
Ant Colony Optimization for the Traveling Salesman Problem”. In: International

Workshop on Ant Colony Optimization and Swarm Intelligence. Springer, pp. 224–
234.

Maniezzo, V, L Muzio, A Colorni, and M Dorigo (1994). Il Sistema Formiche Appli-

cato al Problema Dell’assegnamento Quadratico. Tech. rep. Technical Report.

https://doi.org/10.1109/SSCI.2016.7850085
http://ieeexplore.ieee.org/document/7850085/
http://ieeexplore.ieee.org/document/7850085/
https://doi.org/10.1145/3071178.3071308
http://doi.acm.org/10.1145/3071178.3071308
http://doi.acm.org/10.1145/3071178.3071308
https://doi.org/10.1007/978-3-319-07153-4_21-1
https://doi.org/10.1007/978-3-319-07153-4_21-1
https://doi.org/10.1007/978-3-319-07153-4_21-1
https://doi.org/10.1007/978-3-319-07153-4_21-1

BIBLIOGRAPHY 129

Maniezzo, Vittorio and Alberto Colorni (1999). “The Ant System Applied to the
Quadratic Assignment Problem”. In: IEEE Transactions on knowledge and data

engineering 11.5, pp. 769–778.
Manne, Alan S (1960). “On the job-shop scheduling problem”. In: Operations research

8.2, pp. 219–223.
Martı́nez, Pablo A and José M Garcı́a (2021). “ACOTSP-MF: A Memory-friendly and

Highly Scalable ACOTSP Approach”. In: Engineering Applications of Artificial

Intelligence 99, p. 104131.
Masoumzadeh, Seyed Saeid and Helmut Hlavacs (2013). “Integrating VM Selection

Criteria in Distributed Dynamic VM consolidation using Fuzzy Q-Learning”. In:
Proceedings of the 9th International Conference on Network and Service Manage-

ment (CNSM 2013). IEEE, pp. 332–338.
Mavrovouniotis, Michalis, Charalambos Menelaou, Stelios Timotheou, Georgios Elli-

nas, Christos Panayiotou, and Marios Polycarpou (July 2020). “A Benchmark Test
Suite for the Electric Capacitated Vehicle Routing Problem”. In: DOI: 10.1109/
CEC48606.2020.9185753.

Mavrovouniotis, Michalis, Felipe M. Müller, and Shengxiang Yang (2017). “Ant
Colony Optimization With Local Search for Dynamic Traveling Salesman Prob-
lems”. In: IEEE Transactions on Cybernetics 47.7, pp. 1743–1756. ISSN: 2168-
2267. DOI: 10.1109/TCYB.2016.2556742.

Merkle, Daniel, Martin Middendorf, and Hartmut Schmeck (2002). “Ant Colony Opti-
mization for Resource-constrained Project Scheduling”. In: IEEE Transactions on

Evolutionary Computation 6.4, pp. 333–346. ISSN: 1089-778X. DOI: 10.1109/
TEVC.2002.802450.

Mi, Haibo, Huaimin Wang, Gang Yin, Yangfan Zhou, Dianxi Shi, and Lin Yuan
(2010). “Online Self-reconfiguration with Performance Guarantee for Energy-
efficient Large-scale Cloud Computing Data Centers”. In: 2010 IEEE International

Conference on Services Computing. IEEE, pp. 514–521.
Middendorf, Martin, Frank Reischle, and Hartmut Schmeck (2002). “Multi Colony

Ant Algorithms”. In: Journal of Heuristics 8, pp. 305–320. URL: https://
link.springer.com/content/pdf/10.1023%7B%5C%%7D2FA%7B%

5C%%7D3A1015057701750.pdf.
Mirjalili, Seyedali (2016). “SCA: A Sine Cosine Algorithm for Solving Optimiza-

tion Problems”. In: Knowledge-Based Systems 96, pp. 120–133. ISSN: 0950-7051.
DOI: https : / / doi . org / 10 . 1016 / j . knosys . 2015 . 12 . 022.

https://doi.org/10.1109/CEC48606.2020.9185753
https://doi.org/10.1109/CEC48606.2020.9185753
https://doi.org/10.1109/TCYB.2016.2556742
https://doi.org/10.1109/TEVC.2002.802450
https://doi.org/10.1109/TEVC.2002.802450
https://link.springer.com/content/pdf/10.1023%7B%5C%%7D2FA%7B%5C%%7D3A1015057701750.pdf
https://link.springer.com/content/pdf/10.1023%7B%5C%%7D2FA%7B%5C%%7D3A1015057701750.pdf
https://link.springer.com/content/pdf/10.1023%7B%5C%%7D2FA%7B%5C%%7D3A1015057701750.pdf
https://doi.org/https://doi.org/10.1016/j.knosys.2015.12.022

BIBLIOGRAPHY 130

URL: http://www.sciencedirect.com/science/article/pii/
S0950705115005043.

Mirjalili, Seyedali, Seyed Mohammad Mirjalili, and Andrew Lewis (2014). “Grey
Wolf Optimizer”. In: Advances in Engineering Software 69, pp. 46–61. ISSN: 0965-
9978. DOI: https://doi.org/10.1016/j.advengsoft.2013.12.
007. URL: http://www.sciencedirect.com/science/article/
pii/S0965997813001853.

Moscato, Pablo et al. (1989). “On Evolution, Search, Optimization, Genetic Algo-
rithms and Martial Arts: Towards Memetic Algorithms”. In: Caltech Concurrent

Computation Program, C3P Report 826, p. 1989.
Muja, Marius and David G Lowe (2014). “Scalable Nearest Neighbor Algorithms for

High Dimensional Data”. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence 36.11, pp. 2227–2240.
Oliveira, Iona Maghali S de, Roberto Schirru, and Jose ACC Medeiros (2009). On the

Performance of an Artificial Bee Colony Optimization Algorithm Applied to the

Accident Ciagnosis in a PWR Nuclear Power Plant.
Peake, Joshua, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd (2018). “Vector-

ized Candidate Set Selection for Parallel Ant Colony Optimization”. In: Proceed-

ings of the Genetic and Evolutionary Computation Conference Companion. ACM,
pp. 1300–1306.

— (2019). “Scaling Techniques for Parallel Ant Colony Optimization on Large Prob-
lem Instances”. In: Proceedings of the Genetic and Evolutionary Computation

Conference, pp. 47–54.
Peake, Joshua, Nicholas Costen, Giovanni Masala, Martyn Amos, and Huw Lloyd

(2021). PACO-VMP: Parallel Ant Colony Optimization for Virtual Machine Place-

ment.
Randall, Marcus and Andrew Lewis (2002). “A Parallel Implementation of Ant Colony

Optimization”. In: Journal of Parallel and Distributed Computing 62.9, pp. 1421–
1432.

Randall, Marcus and James Montgomery (2002). “Candidate Set Strategies for Ant
Colony Optimisation”. In: International Workshop on Ant Algorithms. Springer,
pp. 243–249.

Reinelt, Gerhard (1991). “TSPLIB - A Traveling Salesman Problem library”. In: ORSA

Journal on Computing 3.4, pp. 376–384. DOI: 10.1287/ijoc.3.4.376.

http://www.sciencedirect.com/science/article/pii/S0950705115005043
http://www.sciencedirect.com/science/article/pii/S0950705115005043
https://doi.org/https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/https://doi.org/10.1016/j.advengsoft.2013.12.007
http://www.sciencedirect.com/science/article/pii/S0965997813001853
http://www.sciencedirect.com/science/article/pii/S0965997813001853
https://doi.org/10.1287/ijoc.3.4.376

BIBLIOGRAPHY 131

Reynolds, Robert G (1994). “An Introduction To Cultural Algorithms”. In: Proceed-

ings of the Third Annual Conference on Evolutionary Programming. World Scien-
tific, pp. 131–139.

Robinson, Jacob, Seelig Sinton, and Yahya Rahmat-Samii (2002). “Particle Swarm,
Genetic Algorithm, and Their Hybrids: Optimization of a Profiled Corrugated Horn
Antenna”. In: IEEE Antennas and Propagation Society International Symposium

(IEEE Cat. No. 02CH37313). Vol. 1. IEEE, pp. 314–317.
Sato, Mikiko, Shigeyoshi Tsutsui, Noriyuki Fujimoto, Yuji Sato, and Mitaro Namiki

(2014). “First Results of Performance Comparisons on Many-Core Processors in
Solving QAP with ACO: Kepler GPU Versus Xeon Phi”. In: Proceedings of the

Companion Publication of the 2014 Annual Conference on Genetic and Evolution-

ary Computation. ACM, pp. 1477–1478.
Satyanarayanan, M. (2017). “The Emergence of Edge Computing”. In: Computer 50.1,

pp. 30–39.
Selvan, S Easter, C Cecil Xavier, Nico Karssemeijer, Jean Sequeira, Rekha A Cherian,

and Bharathi Y Dhala (2006). “Parameter Estimation in Stochastic Mammogram
Model by Heuristic Optimization Techniques”. In: IEEE Transactions on Informa-

tion Technology in Biomedicine 10.4, pp. 685–695.
Shchur, Lev N and Paolo Butera (1998). “The RANLUX Generator: Resonances in a

Random Walk Test”. In: International Journal of Modern Physics C 9.04, pp. 607–
624.

Shi, Xiaohu, Yanwen Li, Haijun Li, Renchu Guan, Liupu Wang, and Yanchun Liang
(2010). “An Integrated Algorithm Based on Artificial Bee Colony and Particle
Swarm Optimization”. In: 2010 Sixth International Conference on Natural Com-

putation. Vol. 5. IEEE, pp. 2586–2590.
Shi, Yuhui and Russell C. Eberhart (1998). “Parameter Selection in Particle Swarm

Optimization”. In: Evolutionary Programming VII. Ed. by V. W. Porto, N. Sara-
vanan, D. Waagen, and A. E. Eiben. Berlin, Heidelberg: Springer Berlin Heidel-
berg, pp. 591–600. ISBN: 978-3-540-68515-9.

Shmygelska, Alena and Holger H Hoos (2005). “An Ant Colony Optimisation Algo-
rithm for the 2D and 3D Hydrophobic Polar Protein Folding Problem”. In: BMC

Bioinformatics 6.1, p. 30.
Skinderowicz, Rafał (2012). “Ant Colony System with Selective Pheromone Memory

for TSP”. In: International Conference on Computational Collective Intelligence.
Springer, pp. 483–492.

BIBLIOGRAPHY 132

Skinderowicz, Rafał (2016). “The GPU-based parallel Ant Colony System”. In: Jour-

nal of Parallel and Distributed Computing 98.Supplement C, pp. 48–60. ISSN:
0743-7315. DOI: https://doi.org/10.1016/j.jpdc.2016.04.014.
URL: http://www.sciencedirect.com/science/article/pii/
S0743731516300284.

Sodani, Avinash, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod, Sun-
daram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu (2016).
“Knights Landing: Second-generation Intel Xeon Phi Product”. In: IEEE Micro

36.2, pp. 34–46.
Star Tours (n.d.). http://www.math.uwaterloo.ca/tsp/star/. Accessed:

2021-10-22.
Stillwell, Mark, David Schanzenbach, Frédéric Vivien, and Henri Casanova (2010).

“Resource allocation algorithms for virtualized service hosting platforms”. In:
Journal of Parallel and distributed Computing 70.9, pp. 962–974.

Stützle, Thomas (1998). “Parallelization Strategies for Ant Colony Optimization”.
In: International Conference on Parallel Problem Solving from Nature. Springer,
pp. 722–731.

— (2004). ACOTSP. Available from http://www.aco-metaheuristic.org/aco-code,
2004.

Stützle, Thomas and Marco Dorigo (1999). “ACO Algorithms for the Traveling Sales-
man Problem”. In: Evolutionary Algorithms in Engineering and Computer Science

4, pp. 163–183.
Stützle, Thomas and Holger H Hoos (2000). “MAX-MIN Ant System”. In: Future

Generation Computer Systems 16.8, pp. 889–914.
Szeto, Wai Yuen, Yongzhong Wu, and Sin C Ho (2011). “An Artificial Bee Colony

Algorithm for the Capacitated Vehicle Routing Problem”. In: European Journal of

Operational Research 215.1, pp. 126–135.
Taillard, Éric D. and Keld Helsgaun (2019). “POPMUSIC for the travelling sales-

man problem”. In: European Journal of Operational Research 272.2, pp. 420–429.
ISSN: 0377-2217. DOI: https://doi.org/10.1016/j.ejor.2018.06.
039. URL: https://www.sciencedirect.com/science/article/
pii/S0377221718305745.

Tao, Fei, Chen Li, T Warren Liao, and Yuanjun Laili (2015). “BGM-BLA: a New
Algorithm for Dynamic Migration of Virtual Machines in Cloud Computing”. In:
IEEE Transactions on Services Computing 9.6, pp. 910–925.

https://doi.org/https://doi.org/10.1016/j.jpdc.2016.04.014
http://www.sciencedirect.com/science/article/pii/S0743731516300284
http://www.sciencedirect.com/science/article/pii/S0743731516300284
http://www.math.uwaterloo.ca/tsp/star/
https://doi.org/https://doi.org/10.1016/j.ejor.2018.06.039
https://doi.org/https://doi.org/10.1016/j.ejor.2018.06.039
https://www.sciencedirect.com/science/article/pii/S0377221718305745
https://www.sciencedirect.com/science/article/pii/S0377221718305745

BIBLIOGRAPHY 133

Tereshko, Valery and Andreas Loengarov (2005). “Collective decision making in
honey-bee foraging dynamics”. In: Computing and Information Systems 9.3, p. 1.

Teukolsky, Saul A, Brian P Flannery, William H Press, and William T Vetterling
(1992). Numerical Recipes in C.

Thimbleby, Harold (2003). “The directed chinese postman problem”. In: Software:

Practice and Experience 33.11, pp. 1081–1096.
Thomson, WE (1958). “A Modified Congruence Method of Generating Pseudo-

random Numbers”. In: The Computer Journal 1.2, pp. 83–83.
Tian, Xinmin, Hideki Saito, Serguei V. Preis, Eric N. Garcia, Sergey S. Kozhukhov,

Matt Masten, Aleksei G. Cherkasov, and Nikolay Panchenko (2013). “Practical
SIMD Vectorization Techniques for Intel® Xeon Phi Coprocessors”. In: 2013

IEEE International Symposium on Parallel & Distributed Processing, Workshops

and Phd Forum. IEEE, pp. 1149–1158. ISBN: 978-0-7695-4979-8. DOI: 10 .
1109/IPDPSW.2013.245. URL: http://ieeexplore.ieee.org/
document/6651001/.

Tirado, Felipe, Ricardo J. Barrientos, Paulo González, and Marco Mora (2017). “Ef-
ficient Exploitation of the Xeon Phi Architecture for the Ant Colony Optimiza-
tion (ACO) Metaheuristic”. In: The Journal of Supercomputing 73.11, pp. 5053–
5070. ISSN: 0920-8542. DOI: 10.1007/s11227-017-2124-5. URL: http:
//link.springer.com/10.1007/s11227-017-2124-5.

Tirado, Felipe, Angelica Urrutia, and Ricardo J. Barrientos (Nov. 2015). “Using a Co-
processor to Solve the Ant Colony Optimization Algorithm”. In: 2015 34th Inter-

national Conference of the Chilean Computer Science Society (SCCC), pp. 1–6.
DOI: 10.1109/SCCC.2015.7416584.

Toth, Paolo and Daniele Vigo (2002). The vehicle routing problem. SIAM.
TSP Art Instances (n.d.). http://www.math.uwaterloo.ca/tsp/data/

art/. Accessed: 2019-01-30.
Turing, AM (1950). “Computing Machinery and Intelligence”. In: Mind 59, pp. 433–

460.
Twomey, Colin, Thomas Stützle, Marco Dorigo, Max Manfrin, and Mauro Birattari

(2010). “An Analysis of Communication Policies for Homogeneous Multi-colony
ACO algorithms”. In: Information Sciences 180.12, pp. 2390–2404.

Ullman, Jeffrey D. (1971). “The performance of a memory allocation algorithm”. In.

https://doi.org/10.1109/IPDPSW.2013.245
https://doi.org/10.1109/IPDPSW.2013.245
http://ieeexplore.ieee.org/document/6651001/
http://ieeexplore.ieee.org/document/6651001/
https://doi.org/10.1007/s11227-017-2124-5
http://link.springer.com/10.1007/s11227-017-2124-5
http://link.springer.com/10.1007/s11227-017-2124-5
https://doi.org/10.1109/SCCC.2015.7416584
http://www.math.uwaterloo.ca/tsp/data/art/
http://www.math.uwaterloo.ca/tsp/data/art/

BIBLIOGRAPHY 134

Uthayakumar, J, Noura Metawa, K Shankar, and SK Lakshmanaprabu (2020). “Fi-
nancial Crisis Prediction Model using Ant Colony Optimization”. In: International

Journal of Information Management 50, pp. 538–556.
Wang, Jiquan, Okan K Ersoy, Mengying He, and Fulin Wang (2016). “Multi-offspring

genetic algorithm and its application to the traveling salesman problem”. In: Ap-

plied Soft Computing 43, pp. 415–423.
Wang, Kang-Ping, Lan Huang, Chun-Guang Zhou, and Wei Pang (2003). “Particle

Swarm Optimization for Traveling Salesman Problem”. In: Proceedings of the

2003 International Conference on Machine Learning and Cybernetics (IEEE cat.

no. 03ex693). Vol. 3. IEEE, pp. 1583–1585.
Wang, Shangguang, Zhipiao Liu, Zibin Zheng, Qibo Sun, and Fangchun Yang (2013).

“Particle Swarm Optimization for Energy-aware Virtual Machine Placement Opti-
mization in Virtualized Data Centers”. In: 2013 International Conference on Par-

allel and Distributed Systems. IEEE, pp. 102–109.
Watkins, Christopher JCH and Peter Dayan (1992). “Q-Learning”. In: Machine Learn-

ing 8.3-4, pp. 279–292.
Wilcox, David, Andrew McNabb, and Kevin Seppi (2011). “Solving Virtual Machine

Packing with a Reordering Grouping Genetic Algorithm”. In: 2011 IEEE Congress

of Evolutionary Computation (CEC). IEEE, pp. 362–369.
Wilson, Edward O. (1962). “Chemical Communication Among Workers of the Fire

Ant Solenopsis Saevissima (Fr. Smith) 1. The Organization of Mass-Foraging”.
In: Animal Behaviour 10.1, pp. 134–147. ISSN: 0003-3472. DOI: https : / /
doi.org/10.1016/0003-3472(62)90141-0. URL: http://www.
sciencedirect.com/science/article/pii/0003347262901410.

World TSP (n.d.). https://www.math.uwaterloo.ca/tsp/world/. Ac-
cessed: 2021-10-22.

Yao, B, C Yang, J Hu, and B Yu (2010). “The Optimization of Urban Subway Routes
Based on Artificial Bee Colony Algorithm”. In: Key Technologies of Railway Engi-

neering—High Speed Railway, Heavy Haul Railway and Urban Rail Transit. Bei-

jing Jiaotong University, Beijing, pp. 747–751.
You, Ying-Shiuan (2009). “Parallel Ant System for Traveling Salesman Problem on

GPUs”. In: Eleventh Annual Conference on Genetic and Evolutionary Computa-

tion. sn, pp. 1–2.
Zanella, A., N. Bui, A. Castellani, L. Vangelista, and M. Zorzi (2014). “Internet of

Things for Smart Cities”. In: IEEE Internet of Things Journal 1.1, pp. 22–32.

https://doi.org/https://doi.org/10.1016/0003-3472(62)90141-0
https://doi.org/https://doi.org/10.1016/0003-3472(62)90141-0
http://www.sciencedirect.com/science/article/pii/0003347262901410
http://www.sciencedirect.com/science/article/pii/0003347262901410
https://www.math.uwaterloo.ca/tsp/world/

BIBLIOGRAPHY 135

Zhang, Hong, Hoang Nguyen, Xuan-Nam Bui, Trung Nguyen-Thoi, Thu-Thuy Bui,
Nga Nguyen, Diep-Anh Vu, Vinyas Mahesh, and Hossein Moayedi (2020). “Devel-
oping a Novel Artificial Intelligence Model to Estimate the Capital Cost of Mining
Projects using Deep Neural Network-based Ant Colony Optimization Algorithm”.
In: Resources Policy 66, p. 101604.

Zhao, Fuqing, Qiuyu Zhang, Dongmei Yu, Xuhui Chen, and Yahong Yang (2005). “A
Hybrid Algorithm Based on PSO and Simulated Annealing and its Applications for
Partner Selection in Virtual Enterprise”. In: International Conference on Intelligent

Computing. Springer, pp. 380–389.

Appendix A

Vector Class

A.1 Vector.h

1 #pragma once

2

3 #ifndef _VECTOR_INC_

4 #define _VECTOR_INC_

5 #include <immintrin.h>

6 #include <cstdio>

7 #include "platform.h"

8 #include <iostream>

9

10

11 class Vector

12 {

13

14 /*

15 The specific types of fields of the Vector class change depending

on the

16 AVX instructions being used, but Vectors have three possible uses:

storing

17 floats, storing integers, or storing a mask. Each Vector,

regardless of

18 it’s intended purpose, contains all three of the following:

19

20 A float array/vector (values/AVXVec)

21 An integer array/vector (iValues/AVXIntVec)

22 A mask value. The SISD Vector stores masks as an iValues array,

23 AVX512 uses the exclusive mmask16 type, and AVX2 uses an integer.

136

APPENDIX A. VECTOR CLASS 137

24 */

25 public:

26 #ifdef SISD //fields used for the non-AVX vector implementation

27 float AVXVec[8];

28 int AVXIntVec[8];

29 int vectorSize = 8;

30 #elif defined AVX512 //fields used for AVX512 compatible hardware

31 __m512 AVXVec;

32 __m512i AVXIntVec;

33 __mmask16 maskVec;

34 #elif defined AVX2 //fields used for AVX2 compatible hardware

35 __m256 AVXVec;

36 __m256i AVXIntVec;

37 int mask;

38 #endif

39 /*

40 The + function for Vectors, adding the values of two Vector

41 objects together lane-by-lane

42

43 @param v | The Vector that will be added to the Vector that called

the method

44 @return | Returns a vector containing the results of adding the

vectors

45 */

46 Vector operator+(const Vector& v) const

47 {

48 Vector vector;

49 #ifdef SISD

50 for (int i = 0; i < vectorSize; i++)

51 {

52 vector.AVXVec[i] = this->AVXVec[i] + v.AVXVec[i];

53 }

54 return vector;

55 #elif defined AVX512

56 vector.AVXVec = _mm512_add_ps(this->AVXVec, v.AVXVec);

57 return vector;

58 #elif (defined AVX || defined AVX2)

59 vector.AVXVec = _mm256_add_ps(this->AVXVec, v.AVXVec);

60 return vector;

61 #endif

62 }

63

APPENDIX A. VECTOR CLASS 138

64 /*

65 The - function for Vectors, subtracting the values of the

parameter Vector

66 from the values of the calling Vector lane-by-lane

67

68 @param v | The Vector that will be subtracted from the Vector that

called the method

69 @return | Returns a vector containing the results of subtracting

the vectors

70 */

71 Vector operator-(const Vector& v) const

72 {

73 Vector vector;

74 #ifdef SISD

75 for (int i = 0; i < vectorSize; i++)

76 {

77 vector.AVXVec[i] = (this->AVXVec[i] - v.AVXVec[i]);

78 }

79 return vector;

80 #elif defined AVX512

81 vector.AVXVec = _mm512_sub_ps(this->AVXVec, v.AVXVec);

82 #elif (defined AVX || defined AVX2)

83 vector.AVXVec = _mm256_sub_ps(this->AVXVec, v.AVXVec);

84 return vector;

85 #endif

86 }

87

88 /*

89 The * function for Vectors, multiplying the values of two Vector

90 objects together lane-by-lane

91

92 @param v | The Vector that will be multiplied by the Vector that

called the method

93 @return | Returns a vector containing the results of multiplying

the vectors

94 */

95 Vector operator*(const Vector& v) const

96 {

97 Vector vector;

98 #ifdef SISD

99 for (int i = 0; i < vectorSize; i++)

100 {

APPENDIX A. VECTOR CLASS 139

101 vector.AVXVec[i] = (this->AVXVec[i] * v.AVXVec[i]);

102 }

103 return vector;

104 #elif defined AVX512

105 vector.AVXVec = _mm512_mul_ps(this->AVXVec, v.AVXVec);

106 return vector;

107 #elif (defined AVX || defined AVX2)

108 vector.AVXVec = _mm256_mul_ps(this->AVXVec, v.AVXVec);

109 return vector;

110 #endif

111 }

112

113 Vector operator*(const int v) const

114 {

115 Vector vector;

116 Vector intVec;

117 intVec.set1(v);

118 #ifdef SISD

119 for (int i = 0; i < vectorSize; i++)

120 {

121 vector.AVXVec[i] = (this->AVXVec[i] * intVec.AVXVec[i]);

122 }

123 return vector;

124 #elif defined AVX512

125 vector.AVXVec = _mm512_mul_ps(this->AVXVec, intVec.AVXVec);

126 return vector;

127 #elif (defined AVX || defined AVX2)

128 vector.AVXVec = _mm256_mul_ps(this->AVXVec, intVec.AVXVec);

129 return vector;

130 #endif

131 }

132

133 Vector operator/(const Vector& v) const

134 {

135 Vector vector;

136 #ifdef SISD

137 for (int i = 0; i < vectorSize; i++)

138 {

139 vector.AVXVec[i] = (this->AVXVec[i] / v.AVXVec[i]);

140 }

141 return vector;

142 #elif defined AVX512

APPENDIX A. VECTOR CLASS 140

143 vector.AVXVec = _mm512_div_ps(this->AVXVec, v.AVXVec);

144 return vector;

145 #elif (defined AVX || defined AVX2)

146 vector.AVXVec = _mm256_div_ps(this->AVXVec, v.AVXVec);

147 return vector;

148 #endif

149 }

150

151 /*

152 Enforces a maximum value upon a vector, reducing all values that

are above

153 the maximum to the maximum.

154

155 @param maxVal | The maximum allowed value

156 */

157 void vecMax(float maxVal)

158 {

159 #ifdef SISD

160 for (int i = 0; i < vectorSize; i++)

161 {

162 if (this->AVXVec[i] > maxVal)

163 {

164 this->AVXVec[i] = maxVal;

165 }

166 }

167 #elif defined AVX512

168 __declspec(align(64)) float maxValAr[16] = { maxVal,maxVal,

maxVal,maxVal,maxVal,maxVal,maxVal,maxVal,maxVal,maxVal,maxVal,

maxVal,maxVal,maxVal,maxVal,maxVal };

169 __m512 maxValVec = _mm512_load_ps(maxValAr);

170 this->AVXVec = _mm512_min_ps(this->AVXVec, maxValVec);

171 #elif (defined AVX || defined AVX2)

172 float maxValAr[8] __attribute__ ((aligned (32))) = { maxVal,

maxVal,maxVal,maxVal,maxVal,maxVal,maxVal,maxVal};

173 __m256 maxValVec = _mm256_load_ps(maxValAr);

174 this->AVXVec = _mm256_min_ps(this->AVXVec, maxValVec);

175 #endif

176 }

177 /*

178 Enforces a minimum value upon a vector, increasing all values that

are below

179 the minimum to the minimum.

APPENDIX A. VECTOR CLASS 141

180

181 @param minVal | The minimum allowed value

182 */

183 void vecMin(float minVal)

184 {

185 #ifdef SISD

186 for (int i = 0; i < vectorSize; i++)

187 {

188 if (this->AVXVec[i] < minVal)

189 {

190 this->AVXVec[i] = minVal;

191 }

192 }

193 #elif defined AVX512

194 __declspec(align(64)) float minValAr[16] = { minVal,minVal,

minVal,minVal,minVal,minVal,minVal,minVal,minVal,minVal,minVal,

minVal,minVal,minVal,minVal,minVal };

195 __m512 minValVec = _mm512_load_ps(minValAr);

196 this->AVXVec = _mm512_max_ps(this->AVXVec, minValVec);

197 #elif (defined AVX || defined AVX2)

198 float minValAr[8] __attribute__ ((aligned (32))) = { minVal,

minVal,minVal,minVal,minVal,minVal,minVal,minVal};

199 __m256 minValVec = _mm256_load_ps(minValAr);

200 this->AVXVec = _mm256_max_ps(this->AVXVec, minValVec);

201 #endif

202 }

203 /*

204 Sets each Vector lane to one value

205

206 @param setValue | The value that the Vector lanes will be set to

207 */

208 void set1(float setValue)

209 {

210 #ifdef SISD

211 for (int i = 0; i < vectorSize; i++)

212 {

213 this->AVXVec[i] = setValue;

214 }

215 #elif defined AVX512

216 this->AVXVec = _mm512_set1_ps(setValue);

217 #elif (defined AVX || defined AVX2)

218 this->AVXVec = _mm256_set1_ps(setValue);

APPENDIX A. VECTOR CLASS 142

219 #endif

220 }

221

222 /*

223 Loads float data from a location in memory (normally an array)

into a Vector

224

225 @param source | The memory location of the data to be loaded

226 */

227 void load(float* source)

228 {

229 #ifdef SISD

230 for (int i = 0; i < vectorSize; i++)

231 {

232 this->AVXVec[i] = source[i];

233 }

234 #elif defined AVX512

235 this->AVXVec = _mm512_load_ps(source);

236 #elif (defined AVX || defined AVX2)

237 this->AVXVec = _mm256_load_ps(source);

238 #endif

239 }

240

241 void load_u(float* source)

242 {

243 #ifdef SISD

244 for (int i = 0; i < vectorSize; i++)

245 {

246 this->AVXVec[i] = source[i];

247 }

248 #elif defined AVX512

249 this->AVXVec = _mm512_load_ps(source);

250 #elif (defined AVX || defined AVX2)

251 this->AVXVec = _mm256_loadu_ps(source);

252 #endif

253 }

254

255 /*

256 Loads integer data from a location in memory (normally an array)

into a Vector

257

258 @param source | The memory location of the data to be loaded

APPENDIX A. VECTOR CLASS 143

259 */

260

261 void load(int* source)

262 {

263 #ifdef SISD

264 for (int i = 0; i < vectorSize; i++)

265 {

266 this->AVXVec[i] = source[i];

267 }

268 #elif defined AVX512

269 this->AVXIntVec = _mm512_load_epi32(source);

270 #elif (defined AVX || defined AVX2)

271 this->AVXIntVec = _mm256_load_si256(((const __m256i *)source));

272 #endif

273 }

274

275 /*

276 Loads unsigned integer data from a location in memory (normally an

array) into a Vector

277

278 @param source | The memory location of the data to be loaded

279 */

280

281 void load(unsigned int * source)

282 {

283 #ifdef SISD

284 for (int i = 0; i < vectorSize; i++)

285 {

286 this->AVXVec[i] = source[i];

287 }

288 #elif defined AVX512

289 this->AVXIntVec = _mm512_load_epi32(source);

290 #elif defined AVX2

291 #endif

292 }

293

294 /*

295 Loads float data from a location in memory (normally an array)

into a Vector. Applies

296 a mask to the data, loading data from the calling Vector when the

corresponding

APPENDIX A. VECTOR CLASS 144

297 mask value is 1, and data from the src Vector when the

corresponding value is 0.

298

299 @param src | A vector containing data that will be added to the

new vector is the

300 corresponding mask value is 0

301 @param mask | A vector of mask values (0 or 1) that determines

which values will come

302 from the calling Vector, and which values will come from src

303 @param mem_addr | The memory location of the data to be loaded

304 */

305

306 void maskLoad(Vector &src, Vector &mask, float* mem_addr)

307 {

308 #ifdef SISD

309

310 for (int i = 0; i < vectorSize; i++)

311 {

312 if (mask.AVXVec[i] == 1)

313 this->AVXVec[i] = mem_addr[i];

314 else

315 this->AVXVec[i] = src.AVXVec[i];

316 }

317 #elif defined AVX512

318 this->AVXVec = _mm512_mask_load_ps(src.AVXVec, mask.maskVec,

mem_addr);

319 #elif (defined AVX || defined AVX2)

320 Vector resultVector;

321 resultVector.AVXVec = _mm256_load_ps(mem_addr);

322 this->AVXVec = _mm256_blendv_ps(resultVector.AVXVec, src.AVXVec,

mask.AVXVec);

323 #endif

324 }

325 };

326

327 Vector int2mask(int maskInt);

328 Vector mask_mov(const Vector& v1, const Vector& bitMask, const

Vector& v2);

329 Vector gtMask(const Vector& v1, const Vector& v2);

330 Vector ltMask(const Vector& v1, const Vector& v2);

331 Vector vecRandom(Vector& rC0, Vector& rC1, Vector& factors, Vector&

rSeed);

APPENDIX A. VECTOR CLASS 145

332 Vector pow(const Vector& v1, const Vector& v2);

333 Vector max (const Vector& v1, const Vector& v2);

334 Vector abs(const Vector& v1);

335 void seedVecRandom(Vector& rC0, Vector& rC1, Vector& factors, int *

seeds, Vector& rSeed);

336 void maxLocStep(Vector &oldWeights, Vector &oldIndices, Vector &

newWeights, Vector &newIndices);

337 int reduceMax(Vector &curWeights, Vector &curIndices);

338 void store(float* loc, const Vector& v1);

339 void store(int* loc, const Vector& v1);

340 void printVec(Vector v1);

341

342 #endif

A.2 Vector.cpp

1 /**

2 vector.cpp

3 Purpose: Contains all vector instructions for AVX512 and AVX2,

as well as

4 SISD variants for incompatible hardware.

5

6 @author Joshua Peake

7 @version 1.0

8 */

9

10 #include "vector.h"

11 #include <iostream>

12 #include "platform.h"

13

14 /*

15 Converts an integer to either an 8-wide or 16-wide mask vector,

which

16 is equivalent to the binary representation of that integer, for

example:

17 14291 becomes:

18 0011011111010011 (AVX512) or 11010011 (AVX2)

19

20 @param maskInt | The integer to be converted to a mask

21 @return | The vector object containing the mask

22

APPENDIX A. VECTOR CLASS 146

23 */

24 Vector int2mask(int maskInt) // NO AVX --------------------------

25 {

26 #ifdef SISD

27 Vector mask;

28 for (int i = 0; i < _VECSIZE; ++i) {

29 mask.AVXVec[i] = (maskInt >> i) & 1;

30 }

31 return mask;

32 #elif defined AVX512

33 Vector resultVector;

34 resultVector.maskVec = _mm512_int2mask(maskInt);

35 return resultVector;

36 #elif (defined AVX || defined AVX2)

37 Vector resultVector;

38 float mask[8];

39 for (int i = 0; i < 8; i++) {

40 if ((maskInt >> i) & 1)

41 {

42 mask[i] = 1.0f;

43 }

44 else

45 {

46 mask[i] = -1.0f;

47 }

48 }

49 resultVector.AVXVec = _mm256_setr_ps(mask[0], mask[1], mask[2],

mask[3], mask[4], mask[5], mask[6], mask[7]);

50 return resultVector;

51

52 #endif

53 }

54

55 /*

56 Moves a vector from one vector to another, using a mask. Values

are moved from

57 v1 to resultVector if corresponding lane in bitmask is 0, or moved

from v2 to

58 resultVector if corresponding lane in bitmask is 1.

59

60 @param v1 | A vector of values, usually weight data

APPENDIX A. VECTOR CLASS 147

61 @param bitMask | A vector containing a bitMask, used to filter

values from v1

62 @param v2 | A vector usually containing one value multiple times,

used for

63 when values from v1 are masked

64 @return | The filtered vector containing a combination of values

from v1 and v2

65

66 */

67 Vector mask_mov(const Vector& v1, const Vector& bitMask, const

Vector& v2) // NO AVX -----------------

68 {

69 Vector resultVector;

70 #ifdef SISD

71 for (int i = 0; i < _VECSIZE; i++)

72 {

73 if (bitMask.AVXVec[i] == 0)

74 {

75 resultVector.AVXVec[i] = v1.AVXVec[i];

76 }

77 else

78 {

79 resultVector.AVXVec[i] = v2.AVXVec[i];

80 }

81 }

82 return resultVector;

83 #elif defined AVX512

84 resultVector.AVXVec = _mm512_mask_mov_ps(v1.AVXVec, bitMask.

maskVec, v2.AVXVec);

85 return resultVector;

86 #elif (defined AVX || defined AVX2)

87 resultVector.AVXVec = _mm256_blendv_ps(v2.AVXVec, v1.AVXVec,

bitMask.AVXVec);

88 return resultVector;

89 #endif

90 }

91

92 /*

93 Combines two vectors into a new vector, comparing vectors lane-by-

lane and retaining the

94 largest value.

95

APPENDIX A. VECTOR CLASS 148

96 @param v1 | A vector of float values

97 @param v2 | A vector of float values

98 @return | The filtered vector containing a combination of values

from v1 and v2

99

100 */

101 Vector gtMask(const Vector& v1, const Vector& v2) // NO AVX

102 {

103 Vector resultMask;

104 #ifdef SISD

105 for (int i = 0; i < _VECSIZE; i++)

106 {

107 if (v1.AVXVec[i] > v2.AVXVec[i])

108 {

109 resultMask.AVXVec[i] = 1;

110 }

111 else

112 {

113 resultMask.AVXVec[i] = 0;

114 }

115 }

116 return resultMask;

117 #elif defined AVX512

118 resultMask.maskVec = _mm512_cmp_ps_mask(v1.AVXVec, v2.AVXVec,

_MM_CMPINT_GT);

119 return resultMask;

120 #elif (defined AVX || defined AVX2)

121 resultMask.AVXVec = _mm256_cmp_ps(v1.AVXVec, v2.AVXVec, _CMP_GT_OS

);

122 return resultMask;

123 #endif

124 }

125

126 /*

127 Combines two vectors into a new vector, comparing vectors lane-by-

lane and retaining the

128 lowest value.

129

130 @param v1 | A vector of float values

131 @param v2 | A vector of float values

APPENDIX A. VECTOR CLASS 149

132 @return | The filtered vector containing a combination of values

from v1 and v2

133

134 */

135 Vector ltMask(const Vector& v1, const Vector& v2) // NO AVX

136 {

137 Vector resultMask;

138 #ifdef SISD

139 for (int i = 0; i < _VECSIZE; i++)

140 {

141 if (v1.AVXVec[i] < v2.AVXVec[i])

142 {

143 resultMask.AVXVec[i] = 1;

144 }

145 else

146 {

147 resultMask.AVXVec[i] = 0;

148 }

149 }

150 return resultMask;

151 #elif defined AVX512

152 resultMask.maskVec = _mm512_cmp_ps_mask(v1.AVXVec, v2.AVXVec,

_MM_CMPINT_LT);

153 return resultMask;

154 #elif (defined AVX || defined AVX2)

155 resultMask.AVXVec = _mm256_cmp_ps(v1.AVXVec, v2.AVXVec, _CMP_LE_OS

);

156 return resultMask;

157 #endif

158 }

159

160 /*

161 Initialises variables required for random number generation. The

constant values 1664525 and 1013904223

162 cause integer overflow, allowing for true random number generation

. The value 2.3283064e-10f will be used

163 in a multiplication to reduce very large random numbers to a value

between 0 and 1.

164

165 @param rC0 | An empty vector that will be filled with the first

constant int, 1664525

APPENDIX A. VECTOR CLASS 150

166 @param rC1 | An empty vector that will be filled with the second

constant int, 1013904223

167 @param factor | An empty vector that will be filled with the

constant float, 2.3283064e-10f

168 @param seeds | An array of seeds generated from the input seed by

ranluxgen

169 @param rSeed | An empty vector that will be filled with seeds from

the seeds parameter

170 */

171 void seedVecRandom(Vector& rC0, Vector& rC1, Vector& factor, int *

seeds, Vector& rSeed)

172 {

173 #ifdef SISD

174 for (int i = 0; i < 8; i++)

175 {

176 rSeed.AVXIntVec[i] = seeds[i];

177 }

178 #elif defined AVX512

179 __declspec(align(64)) unsigned int c0[16] = { 1664525L, 1664525L,

1664525L, 1664525L, 1664525L, 1664525L, 1664525L, 1664525L

,1664525L, 1664525L, 1664525L, 1664525L, 1664525L, 1664525L,

1664525L, 1664525L };

180 __declspec(align(64)) unsigned int c1[16] = { 1013904223L,

1013904223L, 1013904223L, 1013904223L, 1013904223L, 1013904223L,

1013904223L, 1013904223L,1013904223L, 1013904223L, 1013904223L,

1013904223L, 1013904223L, 1013904223L, 1013904223L, 1013904223L

};

181 __declspec(align(64)) float factors[16] = { 2.3283064e-10f,

2.3283064e-10f, 2.3283064e-10f, 2.3283064e-10f, 2.3283064e-10f,

2.3283064e-10f, 2.3283064e-10f, 2.3283064e-10f,2.3283064e-10f,

2.3283064e-10f, 2.3283064e-10f, 2.3283064e-10f, 2.3283064e-10f,

2.3283064e-10f, 2.3283064e-10f, 2.3283064e-10f };

182

183 rSeed.AVXIntVec = _mm512_load_epi32(seeds);

184 rC0.AVXIntVec = _mm512_load_epi32(&c0); //m512i

185 rC1.AVXIntVec = _mm512_load_epi32(&c1); //m512i

186 factor.AVXVec = _mm512_load_ps(factors);

187 #elif (defined AVX || defined AVX2)

188 int c0 = 1664525L;

189 int c1 = 1013904223L;

APPENDIX A. VECTOR CLASS 151

190 float factors[8] __attribute__ ((aligned (32))) = { 2.3283064e-10f

, 2.3283064e-10f, 2.3283064e-10f, 2.3283064e-10f, 2.3283064e-10f,

2.3283064e-10f, 2.3283064e-10f, 2.3283064e-10f};

191 rSeed.AVXIntVec = _mm256_load_si256((__m256i*)seeds);

192 rC0.AVXIntVec = _mm256_set1_epi32(c0); //m512i

193 rC1.AVXIntVec = _mm256_set1_epi32(c1); //m512i

194 factor.AVXVec = _mm256_load_ps(factors);

195 #endif

196 }

197

198 /*

199 Generates a vector of random numbers between 0 and 1, created

using the seeds created by the ranluxgen and

200 3 constants (rC0, rC1 and factor). Used by ant.cpp when performing

edge selection in csRoulette().

201

202 @param rC0 | A vector containing the first constant int, 1664525

203 @param rC1 | A vector containing the second constant int,

1013904223

204 @param factor | A vector containing the constant float, 2.3283064e

-10f

205 @param rSeed | A vector containing seeds generated by ranluxgen

206

207 @return | A vector contained with 8 or 16 random numbers between 0

and 1

208 */

209

210 Vector vecRandom(Vector& rC0, Vector& rC1, Vector& factor, Vector&

rSeed)

211 {

212 Vector r;

213 #ifdef SISD

214 for (int i = 0; i < 8; i++)

215 {

216 rSeed.AVXIntVec[i] = rSeed.AVXIntVec[i] * 1664525L + 1013904223L

;

217 r.AVXVec[i] = (float)rSeed.AVXIntVec[i] * 2.328306437087974e-10;

218 r.AVXVec[i] += 0.5f;

219 }

220 return r;

221 #elif defined AVX512

APPENDIX A. VECTOR CLASS 152

222 rSeed.AVXIntVec = _mm512_mullo_epi32(rC0.AVXIntVec, rSeed.

AVXIntVec);

223 rSeed.AVXIntVec = _mm512_add_epi32(rC1.AVXIntVec, rSeed.AVXIntVec)

;

224 // convert to float in range 0 to 1 and return

225 __m512 returnValue = _mm512_cvt_roundepu32_ps(rSeed.AVXIntVec,

_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);

226 r.AVXVec = _mm512_mul_ps(returnValue, factor.AVXVec);

227 return r;

228 #elif defined AVX2

229 __m256 addedVal;

230 addedVal =_mm256_set1_ps(0.5f);

231 rSeed.AVXIntVec = _mm256_mullo_epi32(rC0.AVXIntVec, rSeed.

AVXIntVec);

232 rSeed.AVXIntVec = _mm256_add_epi32(rC1.AVXIntVec, rSeed.AVXIntVec)

;

233 // convert to float in range 0 to 1 and return

234 __m256 returnValue = _mm256_cvtepi32_ps(rSeed.AVXIntVec);

235 returnValue = _mm256_mul_ps(returnValue, factor.AVXVec);

236 r.AVXVec = _mm256_add_ps(returnValue,addedVal);

237 return r;

238

239 #endif

240 }

241

242 /*

243 Compares values in the oldWeights vector (the vector of the

previous largest values) with

244 values in the newWeights vector (the vector of values from the

current ACO iteration) and

245 replaces values in oldWeights with larger values in the same

vector lane from newWeights.

246 The corresponding indexes for each weight are stored in oldIndices

and newIndices

247 respectively.

248

249 @param oldWeights | A vector containing weight values for the

previous largest weights

250 @param oldIndices | A vector containing the corresponding indices

for weights in oldWeights

251 @param newWeights | A vector containing weight values for the

largest weights in the current

APPENDIX A. VECTOR CLASS 153

252 ACO iteration

253 @param newIndices | A vector containing the corresponding indices

for weights in newWeights

254

255 */

256 void maxLocStep(Vector &oldWeights, Vector &oldIndices, Vector &

newWeights, Vector &newIndices)

257 {

258 #ifdef SISD

259 Vector maxMask = gtMask(newWeights, oldWeights);

260 oldWeights = mask_mov(oldWeights, maxMask, newWeights);

261 oldIndices = mask_mov(oldIndices, maxMask, newIndices);

262 #elif defined AVX512

263 Vector maxMask;

264 maxMask.maskVec = _mm512_cmp_ps_mask(newWeights.AVXVec, oldWeights

.AVXVec, _MM_CMPINT_GT);

265 oldWeights.AVXVec = _mm512_mask_mov_ps(oldWeights.AVXVec, maxMask.

maskVec, newWeights.AVXVec);

266 oldIndices.AVXVec = _mm512_mask_mov_ps(oldIndices.AVXVec, maxMask.

maskVec, newIndices.AVXVec);

267 #elif (defined AVX || defined AVX2)

268 Vector maxMask;

269 maxMask = gtMask(newWeights, oldWeights);

270 oldWeights = mask_mov(newWeights, maxMask, oldWeights);

271 oldIndices = mask_mov(newIndices, maxMask, oldIndices);

272 #endif

273 }

274

275 /*

276 Reduces the vector containing the largest weight values from every

iteration (curWeights),

277 determining the largest value in the vector and changing all

vector lanes to that value, with

278 identical operations being performed on the vector of the indeces

associated with those weights

279

280 @param curWeights | A vector containing weight values for largest

weights from all iterations

281 @param curIndices | A vector containing the corresponding indices

for weights in curWeights

282 @return | A vector with each lane containing the largest weight

value in curWeights

APPENDIX A. VECTOR CLASS 154

283 */

284 int reduceMax(Vector &curWeights, Vector &curIndices)

285 {

286 #ifdef SISD

287

288 int highestIndex = -1;

289 float highestValue = -1.0f;

290 for (int i = 0; i < _VECSIZE; i++)

291 {

292 if (curWeights.AVXVec[i] > highestValue)

293 {

294 highestValue = curWeights.AVXVec[i];

295 highestIndex = curIndices.AVXVec[i];

296 }

297 }

298

299 return highestIndex;

300 #elif defined AVX512

301 // return a vector with all elements equal to ivec[imax] where

302 // valvec[imax] is largest element of valvec

303 __m512 permVal;

304 __m512 permInd;

305 __mmask16 maxMask;

306 // swap with neighbour

307 permVal = _mm512_swizzle_ps(curWeights.AVXVec, _MM_SWIZ_REG_CDAB);

308 permInd = _mm512_swizzle_ps(curIndices.AVXVec, _MM_SWIZ_REG_CDAB);

309 maxMask = _mm512_cmp_ps_mask(curWeights.AVXVec, permVal,

_MM_CMPINT_GT);

310 curWeights.AVXVec = _mm512_mask_mov_ps(permVal, maxMask,

curWeights.AVXVec);

311 curIndices.AVXVec = _mm512_mask_mov_ps(permInd, maxMask,

curIndices.AVXVec);

312 // swap pairs

313 permVal = _mm512_swizzle_ps(curWeights.AVXVec, _MM_SWIZ_REG_BADC);

314 permInd = _mm512_swizzle_ps(curIndices.AVXVec, _MM_SWIZ_REG_BADC);

315 maxMask = _mm512_cmp_ps_mask(curWeights.AVXVec, permVal,

_MM_CMPINT_GT);

316 curWeights.AVXVec = _mm512_mask_mov_ps(permVal, maxMask,

curWeights.AVXVec);

317 curIndices.AVXVec = _mm512_mask_mov_ps(permInd, maxMask,

curIndices.AVXVec);

318 // swap lanes

APPENDIX A. VECTOR CLASS 155

319 permVal = _mm512_permute4f128_ps(curWeights.AVXVec, 0xB1); // 2,

3, 0, 1

320 permInd = _mm512_permute4f128_ps(curIndices.AVXVec, 0xB1);

321 maxMask = _mm512_cmp_ps_mask(curWeights.AVXVec, permVal,

_MM_CMPINT_GT);

322 curWeights.AVXVec = _mm512_mask_mov_ps(permVal, maxMask,

curWeights.AVXVec);

323 curIndices.AVXVec = _mm512_mask_mov_ps(permInd, maxMask,

curIndices.AVXVec);

324 // swap pairs of lanes

325 permVal = _mm512_permute4f128_ps(curWeights.AVXVec, 0x4E); // 1,

0, 3, 2

326 permInd = _mm512_permute4f128_ps(curIndices.AVXVec, 0x4E);

327 maxMask = _mm512_cmp_ps_mask(curWeights.AVXVec, permVal,

_MM_CMPINT_GT);

328 curIndices.AVXVec = _mm512_mask_mov_ps(permInd, maxMask,

curIndices.AVXVec);

329 // all elements of ivec now contain index of maximum

330 return curIndices.AVXVec[0];

331 #elif (defined AVX || defined AVX2)

332 __m256 permVal;

333 __m256 permInd;

334 __m256 maxMask;

335 float result[8] __attribute__ ((aligned (32)));

336 permVal = _mm256_permute_ps(curWeights.AVXVec, _MM_SHUFFLE

(2,3,0,1)); //01001110

337 permInd = _mm256_permute_ps(curIndices.AVXVec, _MM_SHUFFLE(2, 3,

0, 1)); //01001110

338 maxMask = _mm256_cmp_ps(curWeights.AVXVec, permVal, _CMP_GT_OS);

339 curWeights.AVXVec = _mm256_blendv_ps(permVal, curWeights.AVXVec,

maxMask);

340 curIndices.AVXVec = _mm256_blendv_ps(permInd, curIndices.AVXVec,

maxMask);

341

342 permVal = _mm256_permute_ps(curWeights.AVXVec, _MM_SHUFFLE

(1,0,3,2)); //01001110

343 permInd = _mm256_permute_ps(curIndices.AVXVec, _MM_SHUFFLE(1, 0,

3, 2)); //01001110

344 maxMask = _mm256_cmp_ps(curWeights.AVXVec, permVal, _CMP_GT_OS);

345 curWeights.AVXVec = _mm256_blendv_ps(permVal, curWeights.AVXVec,

maxMask);

APPENDIX A. VECTOR CLASS 156

346 curIndices.AVXVec = _mm256_blendv_ps(permInd, curIndices.AVXVec,

maxMask);

347

348 permVal = _mm256_permute2f128_ps(curWeights.AVXVec, curWeights.

AVXVec, 0b0001);

349 permInd = _mm256_permute2f128_ps(curIndices.AVXVec, curIndices.

AVXVec, 0b0001);

350 maxMask = _mm256_cmp_ps(curWeights.AVXVec, permVal, _CMP_GT_OS);

351 curWeights.AVXVec = _mm256_blendv_ps(permVal, curWeights.AVXVec,

maxMask);

352 curIndices.AVXVec = _mm256_blendv_ps(permInd, curIndices.AVXVec,

maxMask);

353 store(result, curIndices);

354 return result[0];

355 #endif

356

357 }

358

359 /*

360 Takes float values that are currently stored in a vector (most

likely an array) and stores them

361 in a memory (most likely an array).

362

363 @param loc | The memory location where the data is to be stored

364 @param v1 | A vector containing data that will be stored

365 */

366 void store(float* loc, const Vector& v1)

367 {

368 #ifdef SISD

369

370 for (int i = 0; i < _VECSIZE; i++)

371 {

372 loc[i] = v1.AVXVec[i];

373 }

374

375 #elif defined AVX512

376 _mm512_store_ps(loc, v1.AVXVec);

377 #elif (defined AVX || defined AVX2)

378 _mm256_store_ps(loc, v1.AVXVec);

379 #endif

380 }

381

APPENDIX A. VECTOR CLASS 157

382 /*

383 Takes integer values that are currently stored in a vector (most

likely an array) and stores them

384 in a memory (most likely an array).

385

386 @param loc | The memory location where the data is to be stored

387 @param v1 | A vector containing data that will be stored

388 */

389 void store(int* loc, const Vector& v1)

390 {

391 #ifdef SISD

392 for (int i = 0; i < _VECSIZE; i++)

393 {

394 loc[i] = v1.AVXVec[i];

395 }

396 #elif defined AVX512

397 _mm512_store_ps(loc, v1.AVXVec);

398 #elif (defined AVX || defined AVX2)

399 _mm256_store_si256((__m256i *)loc, v1.AVXIntVec);

400 #endif

401 }

402

403 /*

404 Compares two vectors lane-by-lane, with the larger value being

saved to a new vector

405

406 @param v1 | The first vector of values to be compared

407 @param v2 | The second vector of values to be compared

408 */

409 Vector max (const Vector& v1, const Vector& v2)

410 {

411 #ifdef SISD

412 Vector result;

413 for(int i = 0; i < _VECSIZE; i++)

414 {

415 if(v1.AVXVec[i] > v2.AVXVec[i])

416 {

417 result.AVXVec[i] = v1.AVXVec[i];

418 }

419 else

420 {

421 result.AVXVec[i] = v2.AVXVec[i];

APPENDIX A. VECTOR CLASS 158

422 }

423 }

424

425 return result;

426 #elif (defined AVX || defined AVX2)

427 Vector result;

428 result.AVXVec = _mm256_max_ps(v1.AVXVec, v2.AVXVec);

429 return result;

430 #endif

431 }

432

433 /*

434 Performs the abs function on a vector, converting every negative

value

435 to the equivalent positive value

436

437 @param v1 | A vector containing data that will have the abs

function applied to it

438 */

439 Vector abs(const Vector& v1)

440 {

441 #ifdef SISD

442 Vector result;

443 for(int i = 0; i < _VECSIZE; i++)

444 {

445 result.AVXVec[i] = std::abs(v1.AVXVec[i]);

446 }

447 return result;

448

449 #elif (defined AVX || defined AVX2)

450 Vector signMask, resultVector;

451 signMask.set1(-0.0f);

452 resultVector.AVXVec = _mm256_andnot_ps(signMask.AVXVec, v1.AVXVec

);

453 return resultVector;

454 #endif

455 }

Appendix B

Candidate Set Roulette

1 int Ant::csRoulette(float *weights, int *tabu, int nVerts,

nearestNeighbour *nnList, int numNN)

2 {

3

4 #ifdef AVX2

5 ALIGN(float indexSeed[_VECSIZE]) = { 0.0f, 1.0f, 2.0f, 3.0f, 4.0f,

5.0f, 6.0f, 7.0f};

6 ALIGN(float indexStep[_VECSIZE]) = { 8.0f, 8.0f, 8.0f, 8.0f, 8.0f,

8.0f, 8.0f, 8.0f};

7 ALIGN(float minusOnes[_VECSIZE]) = { -1.0f, -1.0f, -1.0f, -1.0f,

-1.0f, -1.0f, -1.0f, -1.0f};

8 ALIGN(float nextIndicesArray[_VECSIZE]) = {0.0f,0.0f,0.0f,0.0f,0.0

f,0.0f,0.0f,0.0f};

9

10 #elif defined AVX512

11 ALIGN(float indexSeed[_VECSIZE]) = { 0.0f, 1.0f, 2.0f, 3.0f, 4.0f,

5.0f, 6.0f, 7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f, 13.0f, 14.0f,

15.0f};

12 ALIGN(float indexStep[_VECSIZE]) = { 16.0f, 16.0f, 16.0f, 16.0f,

16.0f, 16.0f, 16.0f, 16.0f, 16.0f, 16.0f, 16.0f, 16.0f, 16.0f,

16.0f, 16.0f, 16.0f};

13 ALIGN(float minusOnes[_VECSIZE]) = { -1.0f, -1.0f, -1.0f, -1.0f,

-1.0f, -1.0f, -1.0f, -1.0f ,-1.0f, -1.0f, -1.0f, -1.0f, -1.0f,

-1.0f, -1.0f, -1.0f};

14 ALIGN(float nextIndicesArray[_VECSIZE]) = {0.0f,0.0f,0.0f,0.0f,0.0

f,0.0f,0.0f,0.0f,0.0f,0.0f,0.0f,0.0f,0.0f,0.0f,0.0f,0.0f};

15 #endif

16 Vector minusOne;

17 minusOne.load(minusOnes);

159

APPENDIX B. CANDIDATE SET ROULETTE 160

18 Vector runningIndex;

19 runningIndex.load(indexSeed);

20 Vector delta16;

21 delta16.load(indexStep);

22 Vector curIndices = minusOne;

23 Vector curWeights = minusOne;

24

25 for(int i = 0; i < numNN; i++)

26 {

27 if(nnList[i].vectIndex != -1)

28 {

29 Vector randoms = vecRandom(rC0,rC1,factor,rSeed);

30 Vector nextIndices = runningIndex;

31 Vector tabuMask = int2mask(tabu[nnList[i].vectIndex]);

32 Vector nnMask = int2mask(nnList[i].nnMask);

33 Vector nextWeights;

34 Vector nextDemand;

35 Vector capacityVec;

36 Vector capacityMask;

37

38 nextWeights.load(weights + (i *_VECSIZE));

39 nextWeights = nextWeights * randoms;

40 nextWeights = mask_mov(minusOne, nnMask, nextWeights);

41 nextWeights = mask_mov(nextWeights, tabuMask, minusOne);

42 if(problemType == ProblemType::CVRP)

43 {

44 capacityVec.set1(capacity);

45 nextDemand.load(m_as->demand + (nnList[i].vectIndex *

_VECSIZE));

46 capacityMask = gtMask(capacityVec, nextDemand);

47 nextWeights = mask_mov(nextWeights, capacityMask, minusOne);

48 }

49 maxLocStep(curWeights, curIndices, nextWeights, nextIndices);

50 runningIndex = runningIndex + delta16 ;

51 }

52 else

53 {

54 break;

55 }

56 }

57

APPENDIX B. CANDIDATE SET ROULETTE 161

58 // now reduce the elements of curWeights

59 int reduced = reduceMax(curWeights, curIndices);

60 if (reduced < 0) {

61 reduced = -1;

62 }

63

64 return reduced;

65 }

Appendix C

Paper: Vectorised Candidate Set
Selection for Ant Colony Optimisation

162

Vectorized Candidate Set Selection for
Parallel Ant Colony Optimization

Joshua Peake
Centre for Advanced Computational Science

Manchester Metropolitan University
Manchester, United Kingdom

J.Peake@mmu.ac.uk

Martyn Amos
Centre for Advanced Computational Science

Manchester Metropolitan University
Manchester, United Kingdom

M.Amos@mmu.ac.uk

Paraskevas Yiapanis
Centre for Advanced Computational Science

Manchester Metropolitan University
Manchester, United Kingdom

P.Yiapanis@mmu.ac.uk

Huw Lloyd
Centre for Advanced Computational Science

Manchester Metropolitan University
Manchester, United Kingdom

Huw.Lloyd@mmu.ac.uk

ABSTRACT
Ant ColonyOptimization (ACO) is awell-established nature-inspired
heuristic, and parallel versions of the algorithm now exist to take
advantage of emerging high-performance computing processors.
However, careful attention must be paid to parallel components of
such implementations if the full benefit of these platforms is to be
obtained. One such component of the ACO algorithm is next node
selection, which presents unique challenges in a parallel setting. In
this paper, we present a new node selection method for ACO, Vec-
torized Candidate Set Selection (VCSS), which achieves significant
speedup over existing selection methods on a test set of Traveling
Salesman Problem instances.
ACM Reference Format:
Joshua Peake, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd. 2018.
Vectorized Candidate Set Selection for Parallel Ant Colony Optimization. In
GECCO ’18 Companion: Genetic and Evolutionary Computation Conference
Companion, July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3205651.3208274

1 INTRODUCTION
Ant Colony Optimization (ACO) [10, 13] is a population-based op-
timization technique inspired by the foraging behavior of ants, and
it has been successfully applied in a wide variety of domains [28].
The fundamental principle of the algorithm is that agents represent-
ing ants traverse some structure (such as a graph), constructing a
solution to the given problem and laying virtual “pheromone trails”
as they proceed. The amount of pheromone deposited is propor-
tionate to the “quality” of the solution; as path choices made by
individual ants are informed by pheromone concentrations, this
leads the population to converge on high-quality solutions [25]. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3208274

this paper, we focus on the MAX-MIN Ant System variant of
the algorithm [27], which allows only the “best performing” ant
to deposit pheromone (and also restricts the range of pheromone
concentrations, in order to prevent stagnation).

Because of the inherently distributed nature of ACO (whereby
ants work independently of each other, guided only by a shared
global pheromone network), the ACO algorithm presents significant
opportunities in terms of its implementation on high-performance
parallel hardware [2–4, 6, 8, 14, 21]. In terms of this paper, we are
specifically interested in performance improvements that are made
possible by the vector processing capabilities of chips such as the
Intel® Xeon Phi [22, 30], which have instructions that operate on
one-dimensional arrays of data (vectors), rather than on single data
items. In the case of Xeon Phi, these Single Instruction Multiple Data
(SIMD) instructions operate simultaneously on 16 floating point
registers.

A significant bottleneck can arise in ACO-based algorithmswhen
ants are required to select their next “move” [19]. Such algorithms
generally (but not exclusively) work on graph-based representa-
tions of problems, where ants traverse edges, moving from vertex
to vertex (as in the Traveling Salesman Problem (TSP) [11, 26]).
Because the number of possible “next moves” can be extremely
large, many algorithms use candidate sets (or candidate lists) to
restrict movement to a select subset of vertices [15], and this has
been successfully used in the Ant Colony System variant of ACO
[12].

More recently, the use of nearest neighbour candidate lists has
shown significant promise in solving large instances of the TSP
using ACO [4, 7]. This refinement is based on the assumption that
good solutions to the TSP avoid large “jumps”, and that they can
generally be found by making only relatively local transitions from
vertex to vertex. Although candidate lists are now a standard com-
ponent of parallel ACO-based algorithms [4, 7], previous imple-
mentations of this feature have failed to take advantage of the
vector processing capabilities of processors such as the Xeon Phi. In
this paper, we show how a modified representation of the nearest
neighbour list can fully utilize vector processing, yielding signifi-
cant performance improvements. Moreover, the speedup obtained
increases as the problem size grows, suggesting that our method

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Joshua Peake, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd

will be a required component of future ACO-based algorithms for
large-scale instances of similar problems.

The rest of the paper is organized as follows: in Section 2 we
discuss relevant earlier work, before presenting our algorithm in
Section 3. We give and discuss our experimental results in Section 4,
before concluding in Section 5 with a brief consideration of possible
future work in this area.

2 BACKGROUND AND RELATED WORK
Early work on parallelizing the basic ACO algorithm used multiple
independent runs of the sequential algorithm, with the best result
from all runs being selected [24]. Later work [16] investigated
its implementation on Graphics Processing Units (GPUs), which
offered significant acceleration of the basic algorithm [1, 2, 4, 7, 9].
We now focus on key developments that contribute to the work
described in the current paper.

The independent-roulette technique (iRoulette) was introduced by
Cecilia et al. [4] as a parallel alternative to the traditional roulette-
wheel selection method commonly used in sequential ACO algo-
rithms. Roulette wheel selection is used whenever an ant must
choose the next edge to traverse (and, thus, the next city to visit),
with the probability of an edge being selected being proportional to
its pheromone concentration. Although this is straightforward in
the sequential algorithm, control flow and synchronization issues
mean that it is more challenging in a parallel setting (Dawson and
Stewart subsequently proposed an alternative double-spin roulette
(DSRoulette) technique [8]). For an in-depth analysis of the proper-
ties of iRoulette, see [18].

With the availability of the Xeon Phi came new variants of
iRoulette, due to the potential for vectorization offered by the its Vec-
tor Processing Unit (VPU). The algorithm described in [17] (which
we refer to as vRoulette-1) is one example of this; the basic principles
remain the same, but this variant makes use of intrinsic instructions
available on the Xeon Phi to vectorize the iRoulette process, which
yields improved performance over the original method (as well as
over a vectorized version of the DSRoulette algorithm).We also note
the existence of another vectorized version of iRoulette, UVRoulette,
due to Tirado, et al. [31]. Along with their vRoulette-1 method,
Lloyd and Amos [17] utilized nearest neighbour information in
their scheme for selecting cities. However, in this implementation,
the candidate lists were used only to improve solution quality, and
did not yield any speedup. In this paper, we describe an amended
version of the algorithm described in [17], which replaces vRoulette-
1 with a properly vectorized nearest neighbour list (which we call
Vectorized Candidate Set Selection (VCSS). As we will demonstrate,
VCSS brings significant performance benefits in terms of execution
time, especially with larger problem instances.

In the rest of this Section, we give a brief description of the
baseMAX-MIN Ant System (MMAS), and more details of the
iRoulette method (both of which provide a foundation for our own
contributions described in this paper).

2.1 MAX-MIN Ant System
ACO is an iterative algorithm, in which each step comprises two
main phases: Tour Construction and Pheromone Update. During
the tour construction phase, ants construct tours of the graph,

making probabilistic choices based on heuristic weights derived
from the lengths and pheromone values associated with edges in the
complete graph. Each of them ants starts on a different randomly-
selected vertex of the graph. At each stage in the construction of a
tour, the probability of ant k on vertex i choosing to move to vertex
j is given by:

pki, j =

[τi, j]α [ηi, j]β∑

i∈Nk
i
[τi, j]α [ηi, j]β

i ∈ N k
i

0 otherwise.
(1)

Here, ηi, j = 1/di, j where di, j is the length of edge (i, j), τi, j
is the pheromone value for edge (i, j) and N k

i is what we call the
feasible region for vertex i . One constraint inherent to TSP problems
is that cities can only be visited once. This is enforced in the ACO
algorithm through the tabu list, which keeps track of every vertex
visited during the current tour. During tour construction, vertices
on the tabu list are ignored when making the choices. Thus, the
feasible region, Ni is the set of all vertices not in the tabu list which
are adjacent to vertex i .

During the pheromone update phase, ants deposit pheromone
on the edges traversed in their tours in an amount that is propor-
tional to the objective quality of the tour (measured in terms of its
length). InMAX-MIN Ant System, only one ant (the iteration
best or best-so-far ant) deposits pheromone. This makesMMAS
well-suited to a parallel implementation, since we do not require
concurrent write access to the pheromone matrix in order to allow
multiple agents to deposit pheromone in parallel.

The amount of pheromone deposited is given by

τi, j = τi, j + ∆τi, j∀(i, j) ∈ L (2)

where L is the set of edges in the complete graph and ∆τi, j is the
amount of pheromone deposited on edge (i, j), given by

∆τi, j =

{
1/C if edge(i, j) ∈ T

0 otherwise
(3)

where T is the set of edges in the iteration-best or best-so far tour,
and C is the total length of this tour. Once pheromone has been
distributed, the next step is pheromone evaporation, using the rule

τi, j = (1 − ρ)τi, j∀(i, j) ∈ L (4)

where ρ ∈ [0, 1] controls the evaporation rate.
In MMAS pheromone values in are “clamped" between two

limits, τmin and τmax , which are defined by

τmax =
1

pCbest
;τmin = τmax

2(1 − a)
a(nneighbours + 1)

(5)

where nneighbours is the number of nearest neighbours and a =
exp(log(0.05)/n). These limits are used to prevent solution stag-
nation, where one edge dominates others in its vicinity, due to it
having a significantly higher pheromone concentration than the
others (such edges will effectively become “locked in” to solutions,
leading to a rapid loss of diversity). This restriction exists in conjunc-
tion with the standard pheromone evaporation operation, which is
used at every iteration to allow concentrations to gradually decay
(and thus allow the algorithm to “forget” sub-optimal solutions,
over time).

VCSS for Parallel ACO GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

2.2 Independent Roulette
In serial implementations of ACO, the probabilistic selection of
edges (according to Equation 1) is performed using the Roulette
Wheel algorithm. Various approaches have been used to paral-
lelize this algorithm: here we concentrate on independent-roulette
(iRoulette) [4], which forms a component of our VCSS algorithm
described in Section 3.4.

In iRoulette, a choice between N weights,Wi , i ∈ [1,N] is made
by multiplying the edge weights by uniform random deviates Ri , i ∈
[1,N] with Ri ∈ [0, 1]. The selected edge is then

isel = argmax
i ∈[1,N]

WiRi .

In this scheme, the probability of selecting an edge is no longer
proportional to the weights, although higher-weighted edges are
more likely to be selected than those with lower weights. A de-
tailed analysis of iRoulette [18] shows that this produces greedier
selection than standard Roulette Wheel selection, but the effect
on solution quality is small. Furthermore, forMMAS using this
scheme demonstrably speeds up convergence to a solution.

A vectorized version of iRoulette, vRoulette-1 [17], forms part
of a Xeon Phi implementation of MMAS and is the inspiration
for the work presented here. In this original algorithm, the gener-
ation of random deviates and weight multiplication is vectorized
across 16 lanes, with a final reduction over the vector producing
the maximum.

3 VECTORIZED CANDIDATE SET SELECTION
The key contribution in this work is a vectorized algorithm (and
associated data structure) to accelerate vertex selection using can-
didate sets (nearest neighbour lists). The selection procedure is
modified (compared to previous versions) so that only vertices in the
nearest neighbour list for the current vertex are considered. Only in
cases where all of these are tabuwill the remainder of the feasible re-
gion be considered. Typically, the nearest neighbour maximum list
length is set to ∼20; for large instances (with thousands of vertices)
this can speed up the selection process by an order of magnitude
or more.

We base our algorithm implementation on the Xeon Phi code
described in [17]. The code has been ported to use the AVX512 vec-
tor instruction set of the Knight’s Landing architecture (but it can
be ported to any multi-core SIMD architecture). The Intel® Xeon
Phi range of processors are designed for use in high-performance
computing, containing between 57-72 cores depending on the pro-
cessor. These cores provide 4 threads (concurrent processes) each,
which enables a high level of parallelization and vectorization. The
latest generation of Xeon Phi, Knight’s Landing, has several benefits
over the previous generation, Knight’s Corner, including a higher
number of processor, and support for AVX-512 Single Instruction
Multiple Data (SIMD) instructions, which allows for highly efficient
vectorization of the ACO algorithm.

3.1 Instance Preprocessing
A potential performance problem is caused by the distribution of
nearest neighbours in the problem instance. The relative proximity
of vertices in space is not necessarily correlated with the vertex
indices (that is, two vertices that are spatially adjacent might have

indices that are widely separated, and vice versa; see Figure 1). If the
indices of nearest neighbours tend to be close together, the nearest
neighbour list can be kept short. Conversely, in the worst case,
the nearest neighbour list will contain the full set of Np entries. In
order to keep the size of the nearest neighbour list relatively low, we
pre-process the problem instance before constructing the nearest
neighbour list, by sorting the vertices into greedy tour order.

Figure 1: Sample TSP graph, with the current city (labelled 0)
in the center, and five nearest neighbour cities highlighted
in the dashed containing region.

3.2 Nearest neighbour List Construction
During the setup phase of the algorithm, the distance matrix (an
n×nmatrix encoding the edge lengths of the complete TSP graph) is
used to calculate a vectorized nearest neighbour list data structure.
This is performed as follows:

Let the number of nearest neighbours be Nnn , and the width of
a SIMD vector (in floats) be p. We then let

Np = ⌈Nnn/p⌉,
the maximum number of SIMD vectors required to store one line
of the nearest neighbour data structure. The data structure then
comprises a list of up to Np Nearestneighbour objects (one per
vertex) with each Nearestneighbour entry containing an integer
index ivec and a p-wide bitmap mask. To add a vertex j to the
nearest neighbour list, we first ensure that there exists an entry
with ivec = ⌊j/p⌋, and set the bit in mask corresponding to j
mod p.

The data structure for a vertex is filled as follows: first, the
other vertices are sorted by distance, and the first Nnn of these
are processed. For each of these vertices, ivec is calculated. If a
Nearestneighbour entry already exists for this value of ivec, the
appropriate bit is set in mask. If not, a new Nearestneighbour is
added to the end of the list. The data structure is illustrated in
Figure 2, for a vector width of 16.

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Joshua Peake, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd

Figure 2: Nearest neighbour data structure, with each vertex
having an associated array of nearest neighbour objects con-
taining a vector index ivec and a bit mask. A sentinel value
of ivec = −1 is used to indicate the end a line in the data
structure. n is the number of vertices and n16 is the maxi-
mum number of entries for a vertex (for 16-wide vectors)

Figure 3: Masked load process using the nearest neighbour
list to retrieve the weights of nearest neighbour vertices.

3.3 Tour Construction
We use OpenMP to assign each ant’s tour construction process to a
single thread. As no updates are made to any of the values used by
the ants until the end of an iteration, and ants only write to their
own local memory, no synchronization is required. We randomly
select the starting vertex for each tour. We then repeatedly call
the edge selection function to determine the ant’s path around the
graph. Each ant maintains its own tabu list, which keeps track of
visited vertices.

In our experiments, described below, we evaluate two vectorized
edge selection functions: vRoulette-1 (which examines every vertex
in the feasible region) and Vectorized Candidate Set Selection (VCSS),
our new vectorized procedure, which uses nearest neighbour infor-
mation. We now describe VCSS in more detail.

3.4 Vectorized Candidate Set Selection (VCSS)
Here, we propose a new selection procedure, Vectorized Candidate
Set Selection, based on iRoulette [4], in which iRoulette selection is
performed on a candidate set drawn from the nearest neighbour
list data structure. If this fails to produce a selection (which will
only happen when all the nearest neighbours have already been

visited in the tour), the vRoulette-1 procedure is used to select a
vertex from the remaining feasible region.

VCSS takes the tabu list, an array of weights and the nearest
neighbour list for the current vertex and then proceeds as follows
(assuming a vector width p): first, we initialize p-wide vectors rep-
resenting the running maximum weight and corresponding vertex
indices. The algorithm then iterates over the nearest neighbour
list. For each Nearestneighbour object, we load the edge weights for
the corresponding vertices as a single p-wide vector. We use the
bitmask in the Nearestneighbour object to mask this weight vector
such that only the vertices in the nearest neighbour list remain
(illustrated in Figure 3).

We also construct a vector of consecutive integers, correspond-
ing to the vertex indices in the vector. We multiply the weight
vector by a p-wide vector of random deviates (produced using a sim-
ple linear congruential generator). We then compare the modified
weight vector, on an element-wise basis (in a single instruction),
with the running maximum. This produces a bit mask which is
used to update both the running maximum and the correspond-
ing index vector. A reduction is then performed over the vector
lanes to produce the maximum weight and corresponding index
(in our implementation, this reduction is performed in log2 p steps
using bit-swizzling instructions). If no edge has been selected, the
vRoulette-1 algorithm is used by default on the complete set of
weights.

The algorithm is formally described in Algorithm 1. Here, Ran-
dom() is a function which returns a p-wide vector of uniform de-
viates, and ApplyMask(mask, a, b) is a function which returns a
vector filled with values from a in positions where the correspond-
ing value of mask is set, and values from b where the mask value is
not set.

Algorithm 1: Pseudo-code for Vectorized Candidate Set Selec-
tion.
Input :Edge Weight arrayW0...N−1, Tabu Mask array

T0...n−1, Maximum number of nearest neighbours
Np , nearest neighbour list L0...Np−1

Output :Selected Edge
// Variables in bold are p-vectors, superscripts indicate vector
lanes

Wmax = (0...0);
Imax = (0...0);
for i = 0 to Np − 1 do

if L[i].ivec , −1 then
R = Random();
V = L[i].mask;
I = (pL[i].ivec...pL[i].ivec + p − 1);
w = ApplyMask(Vi ,Wi × R, (−1... − 1));
w = ApplyMask(Ti , (−1...1),w);
max_mask = w >Wmax ;
Imax = ApplyMask(max_mask,w,Wmax);

end
end
//Reduction
j = argmax(Wmax);
return Ijmax ;

VCSS for Parallel ACO GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

3.5 Pheromone Update
The pheromone update process is split into four phases: Deposit,
evaporation, clamping and edge probability calculation. The deposit
phase is carried out by a single thread, with little potential for vec-
torization. The remaining phases are carried out in a pair of nested
loops, with the outer loop being parallelized with OpenMP. The
inner loop iterates over the pheromone matrix 16 values at a time,
using vector instructions to perform the evaporation, clamping and
probability calculations.

4 EXPERIMENTAL RESULTS
In what follows, wemeasure the performance three variants of ACO:
the first is CPU reference code, the second uses only vRoulette-1,
and the third uses our new VCSSmethod. Experiments were carried
out on a machine with an Intel® Xeon Phi 7210 processor with 64
cores and 4 threads per core (for a total of 256 threads), running at a
base speed of 1.3GHz. The code was compiled with the Intel® C++
compiler (icc) at -O3 optimization level. The code was run under
Linux, with timings obtained using the gettimeofday() function. The
CPU reference code used is ACOTSP version 1.03 [23], compiled
with gcc (with optimization -O3) and run on a Linux machine
containing an 8-core Intel® Xeon E5-2650 v2 at a base speed of
2.6GHz.

4.1 ACO Parameters and Problem Instances
We use 32 nearest neighbours for our experiments, which is both
in line with Dorigo and Stützle’s recommended list size [29], and a
convenient power of two for the purposes of data alignment. The
values of the MMAS parameters used are as follows: α = 1, β =
2, ρ = 0.02. In all cases, the number of ants is set to 256 (so that all
available threads are used when assigning ants to threads).

The problem instances used in our experiments are taken from
the TSPLIB library[20], and include all instances solved in [17] and
[32]. We also include larger instances, in order to investigate the
performance of the algorithm as the problem size increases. The
instances used are: lin318, pcb442, rat783, pr1002, fl1577, pr2392,
fl3795, rl5934, pla7397, and rl11849. For each instance, we per-
formed 50 runs of 1024 iterations.

4.2 Execution Time
We measure execution time on a per-iteration basis. Results are
shown in Figure 4, which (log) plots the mean time per iteration
over all instances for VCSS and vRoulette-1 on the Xeon Phi, and
ACOTSP on CPU, and Table 1, which gives the numerical values,
along with the speedup.

While vRoulette-1 and VCSS have similar execution times on the
smaller instances, as the instance size grows, the execution time for
VCSS grows more slowly than that of vRoulette-1. For the largest
instance, rl11849, VCSS is faster than vRoulette-1 by an order of
magnitude, and is faster than the reference code by two orders
of magnitude. On the other hand, vRoulette-1, while performing
two orders of magnitude faster than the reference code on smaller
instances, shows a declining speed-up compared to the CPU as the
instance size grows.

Table 1: Execution time per iteration in milliseconds, and
speedup relative to CPU.

CPU vRoulette-1 VCSS
Instance t/ms t/ms Speedup t/ms Speedup
lin318 18.1 0.73 24.8 0.52 34.8
pcb442 29.2 1.37 21.3 0.74 39.5
rat783 68.3 5.65 12.1 1.37 49.9
pr1002 94.1 9.01 10.4 1.85 50.9
fl1577 176.7 20.9 8.45 3.5 50.1
pr2392 371.0 46.4 8.00 7.02 52.9
fl3795 785.7 143.3 5.48 13.5 58.2
rl5934 2088.9 426.8 4.90 27.9 74.9
pla7397 3388.3 724.3 4.68 43.04 78.7
rl11849 10578.8 1975.0 5.36 97.47 108.5

Figure 4: Execution times for ACOTSP, vRoulette-1 and VCSS.

4.3 Solution Quality
In Figure 5 we show box plots of solution quality of each algorithm
(where solution quality is measured as the ratio of the length of the
best tour found to the known optimum for the problem instance).
We would expect differences between the solution quality obtained
with the CPU code and the two Xeon Phi variants due to the modi-
fied selection probabilities in the iRoulette scheme compared with
those in the roulette wheel selection used by ACOTSP. It is already
known that iRoulette can affect the solution quality on individual in-
stances, although its average behavior does not significantly affect
the quality of solution [18]. There is some variation between the
solution qualities obtained using vRoulette-1 and VCSS. It should
be noted that this experiment used a relatively small sample of
instances, with 50 runs per instance. In order to measure effects
on solution quality, a larger sample of instances (with one run per
instance) would be better. Additionally, for the larger instances, the
number of iterations (1024) is relatively small and the solutions may

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Joshua Peake, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd

not be converged. However, the focus of this paper is the efficiency
measured in terms of time per iteration: in order to investigate any
effects on solution quality, more extensive experiments would be
required. Given that VCSS is formally equivalent to the nearest-
neighbour list algorithms already widely studied in serial ACO, we
would not expect to see large systematic effects on the solution
quality arising from the use of VCSS, although this will be a topic
for further investigation.

Figure 5: Solution quality for ACOTSP, vRoulette-1 and VCSS.

4.4 Discussion
We have demonstrated that significant speedups are obtained us-
ing our VCSS scheme. The speedup over vRoulette-1 grows as the
instance size increases. Without the nearest neighbour list, the tour
construction process has time complexity O(n2) (since at each of n
vertices, n − 1 vertices are included in the selection process). The
nearest neighbour list reduces this complexity to O(n) (since the
workload per vertex is constant, determined only by the size of the
nearest neighbour list). The speedup, relative to the CPU code, also
increases with the instance size. This is more difficult to explain,
since the CPU code also uses a fixed size nearest neighbour list, and
the execution time should therefore scale in the same way. However,
considering the number of 16-wide vectors which are processed in
making a selection with vRoulette-1, we see that - for instances up
to around 500 vertices - this is less than or equal to the size of the
nearest neighbour list. The increase in speed up is, therefore, due to
the nearest neighbour list conferring minimal benefit with smaller
instances. In this case, we would expect the speedup to eventually
level off.

5 CONCLUSION
In this paper, we presented VCSS, a novel nearest neighbour vector-
ization technique and selection method for ant colony optimization.
This method is an order of magnitude faster than the previous best-
performing algorithm on the Xeon Phi platform, vRoulette-1, and
two orders of magnitude faster than the reference CPU code.

While we have shown that the performance of VCSS improves
with increasing instance size, there is a limit to how far this can
be pursued. One of the inherent limitations of the general ACO
algorithm is its O(n2) memory complexity, due to the need to store
a square pheromone matrix. Around 500MB of memory is required
for our largest instance, and to move to the next order of magni-
tude (a 100,000 city instance) we would require around 37GB. This
limitation must be overcome before the speed gains obtained using
the latest parallel and vector ACO techniques can be fully exploited
on larger instances. The PartialACO [5] method is a promising
development in overcoming this barrier.

Our solution may also benefit further from the inclusion of local
search, which is often used to accelerate convergence [13]. While
local search may be parallelized, there are currently no vectorized
algorithms which can utilize the full power of many-core SIMD
hardware. The possibility of using local search with parallel ACO
requires further investigation.

There are a number of areas for further investigation in terms of
the details of our VCSS algorithm. Firstly, the fall-back to vRoulette-1
when all nearest neighbours are tabu introduces a potential load-
balance issue (although, in practice, this happens very rarely). The
work carried out by each thread will differ, depending on howmany
times vRoulette-1 is used, and all threads must wait for the slowest
to complete. This could be alleviated either by using a faster fall-
back algorithm, or by organizing the workload differently, with
ants sending work to a pool of threads, rather than decomposing
the work strictly by ant.

Secondly, the distribution of the lengths of the nearest neigh-
bour lists (in terms of the number of vectors required to store the
nearest neighbours) is another potential source of load imbalance.
The greedy tour scheme used here to reorder the vertices may be
improved upon. It is possible, for example, that a distribution of list
lengths with a larger mean, but smaller variance, could give shorter
execution times, due to improved load balancing. A full analysis of
the relationship between this distribution and the load balance is
another area for future work.

REFERENCES
[1] Alberto Cano, Juan Luis Olmo, and Sebastián Ventura. Parallel multi-objective ant

programming for classification using GPUs. Journal of Parallel and Distributed
Computing, 73(6):713 – 728, 2013.

[2] José M Cecilia, José M García, Manuel Ujaldón, Andy Nisbet, and Martyn Amos.
Parallelization strategies for Ant Colony Optimisation on GPUs. In Parallel and
Distributed ProcessingWorkshops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, pages 339–346, May 2011.

[3] José M Cecilia, Andy Nisbet, Martyn Amos, José M García, and Manuel Ujaldón.
Enhancing GPU parallelism in nature-inspired algorithms. The Journal of Super-
computing, 63(3):773–789, 2013.

[4] José M Cecilia, José M García, Andy Nisbet, Martyn Amos, and Manuel Ujaldón.
Enhancing data parallelism for Ant Colony Optimization on GPUs. Journal of
Parallel and Distributed Computing, 73(1):42–51, 2013.

[5] Darren M Chitty. Applying ACO to large scale TSP instances. In UK Workshop
on Computational Intelligence, pages 104–118. Springer, 2017.

[6] Laurence Dawson. Generic Techniques in General Purpose GPU Programming with
Applications to Ant Colony and Image Processing Algorithms. PhD thesis, Durham

VCSS for Parallel ACO GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

University, UK., 2015.
[7] Laurence Dawson and Iain A Stewart. Candidate set parallelization strategies for

Ant Colony Optimization on the GPU. In International Conference on Algorithms
and Architectures for Parallel Processing, pages 216–225. Springer, 2013.

[8] Laurence Dawson and Iain A Stewart. Improving Ant Colony Optimization
performance on the GPU using CUDA. In 2013 IEEE Congress on Evolutionary
Computation, pages 1901–1908, June 2013.

[9] Audrey Delévacq, Pierre Delisle, Marc Gravel, and Michaël Krajecki. Parallel
ant colony optimization on graphics processing units. Journal of Parallel and
Distributed Computing, 73(1):52–61, 2013.

[10] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization.
IEEE Computational Intelligence Magazine, 1(4):28–39, 2006.

[11] Marco Dorigo and Luca Maria Gambardella. Ant colonies for the Travelling
Salesman Problem. BioSystems, 43(2):73–81, 1997.

[12] Marco Dorigo and Luca Maria Gambardella. Ant colony system: a cooperative
learning approach to the Traveling Salesman Problem. IEEE Transactions on
Evolutionary Computation, 1(1):53–66, Apr 1997.

[13] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. Bradford Company,
Scituate, MA, USA, 2004.

[14] Jie Fu, Lin Lei, and Guohua Zhou. A parallel Ant Colony Optimization algorithm
with GPU-acceleration based on All-In-Roulette selection. In Advanced Computa-
tional Intelligence (IWACI), 2010 Third International Workshop on, pages 260–264,
2010.

[15] Fred Glover. Tabu search – Part I. ORSA Journal on computing, 1(3):190–206,
1989.

[16] Wang Jiening, Dong Jiankang, and Zhang Chunfeng. Implementation of Ant
Colony Algorithm based on GPU. In CGIV ’09: Proceedings of the 2009 Sixth
International Conference on Computer Graphics, Imaging and Visualization, pages
50–53, Washington, DC, USA, 2009. IEEE Computer Society.

[17] Huw Lloyd and Martyn Amos. A highly parallelized and vectorized implementa-
tion of Max-Min Ant System on Intel Xeon Phi. In 2016 IEEE Symposium Series
on Computational Intelligence (SSCI), pages 1–6, Dec 2016.

[18] Huw Lloyd and Martyn Amos. Analysis of independent roulette selection in
parallel Ant Colony Optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’17, pages 19–26, New York, NY, USA, 2017.
ACM.

[19] Marcus Randall and James Montgomery. Candidate set strategies for Ant Colony
Optimisation. In International Workshop on Ant Algorithms, pages 243–249.
Springer, 2002.

[20] Gerhard Reinelt. TSPLIB - a Traveling Salesman Problem library. ORSA Journal
on Computing, 3(4):376–384, 1991.

[21] Rafał Skinderowicz. The GPU-based parallel Ant Colony System. Journal of
Parallel and Distributed Computing, 98(Supplement C):48 – 60, 2016.

[22] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod, Sun-
daram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu. Knights
Landing: Second-generation Intel® Xeon Phi product. IEEE Micro, 36(2):34–46,
2016.

[23] Thomas Stützle. ACOTSP. Available at http://iridia.ulb.ac.be/~mdorigo/ACO/
downloads/ACOTSP-1.03.tgz (2005/06/12).

[24] Thomas Stützle. Parallelization strategies for Ant Colony Optimization. In PPSN
V: Proceedings of the 5th International Conference on Parallel Problem Solving from
Nature, pages 722–731, London, UK, 1998. Springer-Verlag.

[25] Thomas Stutzle and Marco Dorigo. A short convergence proof for a class of ant
colony optimization algorithms. IEEE Transactions on Evolutionary Computation,
6(4):358–365, 2002.

[26] Thomas Stützle and Holger Hoos. MAX-MIN ant system and local search for the
Traveling Salesman Problem. In Evolutionary Computation, 1997., IEEE Interna-
tional Conference on, pages 309–314, Apr 1997.

[27] Thomas Stützle and Holger H Hoos. Max–min ant system. Future Generation
Computer Systems, 16(8):889–914, 2000.

[28] Thomas Stützle, Manuel López-Ibáñez, and Marco Dorigo. A concise overview of
applications of Ant Colony Optimization. In James J. Cochran, Louis A. Cox, Pinar
Keskinocak, Jeffrey P. Kharoufeh, and J. Cole Smith, editors, Wiley Encyclopedia
of Operations Research and Management Science. John Wiley & Sons, Inc., 2010.

[29] Thomas Stützle and Marco Dorigo. Ant Colony Optimization. 01 2004.
[30] Xinmin Tian, Hideki Saito, Serguei V Preis, Eric N Garcia, Sergey S Kozhukhov,

Matt Masten, Aleksei G Cherkasov, and Nikolay Panchenko. Practical SIMD
vectorization techniques for Intel® Xeon Phi coprocessors. In Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th
International, pages 1149–1158. IEEE, 2013.

[31] Felipe Tirado, Ricardo J. Barrientos, Paulo González, and Marco Mora. Efficient
exploitation of the Xeon Phi architecture for the Ant Colony Optimization (ACO)
metaheuristic. The Journal of Supercomputing, 73(11):5053–5070, Nov 2017.

[32] Felipe Tirado, Angelica Urrutia, and Ricardo J. Barrientos. Using a coprocessor
to solve the Ant Colony Optimization algorithm. In 2015 34th International
Conference of the Chilean Computer Science Society (SCCC), pages 1–6, Nov 2015.

Appendix D

Paper: Scaling Techniques for Parallel
Ant Colony Optimization on Large
Problem Instances

170

Scaling Techniques for Parallel Ant Colony Optimization on
Large Problem Instances

Joshua Peake
Centre for Advanced Computational Science

Manchester Metropolitan University
Manchester, United Kingdom

J.Peake@mmu.ac.uk

Martyn Amos
Department of Computer and Information Sciences

Northumbria University
Newcastle upon Tyne, United Kingdom

martyn.amos@northumbria.ac.uk

Paraskevas Yiapanis
Centre for Advanced Computational Science

Manchester Metropolitan University
Manchester, United Kingdom

P.Yiapanis@mmu.ac.uk

Huw Lloyd
Centre for Advanced Computational Science

Manchester Metropolitan University
Manchester, United Kingdom

Huw.Lloyd@mmu.ac.uk

ABSTRACT
Ant Colony Optimization (ACO) is a nature-inspired optimization
metaheuristic which has been successfully applied to a wide range
of different problems. However, a significant limiting factor in terms
of its scalability is memory complexity; in many problems, the
pheromone matrix which encodes trails left by ants grows quadrat-
ically with the instance size. For very large instances, this mem-
ory requirement is a limiting factor, making ACO an impractical
technique. In this paper we propose a restricted variant of the
pheromone matrix with linear memory complexity, which stores
pheromone values only for members of a candidate set of next
moves. We also evaluate two selection methods for moves outside
the candidate set. Using a combination of these techniques we
achieve, in a reasonable time, the best solution qualities recorded
by ACO on the Art TSP Traveling Salesman Problem instances, and
the first evaluation of a parallel implementation of MAX-MIN

Ant System on instances of this scale (≥ 105 vertices). We find that,
although ACO cannot yet achieve the solutions found by state-of-
the-art genetic algorithms, we rapidly find approximate solutions
within 1 − 2% of the best known.
ACM Reference Format:
Joshua Peake, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd. 2019.
Scaling Techniques for Parallel Ant Colony Optimization on Large Problem
Instances. In Genetic and Evolutionary Computation Conference (GECCO ’19),
July 13–17, 2019, Prague, Czech Republic. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3321707.3321832

1 INTRODUCTION
Ant Colony Optimization (ACO) [15] is a population-based opti-
mization technique based on the foraging behaviour of ants [12, 13].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00
https://doi.org/10.1145/3321707.3321832

The technique represents ants as software agents that traverse
a problem space and construct multiple solutions. Ants allocate
“pheromone” to each component of a good solution, and this signal
concentration is used by following ants to inform decisions. Over
time, this process of positive feedback causes the ant population to
converge to a high-quality solution.

Multiple ACO variants have been developed; these are often
specifically designed to perform more efficiently on certain prob-
lems, or with certain hardware in mind. We focus on one of these,
MAX-MIN Ant System (MMAS) [30], due to its established
good performance in terms of parallelization. MMAS differs from
the original ACO, known as Ant System [16], in two main ways.
Firstly, maximum and minimum pheromone levels are enforced in
order to limit the effects of a phenomenon known as stagnation.
Secondly, the act of pheromone distribution is restricted to only the
best performing ant, as opposed to Ant System and other variants,
which allow all ants to distribute pheromone.

Parallelization of the ACO algorithm is a well-researched area,
due to the inherently distributed nature of the technique. While
early parallel ACO techniques largely made use of distributed sys-
tems [5, 8, 14, 26, 28, 34] , more recent work has investigated use of
GPUs, with Nvidia’s CUDA framework [6, 7, 27] and Intel’s range
of manycore CPUs, Xeon Phi [19, 25, 32, 33] receiving particular
attention.

The Travelling Salesman Problem (TSP) was the first problem
used to demonstrate ACO, and is still commonly used for bench-
marking new techniques. While ACO is capable of finding good
quality solutions for TSP instances of varying sizes, it has not been
used on instances larger than a few tens of thousands of cities.
This is due to its reliance on a pheromone matrix, the data struc-
ture containing pheromone levels for (in this example) each pair of
cities. The size of this matrix grows quadratically with the instance
size. Assuming that a pheromone level is stored as a 32-bit float,
a TSP instance of size 10,000 requires a matrix occupying around
380MB, which can be easily handled by most modern hardware.
However, for a 100,000 city TSP, approximately 37GB is required,
which is much less practical. In order to allow ACO to effectively
solve these large-scale instances, we need to make fundamental
changes to the ACO data structure. Previous work in this area has

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Joshua Peake, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd

focused on adopting a population-based ACO approach [9, 17]. In
this paper, we investigate an combination of alternative techniques
which allow us to use ACO to effectively solve large-scale TSPs.

While reducing the size of the pheromone matrix is a significant
step towards increasing the practicality of ACO for very large prob-
lems, the use of candidate sets is also crucial for reducing execution
time [10]. These restrict the number of options available to an ant
at any time step to a pre-determined number of nearest neighbours.
This significantly reduces processing time without impacting on
solution quality.

In this paper, we demonstrate the the effectiveness of combining
candidate sets with a reduced pheromone matrix, by restricting the
matrix to each city’s group of nearest neighbours (as opposed to
all pairs of cities). The fundamental underlying assumption is that
high quality solutions to the TSP generally avoid long-range jumps
between cities. This restriction allows our ACO method to solve,
to near optimality, TSP instances that are significantly larger than
those previously solved using this method, without compromising
the basic principles of ACO. Our principal contributions are: (1) a
scalable method for pheromone matrix representation with linear
memory complexity, based on a candidate set approach, (2) two
alternative fallback techniques for choosing edges outside of the
candidate set, and (3) the first evaluation of MAX-MIN Ant
System on large (> 105 city) TSP instances.

The rest of the paper is organized as follows: in Section 2 we
describe the background to our method and related work, and
in Section 3 we describe our new methods. We give the results
of experimental investigations in Section 4, before concluding in
Section 5 with an assessment of our method, and a consideration
of how it may be more broadly applied.

2 BACKGROUND AND RELATED WORK
Previous work on improving the efficiency of ACO may be parti-
tioned into three main areas of focus: (1) parallelization, (2) candi-
date sets, and (3) pheromone matrix reduction. Most existing work
has concentrated on the first two areas; here, we focus on the third.
However, we first give a brief overview of relevant aspects of ACO
parallelization.

A fundamental component of any ACO algorithm is selection of
the next solution component (e.g., the next edge to traverse) for
each individual ant. This is done probabilistically, according to both
pheromone concentrations and any local rules associated with the
problem. Roulette Wheel selection is traditionally used by ants to
choose their next edge, with each edge receiving a “slice” of the
roulette wheel that is proportionate to its “weight”, a parameter
determined by a combination of pheromone level and distance.
While edges with a higher weight have a higher chance of being
selected, it is still possible for the ant to travel to any city that hasn’t
yet been visited. This technique is straightforward to implement
sequentially, but is difficult to parallelize.

The Independent Roulette (I-Roulette) [6] technique was a sig-
nificant development in parallel ACO on GPU, as it substituted the
traditional Roulette Wheel (i.e. fitness proportionate) method of
edge selection with a data-parallel approach. An alternative method,
Double-Spin Roulette (DSRoulette) [11], aimed to preserve the ex-
act proportionality of the original roulette (unlike I-Roulette, in

which the proportional relationship between probability and edge
weights is lost).

I-Roulette was later adapted to make use of the vectorization
potential provided by Intel’s Xeon Phi manycore co-processor, via
its Vector Processing Unit (VPU) and IMCI vector instructions. This
vectorized version of I-Roulette, known as vRoulette-1 [19], enabled
I-Roulette to be used on many-core SIMD (Single Instruction, Multi-
ple Data) architectures such as Intel Xeon Phi. A vectorized version
of DSRoulette, vRoulette-2, also performed better than the original
implementation. Similarly vectorized I-Roulette implementations,
UV-Roulette [33] and I-Roulette v2 [24], have been developed, as
well as a vectorized implementation of the traditional Roulette
Wheel approach [24].

We now consider the second technique for improving ACO effi-
ciency. Candidate sets are widely used with ACO to reduce compu-
tation time by only allowing ants to select from a pre-determined
number of their nearest neighbours. While vRoulette-1 made use of
candidate sets, the focus was on improving solution quality by en-
suring ants only visited nearby cities rather than on reducing execu-
tion time. The Vectorized Candidate Set Selection technique (VCSS)
[25] focused on using candidate sets to improve execution time
by introducing a Nearest Neighbour object to the ACO algorithm.
Designed to take advantage of the AVX512 instruction set, which re-
placed IMCI in the Knight’s Landing generation of Xeon Phi, VCSS
operates two separate selection methods: a candidate set roulette
(CSRoulette) and a fallback method. Both methods are very similar
to vRoulette-1, with the only difference being that CSRoulette only
selects from available nearest neighbour edges rather than selecting
from every available edge. If no nearest neighbour edges are avail-
able the fallback method is used, which is identical to vRoulette-1.
VCSS showed a significant speedup over vRoulette-1, and more
details of the technique are given in Section 2.2.

In this paper, we also focus on the memory complexity of ACO,
thus addressing the third highlighted opportunity for improvement.
The baseline memory requirement for a pheromone matrix on a
problem with n vertices is O(n2), which becomes prohibitive (on
current hardware) for solving instances with∼ 105 vertices or larger.
One previous attempt to overcome this restriction is Population-
based ACO (P-ACO) [17], although this was motivated by a need
to solve dynamic problems, rather than very large problems per se.
P-ACO removes the pheromone matrix entirely, replacing it with a
population of good tours that are deleted once they reach a certain
“age”. Rather than using pheromone in decisionmaking, ants consult
the population of good tours when selecting the next city to visit. P-
ACO inspired the PartialACO technique [9], which instead replaced
the pheromone matrix with local memory for each ant (storing the
best tour found by that ant). PartialACO also represents a radical
departure from the traditional ACO tour construction phase, by
having each ant change only part of a good previous tour, rather
than producing a new tour at every iteration. At the start of an
iteration, an ant selects a starting city and a number of cities to
retain from the local best tour. The PartialACO technique enabled
the first recorded results for ACO on four of the well-known Art
TSPs, six very large TSP instances ranging from 100,000 to 200,000
cities. PartialACO found tours that were within 7% of the best
known, in times ranging from around 1 hour to around 7.4 hours.
However, although this technique performs well on very large TSP

Scaling Parallel ACO for Large Problem Instances GECCO ’19, July 13–17, 2019, Prague, Czech Republic

instances, we will demonstrate that it is still possible to achieve
improved solution qualities whilst retaining the core features of
the traditional ACO algorithm.

In the rest of this Section we give an overview of the MMAS
variant of ACO, which forms the basis of our work, and provide
more details of the VCSS technique.

2.1 MAX-MIN Ant System
The ACO algorithm for the Travelling Salesman Problem may
be divided into two main phases: (1) tour construction, and (2)
pheromone update. During the tour construction phase, each of
them ants randomly selects a starting city, and moves across the
graph to gradually build a tour. At each iteration, an ant uses both
pheromone concentration and Euclidean distance between cities to
make a probabilistic selection of the next city to visit. The probabil-
ity of ant k at city i choosing to move to city j is given by:

pki, j =

[τi, j]α [ηi, j]β∑

i∈Nk
i
[τi, j]α [ηi, j]β

i ∈ N k
i

0 otherwise.
(1)

Here, ηi, j = 1/di, j where di, j is the length of edge (i, j), τi, j is
the pheromone value for edge (i, j) and N k

i is the feasible region for
i . The feasible region (the list of cities that ant k is able to visit) is
derived from a tabu list structure containing a list of cities already
visited by the ant (ants may not revisit cities on the tabu list).

Once an ant has visited each city once, it returns to the starting
city. The ant then begins the pheromone update stage. TheMMAS
update phase differs from other ACO variants in two ways: (1) only
the global-best or iteration-best ant deposits pheromone, rather than
every ant; and (2) pheromone is clamped between a minimum and
maximum bound (hence the name of the method) in order to reduce
the possibility of stagnation. The first difference has significant im-
plications for our own work, as restricting pheromone deposition to
a single ant makes the technique amenable to parallelization (since
there is no need for multiple write access to the pheromone matrix).
In general, the amount of pheromone deposited is proportional to
the quality of the solution: in the case of the TSP, the amount is
inversely proportional to the tour length, since shorter tours are
better. The pheromone is deposited according to:

τi, j = τi, j + ∆τi, j∀(i, j) ∈ L (2)
where L is the set of edges in the complete graph and ∆τi, j is

the amount of pheromone deposited on edge (i, j), given by

∆τi, j =

{
1/C if edge(i, j) ∈ T

0 otherwise
(3)

where T is the set of edges in the iteration-best or best-so-far
tour, andC is the total length of this tour. Once pheromone has been
distributed, the next step is pheromone evaporation, during which
the global pheromone is reduced by a constant fraction, allowing
sub-optimal solutions to be “forgotten” over time. The pheromone
is evaporated using the rule

τi, j = (1 − ρ)τi, j∀(i, j) ∈ L (4)
where ρ ∈ [0, 1] controls the evaporation rate.

In MMAS pheromone values in are “clamped” between two
limits, τmin and τmax , which are defined by

τmax =
1

pCbest
;τmin = τmax

2(1 − a)

a(nneighbours + 1)
(5)

where nneighbours is the number of nearest neighbours and
a = exp(log(0.05)/n).

2.2 Vectorized Candidate Set Selection
As previously noted, while the traditional Roulette Wheel selection
method performs well for serial implementations of ACO, it is a
difficult technique to parallelize. Although several parallel alterna-
tives exist, our selection method is based on Independent Roulette
(I-Roulette) [6]. Here, the weight of each edge available to an ant is
multiplied by a uniform random deviate between 0 and 1, and the
edge with the highest product of weight and random number is se-
lected. While higher-weighted edges are more likely to be selected
than lower-weighted edges, the selection probabilities are not di-
rectly proportional to weight, and I-Roulette selection is greedier
than the standard roulette wheel [20].

The I-Roulette technique was later vectorized as vRoulette-1
[19] which maintains the fundamentals of I-Roulette, but makes
use of vectorization provided by the Xeon Phi. Weights and random
numbers are loaded into 16-wide vectors and multiplied simulta-
neously using the IMCI instruction set. A highest weights vector
is maintained, storing the highest weight from each lane of the
vector. Once every weight has been multiplied, the highest weight
vector is reduced, with the result of this being the highest value
throughout the entire process. The city associated with this value
becomes the next to be visited.

vRoulette-1 was improved further with the development of the
Vectorized Candidate Set Selection (VCSS) [25] technique. The sig-
nificant difference between the two is the use of a new candidate
set structure in VCSS. An array of nearest neighbour objects, each
of which contains the index of one or more nearest neighbours, is
associated with each city. When an ant moves between cities, the
nearest neighbour object array of the current city is loaded directly
into a modified vRoulette-1 which performs the same actions as the
standard method, but which operates only on nearest neighbours
rather than on every possible vertex. If no nearest neighbour cities
are available, the standard vRoulette-1 is performed as a fallback.
To the best of our knowledge, VCSS is the best-performing parallel
implementation of ACO, and we therefore use it as the basis of the
work presented here.

3 RESTRICTED PHEROMONE MATRIX
Removing or significantly adapting the pheromone matrix is an
important and necessary step towards establishing ACO as an effec-
tive solution for very large problems. Previous work on P-ACO [17]
and PartialACO [9] focused on removing the pheromone matrix
entirely, relying instead on a population of solutions. The key con-
tribution of the current paper is the creation of a new, candidate-set
based memory structure, the Restricted Pheromone Matrix, to re-
duce the memory complexity of ACO from quadratic to linear in
instance size, thus allowing large problem instances to be solved
in a reasonable time. This data structure stores only the weights

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Joshua Peake, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd

Table 1: Data requirements for Pheromone Matrix and Re-
stricted PheromoneMatrix on various TSP sizes, with a near-
est neighbour list size of 32.

Instance Size Pheromone Matrix Restricted Matrix
100 39 KB 12.5 KB
1000 3.8 MB 125 KB

10,000 381.5 MB 1.22MB
100,000 37.3 GB 12.2 MB

between the current vertex and its nearest neighbours, as well as
other vertices stored in the nearest neighbour structure for efficient
vectorization. If nNN is the number of nearest neighbours, n is
the number of vertices and v is the vector size available on our
hardware, the restricted pheromone matrix requires n × nNN ×v
real numbers, compared to n2 for the full pheromone matrix. This
significantly reduces the memory requirements of ACO, especially
on very large instances, as demonstrated in Table 1. For a 100,000
city TSP instance, the restricted matrix occupies only 0.26% of the
space required by the standard pheromone matrix.

In order to accelerate the calculation, we also store a distance ma-
trix for vertices represented in the pheromone matrix. The edgeDist
matrix stores the distances between each vertex used for the weight
calculation, and requires the same amount of memory as the re-
stricted pheromone matrix. For a constant vector width and nearest-
neighbour list size, the memory complexity of the proposed algo-
rithm is therefore O(n).

3.1 Tour Construction
The tour construction phase is parallelized using OpenMP, with
each ant being allocated to an available thread. No synchronization
is required, as ants write only to local memory during a tour, and
global memory is only written to once per iteration, when all ants
have completed their tours. Each ant selects a starting vertex ran-
domly, and then repeatedly calls the edge selection function. The
first stage of the edge selection is similar to VCSS, with the only
difference being that weights are directly loaded (rather than hav-
ing to check a nearest neighbour data structure to look up indices
in the matrices), since the pheromone and distance matrices only
contain nearest neighbours. The process of applying the nearest
neighbour mask to obtain a vector of valid weights is shown in
Figure 1.

Once this vector of valid weights has been filled, the tabu mask
is then applied in order to filter out any cities that have already
been visited. The weights are then multiplied by a vector of random
numbers between 0 and 1. The randomized weights are then com-
pared with the running maximum weights vector on a lane-by-lane
basis, with larger values in the current weights vector replacing
values in their line in the maximum weights vector. This process is
repeated until all the vectors of weights in the nearest neighbour
list have been considered. We then perform a reduction on the
maximum weights vector to find the highest overall weight. The
index associated with this weight is then used as the index of the
next visited city. At this point, it is possible that no city is selected,
if all the cities in the nearest neighbour list are tabu; in this case,

Figure 1: Applying theNNmask tofilter out non-NNweights

one of the two “fallback” methods described in Sections 3.2 and 3.3
is used to select the next city.

The process continues until every city has been visited, at which
point the ant returns to the starting city. Further details about the
VCSS technique can be found in [25]; while VCSS falls back to v-
Roulette1 when no nearest neighbour vertices are available, here
we propose two alternative fallback methods.

3.2 Heuristic Fallback
In standard ACO, the highest-weighted vertex is usually chosen
when all nearest neighbours are tabu. When using the restricted
pheromone matrix, however, no pheromone is available for ver-
tices outside the nearest neighbour list. The first fallback algorithm
we propose is to select the nearest vertex not yet visited. Since the
pre-computed distance matrix also extends only to the nearest
neighbour list, the distances must be directly computed from the
vertex coordinates. To avoid having to perform a square root cal-
culation, we therefore look for the vertex with the lowest squared
distance to the current vertex.

3.3 Pheromone Map Fallback
The Pheromone Map Fallback method aims to faithfully reproduce
the MMAS algorithm by ensuring that all edges make use of a
varying level of pheromone (not just the nearest neighbour edges),
but without compromising on memory requirements. We make
use of a C++ map object (an associative array), which stores data
in key-value pairs. This stores a pheromone value for every edge
that forms part of a best ant’s tour and which is not a nearest
neighbour edge (a hash map has previously been used to replace
the pheromone matrix [3]).

The key for map entries objects is a hash value that uniquely
identifies one edge, and the value is the weight of that edge. The
hash value is calculated with the simple formula of (A × N) + B,
where A is the current vertex, B is the next vertex, and N is the
overall number of vertices (A and B are swapped if B is a higher
index than A).

Since this fallback is used only when all nearest neighbours are
tabu, we may assume that if an edge is found in the map then it has
an associated pheromone value, otherwise the pheromone value
is taken as τmin . Each vertex is iterated over, and the hash value

Scaling Parallel ACO for Large Problem Instances GECCO ’19, July 13–17, 2019, Prague, Czech Republic

corresponding to the edge is looked up in the map. The edge weight
is computed using the pheromone and Euclidean distance, and
compared with the current highest weight, becoming the highest
weight if it is greater. After iterating over all vertices, the vertex
associated with the overall highest weight is visited next.

3.4 Pheromone Distribution
The pheromone distribution phase of the algorithm differs depend-
ing on the fallback method that is used in the tour construction
phase. If the Heuristic fallback is used, pheromone levels on edges
between nearest neighbours are adjusted. Edges traversed by the
best ant in the current iteration have their pheromone levels in-
creased by an amount determined by the pheromone deposit for-
mula given in Section 2.1. However, as pheromone is not stored for
non-nearest-neighbour values, no pheromone is deposited on those
edges. While pheromone value is stored for certain non-nearest
neighbour vertices that are in the NN object of NN values, these
weights are never actively used, so their pheromone is not updated.
Pheromone reduction, as well as clamping between maximum and
minimum values, takes place after the pheromone has been de-
posited.

The Pheromone Map fallback pheromone distribution phase
includes the steps taken when using the Heuristic fallback, but
includes an additional step. If pheromone is to be distributed on an
edge where at least one vertex is a non-nearest-neighbour value,
a new entry is created in the pheromone map. If the hash already
exists in the map, the associated pheromone value is increased, but
if it does not exist, a new map entry is created with the hash as the
key. As with the Restricted Pheromone Matrix, the map is iterated
over, and every value in the map is evaporated and clamped.

3.5 Local Search
Variants of the local search [2] technique have been successfully
paired with ACO implementations on multiple occasions [9, 15, 22].
Local search is used with ACO to improve completed tours by find-
ing the local optimum with respect to some neighbourhood (2-opt,
2.5-opt or 3-opt). The 3-opt operator removes three edges in a tour,
and evaluates the seven possible ways of reconnecting the tour. If
any of these seven possibilities lead to a shorter tour distance, the
original three edges are replaced with the new optimum configu-
ration, and this process is repeated until no further improvement
is found. Here, we use the 3-opt local search code from ACOTSP
[29], and apply this operator to all tours created in an iteration. The
local search phase is parallelized across the threads owned by the
ants; each ant performs local search on its own thread at the end of
tour construction.

4 EXPERIMENTAL RESULTS
In this Section, we present the results of experiments to evaluate
the two proposed methods, and compare the results of the better-
performing of the two with the published results for PartialACO
and P-ACO, which are the only other ACOmethods in the literature
which have been applied to large-scale TSP instances. We compare
our results on solution quality with published results using P-ACO
and PartialACO and, although this is not a direct comparison since
the original runs used different hardware, these published results

Table 2: Solution quality and mean execution time results
for Heuristic (HF) and PheromoneMap (PMF) fallbacks over
10 runs each of 1000 iterations on the mona-lisa100k in-
stance. Solution quality is measured as the percentage dif-
ference of tour length from best known.

Solution Quality (%)
Method Min Median Mean Max t/hrs

HF 1.684 1.704 1.698 1.712 1.07
PMF 1.689 1.7 1.7 1.709 5.15

represent the best solutions found to date using ACO on these
large instances. Experiments on the Heuristic and Pheromone Map
fallbacks were run on a machine with an Intel® Xeon E5-2640 v2
processor with 20 cores of 2 threads each (for a total of 40 threads),
and a clock speed of 2.4 GHz. The code was compiled using the
GNU C++ compiler (g++), with O2 optimization enabled.

4.1 ACO Parameters and Problem Instances
For each experiment, we use 40 ants. Conveniently, this number
is equal to both the number of threads we have available, and the
generally recommended number of ants [21]. We use the MMAS
parameter values of α = 1, β = 2, ρ = 0.02. Each ant has a Nearest
Neighbour list of size 32, in line with the recommended list size in
[31]. Each run of our algorithm consists of 1000 iterations.

The problem instances used in our experiments are taken from
the well-known Art TSP collection [1] of Traveling Salesman Prob-
lem instances. We used all six of the instances, which are shown
in Figure 2. We compare our results with the best-known tour for
each of these instances. All of the best known solutions were found
using a genetic algorithm with Edge-Assembly Crossover (EAX)
[18].

4.2 Fallback Comparison
Our first experiment was performed to determine which of our two
fallback methods performs best, and to evaluate whether or not the
use of the heuristic fallback (which disregards the pheromone on
edges outside the candidate set) has a detrimental effect on solution
quality.

We carried out 10 runs of 1000 iterations with each fallback
method, using the mona-lisa100k instance. The results are given
in Table 2. We find that the solution qualities for both fallback
methods are consistent with each other, and within each ensemble
of runs; in all cases the tours found are around 1.7% longer than the
best known. AWilcoxon signed-rank test on the two sets of solution
qualities gives a p value of 0.959, indicating that our data cannot
support the conclusion that one fallback produces a better solu-
tion quality on average. However, the Heuristic fallback constructs
tours in significantly shorter time, with the runs taking on average
around an hour, compared to around 5 hours for the Pheromone
Map fallback. The extra overhead in querying the pheromone map
dominates the time to solution in this case.

Figure 3 shows themeanmemory consumption of the pheromone
map as a function of iteration. Although this grows steadily, the

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Joshua Peake, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd

Figure 2: Best known tours for the Art TSP instances:
mona-lisa100k (top left), vangogh120k (top right), venus140k
(middle left), pareja160k (middle right), courbet180k (bot-
tom left) and earring200k (bottom right).

map consumes a relatively small part of the overall memory budget
for pheromone data (less than 1 MB out of a total of 13 MB).

4.3 Solution Quality
While we see no significant difference between the tour lengths for
either fallback method, the difference in execution time makes the
Heuristic fallback a much more practical method for evaluating our
restricted pheromone matrix on the five larger Art TSP instances.

For each instance we performed ten runs of 1000 iterations. We
compare our solutions with those found by PartialACO and P-
ACO [9], where these exist. Our technique produces solutions that
are approximately 1-2% over the shortest recorded tours for these
instances, which is a significantly smaller difference than P-ACO
and PartialACO (see Figure 4 for a comparison). It is difficult to
directly compare solution times due to hardware differences, and
the fact that the PartialACO technique does not create full tours
for each iteration, but, for completeness, a comparison of execution
times is given in Table 3. We can at least say that these are broadly

Figure 3: Pheromone map size over time

Figure 4: Plot of the solution quality difference between
P-ACO, PartialACO (results taken from [9] and Restricted
Pheromone Matrix (our experiments) against shortest
known tour. No P-ACO or PartialACO results are available
for pareja160k and courbet180k.

comparable times to solution, in both cases using recent commodity
hardware.

Figure 5 plots solution quality over time for each of the instances.
Although small gains are still being made when our runs are termi-
nated, in all cases the solutions are well converged.

Scaling Parallel ACO for Large Problem Instances GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Table 3: Execution times for PartialACO and Restricted
Pheromone Matrix.

Instance Execution Time (Hours)
PartialACO Restricted Matrix

mona-lisa100k 1.07 1.36
vangogh-120k 1.45 1.92

venus140k 2.09 2.63
pareja160k N /A 3.45

courbet180k N /A 4.5
earring200k 5.06 6

4.4 Discussion
We have demonstrated the feasibility of scaling up ACO to solve
large (> 105 city) instances of TSP, and shown that ACO can pro-
duce tours within 2% of the best known on a selection of well-
known large instances. Our code runs in times of order an hour on
commodity hardware, compared to the supercomputing resources
required to find the best-known tours using genetic algorithms[18].
We note that our solution qualities degrade only slightly between
the mona-lisa100k and earring200k instances, with only a mini-
mal difference of ∼ 0.2% (compared to the almost 2% degradation
seen using PartialACO). This consistency of solution qualities sug-
gests that our technique could potentially be used to obtain good
quality tours for problem instances that are even larger than the
Art TSPs.

While it is perhaps intuitively obvious that the Pheromone Map
fallback should produce better quality solutions (due to the avail-
ability of more accurate edge weight information through the use
of pheromone), we find that ignoring pheromone on edges outside
the candidate set has little impact. We should note that, overall,
the fallback rate is very low, with fewer than 5% of tour construc-
tion selections being made using either fallback method. While
pheromone is an integral part of ACO, our experiments suggest
that it is less important when the cities being traveled between
are significantly far apart. Quantifying the effect of pheromone at
varying distances in the nearest-neighbour list is an area for future
work. Given the negligible difference in solution quality, the much
faster execution time of the Heuristic fallback makes it a far more
practical technique than the Pheromone Map fallback.

5 CONCLUSIONS
In this paper we presented a Restricted Pheromone Matrix method
which allows ACO to be used to solve large instances of the TSP, by
reducing the memory complexity from quadratic to linear. We also
presented two selection techniques for cities outside the nearest
neighbour list. By combining the Restricted PheromoneMatrix with
the Heuristic Fallback technique, we found tours that are within 2%
of the best known solutions for the Art TSP instances, a substantial
improvement on previous attempts using ACO. Importantly, our
implementation closely follows the originalMMAS algorithm, and
represents the first evaluation of this algorithm on large instances
of the TSP.

While the substantial reduction inmemory size allows us to solve
much larger instances than previously possible, the time complexity

Figure 5: Solution quality versus iteration for the Art TSP
instances using the heuristic fallback.

of ACO remains a limiting factor. Though the execution time is
greatly reduced through the use of parallel and vector methods
such as the VCSS selection technique, substantial changes to the
core ACO algorithm would be required to reduce this complexity.
However, neither of our fallback techniques currently uses the
vector instructions employed by, for example, I-Roulette and VCSS,
and a significant speedup could be obtained by vectorizing the
fallback algorithms. Future work will focus on this.

Finally, we note that many problems to which ACO has been
successfully applied share with the TSP the properties of quadratic
memory complexity and the use of candidate sets to accelerate
the solution. Examples include the Quadratic Assignment Problem
[21], Resource-constrained project scheduling problems [23], and
vehicle routing problems [4]. The methods presented in this paper
could be also be applied in these cases, where the solution of large
instances is limited by memory.

ACKNOWLEDGEMENTS
We thank René Doursat for useful discussions.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic Joshua Peake, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd

REFERENCES
[1] TSP Art Instances. http://www.math.uwaterloo.ca/tsp/data/art/. Accessed: 2019-

01-30.
[2] Emile Aarts and Jan Karel Lenstra. Local Search in Combinatorial Optimization.

Princeton University Press, 2003.
[3] Enrique Alba and Francisco Chicano. ACOhg: Dealing with Huge Graphs. In

Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’07, pages 10–17, New York, NY, USA, 2007. ACM.

[4] John E. Bell and Patrick R. McMullen. Ant Colony Optimization Techniques for
the Vehicle Routing Problem. Advanced Engineering Informatics, 18(1):41 – 48,
2004.

[5] Bernd Bullnheimer, Gabriele Kotsis, and Christine Strauß. Parallelization Strate-
gies for the Ant System. InHigh Performance Algorithms and Software in Nonlinear
Optimization, pages 87–100. Springer, 1998.

[6] José M. Cecilia, José M. García, Andy Nisbet, Martyn Amos, and Manuel Ujaldón.
Enhancing Data Parallelism for Ant Colony Optimization on GPUs. Journal of
Parallel and Distributed Computing, 73(1):42–51, 2013.

[7] José M. Cecilia, José M. García, Manuel Ujaldón, Andy Nisbet, and Martyn Amos.
Parallelization Strategies for Ant Colony Optimization on GPUs. In Proceedings
of the 25th IEEE/ACM International Parallel and Distributed Processing Symposium
(IPDPS 2011), pages 334–341, 2011.

[8] Ling Chen and Chunfang Zhang. Adaptive Parallel Ant Colony Algorithm. In
International Conference on Natural Computation, pages 1239–1249. Springer,
2005.

[9] Darren M. Chitty. Applying ACO to Large Scale TSP Instances. In UK Workshop
on Computational Intelligence, pages 104–118. Springer, 2017.

[10] Laurence Dawson and Iain Stewart. Candidate Set Parallelization Strategies for
Ant Colony Optimization on the GPU. In International Conference on Algorithms
and Architectures for Parallel Processing, pages 216–225. Springer, 2013.

[11] Laurence Dawson and Iain Stewart. Improving Ant Colony Optimization Perfor-
mance on the GPU using CUDA. In Evolutionary Computation (CEC), 2013 IEEE
Congress on, pages 1901–1908. IEEE, 2013.

[12] Jean-Louis Deneubourg and Simon Goss. Collective Patterns and Decision-
making. Ethology Ecology & Evolution, 1(4):295–311, 1989.

[13] Jean-Louis Deneubourg, Jacques M. Pasteels, and Jean-Claude Verhaeghe. Proba-
bilistic Behaviour in Ants: a Strategy of Errors? Journal of Theoretical Biology,
105(2):259–271, 1983.

[14] Karl F. Doerner, Richard F. Hartl, Siegfried Benkner, and Maria Lucka. Parallel
Cooperative Savings-based Ant Colony Optimization — Multiple Search and
Decomposition Approaches. Parallel Processing Letters, 16(03):351–369, 2006.

[15] Marco Dorigo and Gianna Di Caro. Ant Colony Optimization: a New Meta-
heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation,
volume 2, 1999.

[16] Marco Dorigo and Luca Maria Gambardella. Ant Colonies for the Travelling
Salesman Problem. BioSystems, 43(2):73–81, 1997.

[17] Michael Guntsch and Martin Middendorf. A population based approach for aco.
InWorkshops on Applications of Evolutionary Computation, pages 72–81. Springer,
2002.

[18] Kazuma Honda, Yuichi Nagata, and Isao Ono. A Parallel Genetic Algorithm
with Edge Assembly Crossover for 100,000-City Scale TSPs. In Evolutionary
Computation (CEC), 2013 IEEE Congress on, pages 1278–1285. IEEE, 2013.

[19] Huw Lloyd and Martyn Amos. A Highly Parallelized and Vectorized Implemen-
tation of Max-Min Ant System on Intel® Xeon Phi™. In 2016 IEEE Symposium
Series on Computational Intelligence (SSCI), pages 1–6. IEEE, 2016.

[20] Huw Lloyd and Martyn Amos. Analysis of Independent Roulette Selection in
Parallel Ant Colony Optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 19–26, New York, New York, USA, 2017. ACM
Press.

[21] Manuel López-Ibáñez, Thomas Stützle, and Marco Dorigo. Ant Colony Optimiza-
tion: A Component-Wise Overview, pages 1–37. Springer International Publishing,
Cham, 2016.

[22] Michalis Mavrovouniotis, Felipe M. Müller, and Shengxiang Yang. Ant Colony
OptimizationWith Local Search for Dynamic Traveling Salesman Problems. IEEE
Transactions on Cybernetics, 47(7):1743–1756, 2017.

[23] Daniel Merkle, Martin Middendorf, and Hartmut Schmeck. Ant Colony Op-
timization for Resource-constrained Project Scheduling. IEEE Transactions on
Evolutionary Computation, 6(4):333–346, 2002.

[24] Victoriano Montesinos and José M. García. Vectorization Strategies for Ant
Colony Optimization on Intel Architectures. Parallel Computing is Everywhere,
32:400, 2018.

[25] Joshua Peake, Martyn Amos, Paraskevas Yiapanis, and Huw Lloyd. Vectorized
Candidate Set Selection for Parallel Ant Colony Optimization. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion, pages 1300–
1306. ACM, 2018.

[26] Marcus Randall and Andrew Lewis. A Parallel Implementation of Ant Colony
Optimization. Journal of Parallel and Distributed Computing, 62(9):1421–1432,
2002.

[27] Rafał Skinderowicz. The GPU-based Parallel Ant Colony System. Journal of
Parallel and Distributed Computing, 98:48–60, 2016.

[28] Thomas Stützle. Parallelization Strategies for Ant Colony Optimization. In
International Conference on Parallel Problem Solving from Nature, pages 722–731.
Springer, 1998.

[29] Thomas Stützle. ACOTSP, 2004. Available from http://www.aco-
metaheuristic.org/aco-code, 2004.

[30] Thomas Stützle and Holger H. Hoos. MAX–MIN Ant System. Future Generation
Computer Systems, 16(8):889–914, 2000.

[31] Thomas Stützle and Marco Dorigo. Ant Colony Optimization. 2004.
[32] Felipe Tirado, Ricardo J. Barrientos, Paulo González, and Marco Mora. Efficient

Exploitation of the Xeon Phi Architecture for the Ant Colony Optimization (ACO)
Metaheuristic. The Journal of Supercomputing, 73(11):5053–5070, 2017.

[33] Felipe Tirado, Angelica Urrutia, and Ricardo J. Barrientos. Using a Coprocessor
to Solve the Ant Colony Optimization Algorithm. In 2015 34th International
Conference of the Chilean Computer Science Society (SCCC), pages 1–6. IEEE, 2015.

[34] Colin Twomey, Thomas Stützle, Marco Dorigo, Max Manfrin, and Mauro Birattari.
An Analysis of Communication Policies for Homogeneous Multi-Colony ACO
Algorithms. Information Sciences, 180(12):2390–2404, 2010.

View publication statsView publication stats

Appendix E

Paper: PACO-VMP: Parallel Ant
Colony Optimization for Virtual
Machine Placement

179

PACO-VMP: Parallel Ant Colony Optimization for
Virtual Machine Placement

Joshua Peakea,∗, Martyn Amosb, Nicholas Costena, Giovanni Masalaa, Huw Lloyda

aDepartment of Computing and Mathematics, Manchester Metropolitan University, Manchester, United Kingdom.
bDepartment of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.

Abstract

The Virtual Machine Placement (VMP) problem is a challenging optimization task that involves the assignment of virtual
machines to physical machines in a cloud computing environment. The effective placement of virtual machines has a significant
impact on the use of resources in a cluster, with a subsequent impact on operational cost and the environment. In this paper,
we present an improved algorithm for VMP, based on Parallel Ant Colony Optimization (PACO), which makes effective use of
parallelization techniques and modern processor technologies. We achieve solution qualities that are comparable with or superior
to those obtained by other nature-inspired methods, with our parallel implementation obtaining a speed-up of up to 2002x over
recent serial algorithms in the literature. This allows us to rapidly find high-quality solutions that are close to the theoretical
minimum number of Virtual Machines.

Keywords: Virtual Machine Placement, Ant Colony Optimization, Swarm Intelligence, Parallel MAX-MIN Ant System, Parallel
Ant Colony Optimization

1. Introduction

Cloud computing [22] is an increasingly prevalent comput-
ing paradigm, in which on-demand computing services (such as
compute or storage) are provided, either privately or commer-
cially, as a service to remote users and organizations. As well as
providing the foundation for modern electronic commerce, the
paradigm is a key enabler for a number of recent developments,
such as the Internet of Things [6], Edge Computing [29], and
Big Data Analytics [2], all of which in turn enable important
societal developments such as Smart Cities [38] and Intelligent
Transportation Systems [21]. However, data centres now repre-
sent a significant proportion of global energy usage; this figure
currently stands at around 2%, and it is set to rise [19]. There is,
therefore, an urgent need to optimize the software infrastructure
underpinning modern data centres.

Resource requirements are expressed in terms of Virtual
Machine (VM) instances, each of which carries its own over-
head. A key benefit of cloud computing for users is its scal-
ability, which is derived from the ability to dynamically in-
crease and reduce resource usage depending on demand. While
this elasticity is beneficial for users, it provides challenges for
cloud computing providers. With constantly changing demand,
the assignment of VMs to servers (or Physical Machines, PMs)
can quickly become inefficient, leading to unnecessary usage of
servers. This can cause providers to use more of their hardware
resources than are necessary, which has both an economic and
environmental impact. The solution to this is virtual machine
consolidation, which allocates currently in-use VMs to as few

∗Corresponding author: j.peake@mmu.ac.uk

PMs as possible. This increases server utilisation and energy ef-
ficiency, and lower power consumption equates to lower energy
costs for the host. This also incentivizes efficient re-allocation
of servers to ensure that they operate in an efficient configu-
ration for a longer amount of time, which leads to a further
reduction in energy usage. A number of algorithms have been
proposed to address this problem; here, we focus on methods
based on Ant Colony Optimization. Importantly, we focus on
parallel Ant Colony Optimization, which takes advantage of
modern multi-core hardware to significantly reduce the time re-
quired to find satisfactory solutions. We make use of the AVX2
instruction set, available on the vast majority of modern CPUs,
to further reduce execution time in an already parallelised ap-
proach.

The rest of the paper is organised as follows: In Section 2
we provide background to the Virtual Machine Placement prob-
lem and existing methods for its solution; in Section 3 we de-
scribe Ant Colony Optimization and our own improved algo-
rithm; in Section 4 we present the results of evaluating our
algorithm against competing techniques, and in Section 5 we
discuss our findings and suggest possible further work.

2. Background & Related Work

In this Section we first describe the Virtual Machine Place-
ment Problem and discuss a range of existing methods for its
solution.

2.1. Virtual Machine Placement Problem
Hardware virtualization in cloud computing allows for many

separate machine instances to be created that are distinct from

Preprint submitted to Elsevier March 24, 2021

the host machine on which they are running. These instances,
known as Virtual Machines (VMs), essentially act as completely
separate computers, distinct from other VMs running on the
same host. Each VM may have its own specific resource re-
quirements (in terms of memory, and so on), and thus occupies
a specific “footprint”. These VMs are managed by a hypervi-
sor running on the host server (also known as a Virtual Machine
Monitor, VMM) which creates, optimizes and monitors the per-
formance of VMs.

Many companies such as Amazon (AWS) and Microsoft
(Azure) provide access to Virtual Machines hosted on their own
servers. Due to the sheer size of these operations, a significant
amount of hardware is required to offer these services to cus-
tomers. In order to minimize, as far as possible, the amount
of costly physical infrastructure required, a process known as
Virtual Machine Migration is often used to move Virtual Ma-
chines from one Physical Machine to another in a seamless
fashion, without disruption for the user [12]. This ability to
migrate VMs therefore offers the possibility of optimization of
their placement on servers. Given a set of VMs, each with a
specific resource footprint, and a number of PMs with individ-
ual capacities, what is the most efficient allocation of VMs to
PMs, such that the number of PMs is minimised? For scenar-
ios where a small number of servers are available, determining
the most efficient allocation for a small number of VMs can be
trivial. However, services such as AWS have millions of users
and hundreds of thousands of servers, which significantly com-
plicates this process.

Virtual Machine Placement (VMP) is an NP-hard problem
[31], in which the aim is to allocate Virtual Machines (VMs) to
Physical Machines (PMs) as efficiently as possible. While VM
features differ between variants of the problem, the two most
typical attributes are memory (RAM) and processing (CPU).
RAM requirements are generally measured in Gigabytes (GB),
while CPU requirements are generally measured in either pro-
cessor cores or MIPS (million instructions per second). Every
VM has its own specific requirement for each, which means it
occupies its own resource “footprint”. The aim of the problem
is to “legally” allocate every VM to a PM in such a way that
the number of PMs required is minimised (that is, this version
of the VMP is a variant of a bin packing problem). Here, we
focus on the static variant of the VMP problem, where we need
to allocate a fixed set of VMs to PMs.

2.1.1. Problem definition
We now formally define the VMP in the form considered in

this paper. An instance of the VMP is defined by a set V of vir-
tual machines V = {Vi, i ∈ [1,Nvm]}with CPU requirements and
RAM requirements Creq

i ,Rreq
i ∀i ∈ [1,Nvm], and a set P of phys-

ical machines P = {P j, j ∈ [1,Npm]} with CPU capacities and
RAM capacities Ccap

j ,Rcap
j ∀ j ∈ [1,Npm]. A feasible solution to

an instance of the VMP is a mapping of the indices of virtual
machines i to physical machines j such that ∀ j,

∑
i Creq

i ≤ Ccap
j

and
∑

i Rreq
i ≤ Rcap

j where the sums are taken over the indices
of all virtual machines i which are mapped to the physical ma-
chine j. The optimization problem seeks to find a feasible solu-
tion which maximizes the number of empty physical machines,

which is equal to the cardinality of the set of indices j which
are not mapped from any virtual machines i.

An illustrative example of an instance of the static VMP
problem is shown in Figure 1, along with its solution. We
have an initially unbounded number of PMs, each with a fixed
CPU and RAM resource, and a number of VMs (VM1-5) to
be allocated to PMs such that the total resource requirement on
each PM does not exceed its capacity, and the number of PMs
is minimised (in this case, to three).

Figure 1: Instance of the Virtual Machine Placement problem, with arrows
showing the solution (i.e., the allocation of VMs to PMs). Virtual Machine
requests are efficiently allocated to Physical Machines

2.2. Existing Methods

As with many combinatorial optimisation problems, a wide
range of techniques exist to find solutions to VMP instances. As
well as heuristic-based approaches such as Next Fit, First Fit,
First Fit Decreasing (FFD) and Best Fit (BF) [13], more ad-
vanced optimization techniques have been successfully applied
to the VMP problem; these include Genetic Algorithms (GA)
[20, 27, 33], Particle Swarm Optimization [36], Q-Learning
[26] and Ant Colony Optimization (ACO) [3, 18, 20, 23].

A recently-published method for VMP, which provides one
of the comparison baselines for the work presented here, is the
IGA-POP genetic algorithm (GA) [1]. This frames the VMP
as a Variable-Sized Bin Packing Problem (VSBPP), a variant
of the Bin Packing Problem in which the container elements
have differing capacities. In IGA-POP, a solution encodes an
ordering of VM assignments to PMs.

The fitness function for this algorithm prioritises low power
usage, and it performs competitively in terms of solution quality
against the BF and First-Fit (FF) greedy algorithms, the Sine-
Cosine Optimization Algorithm (SCA) [28] and a generic GA.
For this reason, we select IGA-POP as being representative of
the “evolutionary” algorithm class of solutions for VMP.

Our own method is based on Ant Colony Optimization (ACO),
[15] which is an optimization metaheuristic modelled on the
foraging behaviour of ants [14]. When ants leave the nest to
look for food, they initially explore the local area; once food is
located by an ant, it returns to the nest. On the return journey,
the ant leaves a pheromone trail, which increases the probabil-
ity that other members of the colony will take that path to the
food source. As each ant follows a trail, it also lays its own trail,
strengthening the pheromone over time and causing more ants
to follow it, in a process of positive feedback reinforcement.

This phenomenon is abstractly replicated by the ACO algo-
rithm, with problem instances generally represented by graph

2

structures, and with multiple “ants” searching for a solution by
traversing its edges according to pheromone concentrations. As
an ant traverses a problem graph, it uses a weighted random
process to select its next move, in which solution components
with a better combination of pheromone and heuristic are more
likely to be selected. Pheromone also evaporates over time,
meaning that unproductive paths are eventually erased (this pre-
venting premature convergence).

Feller et al. [18] presented an early implementation of ACO
for VMP. This treats VMP as a multi-dimensional bin-packing
problem (MDBP), with the Physical Machines representing the
bins, and the VMs representing the item to be packed. As
reducing the number of PMs is the most effective way of re-
ducing energy usage, the objective of the algorithm is to min-
imize the number of bins used. The algorithm fills PMs one-
at-a-time, with each bin being closed when no remaining VMs
can fit inside. Pheromone is deposited on Item-Bin pairs, with
VMs being linked to the specific PM to which they are allo-
cated. The heuristic is based on the total resource utilisation
of the PM if the current VM were to be assigned to it, and the
pheromone deposition is based on the average utilisation of all
utilised PMs. The Feller ACO technique outperforms First Fit
Decreasing (FFD) in terms of energy usage, saving 4.1% on av-
erage. However, execution time for the algorithm is significant,
ranging from 37.46 seconds for 100 VMs to 2.01 hours for 600
VMs.

A more recent ACO-based VMP algorithm is OEMACS
[23]. This adds two Local Search procedures: an exchange pro-
cedure similar to a local search procedure used for Bin Packing
Problems [4], which swaps VMs between PMs in an attempt to
find a more efficient configuration, and an insertion procedure,
which attempts to remove a VM from one PM and insert it into
another. OEMACS outperforms FellerACO in terms of both
solution quality and execution time. We therefore compare our
ACO algorithm against OEMACS, as it stands as a represen-
tative modern ACO algorithm for the VMP. To summarize, we
select for comparison with our algorithm OEMACS and IGA-
POP as representative state of the art ACO and GA solvers for
the VMP, along with a standard heuristic, first-fit.

3. Our ACO algorithm for VMP

3.1. Overview of ACO

As we base our algorithm on ACO, we now provide a brief
overview of its operation. The first ACO algorithm (Ant Sys-
tem) was described by [16]. Many variants of, and applica-
tions for the algorithm have since been developed, however
the key features of ACO which all the variants share are that
the algorithm uses a number of agents (ants) which indepen-
dently construct solutions guided by a global pheromone ma-
trix data structure and in some cases, a problem-specific heuris-
tic. The representation of the solution typically takes the form
of a subset of edges from a graph, and the solution construc-
tion phase of the algorithm involves each ant iteratively travers-
ing the graph, building a feasible solution by selecting from
the available edges at each step. Edges are selected using a

random choice weighted by the pheromone and heuristic val-
ues associated with the available edges. The pheromone up-
date phase of the algorithm aims to associate higher pheromone
values with edges which are included in good solutions, and
to evaporate pheromone from older, less successful, solution
components. We base our algorithm on theMAX-MIN Ant
System (MMAS) variant [32].

Due to the inherently distributed nature of ACO (many “ants”
effectively act independently, informed by their environment),
parallelizing the algorithm is a well-researched subject area.
While the early implementations of parallel ACO made use of
distributed systems [7, 10], the development of Nvidia’s Com-
puted Unified Device Architecture (CUDA) framework led to
a significant number of GPU-based implementations [8, 9, 30].
The CUDA framework gives access to the powerful paralleliza-
tion architecture offered by GPUs for graphics processing, and
utilise it for other purposes. This is known as General-Purpose
computing on Graphics Processing Units (GPGPU). Before CUDA,
distributed systems were the only realistic method of paralleliz-
ing an algorithm, but CUDA allows for parallelization to be per-
formed on a single machine. The rising thread count on modern
processors has also increased the viability of parallel ACO on
CPUs [11, 17, 24, 34, 35], along with the availability of Sin-
gle Instruction Multiple Data (SIMD) vector operations such as
the AVX512 instruction set on Intel Xeon Phi and Xeon proces-
sors. SIMD is a class of parallel computing in which the same
operation is performed on multiple data points simultaneously,
allowing multiple operations to be performed in parallel. In
the case of AVX512 and the previous AVX2 instruction set, 16
and 8 operations respectively can be performed simultaneously.
These instructions can be applied to code that is already paral-
lelized, essentially reducing the number of operations required
by 16x, allowing for an even deeper level of parallel processing.

While running ants in parallel across a graph seems like
a straightforward task, certain aspects of the ACO algorithm
make parallelization difficultm in particular the fundamental
roulette-wheel selection technique used by ACO, where dif-
ferent paths are allocated a “slice” of the roulette wheel that
is proportional to their favourability, is not amenable to paral-
lelization. To overcome this issue, Cecilia et al. developed a
new data parallel approach to ACO edge selection known as
I-Roulette [8]. While the exact proportionality between proba-
bility and edge weights is not fully maintained, I-Roulette still
accurately replicates the behaviour of the Roulette Wheel se-
lection in a parallel compatible manner. I-Roulette was later
adapted into vRoulette [24], which made use of the AVX512
vector instructions to further increase the efficiency of the algo-
rithm.

In what follows we describe an alternative ACO algorithm
for VMP which dramatically reduces run-time by harnessing
parallel computing techniques described above, and modern
processor features.

3.2. Data structures and algorithm design
Our algorithm for VMP is a novel ACO variant that uses

parallelization techniques and SIMD vector operations to effi-
ciently solve VMP problems. The algorithm is based theMMAS

3

variant of ACO, as this is most amenable to parallelization (due
to the absence of communication between ants during an it-
eration). In this Section we describe our Parallel Ant Colony
Optimization for Virtual Machine Placement (PACO-VMP) al-
gorithm. Complete reference code is available online 1. The
notation used in this paper is defined in Table 1, and the algo-
rithm is shown in detail in Figure 3.

The key data structures used by the algorithm are:

1. The pheromone matrix, a square (Nvm × Nvm) matrix of
floating point numbers which holds the pheromone val-
ues associated with including a particular pair of VMs in
the same PM in a solution.

2. An array of ant data structures, which each contain a rep-
resentation of a solution (an array of arrays of integers,
which lists the indices of the VMs assigned to each PM).

At the highest level of description, the algorithm proceeds as
shown in Algorithm 1; each phase of the algorithm is discussed
in detail in subsections which follow.

Algorithm 1 High-level description of proposed algorithm
Initialization Phase
for each Iteration do

for each Ant do
Solution Construction

end for
Apply Local Search to iteration-best Ant
Update Global Best Solution
Pheromone Update

end for

3.2.1. Initialization Phase
In this phase, the parameters and structures required by the

algorithm are created and initalized. An important step is to
ensure that any arrays that will be used for vectorized compu-
tations are padded correctly, which prevents errors when they
are loaded into vectors. As our implementation uses the Intel
AVX2 instructions, which operate on 8 32-bit values at a time,
the size of the arrays must be a multiple of 8. The arrays also
need to be aligned in memory correctly in order to be correctly
loaded into AVX2 vectors. The pheromone matrix is a matrix
of size Nv, × Nvm , with Nv, being the number of Virtual Ma-
chines in the problem instance. The values of the pheromone
matrix are initially set to τ0 = 1/Npm, where Npm is the number
of Physical Machines. In this phase we also set the value of
the MMAS constant a (see equation 11), which is later used
to determine the maximum and minimum pheromone values.
The number of PMs is initially set to be equal to the number of
VMs.

3.2.2. Solution Construction
The first step of the solution construction phase is to ran-

domly shuffle the VMs. This happens at the beginning of each

1https://github.com/jnpeake/PACO-VMP

iteration in order to prevent VMs being allocated the same PM
purely due to their position in the array. OpenMP is used to al-
locate each ant’s construction process to a separate thread. As
each ant only reads from global pheromone memory during the
construction phase and does not write to memory, synchroni-
sation is not required. During the construction phase, the ants
loop through every VM and allocate it to a PM, unless the cur-
rent VM is unable to fit in any remaining PM. Any VMs left
un-allocated at the end of the loop are then allocated to the PM
with the most available capacity, creating an infeasible solu-
tion. A Local Search procedure, which will be fully described
in a later section, is applied to the solution in an attempt to make
it feasible.

Table 1: List of symbols and notations used in this paper
Symbol Definition
S gb The global best solution
S ib The best solution from the current iteration
Pgb Power usage of the global best solution
Pib Power usage of the iteration best solution
τ0 The initial pheromone value
Ns The number of PMs ants are able to use
Ngb The number of PMs used in S gb

Nib The number of PMs used in S ib

Nvm The number of VMs in the current instance
Npm The number of PMs in the current instance
k Current iteration number
kmax Maximum number of iterations permitted
icur The current VM
jcur The current PM
α Pheromone influence
β Heuristic influence
ρ Pheromone decay rate
ηi j Heuristic value between VM i and PM j
τi j Pheromone value between VMs i and j
P Power usage of current solution
Pmax

j Maximum power usage of PM j
Pidle

j Idle power usage of PM j
fC CPU usage ratio for current PM
fR RAM usage ratio for current PM
Cused

j Current CPU usage on PM j
Rused

j Current RAM usage on PM j
Creq

i CPU requirement of VM i
Rreq

i RAM requirement of VM i
Ccap

j Total CPU capacity on PM j
Rcap

j Total RAM capacity on PM j
τmax Maximum pheromone value
τmin Minimum pheromone value
a MMAS constant value
Nmin Theoretical lower limit of current VMP
NB Number of type B servers
Ccap

A CPU capacity of type A servers
Ccap

B CPU capacity of type B servers
Rcap

A RAM capacity of type A servers
Rcap

B RAM capacity of type B servers

The selection procedure used to allocate VMs is based on
the vRoulette-1 technique developed by Lloyd & Amos [24].
This is demonstrated in Figure 2, which shows how the Heuris-

4

Figure 2: A demonstration of how the vRoulette-1 technique combines the
heuristic and pheromone values of a PM with a random number between 0
and 1. AVX2 instructions allows operations to be carried out on each Vector
lane (numbered 0-7) simultaneously.

tic and Pheromone values (which we describe in detail later) of
the PM in each vector lane are combined with a random number
between 0 and 1. This is then multiplied by a Tabu value, which
is set to 0 or 1 (the value is only set to 0 in the instance that the
“PM” in that lane is actually just a placeholder used to pad the
PM list to a multiple of 8), and then masked by vectors (denoted
MaxCPUMask and MaxRAMMask) that filter out any PMs that
do not have enough available capacity for the current VM. This
is done on a vector-by-vector basis, with 8 PMs being processed
for selection in parallel. The 8 current PM values are compared
lane-by-lane with a vector of the highest PM values in the cur-
rent selection process. Once every PM has been processed, a
parallel reduction (with the max operator) is carried out on this
vector and the PM corresponding to the highest value is then
assigned the current VM. If the highest value is lower than 0,
this indicates that no PMs had enough capacity available for
the current VM, and the VM is added to the unassigned list to
be allocated once the solution construction procedure has been
completed.

While the original vRoulette-1 implementation made use of
the AVX512 instruction set, which allows for 16-wide vectors
and features additional instructions compared to AVX2, it is
not currently as widely available as the AVX2 instruction set,
which is available on most Intel CPUs released since 2013, and
most AMD CPUs released since 2015. For the implementation
evaluated here, we used AVX2.

3.2.3. Heuristic & Pheromone Definition
As with any ACO implementation, the definition of the pheromone

and heuristic values is crucial for the consistent construction of
good-quality solutions.

The heuristic is a problem-specific value which indicates
the favourability of assigning a VM to a PM. The definition
of the heuristic value can differ significantly even within ACO
implementations that aim to solve the same problem. A key
difference between calculating the heuristic value for VMP is
the need for a dynamically calculated heuristic which differs
depending on the current state of the PM that is being assigned
to, and this requires the heuristic to be calculated at every step
of the solution for every VM, which increases the solution time
compared to the more static heuristic values of problems such
as the Traveling Salesman Problem.

Our heuristic definition is designed to ensure that the fewest
possible number of VMs are used, by prioritising both resource
utilisation balance and total resource utilisation. The prioritisa-
tion of total utilisation makes it more likely that an ant will allo-
cate the current VM to a PM that already contains other VMs,
while the resource balance will attempt to keep the available
RAM and CPU on a PM as even as possible, which will pre-
vent PMs exhausting one resource capacity while still having
a large available capacity for the other resource. The heuristic
value, ηi j, associated with placement of virtual machine i on
physical machine j is given by

ηi j =
1 − | fC − fR|
1 + fC + fR

(1)

where

fC =
Cused

j + Creq
i

Ccap
j

(2)

and

fR =
Rused

j + Rreq
i

Rcap
j

. (3)

Here, Cused
j and Rused

j are, respectively, the current CPU and
RAM usage of physical machine j, Creq

i and Rreq
i are the CPU

and RAM requirements of virtual machine i, and Ccap
j and Rcap

j
are the CPU and RAM capacities of physical machine j.

Implementations of ACO for VMP generally use one of two
pheromone trail definitions: the first defines the trail as be-
ing between VMs and the PMs to which they are allocated,
and the second defines trails as being between VMs that are
allocated the same PMs, meaning that VMs are more likely
to be allocated to a PM with VMs that they have previously
shared with in good solutions. In this paper, we choose to de-
fine the pheromone trail to associate VMs with other VMs. The
pheromone distributed is based on solution quality, which in
our case is the energy consumption of our solution.

As the selection process of our algorithm attempts to allo-
cate VMs to PMs, we are unable to load pheromone information
directly from the matrix as pheromone is distributed between
VMs rather than between VM and PM. Instead, we calculate
the mean value of pheromone which links the current VM and
the VMs that are currently allocated to the PM that we are eval-
uating (the amount of pheromone between VM and PM is ini-
tially set to τ0, and remains at that level until a VM is added to
the PM).

Therefore, the pheromone associated with a physical ma-
chine j when placing a virtual machine i is given by

Ti j =

τ0, ifN j
vm = 0

1
N j

vm

∑
k τik, otherwise

(4)

where N j
vm is the number of VMs already assigned to PM j, and

the sum is taken over all VMs k which are assigned to PM j.
Finally, the weight associated with a particular choice of

PM, j, for a given VM, i, during the solution construction phase

5

is determined by combining the pheromone and heuristic values
according to

Wi j = Tα
i jη

β
i j (5)

where α and β are parameters controlling the relative influence
of pheromone and heuristic information. The choice of PM is
made with probability p which is proportional to Wi j.

3.2.4. Local Search
Local Search is a procedure which takes a candidate solu-

tion generated by an optimisation algorithm and makes small
changes in order to find a local minimum with respect to some
neighbourhood. The term “Local Search” refers to a vast ar-
ray of usually problem-specific techniques that carry out these
small changes. Local Search techniques are widely used in
conjunction with ACO to good effect, and they are essential
for creating solutions that are optimal or near-optimal. Local
Search takes place after the solution construction phase, once
the iteration-best solution has been determined. A drawback
of this Local Search technique is the fact that it is non-trivial,
leading to significant cost in processing time, and it runs seri-
ally, rather than in parallel. Due to this, we perform local search
only on the iteration-best solution.

Our Local Search is based on a technique developed by
Alvim et al. [4] for the Bin Packing Problem, and also utilised
by Liu et al. [23] for the VMP. In this algorithm, after each
solution is found, one bin is destroyed, or a PM in the case of
the VMP problem. If a subsequent solution is then able to suc-
cessfully fit all items in the remaining bins, it is considered fea-
sible. However, if no feasible solution can be found, the local
search technique is applied. There are two phases of our tech-
nique, the swap phase and the insertion phase. Any PM that has
been allocated more VMs than it has capacity for is marked as
overloaded. In the swap phase an overloaded PM is compared
with every non-overloaded PM, and the algorithm attempts to
swap each VM in the overloaded PM with each VM in the non-
overloaded PM. This continues until either a successful swap
takes place, or every non-overloaded PM has been compared to
the overloaded PM. Regardless of the outcome, the process is
carried out again for the next PM, and this continues until every
overloaded PM has been compared. If the swap phase is unable
to successfully find a feasible solution, the insertion phase is
then performed. In this phase, each overloaded PM attempts to
allocate each of its VMs to a non-overloaded PM. While this is
far less likely to produce positive results than the swap phase, it
is still able to occasionally make progress where the swap phase
cannot.

3.2.5. Pheromone Update
The final phase of our ACO algorithm is the pheromone

distribution. As our algorithm is based on the MMAS ACO
variant, pheromone is only deposited only by the global-best
and. As mentioned previously, pheromone is distributed be-
tween VMs allocated to the same PM. The pheromone matrix
is updated using

τi j ← τi j

(
1 +

365
P

)
(6)

for all pairs of VMs i, j which are allocated to the same PM in
the global best solution, and where P is the power usage of the
solution. The power usage is defined as

P =

NPM∑
j=1

(Pmax
j − Pidle

j)
Cused

j

Ccap
j

+ Pidle
j

 (7)

where NPM is the number of PMs in the current instance and
Pmax

j and Pidle
j are the maximum and idle power usage of physi-

cal machine j respectively. We choose a definition of pheromone
based on power usage as it will reflect the positive impact of a
lower number of PMs while still measuring differences between
solutions with the same number of PMs used.

The global amount of pheromone then decays by a static
amount, controlled by the parameter ρ,

τi j ← τi j(1 − ρ) ∀i, j ∈ [1,Nvm]. (8)

The choice of value of ρ will be discussed in Section 4.
MMAS utilises a clamping procedure to prevent stagna-

tion, by restricting the level of pheromone to be between max-
imum and minimum values. The maximum and minimum val-
ues are defined as

τmax =
1

ρNglobal
best

(9)

τmin = τmax
2(1 − a)

(NVM + 1)a
(10)

where NVM is the number of VMs in the current instance, Pmin
is the global lowest PM usage, and

a = exp(ln(0.05)/NVM). (11)

This clamping is applied to the whole matrix after evaporation.

4. Experimental Evaluation

We investigate the performance of our algorithm by com-
paring with an implementation of the OEMACS algorithm, which
is an ACO-based method that generally out-performs conven-
tional heuristics and evolutionary algorithms for this problem
[23], and a state-of-the-art genetic algorithm, IGA-POP [1].
Code for OEMACS is publicly available2. All algorithms were
implemented in C++, and all tests were carried out on a ma-
chine with an Intel R© Xeon E5-2640 v4 processor with 20 cores
running at a base frequency of 2.4 GHz and a maximum fre-
quency of 3.4 GHz. Code was compiled using the GNU C++

compiler (g++), with O2 optimization enabled. The initial com-
parative tests will compare a serial implementation of PACO-
VMP with the serial algorithms OEMACS and IGA-POP, with
the aim of comparing the quality of solutions obtained. Two
variants of IGA-POP will be used: the first, referred to as GA1,
uses the fitness function also used by PACO-VMP and OEMACS;
the second, referred to as GA2, uses a slightly modified version

2https://github.com/Budding0828/OEMACS

6

Figure 3: A flow chart detailing the PACO-VMP algorithm. Section A, between
the yellow diamonds, is executed in parallel for each ant.

of the fitness function used in the initial IGA-POP experiments
[1]. Finally, to evaluate the impact of our OpenMP paralleliza-
tion, we also ran a parallelized PACO-VMP using OpenMP, as-
signing one ant to each of our 20 cores. While the execution
time differs, solution quality is identical to the serial version.

4.1. Problem instances

All problem instances used in our experiments were ran-
domly generated. For each instance, the initial number of Phys-
ical Machines is set to be equal to the number of Virtual Ma-
chines. Our dataset consists of three sets of 600 VMP instances,
each further split into 6 subsets of 100 instances with 100, 200,
300, 400, 500 and 1000 VMs. The three sets (A, B and C) are
described in the following subsections, and differ by the inclu-
sion of bottlenecks in one or other resource, or the homogene-
ity of the physical machines in the instance setup. One run is
performed using each instance. We use one run per instance
with a larger number of instances, rather than multiple runs on
a smaller number of instances; a proof in [5] shows that given a
budget of N runs, selecting a K instances and performing n runs

on each with N = Kn is a suboptimal choice and that the best
statistical estimate of algorithm performance is obtained from a
single run on each of N independently selected instances, con-
trary to popular belief.

4.1.1. Instance Set A: Homogeneous Environment
Set A is designed to evaluate the performance of the algo-

rithms in a straightforward scenario where the PMs are identi-
cal and the demands of the VMs are fairly evenly divided be-
tween RAM and CPU. This set consists of 600 VMP instances
equally divided between 100, 200, 300, 400, 500 and 1000 VM
instances. This dataset is similar to the Set A data used by Liu
et al. [23] in evaluating OEMACS, which was initially cre-
ated to benchmark the Reordering Grouping Genetic Algorithm
(RGGA) [37]; however, this data is no longer publicly available.
In comparison to this data, we used a larger number of smaller
instances.

The VM requirements for this instance set are randomly
generated in ranges of [1,128] for CPU and [1,100] for RAM.
Each PM has a capacity of 500 for both CPU and RAM, lead-
ing to slightly higher average CPU utilisation than RAM but
still close to 1:1. As these instances are randomly generated,
there is no known optimum, but a lower limit to the number of
PMs used in the solution, Nmin, is calculated

Nmin = max

∑NVM

j=1 Creq
j

Ccap
i

,

∑NVM
j=1 Rreq

j

Rcap
i

 (12)

where i is the index of any physical machine; as the servers
in Instance Set A are homogeneous, it does not matter which
physical machine is used to evaluate this quantity.

4.1.2. Instance Set B: Homogenous Environment with Bottle-
neck

Set B introduces a bottleneck resource to the problem in-
stances, evaluating the performance of the algorithms in a slightly
more complicated scenario which will lead to more overloaded
servers. As with the previous instance set, Set B consists of 600
VMP instances equally divided between 100, 200, 300, 400,
500 and 1000 VM instances. VM requirements are randomly
generated, in the range of [1-4] for CPU (measured in cores)
and [1-8] for RAM (measured in GB). PM capacity is 16 cores
for CPU and 32GB for RAM. As the probability of a 4 core
VM requirement is higher than the probability of an 8GB RAM
requirement, CPU is the bottleneck resource. As with Set A,
these instances have no known optimum, and a lower limit is
calculated using the same formula.

4.1.3. Instance Set C: Heterogeneous Environment with Bottle-
neck

Set C further complicates the problem instances by intro-
ducing non-identical servers, simulating a scenario in which a
cloud host has multiple server types. We define two types of
server, A and B. Server type A has a CPU capacity of 16 cores
and a RAM capacity of 32GB. Server type B has a CPU capac-
ity of 32 cores and a RAM capacity of 64GB. However, type

7

B servers only make up 10% of the total PMs in each prob-
lem instance, meaning that VMs will have to use both types of
servers. This will evaluate the ability of the algorithms to pri-
oritise the high capacity servers while still allocating the VMs
efficiently. The VM requirements are in the range of [1,8] for
CPU and [1,32] for RAM, meaning that the bottleneck resource
in this case is RAM. Set C utilises the same instance sizes as
the previous sets.

Due to the heterogenous servers in this instance set, an al-
ternative formula is required for calculating the lower limit to
the number of PMs

Nmin = NB + max

∑NVM

j=1 Creq
j − NBCcap

B

Ccap
A

,

∑NVM
j=1 Rreq

j − NBRcap
B

Rcap
A

(13)

where NB is the number of type B servers, Ccap
A and Ccap

B are
the CPU capacities of type A and B servers respectively, and
Rcap

A and Rcap
B are the RAM capacities of type A and B servers

respectively.

4.2. Experimental configuration
For each experiment we use 20 ants for PACO-VMP, as this

allows for one ant to be allocated to each core available on our
hardware in the OpenMP-enabled variant. For our algorithm,
we use the ACO parameter values specified in the next section,
and for OEMACS we use the default values as specified in [23].
Both PACO-VMP and OEMACS are run for 50 iterations. For
GA1 and GA2, we use the parameters specified in [1], 200 it-
erations and a population size of the number of PMs multiplied
by 4. We compare these results against the First Fit (FF) al-
gorithm in order to provide a baseline greedy algorithm imple-
mentation. FF was selected over the more widely used FFD al-
gorithm due to better results on our data sets. It should be noted
that the solution construction time for FF is near-instantaneous
for all instance sizes, and thus has been omitted from all execu-
tion time plots. For the ACO parameters, we selected values of
ρ = 0.8, α = 1, β = 6 on the basis of some tuning experiments
on a small sample of 1000 VM instances, although we found the
performance was generally insensitive to these paraemeters.

4.3. Results
The results for instance set A in terms of solution quality

are displayed in Figure 4. FF shows good results throughout,
improving as the problem instances get larger, which indicates
that it is fairly simple for a greedy solver to create good-quality
solutions for the non-bottlenecked version of the VMP problem.
In all but one instance, OEMACS is able to match or exceed the
solutions created by FF. Likewise, PACO-VMP outperforms or
matches OEMACS on 5 sizes of instances including the largest
instances. It should be noted that the PACO-VMP algorithm
utilises the FF result as its initial best tour, meaning that it is
not able to find worse tours than FF. A distinction between the
results of set A and our other instance sets is that FF is com-
petitive with the two ACO algorithms. For our other instance
sets this is not the case, but as the non-bottlenecked problem
is fairly straightforward, it allows FF to find good quality so-
lutions. GA2 also performs well on this dataset, outperforming

PACO-VMP on all but a single dataset. On the other hand, GA1
struggles, remaining moderately competitive for the smaller in-
stances but performing dramatically worse on the 400, 500 and
1000 VM instances.

Figure 4: Solution difference measured as percentage over theoretical optimum
for PACO-VMP, OEMACS, GA1, GA2 and FF for instance set A.

Figure 5: Average time to solve (seconds) for 100 instances of a given instance
size for PACO-VMP, OEMACS, GA1 and GA2 for instance set A.

Execution time results for instance set A are shown in Fig-
ure 5. From this plot it is clear to see that PACO-VMP has a sig-
nificant advantage over OEMACS when it comes to execution
time, beginning at around 1 order of magnitude for the size 100
instances, and increasing to an advantage of around 3 orders
of magnitude for the 1000 VM instance sets. An even larger
advantage is held over the two IGA-POP algorithms, begin-
ning at around 2 orders of magnitude for the 100 VM instances
and increasing to around 3 orders of magnitude for the 1000

8

VM instances. Interestingly, despite beginning with a sizeable
time advantage over IGA-POP, OEMACS performs similarly to
GA1 for the 1000 VM instance set. The parallelized version of
PACO-VMP increases the time difference between it and the
sequential variant of PACO-VMP, increasing from a speedup of
2.2× for the 100 VM instances to a speedup of 3.47× for 1000
VM instances.

Figure 6: Solution difference measured in percentage over theoretical optimum
for PACO-VMP, OEMACS, GA1, GA2 and FF for instance set B.

Figure 7: Average time to solve (seconds) for 100 instances of a given instance
size for PACO-VMP, OEMACS, GA1 and GA2 for instance set B.

Unlike instance set A, the results for instance set B dis-
played in Figure 6 show a clear difference between PACO-VMP
and OEMACS. FF’s poor results also indicate that a greedy
solver has more difficulty finding a good solution for the bot-
tlenecked VMP than for the non-bottlenecked variant. While
OEMACS significantly outperforms FF, PACO-VMP outper-

forms it for every problem size, finding solutions that range
from 1%-2% closer to the theoretical lower limit. Additionally,
the solution quality in terms of percentage is actually worse for
the size 1000 instances with OEMACS, whereas PACO-VMP
continues to improve. In contrast to Set A, GA1 performs very
well in this bottle-necked scenario, with PACO-VMP returning
better results for the 100 VM instances but then returning very
slightly worse results for the larger instances. Conversely, GA2
performs poorly, initially returning similar results to OEMACS
before worsening on the larger instances, and even being out-
performed by FF for the 1000 VM instances.

In terms of execution time, displayed in Figure 7, the results
for PACO-VMP are near-identical to the results for instance set
A, demonstrating that the bottleneck led to no additional ex-
ecution time. This is also the case for OEMACS, which also
achieved near-identical execution times to the instance set A
results. The execution time advantage held by PACO-VMP
is maintained, with OEMACS once again losing the advan-
tage it holds over IGA-POP as the solution size increases. The
difference between sequential and parallel PACO-VMP is also
near-identical to instance set A, though the speedup increase is
slightly smaller, from 2.2× to 3.27×.

Figure 8: Solution difference measured in percentage over theoretical optimum
for PACO-VMP, OEMACS, GA1 and GA2 and FF for instance set C.

The results shown in Figure 8 indicate that FF performs
very poorly on instance set C, with the heterogeneous servers
causing issues for the greedy technique. OEMACS significantly
outperforms FF once again, but is itself outperformed by PACO-
VMP, with solution quality improvement ranging from 5% for
100 VM instances to around 10% for 1000 VM instances.
While OEMACS performs significantly worse on instance set C
than the other sets, PACO-VMP is able to capably solve the het-
erogeneous instances. As with instance set B, while OEMACS
begins to return worse solution qualities for the size 1000 in-
stances, PACO-VMP continues to improve as the instance size
increases. The performance of the GA variants is also consis-
tent with set B, with GA1 slightly outperforming PACO-VMP

9

Figure 9: Average time to solve (seconds) for 100 instances of a given instance
size for PACO-VMP, OEMACS, GA1 and GA2 for instance set C.

in all but one instance size, and GA2 performing poorly, show-
ing even poorer results on instance set C.

Execution time for instance set C, as displayed in Figure 9,
is similar to the other instance sets, with the execution time of
PACO-VMP being near identical. However, OEMACS takes
slightly longer to solve the instances in set C, further increas-
ing the execution time advantage held by PACO-VMP. Addi-
tionally, the execution time of OEMACS is now closer to the
time of GA2 than GA1 for 1000 VM instances, emphasising
the increased difficulty that OEMACS has when trying to solve
the bottlenecked, homogeneous problem. As with the previous
instance sets, the time difference between the sequential and
parallel PACO-VMP increases slightly as the instance sizes in-
crease, from 2.6× to 3.78×.

4.4. Discussion

We have demonstrated the significant execution time reduc-
tion that can be enabled through the use of parallelization and
vectorization techniques on a wide range of different problem
instance sets that represent three realistic Cloud Computing sce-
narios. PACO-VMP outperforms OEMACS in each instance
set, very slightly in set A and significantly in sets B and C, and
while it is matched by GA1 in set B and C, it performs signif-
icantly better in instance set A. The opposite is true of GA2,
which outperforms PACO-VMP in set A, but significantly un-
derperforms in sets B and C. The consistency demonstrates the
versatility of ACO compared to IGA-POP: while IGA-POP per-
forms well, it requires two separate fitness functions in order
to match PACO-VMP. Upon further analysis of the IGA-POP
results, the issue stems from the tendency of the algorithm to
assign VMs to empty PMs even when currently used PMs have
enough capacity remaining, which happens regardless of fitness
function. Both PACO-VMP and OEMACS enforce a limit on
the number of PMs than can be used (the previous best number
of PMs) which prevents this behaviour. Additionally, it is worth

nothing that despite a 10x increase of instance size in our exper-
iments, the quality of the solutions produced by PACO-VMP re-
mains consistent. The percentages above the lower limit of PM
utilization decrease with each increase in instance size, which
in terms of raw numbers indicates a fairly consistent number of
PMs over the minimum. This suggests that our implementation
could still produce good results for even larger VMP instances.
This is an advantage over OEMACS, which provides degrading
solution quality for size 1000 instances, a trend which would
potentially continue as instance sizes increase.

The main focus of PACO-VMP is to improve execution
time, and it succeeds at this objective. While PACO-VMP and
OEMACS use similar pheromone definitions and local search
techniques, PACO-VMP produces better results both in terms
of execution time and solution quality. This may be caused
partly by the choice ofMMAS algorithm over ACS, and also
by differences in the selection probabilities due to the use of
independent roulette. It has been shown [25] that independent
roulette algorithms (such as vRoulette) tend to make greedier
selections than the traditional roulette wheel algorithm, which
may be a factor in the different solution qualities found between
PACO-VMP and OEMACS. Clearly the areas in which PACO-
VMP and OEMACS differ are significant in terms of execution
time, as PACO-VMP has a time complexity of O(n2), whereas
OEMACS is, experimentally, closer to O(n4). The main con-
tributing factor to this is the probability calculation: whereas
PACO-VMP uses the resource wastage formula as given in For-
mula 1 as the heuristic value, OEMACS uses a much more com-
plex formula that includes the resource wastage, but also has
extra sums over the VMs in both the numerator and denomina-
tor of the formula. Experimentally, the time complexity of the
IGA-POP variants is approximately O(n3).

We summarize the results in Table 2. This table shows the
results for solution quality and execution time, and for the so-
lution quality results we indicate which results are statistically
significant. The results of each algorithm on each instance of a
given size can be paired, and compared to each other using the
Wilcoxon signed-rank test, a non-parametric test which can be
used to compare paired sets of readings. Since we perform an
all-vs-all comparison of three tests (all possible pairs of algo-
rithms) we apply the Bonferroni correction, and divide the sig-
nificance threshold by the number of tests (in this case 3). Bold
values in the table show the solution quality values which are
significantly better than the other four algorithms, using a sig-
nificance threshold of 0.002 (that is, 0.01 after application of the
Bonferroni correction). In general, one of the two GA versions
tends to produce the best solutions, however although the differ-
ences are in many cases statistically significant, the magnitude
of the effect is small. For example, in the case of the A1000 in-
stances, a comparison between GA2 and PACO shows that out
of the 100 trials, GA2 is superior for 46 instances whereas ACO
is superior for 3, with 51 ties. Although this is a statistically
highly significant difference, the magnitude of the difference is
only 0.32% in solution quality. This demonstrates that the ex-
periments are very sensitive in detecting significant, but small,
differences in performance. Qualitatively, the results show that
one of the two GAs generally performs the best for any set of in-

10

Table 2: Results of our experiments on FF, OEMACS and PACO-VMP. Entries in the Set column represent the 100 instances of the specified size from the specific
instance set. Solution Quality is the average percentage over the theoretical minimum for all 100 problem instances for each size within each set with values in bold
being the best result, on the condition that it is significantly different when results are analysed with the Wilcoxon signed-rank test. Execution Time is the average
time per run in seconds for all 100 problem instances for each size within each set. The sequential and parallel versions of PACO-VMP are included as PACO(S)
and PACO(P) respectively

Solution Quality (%) Execution Time (seconds)
Set FF OEMACS GA1 GA2 PACO OEMACS GA1 GA2 PACO(S) PACO(P)

A100 10.3 8.98 8.70 8.54 8.25 0.936 9.098 15.05 0.125 0.055
A200 5.03 4.71 5.13 4.4 4.47 12.22 60.23 107.9 0.423 0.154
A300 3.68 3.26 4.21 2.92 3.32 51.81 194.4 354.3 0.892 0.265
A400 2.98 2.78 4.78 2.46 2.78 158.8 440.0 817.7 1.528 0.499
A500 2.58 2.39 5.54 1.92 2.42 369.9 832.8 1575 2.387 0.759
A1000 1.58 1.96 11.3 1.26 1.58 5450 5711 10478 10.37 2.986
B100 16.0 8.24 6.49 7.75 6.24 1.082 9.044 15.32 0.121 0.054
B200 12.7 5.05 3.01 4.78 3.08 14.14 59.15 109.2 0.422 0.154
B300 11.5 3.72 2.05 5.36 2.11 58.75 189.7 358.6 0.902 0.266
B400 11.0 3.47 1.64 6.77 1.69 181.1 426.2 829.1 1.514 0.499
B500 10.4 2.89 1.25 6.30 1.37 414.8 805.4 1596 2.351 0.756

B1000 9.83 2.82 0.78 11.39 0.91 6080 5546 10321 9.594 2.904
C100 34.8 13.7 6.96 23.9 7.67 1.656 9.733 16.98 0.135 0.056
C200 31.6 11.9 5.03 31.4 6.10 22.14 63.66 116.7 0.464 0.158
C300 32.1 11.7 4.46 37.2 5.39 88.56 205.0 383.7 0.980 0.274
C400 31.0 12.1 4.07 41.3 4.66 270.3 456.8 874.7 1.663 0.511
C500 29.2 12.0 3.93 43.0 4.44 633.0 858.4 1665 2.623 0.771

C1000 26.3 12.8 3.70 54.5 3.62 8873 5753 10347 10.69 2.873

stances, but this is often accompanied by the other GA perform-
ing the worst. Since we used the GA with the recommended
parameters for the population size and number of generations,
this performance also comes at a significant cost; for example
in the 1000 VM instances, GA1 and GA2 will perform 4000
evaluations per generation for 200 generations, compared to
20 evaluations for 50 iterations in PACO. Furthermore, the dif-
ference in performance between the two cost functions is very
clear; using the original cost function proposed by [1] leads to
poor performance on the B and C instance sets. PACO-VMP on
the other hand, achieves solution quality close to best (or best)
across all instance types, without any sensitivity to the algo-
rithm parameters, and achieves better average solution quality
than the other ACO algorithm (OEMACS) in 15 out of the 18
instance categories. There is also a clear advantage for PACO-
VMP in both scalability and execution time. The computational
complexity of PACO is superior to both OEMACS and GA1/2,
and the execution time of the parallel version is several orders
of magnitude less in most cases. For the C1000 instances, the
most challenging instance set, PACO-VMP achieves the best
solution quality of all algorithms in an average time of 2.873s,
while GA1/2 and OEMACS require several hours of CPU time
to reach a solution.

5. Conclusions & Future Work

In this paper we presented PACO-VMP, a parallelized and
vectorized implementation of MMAS for solving the Virtual
Machine Placement problem. The method is several orders of
magnitude faster than two current state-of-the-art ACO solvers,

OEMACS and IGA-POP while producing comparable or supe-
rior results. Since virtual machine placement in the real world
is a problem in which reducing time to solution can have sig-
nificant cost benefits, the improved execution time performance
of PACO-VMP

While PACO-VMP is capable of solving the static VMP
problem, in reality this problem is rarely static. Real-world
cloud workloads have constantly changing demand, with Vir-
tual Machines being added and removed from the workload
constantly. As with the static VMP, execution time is vital for
dynamic VMPs in order to minimise time spent in an inefficient
configuration, and PACO-VMP’s positive results on the static
problem indicate that it could also be effectively used to solve
the dynamic problem. This is an area for further investigation.

The parameter tuning phase of our experiments revealed
that the performance of the algorithm is relatively insensitive
to the parameter governing the importance of pheromone in-
formation, further suggesting that analysing and improving our
pheromone definition may lead to better solution quality from
the underlying ACO mechanism. This is a potentially fruitful
area of further work.

Many assumptions were made in our implementation re-
garding the VMP problem, including that there will always be
as many PMs available as VMs, that performance doesn’t de-
grade when the PMs reach 100% capacity, and that CPU and
RAM are the only requirements. These assumptions are com-
monly made to simplify the problem solving process rather than
having to consider a vast array of additional variables. Another
potentially fruitful area that is fairly to investigate is the use
of additional parameters for the VMP problem, rather than just
CPU and RAM. Further work is required to investigate the in-

11

clusion of these additional parameters.

Declaration of competing interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Acknowledgements

JP is funded by the Centre for Advanced Computational
Science at Manchester Metropolitan University.

References

[1] A.S. Abohamama and Eslam Hamouda. A hybrid energy–aware virtual
machine placement algorithm for cloud environments. Expert Systems
with Applications, 150:113306, 2020.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash.
Internet of Things: A Survey on Enabling Technologies, Protocols, and
Applications. IEEE Communications Surveys Tutorials, 17(4):2347–
2376, 2015.

[3] Fares Alharbi, Yu-Chu Tian, Maolin Tang, Wei-Zhe Zhang, Chen Peng,
and Minrui Fei. An Ant Colony System for Energy-efficient Dynamic
Virtual Machine Placement in Data Centers. Expert Systems with Appli-
cations, 120:228–238, 2019.

[4] Adriana Alvim, Fred S Glover, Celso C Ribeiro, and Dario J Aloise. Local
Search for the Bin Packing Problem. 1999.

[5] Mauro Birattari. On the estimation of the expected performance of a
metaheuristic on a class of instances. how many instances, how many
runs? Technical Report TR/IRIDIA/2004-001, IRIDIA, Université Libre
de Bruxelles, Brussels, Belgium, 2004.

[6] A. Botta, W. de Donato, V. Persico, and A. Pescapé. On the Integration
of Cloud Computing and Internet of Things. In 2014 International Con-
ference on Future Internet of Things and Cloud, pages 23–30, 2014.

[7] Bernd Bullnheimer, Gabriele Kotsis, and Christine Strauß. Paralleliza-
tion Strategies for the Ant System. In High Performance Algorithms and
Software in Nonlinear Optimization, pages 87–100. Springer, 1998.

[8] José M Cecilia, José M Garcı́a, Andy Nisbet, Martyn Amos, and Manuel
Ujaldón. Enhancing Data Parallelism for Ant Colony Optimization on
GPUs. Journal of Parallel and Distributed Computing, 73(1):42–51,
2013.

[9] José M Cecilia, José M Garcia, Manuel Ujaldón, Andy Nisbet, and Mar-
tyn Amos. Parallelization Strategies for Ant Colony Optimisation on
GPUs. In 2011 IEEE International Symposium on Parallel and Dis-
tributed Processing Workshops and Phd Forum, pages 339–346. IEEE,
2011.

[10] Ling Chen and Chunfang Zhang. Adaptive Parallel Ant Colony Algo-
rithm. In International Conference on Natural Computation, pages 1239–
1249. Springer, 2005.

[11] Darren M. Chitty. Applying ACO to Large Scale TSP Instances. In Fei
Chao, Steven Schockaert, and Qingfu Zhang, editors, Advances in Com-
putational Intelligence Systems, pages 104–118, Cham, 2018. Springer
International Publishing.

[12] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live Migration
of Virtual Machines. In Proceedings of the 2nd Conference on Symposium
on Networked Systems Design & Implementation-Volume 2, pages 273–
286, 2005.

[13] EG Coffman Jr, MR Garey, and DS Johnson. Approximation Algorithms
for Bin Packing: A Survey. Approximation Algorithms for NP-hard Prob-
lems, pages 46–93, 1996.

[14] Jean-Louis Deneubourg, Jacques M. Pasteels, and Jean-Claude Ver-
haeghe. Probabilistic Behaviour in Ants: a Strategy of Errors? Journal
of Theoretical Biology, 105(2):259–271, 1983.

[15] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant Colony Opti-
mization. IEEE Computational Intelligence Magazine, 1(4):28–39, 2006.

[16] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant System:
Optimization By a Colony of Cooperating Agents. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1):29–41, 1996.

[17] Ivars Dzalbs and Tatiana Kalganova. Accelerating Supply Chains with
Ant Colony Optimization across a Range of Hardware Solutions. Com-
puters & Industrial Engineering, 147:106610, 2020.

[18] Eugen Feller, Louis Rilling, and Christine Morin. Energy-aware Ant
Colony Based Workload Placement in Clouds. In 2011 IEEE/ACM 12th
International Conference on Grid Computing, pages 26–33. IEEE, 2011.

[19] Damián Fernández-Cerero, Alejandro Fernández-Montes, and Agnieszka
Jakóbik. Limiting global warming by improving data-centre software.
IEEE Access, 8:44048–44062, 2020.

[20] Yongqiang Gao, Haibing Guan, Zhengwei Qi, Yang Hou, and Liang Liu.
A Multi-objective Ant Colony System Algorithm for Virtual Machine
Placement in Cloud Computing. Journal of Computer and System Sci-
ences, 79(8):1230–1242, 2013.

[21] J. A. Guerrero-ibanez, S. Zeadally, and J. Contreras-Castillo. Integration
Challenges of Intelligent Transportation Systems with Connected Vehi-
cle, Cloud Computing, and Internet of Things Technologies. IEEE Wire-
less Communications, 22(6):122–128, 2015.

[22] Brian Hayes. Cloud computing, 2008.
[23] Xiao-Fang Liu, Zhi-Hui Zhan, Jeremiah D Deng, Yun Li, Tianlong Gu,

and Jun Zhang. An Energy Efficient Ant Colony System For Virtual Ma-
chine Placement in Cloud Computing. IEEE Transactions on Evolution-
ary Computation, 22(1):113–128, 2016.

[24] Huw Lloyd and Martyn Amos. A Highly Parallelized and Vectorized
Implementation of Max-Min Ant System on Intel R© Xeon PhiTM. In 2016
IEEE Symposium Series on Computational Intelligence (SSCI), pages 1–
6. IEEE, 2016.

[25] Huw Lloyd and Martyn Amos. Analysis of independent roulette selection
in parallel ant colony optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’17, page 19–26, New
York, NY, USA, 2017. Association for Computing Machinery.

[26] Seyed Saeid Masoumzadeh and Helmut Hlavacs. Integrating VM Selec-
tion Criteria in Distributed Dynamic VM Consolidation using Fuzzy Q-
Learning. In Proceedings of the 9th International Conference on Network
and Service Management (CNSM 2013), pages 332–338. IEEE, 2013.

[27] Haibo Mi, Huaimin Wang, Gang Yin, Yangfan Zhou, Dianxi Shi, and
Lin Yuan. Online Self-reconfiguration with Performance Guarantee for
Energy-efficient Large-scale Cloud Computing Data Centers. In 2010
IEEE International Conference on Services Computing, pages 514–521.
IEEE, 2010.

[28] Seyedali Mirjalili. Sca: A sine cosine algorithm for solving optimization
problems. Knowledge-Based Systems, 96:120 – 133, 2016.

[29] M. Satyanarayanan. The Emergence of Edge Computing. Computer,
50(1):30–39, 2017.

[30] Rafał Skinderowicz. The GPU-based Parallel Ant Colony System. Jour-
nal of Parallel and Distributed Computing, 98:48–60, 2016.

[31] Mark Stillwell, David Schanzenbach, Frédéric Vivien, and Henri
Casanova. Resource allocation algorithms for virtualized service host-
ing platforms. Journal of Parallel and distributed Computing, 70(9):962–
974, 2010.

[32] Thomas Stützle. MAX-MIN Ant System for Quadratic Assignment Prob-
lems. 1997.

[33] Fei Tao, Chen Li, T Warren Liao, and Yuanjun Laili. BGM-BLA: A
New Algorithm For Dynamic Migration of Virtual Machines in Cloud
Computing. IEEE Transactions on Services Computing, 9(6):910–925,
2015.

[34] Felipe Tirado, Ricardo J Barrientos, Paulo González, and Marco Mora.
Efficient Exploitation of the Xeon Phi Architecture for the Ant Colony
Optimization (ACO) Metaheuristic. The Journal of Supercomputing,
73(11):5053–5070, 2017.

[35] Felipe Tirado, Angelica Urrutia, and Ricardo J Barrientos. Using a Copro-
cessor to Solve the Ant Colony Optimization Algorithm. In 2015 34th In-
ternational Conference of the Chilean Computer Science Society (SCCC),
pages 1–6. IEEE, 2015.

[36] Shangguang Wang, Zhipiao Liu, Zibin Zheng, Qibo Sun, and Fangchun
Yang. Particle Swarm Optimization for Energy-aware Virtual Machine
Placement Optimization in Virtualized Data Centers. In 2013 Interna-
tional Conference on Parallel and Distributed Systems, pages 102–109.
IEEE, 2013.

12

[37] D. Wilcox, A. McNabb, and K. Seppi. Solving Virtual Machine Packing
With a Reordering Grouping Genetic Algorithm. In 2011 IEEE Congress
of Evolutionary Computation (CEC), pages 362–369, 2011.

[38] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet
of things for smart cities. IEEE Internet of Things Journal, 1(1):22–32,
2014.

13

	Abstract
	Declaration
	Acknowledgements
	Introduction
	Background and Motivation
	Aims and Objectives
	Contributions
	Thesis Structure

	Literature Review
	Evolutionary Computation & Swarm Intelligence
	Ant System
	The Ant Colony Optimisation metaheuristic
	Parallel Ant Colony Optimisation
	Distributed Systems
	GPGPU

	Single Instruction Multiple Data
	The Scalability of Ant Colony Optimisation
	ACO on Real World Problems and Virtual Machine Placement

	Ant Colony Optimization
	Initialisation Phase
	Solution Construction Phase
	Roulette Wheel Selection

	Local Search
	Pheromone Deposit Phase
	Determine Best Solution

	Vectorized Candidate Set Selection for Parallel Ant Colony Optimization
	Background and Motivation
	Traveling Salesman Problem
	Single Instruction Multiple Data
	Selection Methods

	Proposed Algorithm
	Nearest neighbour List Construction
	Instance Preprocessing
	Tour Construction
	Random Number Generation
	Vectorised Candidate Set Selection (VCSS)
	Parallel Reduction
	Pheromone Update

	Experimental Evaluation
	Experimental Environment
	ACO Parameters and Problem Instances
	Execution Time
	Solution Quality
	Discussion

	Conclusion

	Scaling Techniques for Parallel Ant Colony Optimisation on Large Problem Instances
	Background and Motivation
	AVX2 SIMD Instructions

	Restricted Pheromone Matrix
	Tour Construction
	Heuristic Fallback
	Pheromone Map Fallback
	Pheromone Distribution
	Local Search

	Experimental Evaluation
	ACO Parameters and Problem Instances
	Fallback Comparison
	Results
	Local Search Analysis
	Discussion

	Conclusions

	PACO-VMP: Parallel Ant Colony Optimisation for Virtual Machine Placement
	Background & Related Work
	Virtual Machine Placement Problem

	Parallel ACO for Virtual Machine Placement
	Initialisation Phase
	Solution Construction
	Pheromone & Heuristic Definition
	Local Search
	Pheromone Distribution

	Experimental Results
	Parameter Tuning
	Instance Set A: Large-scale Homogeneous Environment with Bottleneck
	Instance Set B: Small-scale Homogeneous Environment with Bottleneck
	Instance Set C: Heterogeneous Environment with Bottleneck
	Discussion

	Conclusions & Future Work

	Conclusions and Future Work
	Subsequent Developments
	Suggested Future Work

	Vector Class
	Vector.h
	Vector.cpp

	Candidate Set Roulette
	Paper: Vectorised Candidate Set Selection for Ant Colony Optimisation
	Paper: Scaling Techniques for Parallel Ant Colony Optimization on Large Problem Instances
	Paper: PACO-VMP: Parallel Ant Colony Optimization for Virtual Machine Placement

