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Abstract

Complex systems are composed of a large number of relatively simple entities inter-

acting with each other and their environment. From those entities and interactions

emerge new and often unpredictable collective structures. Complex systems are widely

present in nature, from cells and living organisms to human societies. A major biologi-

cal process behind this emergence in natural complex systems is morphogenesis, which

refers mainly, although not exclusively, to shape development in multicellular organ-

isms. Inspired by morphogenesis, the field of Morphogenetic Engineering (ME) aims

to design a system’s global architecture and behaviour in a bottom-up fashion from

the self-organisation of a myriad of small components. In particular, Morphogenetic

Robotics (MR) strives to apply ME to Swarm Robotics in order to create robot collec-

tives exhibiting morphogenetic properties. While most MR works focus on small and

cheap hardware, such as Kilobots, only few or them investigate swarms of mobile and

more “intelligent” robot models. In this thesis, we present two original works involving

higher-end MR swarms based on the PsiSwarm platform, a two-wheeled saucer-size

robot running the Mbed operating system. First, we describe a novel distributed algo-

rithm capable of growing a densely packed “multi-robot organism” out of a group of 40

PsiSwarms, based on ME principles. Then, in another study closer to Modular Robotics

(MoR), and taking inspiration from “programmable network growth”, we demonstrate

vi



the self-organisation of (virtual) branched structures among a flock of robots. Both

works use MORSE, a realistic simulation tool, while a path toward crossing the “reality

gap” is shown by preliminary experiments conducted using real hardware.
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Chapter 1

Introduction

Is designing and creating a multi-robotic system capable of self-organisation using bio-

inspired principles achievable? This question is the main focus of the field of Morpho-

genetic Robotics (MR) (Jin and Meng 2010). MR is a fruitful alliance between Mor-

phogenetic Engineering (ME) (René Doursat, Sayama, and Michel 2012) and Swarm

Robotics (SR) (Beckers, Holland, and Deneubourg 1994). The latter is a technological

family of complex systems targeting the use of multiple robots capable of perform-

ing tasks collectively and dynamically. Boosted by important advances in the field of

robotics in recent years, especially cheaper and faster robot hardware, SR proposes large

flocks of robots capable of many different feats such as, but not limited to, data col-

lection over large areas; complete decentralisation to resist against local failures; easy

replacement of robotic units; less costly communication with neighbours; and so on.

On the other hand, ME explores new methodologies to model and program the

bottom-up self-assembly of a swarm of agents into specific functional architectures,

1



CHAPTER 1. INTRODUCTION 2

ones that cannot be directly planned top-down. ME takes its inspiration from mor-

phogenesis and embryology, in particular how cells grow and arrange themselves into

highly sophisticated structures. By using a set of complex biological mechanisms, such

as cell duplication during mitosis, cell-to-cell communication based on chemical prod-

ucts released in the environment, and cell differentiation (the ability of a cell to change

its structure and specialise), a single cell can become an oak, a housefly or a human

being. The most impressive fact, and a central interest of ME, is that all decisions made

by cells, e.g. when to differentiate or what signal to diffuse, are guided by chemical

information stored in the DNA, which represents a massive string of elementary in-

structions decoded by each cell in various ways depending on its location, environment,

or type. ME’s endeavour is to design similar artificial “DNA’s” embedded in each agent

so that the swarm is able to achieve certain goals without explicit programming; in other

words, it is to “meta-design” the motion control and collective self-assembly of individ-

ual agents to make them operate as a single entity.

To provide a brief context: MR can be separated into two main areas. In some sys-

tems, a great effort is spent on the design of sophisticated high-tech robotic parts and

actuators capable of exact docking. In those cases, a small number of expensive units

only permits sparse and precise formations, such as chains and T-junctions, typically by

recursive attachment (e.g. M-TRAN from Murata et al. (2002)). Other systems, on the

contrary, contain a large number of simple and cheap mobile robots, forming a dense

mass (e.g. Kilobot from Rubenstein, Ahler, and Nagpal (2012)). These units “hud-

dle” together to maintain local communication and form more or less random patterns,

typically guided by “chemotaxis” (i.e. following virtual pheromones). In both cases,

however, whether chain constructions or crowd flocking, the morphogenetic abilities of
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these systems remain difficult to control.

In the present Developmental Robot, or DevoBot project, we aimed to create a

multi-robotic system that exhibits morphogenetic abilities. Following the “meta-design”

tenet of ME, and applying bio-inspired self-organisation to a large swarm of robots, we

achieved the development of what can be called a “multi-robotic organism”: an arti-

ficial creature composed of a body and several limbs, all made of a swarm of small

two-wheeled robots. We managed to meta-design and implement a model capable of

growing such a creature using 80 simulated robots within a realistic simulation environ-

ment. This meta-design allowed us to control the unfolding of the ME algorithm behind

the scene as well as the final shape of the swarm. To further consolidate its viability, we

ran a preliminary stability analysis on the simulation, then transposed it to a group of

26 real robots to form the body part of our creature. This was an attempt at crossing the

reality gap, the fundamental discrepancy between what is feasible in simulation and in

reality.

We have also undertaken a second study, where instead of growing a dense multi-

robotic organism out of a swarm, we focused on chain formations within a sparser group

of robots. Derived from ME principles as described earlier, this work followed a partic-

ular instance of it, “programmable network growth” (René Doursat and Ulieru 2008),

better suited to smaller and less populated graph-like structures. We established such

a model and implemented it both in simulation and in physical experiments, using the

same simulation software and physical hardware as in the previous contribution.

In both studies, the idea behind our work is to create new “multi-robotic organisms”

ultimately capable of performing tasks. If the swarm can be seen as a tool to achieve a
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goal, our work on “meta-designing” the behaviour of the swarm comes from an indirect

point of view: we want to show that it is possible to use a swarm to generate the needed

tools to perform a specific task, then change the swarm shape to change the tool and

perform yet another task, and so on. We want to increase flexibility in the swarm in

order to increase the number of possible applications with one swarm. Within this

ambitious framework, the present work only shows a proof-of-concept, i.e. first steps in

this direction.

To summarise, during this thesis we tried to answer the following question: Can

we meta-design and implement a model for a multi-robotic system capable of self-

organising into a “creature” or a structure using strong Morphogenetic principles?

To answer this question, we organised this thesis as follows. First, we conducted an

extensive literature review, presented in Chapter 2, describing the context of our contri-

butions and discussing related works. Then, in Chapter 3, we explain our experimental

setup, including common principles, tools and hardware used in both studies. We con-

tinue in Chapter 4 & Chapter 5 with the core of this thesis: the detailed description

of the two studies. We first present the main contribution to the DevoBot project: the

development of a multi-robotic creature in Section 4, before explaining our work on

the self-assembling chain-like structures in Section 5. Finally, we conclude this the-

sis in Chapter 6, where we summarise our contributions to the field of Morphogenetic

Robotics, expose the limitations and obstacles we encountered during the course of this

work and discuss possible solutions and future work.



Chapter 2

State-of-the-art

This chapter outlines the key concepts used in our work, namely Collective Robotics

and Morphogenetic Engineering and the concepts orbiting around them, and gives a

broad outline of the existing work related to our project. Figure 2.1 illustrates where

Morphogenetic Robotics (MR), the main research field of our work, is positioned rel-

ative to other fields. We start by reviewing Morphogenesis and Collective Behaviour

(CB), introducing some core concepts on which our work is based. Then, we focus on

Swarm Robotics (SR) before discussing Morphogenetic Robotics.

2.1 Introduction

Morphogenesis is the biological process referring to the development of the shape of

an organism (J. B. Bard and J. Bard 1992). It is one of the two fundamental sides of

the discipline of evolutionary developmental biology or “evo-devo” (Hall 2003). Evo-

devo aims to understand the correlations between genotype and phenotype in living

organisms, and how variations in one create variations in the other. Morphogenesis was

5



CHAPTER 2. STATE-OF-THE-ART 6

Figure 2.1: Venn diagram of research fields related to our work. Morphogenetic Robotics
is a Collective Robotics system using principles of Mophogenetic Engineering. Example of re-
search from: (a) Morphogenesis, the biological process referring to the development of the shape
of an organism: Turing (1952), J. B. Bard and J. Bard (1992), and Ball (2015); (b) Robotics,
the interdisciplinary study of machines: P. J. McKerrow and P. McKerrow (1991) and Siciliano
et al. (2010); (c) Collective Behaviour, the study of emerging behaviour from groups of simi-
lar agents within Complex Systems: Reynolds (1987), Parrish, Viscido, and Grunbaum (2002),
and Olfati-Saber (2006); (d) Collective Robotics, the study of large groups of relatively simple
robots: Beckers, Holland, and Deneubourg (1994), Rubenstein, Ahler, and Nagpal (2012), and
Murata et al. (2002); (e) Morphogenetic Engineering, the study of complex systems that self-
organise and self-assemble in a non-trivial, controlled fashion: Rene Doursat (2011) and René
Doursat, Sayama, and Michel (2012) and (f) Morphogenetic Robotics, the study of the applica-
tion of ME principles to the field of collective robotics: Oh, Shiraz, and Jin (2018), Vergara et al.
(2017), and Malley et al. (2020).
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discussed by Alan Turing in his famous 1952 paper The chemical basis of morphogen-

esis (Turing 1952), in which he devised a mathematical model explaining how random

fluctuations can drive the pattern formation from initial uniformity. His motivation was

to answer the question of how a spherical embryo becomes a non-spherical organism,

such as a human being (Ball 2015).

In synthetic biology, J. Pascalie (Pascalie et al. 2016) proposed a model of prokary-

otic cell with morphogenetic properties that self-assemble into limb- and body-like

structures. This is based on gradients of morphogen concentrations, a concept that

we will also apply in our own robot experiments (see Chapter 4 & Chapter 5). Cell

signalling is one of the pillars of morphogenesis. In Hancock (2003), J. Hancock pre-

sented three different ways for cells to communicate: (1) signal molecules diffusing in

the surrounding environment of the cell; (2) direct chemical channels between a sender

cell and a receiver cell through their membranes; and (3) proteins on the membrane

that can be recognised and bound by another cell’s membrane. These communication

mechanisms have also inspired our model of information propagation through a com-

plex robotic system (see Chapter 4.1).

Genetic Algorithms are part of Evolutionary Computing (EC) (Eiben and Schoe-

nauer 2002; Eiben and Smith 2015). While not directly used in the work we present

in this thesis, EC, and evolution in a more general sense, will be a crucial part of any

future development based on this thesis (see Chapter 6).

In Dawkins (2003), R. Dawkins proposed a definition of evolution, and claimed that

two principles are essential for it: (1) a genetic component, a set of replicators, or self-

replicating entities on the micro level, also called genotype; and (2) an embryology, the
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fact that replicators lead to an expression at a macro level on the entity that is evolv-

ing (this expression is also called a phenotype) and leading to the success or failure of

the said entity within its environment. If the entity succeeds and survives with its set

of replicators, its information is passed onto the next generation. To clarify those two

terms: genetic is the study of the relationship between genotypes in successive gen-

erations, whereas embryology is the study of the relationship between genotypes and

phenotypes within one generation. Most evolutionary computing techniques make use

of a fitness function and value, a mathematical function used by the system to evaluate

the quality of a specific individual within one generation. If we take the example of a

GA used to optimise the parameters of a function, the fitness is used to select the best

parameter sets, the individuals that yielded the best results, and pass them onto the next

generation.

For a concrete example of the use of EC, C. Gros, in (Gros, Martin, and Sándor

2017), presented a one-neuron controller for a wheeled-robot, where each actuator, or

wheel, is linked to a single neuron. The neuron mimics a steam locomotive propulsion

system, using the angle of the wheel as the main input to calculate the force applied to

the wheel in order to put it in motion. He implemented his model in a 3D simulation,

and showed that the robot was able to achieve simple tasks efficiently with a number of

wheels varying from 2 to 10 plus, proving the scalability of his model. K. Harrington

devised an agent-based swarm behaviour for a food foraging task (Kyle Harrington et al.

2017). A GRN controls the behaviour of each agent, including obstacle avoidance and

food items collection, and is evolved using a GA, where all agents of the swarm act as

the population and the parameter sets of the GRN as the genome. Using a fitness func-

tion that punishes agents when they collide and rewards them when they successfully

forage food items, K. Harrington created a “competitive eco-evolutionnary” simulation
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where agents compete with each-other on the food collection task by avoiding colli-

sions, and with the GA evolving the parameter set, improves the general behaviour of

the swarm generation after generation.

It is also important to clarify what is “Collective behaviour” (CB) and how it is

related to this thesis. CB denotes behaviours at the group level, emerging from the

interactions of a large number of entities. These collective behaviours emerge thanks to

a process called self-organisation. Self-organisation refers to a broad range of pattern-

formation processes that make an initially disordered system ordered, such order arising

from local interactions between the entities of the system (Camazine et al. 2020; Yates

2012).

Collective Behaviour can be linked to the study of flocks, what parameters control

the behaviour of the entities within it, and the successive stages of flock or crowd for-

mation.

Reynolds (Reynolds 1987) famously introduced three rules to model and simulate

these behaviours: separation, where entities steer to avoid colliding and crowding sur-

rounding flockmates; alignment, where entities correct their direction to align with sur-

rounding flockmates, and cohesion, where entities move toward the centre of mass of

their surrounding flockmates. He provided better insight into the key mechanisms of

this type of natural complex systems.

In Toner and Tu (1998), J. Toner investigated the properties and different states

a flock following Reynolds’ rules have. To do so, they devised a mathematical model

capable of predicting stable states in Reynold’s flock, similar to the Navier-Stokes equa-

tions for simple comprehensible fluids. They showed that such flocks (in 2 dimensions)

always exhibit a state where all the “boids” (elements in the flock) match their direction
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and speed, forming a stable state. In his research, D. Fu (Fu et al. 2018) investigated the

impact of low density of agents in flock formation, proposing a novel approach for flock

behaviour to overcome the issues of low communications in low agent-density environ-

ment for flocking behaviour control. Indeed, he showed that flocks were forming more

easily when the concentration of agents is high, whereas in a low agent-density envi-

ronment, interactions are more rare hence flocks are forming more slowly if forming

at all. His novel approach consists in a “follow-then-influence” behaviour, letting some

agents influence the others in the flock to fly in a desired direction, hence controlling the

global movement of the flock. The previously presented works are important because

they exhibit a will to understand and control flocking behaviour, and form the first steps

to fully decentralised and autonomous flocks of robots.

Beyond aggregates of social animals, the study of CB expands to larger horizons.

Examples include emergence in vehicular traffic flow (Herman and Gardels 1963), a

popular field of research nowadays, due to the expected safety and traffic efficiency

applications that autonomous vehicles will enable (Jorge and Rossetti 2018). Studies

like Nagel and Paczuski (1995), Kerner and Klenov (2009) or Zhu (2020) investigate

the emerging properties of traffic. K. Nagel established a traffic flow model and studied

the impact of small perturbations and variations on such model. B. Kerner found several

states in traffic flow models, similar to states in Reynold’s flock models, and showed

the different transitions between those states. Finally, L. Zhu improved classic traffic

flow models by adding the modelisation of semi-stable states. B. Friedrich showed that

autonomous vehicles would improve traffic flow in general, with less traffic jams and an

increase in mobility for low-mobility population groups (Friedrich 2016). Studies like

Bhavsar et al. (2017) investigated the risks that autonomous vehicles may encounter

and/or cause in traffic. P. Bhavsar identified several failure scenarios and proposed
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and evaluated strategies to overcome such failures. In J. Wang, Peeta, and He (2019),

J. Wang proposed a model for a traffic flow made of both human-driven vehicles and

connected and autonomous vehicles.

Collective Behaviour is also studied in the context of human crowds, and is a re-

search area that attracted a lot of attention due to its wide spectrum of potential applica-

tions (Thalmann 2007). For example, studies on crowd behaviour during a global panic

helped researchers to better understand how the crowd behave and to improve safety

measures (Helbing, Farkas, and Vicsek 2000; Shiwakoti and Sarvi 2013; Rockenbach

et al. 2018). A Turing test was created to investigate if non-specialists could distinguish

a simulated crowd from a real one, and J. Webster (Webster and Amos 2019) showed

that they could, but participants were unable to find a real crowd when a choice was

given.

Collective behaviour has also been used for other purposes than replicating or un-

derstanding behaviour. For example, Ant Colony Optimisation (ACO) (Dorigo and

Gambardella 1997; Dorigo and Birattari 2011) uses the ants’ collective food forag-

ing behaviour to solve the travelling salesman problem and other combinatorial chal-

lenges (Stützle, Dorigo, et al. 1999; Peake et al. 2018; Peake et al. 2019).

In sum, Collective Behaviour appears in many research domains, in behavioural

biology with the study of herds and flocks, in sociology with the study of crowd be-

haviour and in computer science with ACO. Naturally, this field of research also applies

to robotics. Ant behaviour can serve as a basis for online area coverage algorithms using

stygmergy, as shown in Giuggioli et al. (2016). In the next section, we will focus on

the field of robotics. Since our project is focused on the study of swarm of robots, we

will not look into research about single entity robots, but instead will focus on exploring
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collective robotic systems, more precisely Swarm Robotics (SR).

2.2 Swarm Robotics

Swarm Robotics describes robotic systems composed of groups of small, usually cheap

and un-specialised units capable of simple movement and actions. The goal of these sys-

tems is to study the emergence of collective behaviours in swarms of robots, and how

to design these behaviours to achieve tasks. SR is different from single entity robotics.

Single entity robotics aim is to develop a single complex robot capable of performing

highly specific tasks, for example: assistive robotics which aim at creating robots ca-

pable of social interaction with human beings (Tapus, Mataric, and Scassellati 2007;

Feil-Seifer and Mataric 2005); and research linked to space exploration (planetary and

space robotics) with development of highly specific and expensive equipment (Yoshida

2009; Weisbin and Rodriguez 2000).

Since swarm robots form complex systems, the difficult challenge is to design rules

for the control and coordination of multiple robots so that they can achieve given func-

tions at the swarm level, such as forming a spatial shape (e.g. surrounding an area) or

acting in coordination (e.g. pushing a large object). First, we clarify the distinction be-

tween “self-configuration” and “self-assembly” terminologies used in this thesis. The

former refers to the ability of the swarm to arrange itself into a final state known in

advance by the robots, i.e. they make decisions based on both their local perception and

a priori knowledge of their final goal. The latter also describes the capacity to form

configurations based on local interactions but without any prior knowledge of the goal

to reach.

In robotics, using a large number of robots simultaneously is a real challenge, due
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to the complex infrastructure needed for communication, experiments and maintenance,

but also due to the often high cost of each individual unit. To overcome this challenge,

Rubenstein created the Kilobots (Rubenstein, Ahler, and Nagpal 2012), a robot with a

33mm diameter. Its cheap cost allows researchers to use a large number of Kilobots to

undertake large scale experiments, and its ease of operation and local communication

capability make it a prime choice for MR research.

J. Alonso-Mora (Alonso-Mora, Breitenmoser, Rufli, Siegwart, et al. 2011) described

a method of controlled pattern formation in a swarm of robots, using a centralised plan-

ification algorithm. The robots used were the “e-puck” model (created by F. Mondada

in Mondada et al. (2009)), and were randomly placed in an arena in which they move

to achieve a specified pattern, such as a line or a star. The different goal patterns and

the optimal robots’ positions in these patterns are centrally computed. Then, each robot

is assigned an optimised goal position. Finally, the robots will move to their assigned

goal position, using a locally chosen velocity and a decentralised collision avoidance

algorithm (Alonso-Mora, Breitenmoser, Rufli, Beardsley, et al. 2013).

In our work, the positions of each robot in the final shape will not be centrally com-

puted and assigned to a specific robot. The robot will determine itself its role according

to locally obtained information, such as relative positional information.

In Stoy and Nagpal (2004), K. Stoy presented a self-reconfiguration algorithm which

uses a spreading gradient system. A gradient is a numerical value passed from robot to

robot and used as a relative positional information (see Section 4.1). The algorithm is

made for a large group of attached robots in a 3 dimensional space, where each robot

has a knowledge about the final configuration. Initially, robots are randomly scattered
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and one seed is randomly chosen among the robots and acts as the source of the gradi-

ent. The gradient allows the receivers to know the distance between them and the seed,

as well as the direction to the seed. Using the a priori knowledge, the seed determines

which of its neighbouring positions needs to be occupied by a robot and transfers this

information to the swarm which will try to fill the holes until the determined structure is

complete. Our work will make use of a similar gradient system, but our usage differs (cf

Chapter 4). Our gradient system will be used to split the group of robots in several re-

gions, and new gradients will emerge from these regions to allow the growth of “limbs”

out of the main group of robots. Recently, H. Wang and M. Rubenstein (H. Wang and

Rubenstein 2020) developed a model capable of shape formation within a large swarm

of Kilobots (Rubenstein, Ahler, and Nagpal 2012). The Kilobots are initially randomly

placed in a arena. The desired shape is extracted from an image file and processed by a

centralised algorithm that will compute the path for each robot and send to each of them

the steps they have to make in order to form the shape without collision. In our work

presented in Chapter 4, the exact desired shape of the system is not known in advance.

It is derived from the parameters of the system (number of regions, number of limbs,

etc.) and the swarm will take an approximation of the shape (e.g. a round body with 2

limbs), but the exact shape (e.g. the exact position of the limbs, their angle compared to

the body, etc.) is not known in advance.

SR is also present in impressive shows for popular events, where hundreds of Un-

manned Aerial Vehicles (UAVs) orderly flock into different shapes in the sky (Kaplan

2016; Ehang, China n.d.). In such swarms the whole choreography of drone move-

ments is computed in advance “top-down” and played back—a crucial difference with

“bottom-up” autonomous systems.
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Even though the work we present in this thesis is related to ground robots, SR is

also present in marine environment, for oil spilling management (Kakalis and Ventikos

2008) or marine environmental monitoring (Duarte et al. 2016; Lončar et al. 2019).

AquaBotix1, for instance, developed in 2018 a swarm of Unmanned Surface Vehi-

cle (USV) and Unmanned Underwater Vehicle (UUV) named SwarmDiver2 (Woolsey,

Kitts, and Amend 2019). They are used to accomplish different tasks, from defence

goals to ocean research, and are equipped with several sensors and data collection tools.

In addition, other works took interest in marine swarms and investigated the synchronic-

ity (Yu et al. 2019) and trajectory planning (Hajieghrary, Kularatne, and Hsieh 2018) of

marine vehicles.

As we showed in this section, Swarm Robotics can be applied to a wide range of

problems, using self-configuration capabilities to solve issues using large groups of sim-

ple robots that a single specialised robot could not resolve. When SR is used in conjunc-

tion with growth and developmental principles, as well as limiting global knowledge for

the robots in the swarm, SR can achieve self-assembly much like a natural complex sys-

tem. This opens up a new research field: Morphogenetic Robotics (MR). In the next

section, before tackling Morphogenetic Robotics, we will discuss Morphogenetic Engi-

neering in order to give a better overview of the field in which MR is comprised.

1www.aquabotix.com
2https://www.aquabotix.com/micro-usvs.html

www.aquabotix.com
https://www.aquabotix.com/micro-usvs.html
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2.3 Morphogenetic Engineering & Robotics

In this section, we shift our focus to Morphogenetic Engineering (ME), a field deriv-

ing its principles from Morphogenesis toward artificial life models and innovative bio-

inspired technology. Founded by R. Doursat and H. Sayama (Rene Doursat 2011; René

Doursat, Sayama, and Michel 2012), ME focuses on a specific class of complex systems

that self-organise and self-assemble in a non-trivial and controlled fashion. To model

and simulate morphogenetic systems, one should not attempt to design their macro-

scopic structure directly but rather “meta-design” the microscopic rules by which their

components self-organise and evolve, then observe and evaluate the emergent outcome

in comparison with the original goals.

In ME systems, communication between entities is based on principles taken from

cell communication in biology (Hancock 2003): (1) cells use signalling molecules sent

into the surrounding environment to neighbouring cells, and ME uses gradient values

that propagate from neighbour to neighbour, which are numerical values representing

relative positional information (see Chapter 4.1); (2) via direct connection of a cell to

the receiver cell, by opening a ”bridge” between the two cells and sending information

through it, and in ME, neighbours can send each other specific messages; and (3) via

proteins on the membrane that can be recognised by other proteins on another cell’s

membrane, and in ME, entities in the system can sense information from their neigh-

bours cells such as gradient values.

Doursat extended his work through models of simple and directed cell evolution

based on GRNs (René Doursat 2010). He showed multi-scale pattern formation on a

growing sheet of cells, demonstrating the possibility of shape creation using ME based
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on hierarchical networks of GRNs. Each location on the lattice executes a GRN to trans-

form gradients into output values. The weights of the GRNs represent the genotype, and

the calculation gives rise to the phenotype. Hence, changing the GRN parameters re-

sults in a change of the pattern and shape. Later, R. Doursat and C. Sanchez created

an artificial 3-D creature based on the same mechanisms (René Doursat and Sánchez

2014), including cell division and gradient propagation, and growing in a physics en-

gine. Then, they used genetic algorithms to train it to move in a virtual environment

with ambient gravitation, such as climbing stair cases.

In summary, Morphogenetic Engineering twisted the principles of Morphogenesis to

create complex systems capable of achieving specific tasks by designing the said system

with a bottom-up approach while respecting the genotype/phenotype couple specific to

Morphogenesis. In the remaining of this section, we will investigate the core principle

of our work, the alliance of Morphogenetic Engineering and Swarm Robotics: Morpho-

genetic Robotics.

Morphogenetic Robotics (MR) can be seen as the application of Morphogenetic En-

gineering principles to the field of Swarm Robotics. According to Y. Jin in Jin and

Meng (2010), MR “focuses on employing genetic and cellular mechanisms in biologi-

cal morphogenesis for developing self-organising, self-reconfigurable, and self-adaptive

robotic systems, covering a wide range of robotic systems, such as swarm robotic sys-

tems, modular robots, and intelligent robots”. We will not review Intelligent Robots

(InR). Indeed, InR represents single robots capable of performing specific and complex

tasks and can make use of highly specific sensors, which is not the focus of our work.

As for SR, we will review two sides of the same coin: systems using soft robotics and

systems using more classic robotic swarms.
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Soft Robotics (Majidi 2014; Whitesides 2018) is a field of robotic that focuses on

robots made of flexible materials like gels, fluids and elastometers, mimicking biolog-

ical materials such as skin or organs. Recent works in engineering, such as Tognato et

al. (2019) and Miriyev, Stack, and Lipson (2017) developed flexible materials for soft

robots.

Soft robots models are in majority inspired by nature, either on a microscopic scale

to reassemble cells, or on a macroscopic level to copy how some animals or insects move

and communicate. Vergara et al. (2017) presented a new soft robot design. It mimics

cell aggregation with pneumatic cube-shaped elements that can shrink and inflate and

are equipped with magnets on every side to attach to each other. A. Vergara showed an

organism formed with such robots that can move using actuators and aggregate other

robots on itself. He also exposed the possibility of copying cells behaviours such as

adhesion or migration, and demonstrated the self-reconfiguration capability of a group

of 22 robots. As mentionned earlier, soft robots can be inspired by insects, like the

Wormbot (Nemitz et al. 2016), which is inspired by the biology of a worm. In the

Eciton Robotica project3 (Malley 2020; Malley et al. 2020), M. Malley took inspiration

from the “army ants” and how they form bridges across gaps of different sizes to create a

soft-robot model capable of this same task, in a 2-Dimensional space. Those robots are

made of a flexible material, allowing them to efficiently move and reposition themselves.

They use a system of claws to attach to a velcro surface or to each other, and use a

vibration based system to communicate and form bridges to allow a large swarm of

them to efficiently cross a gap.

The works presented so far in Soft Robotics focused on transposing reality into

3ssr.seas.harvard.edu/ecitonswarm

ssr.seas.harvard.edu/ecitonswarm
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physical robotics and taking strong inspiration from biology, even copying biological

and natural behaviours. “Hard robotics” MR systems (as opposed to soft robotics ones)

only take light inspiration from biology and Morphogenesis, and adapt their principles

to more abstract SR problems.

One of the famous problems faced in SR is crossing the “reality gap” (Jakobi, Hus-

bands, and Harvey 1995; Ligot and Birattari 2018), the fundamental discrepancy be-

tween what is feasible in simulation versus what is feasible physically. To cross this

famous gap, from simulated ME systems to MR systems using actual hardware, a large

number of robots working together is needed. Indeed, as seen earlier, ME needs a large

number of entities to simulate the growth of multi-cellular organisms and morphogen-

esis principles. Indeed, the reality gap is an important challenge. When simulating a

robotic system, one needs to introduce voluntary errors in sensor readings, part breaks

in robots, and external events to the simulation or micro-variations in actuators in order

to be closer to reality. Even then, creating physical robots from a simulation remains

difficult. In out work, the simulations described are used to validate our models, and not

how our physical robots react to the real world. That is why our reality gap is not about

crossing from a simulated robot swarm to a physical robot swarm, but crossing from a

simulated ME model to the physical implementation of the model.

We will now present and discuss relevant works focused on modular structures in robotic

swarms in order to introduce the work presented in Chapter 5.

Some swarm systems contain a large number of simple and cheap mobile robots, cre-

ating a dense “herd” such as the Kilobot platform (Rubenstein, Ahler, and Nagpal 2012).

On the ground, units cluster together to maintain local communication and possibly dis-

play patterns, typically guided by “chemotaxis” based on virtual pheromones. Other
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works experiment with smaller flocks of unmanned aerial vehicles for indoor explo-

ration (Stirling, Wischmann, and Floreano 2010), also examining self-reconfiguration in

case of faulty rotors (Gandhi et al. 2020), or schools of (sub)marine robots performing

synchronous encounters (Yu et al. 2019) and cooperative load transport (Hajieghrary,

Kularatne, and Hsieh 2018). At the other end of the spectrum, significant efforts were

devoted to the design of sophisticated parts and actuators capable of physical attachment

to achieve “modular robotics” (Ahmadzadeh, Masehian, and Asadpour 2016). In these

cases, a limited number of units generally only permit sparse and precise formations,

such as chains and T-junctions, typically by recursive attachment.

Historically, the Modular Transformer (M-TRAN) (Murata et al. 2002) was one of

the first self-reconfigurable robotic kits. A group of M-TRANs can be placed in a certain

initial state and go through a series of moves to achieve some target shape. Swarm-

Bot (Groß et al. 2006) is a self-assembling system comprising smaller mobile robots

called s-bots, which use mounted grippers and sensors/actuators (LEDs, camera) to

cling to each other or to static objects, following behavioral rules and local percep-

tion. Using the s-bot model, SwarmMorph (Christensen, O’Grady, and Dorigo 2008;

O’Grady, Christensen, and Dorigo 2009) is a morphogenetic model based on a script

language able to produce small 2D robot formations to achieve certain tasks. As for the

SYMBRION project (Kernbach et al. 2008), it created an intricate piece of hardware in

the form of a cube that could dock precisely with its peers: the vision was to collectively

form “symbiotic” robotic organisms that could move in 3D.

In recent years, modular robot systems have become more commonplace, thanks to

cheaper and faster hardware. For example, HyMod (Parrott, Dodd, and Groß 2018) is

a set of cubic modules with full rotational freedom, which can be combined to create

3D lattice structures such as snakes or wheeled vehicles. The Soldercube (Neubert and
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Lipson 2016) is a similar building-block rotational unit equipped with magnetic ties and

internal sensors to detect its orientation and occupied faces. Resting on top of a planar

lattice of anchors, Soldercubes are able to transform their spatial arrangement by pick-

ing up and dropping off each other through attach/turn/detach combinations of moves.

The Evo-bot (Escalera et al. 2018) is another modular concept intended to physically

implement the growth of artificial “creatures” as compounds of differentiated robotic

modules, each one with a specific function such as resource harvesting or motion con-

trol. “Soft robotic” designs, as seen earlier in this Chapter, also attempt to mimic cell

aggregation with pneumatic and magnetic cubic elements that can shrink and inflate,

giving rise to organisms capable of locomotion.

Morphogenetic Engineering in Robotics emphasises works on very large swarms

of robots. In his famous article, M. Rubenstein presents the largest swarm robot works:

1024 kilobots swarms together to form a shape (Rubenstein, Cornejo, and Nagpal 2014).

Kilobots in his experiment possess a priori knowledge of the goal shape and use a gra-

dient system emitted from 4 anchors, 4 kilobots were placed at a strategic point in the

beginning to form the origin of a coordinates system which is used by the other kilobots

to know where they are relative to those anchors points. With this positional informa-

tion and the a priori knowledge of the goal shape, each kilobot moves along the swarm

and stops in a correct position, constantly updating its gradient values so other kilobots

know where they are and when to stop. This work is a great technology feat and a real

advance in swarm robotics and physical experiments. Our work is greatly inspired by

it, notably with the usage of gradients in our models, even though the work presented in

this thesis aims for more autonomy in the final shape of the swarm, without any a priori

knowledge distributed to each robot.
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In the SwarmOrgan Project4 (Oh and Jin 2014b; Oh and Jin 2014a; Shirazi, Oh, and

Jin 2014; Oh, Shiraz, and Jin 2016; Oh, Shiraz, and Jin 2018), researchers worked with

GRNs and gradient based behaviours to develop a self-assembling swarm of Kilobots

capable of tracking a target and herding it to a specific location. Here, the target was

acting as a source of gradient propagation which served as a beacon for individuals in

the swarm, and the GRNs controlled each robot.

First, they developed an evolving hierarchical GRN (EH-GRN) (E. Davidson and

Levin 2005; Erwin and E. H. Davidson 2009) to control a swarm of robots in Oh and

Jin (2014b), and used ME principles for pattern formation, precisely chemical based

gradients present in the environment (hence using stygmergy). The goal was for the

robots to entrap a target whilst avoiding others. The EH-GRN is composed of two

layers: the upper layer generates the pattern in which the swarm need to organise and

the lower layer controls the robots based on this global pattern.

In Oh, Shiraz, and Jin (2018), the SwarmOrgan project crossed the reality gap and

implemented their collective tracking and herding model into Kilobots. One of the

robots acts as the target and emits “chemicals” into the environment, symbolised by

morphogenetic gradients. Then, other robots can detect these gradients and encircle the

target.

In Molins, Stillman, and Hauert 2019, P. Molins presents a trail formation method

for large robot swarms inspired by diffusion limited aggregation Kassner 1996. Before

discussing his work, a quick aside on multi-agent systems (MAS). Multi-Agent Sys-

tems are systems composed of several intelligent agents interacting with each other in

order to achieve a goal or solve a problem collectively (Kubera, Mathieu, and Picault

2010). They are different from agent-based model because in an agent-based model (e.g.

4http://www.swarm-organ.eu/

http://www.swarm-organ.eu/
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Reynolds’ flocks Reynolds 1987), agents are not necessarily “intelligent”. Typically,

agent-based models are usually used to study an emergent behaviour where MAS can

be used to tackle complex computational or engineering problems. Back to P. Molins’

work, he made use of a MAS to form trails of robots between a source and an area

of interest using a method inspired by diffusion limited aggregation algorithm. Robots

perform random walks until they sense neighbours connected to a trail, using virtual

pheromone gradients. His model is proven to be able to find the closest area of interest

and to adapt to the environment by finding trails avoiding obstacles. This work is fo-

cused on the goal of finding the closest area of interest using a morphogenetic robotics

swarm, whereas the work we present in this thesis is primarily focused on the shape we

aim to form with the swarm rather than the functional goal.

In Slavkov et al. (2018), I. Slavkov used a large swarm of Kilobots to implement the

mathematical model of chemical propagation described by Turing in Turing (1952).

Recently, Vasarhelyi (Vásárhelyi et al. 2018) presented a decentralised swarm of

UAVs capable of self-reconfiguration, obstacle avoidance and movement coordination,

thanks to local perception and communication only. They experimented this behaviour

in a swarm of 30 drones using a complex realistic simulation and a Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) (Hansen and Ostermeier 2001) to evolve the

model parameters.

In Carrillo-Zapata et al. 2019, Z. Carillo presents a Morphogenetic Engineering

model for a large swarm of Kilobots (up to 300 physical robots), and based on local

gradients, with a reaction-diffusion model to initialise them. During an initialisation

phase, the reaction-diffusion model initialise high concentration zone using gradients.

After this phase, kilobots are attracted to the closest high concentration location through
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local sensing when moving in the swarm with edge following movement. When a kilo-

bot is close to an attraction point (i.e. a high gradient concentration zone), it stops and

becomes part of the attraction point. Attraction points are also places at the tips of the

swarm, so it is influenced to grow out of the main swarm. This work presents a con-

trolled morphogenesis within a swarm of robots through parameter control, with three

main parameters: max hop (determines the size of the attraction clusters), min stop (af-

fects the location of the cluster where the robot stops, e.g. more on the sides or in the

middle) and min for attractor (controls the minimum size of a cluster). In our work, we

took inspiration from their work for our limb growth model, phase separation during the

unfolding of our model and the control of the desired shape by parameters (see Chap-

ter 4), although we aim to use different robots, larger and in smaller numbers and have

even more control over the morphogenesis of the swarm (control over the formation of

a body and limbs growing out of the previously formed body).

2.4 Conclusion

As showed in this review, Morphogenetic Robotics is derived from the merging of two

large fields of research, Morphogenetic Engineering and Swarm Robotics. Where Mor-

phogenetic Engineering aims at using nature-inspired principles, specifically Morpho-

genesis principles, to create and meta-design self-assembling and self-reconfigurable

systems, being agent-based systems capable of growing artificial creatures or more ab-

stract systems such as Ant Colony Optimisation systems; and Swarm Robotics focuses

on the usability and feasibility of large robotic systems composed of cheap and eas-

ily replaced units but with no limits on which type of controller is used; Morphogenetic
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Robotics meanwhile aims to create large completely decentralised robotic systems using

ME principles to self-assemble and achieve specific goals with no external supervision,

in the most organic way possible.

The majority of the works in the MR field of research focused either on: (1) the Kilo-

bot model (Oh, Shiraz, and Jin 2018; Slavkov et al. 2018; Gauci et al. 2017; Rubenstein,

Ahler, and Nagpal 2012), a cheap and reliable model allowing the realisation of exper-

iments with dozens or hundreds of units; and (2) complex and specific robotic models,

handcrafted for the specific research problems researchers try to solve (Malley 2020;

Malley et al. 2020; Vergara et al. 2017; Nemitz et al. 2016).

The work presented in this thesis is focused on a swarm exhibiting morphogenetic

properties, made of cheap 2-wheeled robots, the PsiSwarm model (see Section 3.2).

The Psiswarm model are equipped with embedded hardware functioning with Mbe-

dOS5, allowing the bots to perform complex computation online. Their two-wheeled

based movement offers them good movement flexibility, with a full control of their

movement in a 2-dimensional plane; and communication wise, Psiswarms are equipped

with Bluetooth technology giving them a good communication range compared to other

wired-based of Infrared-based communication. However, Psiswarm detection capabil-

ities, based on small infra-red sensors placed around the bot, are limited to a few cen-

timeters, and Bluetooth communication is not the most scalable and reliable technology,

and although it allows a good range, it is still limited compared to Wifi or LTE (Long-

Term Evolution) technology. On the other hand, Kilobots are cheap and easy to produce

to conduct physical robotic experiments with large numbers of entities, giving them the

advantage to make the results stochastically relevant for real world applications but they

possess very limited movement capabilities and computation capacity. In this work, we

5https://os.mbed.com/mbed-os/

https://os.mbed.com/mbed-os/
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wanted to show that MR could be used with larger robots in similar situations where

kilobots are used, making use of their compute and movement capabilities, better than

the kilobots’. Additionally, when Soft Robotics MR works focuses on replicating be-

haviours seen in nature with hardware as close as possible to nature, “Hard Robotics”

MR mainly focuses on using ME principles applied to more classical hardware (e.g.

PsiSwarms or Kilobots) in order to study natural phenomenons in controlled environ-

ments or using these phenomenons and principles to solve a wide range of tasks with a

swarm. Our work focuses on using ME and Morphogenesis as it is present in nature, to

create new “multi-robotics organisms” themselves capable of achieving tasks. Instead

of using the swarm as a tool to achieve a tasks, we use the swarm to create the tool us-

ing ME principles, and then use this tool to solve the tasks, allowing more flexibility for

the swarm in term of task achievement, and more possible applications with the same

swarm.

This concludes the literature review Chapter of this thesis. In the next Chapter

(Chapter 3), we will present the experimental setup used for our contributions (Chap-

ter 4 & Chapter 5), describing first the basic principles taken from ME used by our

models, then we will describe our simulation tool and the robot model we used for our

physical experiments.



Chapter 3

Experimental Setup

In this chapter, we will be presenting the software tools and hardware we used in our

works. First, we will discuss the basic principles our work uses: the neighbourhood

computation using a trimmed Delaunay triangulation and the spring forces application

used to calculate trajectories. Secondly, we will describe the simulation tool we used,

the MORSE simulation environment1, running with Python. As MORSE is a real time

simulation, we developed a new tool called Logvis to enable replaying the simulations

offline. Finally, we will present the robots we used for the physical experiments: the

PsiSwarm platform designed by James Hilder and Jon Timmis at the York Robotics

Lab2, and the controller we used to monitor the robots in real time, ARDebug (Millard

et al. 2018).
1http://www.openrobots.org/morse
2https://www.york.ac.uk/robot-lab/psiswarm/

27
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3.1 General principles

Our work is about Collective Robotics and Morphogenetic Engineering, thus it makes

use of a flock of robots, interacting with each other in a decentralised manner. These

robots communicate with their close neighbours to exchange information and pass mes-

sages through the flock. The complex system formed by the flock needs to be repre-

sented as an abstract model for us to simulate it and implement our ME model within

the flock first in simulation, and then in hardware. Hence, we need to precisely define

what is a robot at an abstract level, as well as how its neighbourhood is formed and how

it communicates.

We represent our systems as a distributed, multi-agent system where each agent

relies only on local perception of the environment to control its behaviour and com-

municate with the agents that it detects in its vicinity. All the computational logic is

embedded in the agents to obtain a fully decentralised system. We chose a MAS for

its intrinsic properties (Sycara 1998): (1) each agent has incomplete information or ca-

pabilities for solving the problem and, thus, has a limited viewpoint; (2) there is no

global system control; and (3) computation and data processing is asynchronous and

decentralised. These properties mimic almost perfectly a system composed of multiple

independent robots.

In addition to the definition of the agent itself, the definition and computation of each

agent’s neighbourhood is central to the cohesiveness of a collective robotic organism,

as it ensures the proper coordinated propagation of information across the flock. To

this aim, we use a hybrid “topological-metric” type of neighbourhood implemented by

a modified Delaunay triangulation, chosen for its accurate representation of physical

contacts and robustness to change (Shamos and Hoey 1975).
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Figure 3.1: Neighbourhoods and forces. (a) Example of a Delaunay graph among a dozen
agents where connections are trimmed (dashed lines) above a given cutoff distance D. (b) Two
connected agents i and j at distance d exert virtual and opposite elastic forces of magnitude
F = k|d − L| onto each other (implemented by wheel-based movements), where L denotes a
free length and k a rigidity coefficient. If d > L, i and j move toward each other; otherwise,
they pull apart.

A Delaunay triangulation is the dual graph of the Voronoi diagram of a set of

points (Fortune 1995), and forms a set of triangles. Each triangle’s circumcenters3 is

a point within the Voronoi diagram. To keep things simple, if two points are connected

with an edge in the Voronoi diagram, then the two resulting triangles (with said points

as circumcenter) will share an edge in the Delaunay triangulation.

Our modification consists of pruning connections that are longer than a given thresh-

old, set just below the average minimum distance of uniformly distributed agents in

space in order to accommodate real-world constraints (Figure 3.1a). Since the Delau-

nay triangulation is not metric-based, far away robots may also be connected and this is

why a cutoff length was introduced to prevent unrealistic long-range communication.

Each neighbourhood connection can also carry a virtual spring creating elastic forces

(Figure 3.1b), which translates into wheel-based movements by each agent to stay at a

3Circumscribed circle’s center
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certain optimal distance from its neighbours, neither too close to avoid collisions, nor

too far to remain within signal range. Each agent will have a set of polar coordinates

sP , containing tuples (a, d) with a an angle and d a distance. Each polar coordinate is

calculated from the position of its neighbours. The force F resulting from each polar

coordinate is calculated with: F = k|d− L|, where k represents the rigidity coefficient

(how strong is the virtual spring between the two agents) and L is the free length of the

virtual spring (the distance where the spring will exert no forces on the agents).

From sP , a set of forces sF is calculated. The average force Fa is calculated from

sF to give the agent the final spring force applied to it by all its neighbours. From Fa,

the agent will get a target angle at that it has to align to and a target distance distt that it

has to move in order to apply the final spring force. The agent will then turn until facing

at and move by distt. This process is repeated until the agent finds itself into a stable

position, where all the spring forces from its neighbours are at free length and exert no

more forces.

3.2 PsiSwarms and ARDebug

The PsiSwarm platform, a disc-shaped robot on wheels, was designed by James Hilder

and Jon Timmis at the York Robotics Lab4. It runs on Mbed OS5, an open-source real-

time operating system for the Internet of Things. Its control code in C++ is uploaded

to the board via a USB link. PsiSwarms are equipped with the following components

(Figure 3.2): an Mbed LPC1768 Rapid Prototyping Board6, the heart of the operation

containing the code, plus a Micro-USB plug and a Bluetooth emitter/receptor; an LCD

4https://www.york.ac.uk/robot-lab/psiswarm/
5https://os.mbed.com/mbed-os/
6https://os.mbed.com/platforms/mbed-LPC1768/
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Figure 3.2: PsiSwarm platform with (a) mother board Mbed LPC1768 Rapid Prototyping
Board, (b) LCD screen, (c) infrared sensors, (d) wheels and motors, (e) joystick for user input,
and (f) battery.
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Figure 3.3: ARDebug software (a) Camera display: PsiSwarms are equipped with ArUco
markers and Augmented Reality is used to display additional information; (b) Bottom panel:
information about the PsiSwarms’ internal states and global actions available; (c) Right panel:
connected PsiSwarms and buttons to communicate with them.

screen; eight infrared sensors placed at quasi-regular intervals around the robot; two

wheels and motors; a small joystick to input commands into the robot; and a single

battery.

To centrally monitor the PsiSwarms in real time, whether to read out their trajecto-

ries or intervene in the experiment, we relied on the ARDebug software (Millard et al.

2018), an augmented-reality tool that can track the robots with ArUco square markers

pasted on top of them (Garrido-Jurado, Munoz-Salinas, et al. 2014; Garrido-Jurado,

Muñoz-Salinas, et al. 2015; Romero-Ramirez, Muñoz-Salinas, and Medina-Carnicer

2018) (each one carrying a binary pixel matrix that encodes a unique ID number),

and can exchange information with them via Bluetooth. The software uses a top-down

bird’s-eye camera (mounted on the ceiling) to evaluate the location of every PsiSwarm

and link this information with the right Bluetooth sockets to communicate with them
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Figure 3.4: MORSE simulations visual display Screenshot of the MORSE simulation
environment, displaying 80 simulated robots within an arena of 16× 16MU .

individually. This allowed us to send to/receive from each robot data, both in the begin-

ning and during the experiment. We tailored the software to our needs, adding specific

messages sent by the user for specific commands (e.g. move from phase 1 to phase 2,

see Section 4.1) or specific displays depending on the model used (e.g. display the links

of different colours for our chain-like structures, see Section 5.2.2).

3.3 MORSE simulator

To simulate our work in a controlled environment, we used a simulation tool with a

realistic physics engine to simulate robots behaviours as close as possible to reality.

Tools such as NetLogo (Tisue and Wilensky 2004) were first considered to simulate
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our model. NetLogo is an interactive and educational multi-agent development environ-

ment capable of modelling large groups of agents, homogeneous or heterogeneous, fol-

lowing the principles of complex systems: behaviour based on local perception, strictly

local interactions and “stigmergy” (indirect inter-agent communication through changes

in the environment). However, such tools are not detailed enough for robotic simula-

tions, especially in term of motion and realistic constraint modelling. This is why we

chose the MORSE simulation tool.

The simulation allowed us to test and adjust our models with more flexibility, in or-

der to prepare the ground toward bridging the reality gap with the physical experiments.

To achieve this aim, we chose the MORSE simulator environment7, a platform written

in Python and powered by the Blender physics engine8. MORSE offers accurate repre-

sentations, physics simulation and detailed graphic display of robotic components and

external objects (Figure 3.4). Within MORSE , all distances are expressed at an arbitrary

scale. For future references of distances within the MORSE simulator, we use a unit we

refer to as Morse Unit (MU). Each simulated robot has a diameter of 0.5MU . In the

MORSE simulator, 1 MU represents 1 meter. However, we chose to treat distances in an

arbitrary scale. Our simulation is mainly used to validate the behaviour of our models,

in addition to simulate how the PsiSwarms move physically. The physical simulation

offered by MORSE , albeit not being used to its full potential, allowed us to tweak and

fine tune how our robots react to spring forces in the physical world, and test different

gradient propagations for our models (see Chapters 4 and 5).

The MORSE simulation follows the standard agent-based model paradigm: (1) an

agent can only rely on its local perception of the environment to control its behaviour;

7http://www.openrobots.org/morse
8https://www.blender.org/
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(2) it can only communicate with neighbouring agents determined by its local percep-

tion; and (3) all the logic and computation (the “creature’s intelligence”) is distributed

over, and embedded into, the agents to obtain a fully decentralised system.

Each agent of the simulation is instantiated by an autonomous low-height cylindri-

cal robot endowed with its own virtual control and sensorimotor abilities: two wheels

and motors, eight infrared proximity sensors distributed on its periphery, and a com-

munication module for short-range broadcast. We chose these specifications to match

the simulated robot model to our real robot platform. In both of our contributions,

PsiSwarms make use of a simulated camera to detect the “centre of mass” of the swarm,

where the bulk of the other robots are located (see Sections 4.3 & 5.2.2). The turret

camera is not simulated but replaced by global information about the centre of mass of

the flock, which is sent to the robots that needed it. This way to implement the turret

camera was made to be closer to our physical setup. Our robot, the PsiSwarm, is not

equipped with a camera or a way to sense robots position in its surrounding. To make

them capable of such feat, we decided to use a bird’s eye view camera, and use the

centre of mass of the swarm as a way to estimate the position of the swarm. To make

this solution viable in a fully decentralised system, each robot should have an embedded

camera to detect other robots. For example, a depth camera could be used by the robots

to detect the distance of others around them, and inferring the swarm’s centre position.

Another way to make this possible would be to use a camera capable of detecting LEDs

on each robot, allowing one robot to estimate where the swarm is positioned compared

to its position.

Alongside the MORSE simulation environment, our simulations use a Python script

to encode the behaviour of each agent of the simulation. This controller is identical for
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Figure 3.5: Agent controller for MORSE simulator Our agent controller display, where
basic information about the current simulation is displayed and some actions can be
taken in real time.

each agent to respect the agent-based simulation paradigm, and hold additional global

information about the simulation for display to the user while the simulation runs (Fig-

ure 3.5). Such information can be, for the work presented in Chapter 4, the number

of bots forming the body and limbs of the multi-robotic creature, the real time elapsed

since the beginning of the simulation or quorum sensing values for limb formation.

The MORSE simulator enables real-time monitoring of robots (rendered in Blender)

with additional information, such as frame rate or CPU usage. When using MORSE ,

you can set the seed of the simulation to repeat experiments. However, each experi-

ment can last several hours, and re-running simulations to study how it unfolds can be

a difficult process. Therefore we developed an external visualisation tool using Python

2.7 and the PyGame library9: Logvis. First, we log what happens in MORSE at periodic

intervals: robot positions, directions, gradient values, neighbours and other useful in-

formation.Then, all log files are parsed and processed in order to replay the simulation

in our visualisation tool, with additional useful information such as neighbourhoods,

9www.pygame.org

www.pygame.org
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Figure 3.6: Logvis: Log visualisation tool. Each disc represents a robot, the links between
discs represent neighbour connections, with different colours meaning different type of links,
the disc colours and markers on the disc represent different information related to the MR model
used for this specific simulation.

gradient values, or robot types—otherwise not displayed in MORSE (Figure 3.6).
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3.4 Conclusion

In this chapter, we presented all the necessary building blocks we used for our contri-

butions. First, we presented the general principles used by our models: neighbourhood

compilation and trajectories computation.

For the first, we used a trimmed Delaunay triangulation. Indeed, the Delaunay tri-

angulation is a renown and robust topological triangulation amongst a group of points,

and using a version with links trimmed according to a distance threshold allows us to

keep the robustness while having a more realistic neighbourhood. Regarding trajecto-

ries computation, we chose a spring force system, were agents have simulated spring

forces applied to them, from which resolve a final movement vector that they follow.

We chose this way of representing movement in our model for its similarities with how

cells in biology move, aggregate and pack together.

Then, we presented our simulation tool, MORSE , chosen for its realistic physics

system, and our log system capable of replaying simulation with enhanced information

display. Finally, we showed our robot unit, the PsiSwarm, used for our physical experi-

ments and proof of concept.

In the next two chapters, we will present and discuss our contributions in the field

of Morphogenetic Robotics. Our first work, presented in Chapter 4, is currently under

preparation for submission to a journal. We present a model of Morphogenetic Robotics

for a flock of robots, allowing it to self-organise into a multi-robot organism composed

of a body and several limbs. Our second contribution, presented in Chapter 5, is based

on our paper published at the Twelfth International Conference on Swarm Intelligence
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ANTS202010 (Gaget, Montanier, and René Doursat 2020), and proposes a model of

collective robot dynamics based on ME principles, in particular an algorithm of pro-

grammable network growth, and how it allows a flock of self-propelled wheeled robots

on the ground to coordinate and function together.

All the work presented in the next chapters makes use of the general principles

discussed in this Chapter.

10https://www.iiia.csic.es/ants2020/



Chapter 4

Fostering the Growth of Multi-Robotic

Organisms

In this chapter, we will present and discuss our first contribution in the field of Morpho-

genetic Robotics. We present a model of Morphogenetic Robotics for a flock of robots,

allowing it to self-organise into a multi-robot organism composed of a body and several

limbs. We apply morphogenetic engineering principles to collective robotics with the

goal of creating self-assembling “multi-robotic organisms” made of many small mobile

robots moving in specific spatial formations. Simulation results show these principles

at play in a large group of wheeled robots, while preliminary experimental results pave

the way toward physical results.

The literature review for this contribution is covered in Chapter 2.

This contribution is described as follows: in Section 4.1, we present the model used

in our work to create a multi-robotic organism. In Section 4.2 we present and discuss the

obtained simulation results. Finally, we show in Section 4.3 our preliminary physical

experiments results in before discussing our work in Section 4.4.

40
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Figure 4.1: Gradient Propagation. (a) Initialisation: only the source has a gradient value of 0;
all other agents are empty (NaN). Links between agents represent neighbourhoods. (b) Gradient
propagation: following the rules described in the text, each agent computes its gradient as a
function of its neighbours (here colours code for different integers). (c) Source change: here the
former source chooses to pass on its role to a more suitable neighbour, thus changing the whole
gradient landscape by ripple effect.

4.1 Model

The “meta-design” methodology applied in this project is composed of hand-made rules

distributed in all agents to grow a multi-robot organism. Robots are able to form an

organism using a set of rule, by making local decisions based on their local detection

and exchange with their neighbours.

The definition and computation of each agent’s neighbourhood is based on the de-

scription present in Section 3.1 (Figure 3.1).

4.1.1 Positional information: Gradients

In our model, gradients are integer values that spread across the organism conveying

relative “positional information”, and are referred to as “positional gradients” or “super-

gradients” throughout this Chapter. A gradient is akin to a hop counter propagating

throughout a group of agents. They originate from one or more source agents that hold
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value 0 (Fig. 4.1a) and are incremented by 1 as they hop from cell to cell (Fig. 4.1b).

Within one gradient, all agents of the organism, except the sources, update their values

via the following rules:

0. Initial state at time t0: set value to NaN (“Not a Number”).

1. If current value is n, send n+ 1 to all neighbours (if NaN, send nothing).

2. Receive values from neighbourhood (one value per neighbour):

• If no values are received, reset value to NaN.

• If own value is n and no received value is n (i.e. agent was not connected to

any neighbour holding n− 1), reset value to NaN.

• Compute minimum of received values, m, and adopt m as new value if and

only if current value is NaN or n > m.

Sources can also change during development (Fig. 4.1c). As stated earlier, a source

indicates an agent within the organism which holds a gradient value of 0. This source

will always keep a value of 0, and all other agents will update their gradient value

according to the distance to the source (see Fig. 4.1). If a source agent of a particular

gradient detects another agent around it that is more “suitable” to be a source for that

gradient, it will pass on its role to this neighbour. Passing the role of source from an

agent to another requires certain conditions to be met. First, the agent which passes the

role of source must be a source itself. Then, if the source agent sees a neighbour who

would be more suitable as a source, it contacts this agent to make it a source. In practice,

it means the current source agent makes itself not a source anymore, and sends a signal

to the more suitable neighbour to make it a source. In order to make this possible, each

agent must be capable of differentiating a suitable agent from another by looking at
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the source suitability. To determine this source suitability, different conditions can be

followed according to the design of the experiment, i.e. the shape that the organism is

trying to achieve. For instance, the condition can be simply: if a source’s neighbour has

a greater other gradient value (and is not already a source itself). This particular rule will

have the effect of pushing sources to the borders of the organism. The rules we are using

in our experiments are detailed in Section 4.1.4.Model development. The mechanism of

the sources moving through the swarm is referred as source hopping from now on.

4.1.2 Differentiation

The next processing stage after an agent has updated its positional gradient values is to

“differentiate”, or calculate its type, as a function of these values. The differentiation

function can be denoted by τ = f(Gx, Gy, ...) where τ is the cell type and Gx, Gy, ...

are the super-gradient values. If the super-gradients are Gx, Gy, ..., the respective types

are noted τx, τy, ... By differentiating into different types, agents in the swarm that

have the same type and are close to each other will form regions of this type. If the

super-gradients are Ga, Gb, Gc, ..., the corresponding regions are noted Ra, Rb, Rc, ....

These regions will be used during the development of the organism, as discussed in

Section 4.1.4.Model development.

4.1.3 Spatial evolution

The growth of a biological organism happens through repeated division, migration and

adhesion of its cellular components. In our model of multi-robotic organism, how-

ever, robots clearly do not divide like cells do, and literal “adhesion” between robots

is also notoriously difficult to achieve via physical means (e.g. mechanical, magnetic
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or chemical). Therefore, instead of division and adhesion, our model uses aggregation

and proximity: here agents “huddle” together following rules depending on their type,

via the gradient values they exchange. Their movements are governed by virtual spring

forces between them and their neighbours, as discussed in Section 3.1. These virtual

spring forces make robots huddle together into a tight formation, allowing the gradients

to correctly propagate through the swarm and the source to move to its ideal position

within the swarm. As robots move around because of the spring forces, the background

mesh is not static but continually updated (as per Fig. 3.1a) so that new connections may

appear and existing ones disappear. If an agent finds itself isolated, e.g. by being far

away without neighbourhood connections, it uses the camera to search for the bulk of

the flock and head in its direction.

Spring forces are not applied similarly for every connection between robots. Some

connections apply attraction forces, while others apply repulsion forces or no forces at

all. In a similar fashion, gradients do not propagate on every connection. All these

subtleties are discussed in the next Section.

4.1.4 Model development

The model development is defined by how gradients are defined within the genome and

how the source suitability is calculated, i.e. how the source will move from agent to

agent according to the positional gradient values. Our model aims to form a multi-

robotic organism composed of a central body and limbs growing out of the body. In

order to achieve this formation, each agent follow a set of rules, identical for each agents

in the swarm, that we call genome. All the rules concerning movement, spring forces

application and gradients propagation is included in the “genome” and shared by all
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agents in the swarm.

As described in Section 4.1.1.Positional information: Gradients, we used super-gradients

to convey positional information through the swarm. In our model’s genome, we have 4

super-gradients, called North or Gn, South or Gs, East or Ge and West or Gw. North and

South (and East and West) are called “opposite” gradients. These gradients are integers

representing positional information for each cardinal point. Each positional gradient

follows the rules described earlier for the propagation, and sources use the following set

of rules for the source hopping mechanism: if one of the source’s neighbour has a bigger

opposite gradient value (i.e. is further from the opposite positional gradient’s source),

if the absolute value of the difference of the other 2 super-gradients is close to 0 (i.e.

is at equal distance between the 2 other sources) and if the neighbour is not already a

source of any positional gradient, then it will pass on the role of source for this specific

positional gradient to this neighbour.

When differentiating, an agent will set its type based on its minimum positional

gradient value, e.g. if an agent have Gn = 2, Gs = 5, Ge = 1 and Gw = 5, then this

agent will set its type to East, or τe. If several super-gradients have the minimum value,

then the type is set by order of priority defined in the genome.

The genome also specifies other important values, all set before the beginning of the

experiment:

• NBotBody: the number of agents that will form the body.

• Growing Regions GR: determine which region will grow into a limb, with GR ∈

[Rn, Rs, Re, Rw]. The number of regions in GR will determine the number of
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limbs of the organism.

• NBotLimb: the number of agents that will form each limb.

From the rules stated before comes out a separation of all agents within the organism

according to relative “cardinal points”, north being the top of the body, south the bottom,

etc. In Fig. 4.2 b, we show an example of this separation: green dots represent agents

within the body with type = τn, red dots agents with type = τe, yellow dots agents with

type = τs and blue dots agents with type = τw.

In order to form the body and the limbs, agents can be one of two sort, called super-

type T: (1) Body Bot, Tbody: Agents that are “Body Bots” form the body of the organ-

ism. They propagate the 4 super-gradients (North, South, East and West) and uses the

spring forces to form a circle-shaped body with super-gradients evenly dividing it into

4 quarters; and (2) Limb Bot, Tlimb: Agents that are “Limb Bots” form the limbs of the

organism, which will grow from the regions GR specified in the genome.

The development of the multi-robotic organism can be divided into two phases.

Phase 1: Body formation

First, agents are randomly scattered in the environment (Fig. 4.2 a). 4 Agents are

randomly selected and set as source for one of the 4 super-gradients. This selection is

made globally amongst “Body Bot” Tbody. We also assume that source agents do not

fail. Robustness to failure in our work, or rather the lack of, is discussed in the Con-

clusion in Section 6. All agents then begin phase 1. As long as an agent has one of

its positional gradient values set to NaN (or −1), or it has no neighbour, then it will
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Figure 4.2: Illustration of the multi-robot developmental stages. (a) Initialisation: 40 agents
are scattered in the environment with empty gradients and types, except four sources (red, blue,
green, yellow). (b) End of Phase 1: agents have clustered together in a “body” formation while a
few of them are still roaming the environment. Here the green and yellow types no longer accept
new agents; only the green and blue one do. (c) End of Phase 2: remaining agents moved in and,
as they were pushed away by the non-growing agents, they eventually found the accepting green
region and formed a “limb-like” structure sprouting from the body.

use its camera to move closer to the bulk of the swarm. Once it has at least one neigh-

bour and all its gradient values are positive, then it will move according to the spring

forces. Through gradual aggregation and by means of the spring forces governing their

movements, agents end up forming a disc-shaped organism (fig. 4.2 b). Meanwhile,

super-gradients propagate across the swarm and agents also determine their types τ,

which create a pattern of distinct regions inside the organism. These regions will play

an important role in Phase 2. Once a certain number of agents are connected to each

other, or a certain time period has elapsed, the system transitions to Phase 2. The transi-

tion condition can vary according to the goal and depend on other measures of cohesion.

Phase 2: Limb Formation

Two new gradient types are introduced in Phase 2: the Inward gradient GX
inward and
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Figure 4.3: Formation of a limb Snapshots of an abstract limb formation. Coloured circle
represent agents within a growing region, with Gin being the Inward gradient value, Gout be-
ing the Outward gradient value and QS the quorum sensing value. Green circle represent the
outward sources, yellow circle the Inward source and grey circle are un-recruited Tlimb agents.
The agent outlined in red is the positional gradient source of the region. The blue outline agents
are recruited Tlimb agents. The genome specifies NBotLimb = 8 (a) End of Phase 1 and before
beginning of Phase 2, Inward and Outward sources are set. (b) A Tlimb agent is recruited by
the Inward source as it passes by. (c) As the newly recruited agent has a greater Gout value, its
neighbour gives it the Inward source role. (d) As time passes, more Tlimb agents are recruited
until the QS = NBotLimb

the Outward gradient GX
outward, where X is the growing region (e.g. GN

inward and GN
outward

are the inward and outward gradients for Rn). The Inward and Outward gradients are

numerical values, as the positional gradients, and propagate using the rules described in

Section 4.1.1, but only through their growing region. The Inward gradient will propa-

gate from the tip of the limb to the centre of the body, whereas the Outward gradient

will propagate from the centre of the body to the tip of the limb.
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At the end of Phase 1, just before beginning Phase 2, all agents that are part of the

body (i.e. that have all gradients with positive values and have at least one neighbour)

set their super-type T to Tbody. All the remaining agents set T = Tlimb. All Tbody

agents that are part of a growing region and within the periphery of the region (i.e. has a

neighbour with a different type) start as a source for the Outward gradient, GX
outward = 0,

and the source of the positional gradient of the growing region is set as source of the

Inward gradient, GX
inward = 0 (see fig. 4.3a). While Outward sources are fixed during

all of Phase 2, the Inward source can be passed to a more suitable neighbour. If one

of the source’s neighbour has a greater Outward gradient value, then the source will be

moved to it, maximising the distance between the Inward source and the centre of the

body (see fig. 4.3b-c). The fixation of Outward sources should not impact adaptability

of the limbs because all Outward sources are situated in the body, and the body do not

move or change during Phase 2. Because of the redundancy of Outward source, if one

should fail the gradient will still propagate through the limb. However, if all sources

should fail, there is no fallback strategy.

Additionally, each agent in the system initialise a “quorum sensing” mechanism

(see fig. 4.3). The quorum sensing value QSX, where X is the growing region, is set

for each growing region and initialised at 0 and used to count how many agents are part

of a limb (e.g. QSN = 5 means there is 5 Tlimb agents for Rn). This “self-counting”

method is based on nothing else but the quorum sensing values of each agent, which are

set to 0 once at the end of Phase 1. The quorum sensing value QSX is propagated as

followed throughout the whole system, hence all agents have access to this information.

The propagation system for the quorum sensing is very similar to to how gradients

propagate:
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0. Initial state at the end of Phase 1: set QSX = 0, forX ∈ [N,S,E,W ]

1. Send current QSXforX ∈ [N,S,E,W ] value to all neighbours.

2. Received values from neighbourhood:

• If QSX < min(list of received values) then QSX = min(list of received val-

ues)

• Else, no changes.

During the development of Phase 2, Tlimb agents engage in a random walk until they

get recruited into a growing region. The recruitment into a growing region is made by

the Inward source of this region (see fig. 4.3b). If an un-recruited Tlimb agent enters into

the communication range of the Inward source and QSX < NBotLimb, where X is the

growing region of the Inward source, then it sends a recruitment message containing the

growing region X and QSX to the Tlimb agent. If the recruitment is accepted, the Tlimb

agent sets its growing region to the one received, and sets QSX = QSreceived
X + 1 and

become recruited, thus applying spring forces and propagating Inward and Outward gra-

dients through its neighbourhood. Concerning neighbourhood, a recruited Tlimb agent

has for neighbours only other recruited Tlimb agents from the same growing region, and

the agent that recruited it. All other agents are ignored when calculating spring forces

and propagating gradients.

4.2 Simulations

Before trying our model with real robots (see Section 4.3), we implemented it in a re-

alistic simulation. This allowed us to test and adjust the model more flexibly, in order
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to prepare the ground toward bridging the reality gap with the physical experiments. To

this aim, we chose the MORSE simulator environment1, which is described further in

Section 3.3. A Python script encoding the behaviour of the simulated robots, includ-

ing their genomic rules of self-assembly, is running in parallel with the MORSE engine.

Within this script, each robot is linked to an agent representation. All important param-

eters are described in Table 4.1. All distance related parameters are expressed in Morse

Unit MU, used by MORSE and Blender to calculate distances.

Table 4.1: Simulation parameters
Name Description Value

nbBotsBody Number of robots in the body 46
nbBotsLimb Number of robots per limb 17

nbLimb Number of limbs 2
nbTotalRobots Total number of robots 80

kattr Rigidity of the virtual attraction springs 1.0
Lattr Free length of the virtual attraction springs 0.8
krep Rigidity of the virtual repulsion springs 0.28
Lrep Free length of the virtual repulsion springs 1.6
Dbody Cutting distance of the Delaunay 1.94

triangulation for robots within the body
Dlimb Cutting distance of the Delaunay 1.94

triangulation for robots within the limbs
GR Regions from which the limbs will grow [Rn, Rs]

Ah × Aw Height and Width of the arena 16× 16

Parameters in Table 4.1 were set for different reasons. nbTotalRobots, nbBotsBody

and nbBotsLimb were set based on the number of robots we wanted in our simulations.

nbBotsBody was chosen by making several trials with different number of robots to

1http://www.openrobots.org/morse
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form the body and achieve a uniform round shape. Too few robots would yield a mis-

shape body. Ah × Aw were chosen to have enough space so all robots could move

around. nbLimb and GR are part of the genome. Setting those two parameters as de-

scribed in Table 4.1 will result in a multi-robotic organism with two limbs growing from

regions North and South. kattr, Lattr, krep and Lrep were set to give the best virtual spring

parameters possible, to avoid robots bumping into each other if the values are too high,

and to avoid robots not moving if the values are too low. Finally, Dbody and Dlimb were

chosen by testing the impact of the cutting distance on the formation of the body.

4.2.1 Detailed simulation run

During initialisation, robots super-type T is set. Robots are taken randomly and allo-

cated a super-type. nbBotsBody robots are set to Tbody and nbBotsLimb × nbLimb

robots are set to Tlimb. Then, robots are semi-randomly distributed within an arena of

16×16MU . Tbody robots are randomly scattered at the centre of the arena, in an area of

size proportional to the number of Tbody robots compared to the total number of robots.

Tlimb robots are randomly scattered in the periphery of the central area, where Tbody

robots are not present.

Robots can have 3 types of neighbour: (1) Attraction neighbour if two robots are of

the same super-type T or one is of super-type Tlimb and the other is an Inward Source,

both robots are attraction neighbours. They can exchange messages (i.e. enable gradient

propagation) and an attraction force
−→
F (Lattr, kattr) is applied; (2) Repulsion neighbour

if two robots are of different super-type T and none of them is a Inward Source, both
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robots are repulsion neighbours. They do not exchange message (i.e. no gradient prop-

agation) and a repulsion force
−→
F (Lrep, krep) is applied; (3) Hook All neighbours to a

positional gradient’s source within a GR are designated as “hooks”. If a Tlimb robot

is neighbour with a hook, it applies an attraction force
−→
F (Lattr, kattr), but they do not

exchange messages. Hooks allow the limbs to grow around and from the positional

gradient’s source and keep a tight base around the body while allowing the Inward and

Outward gradients to propagate only through the positional gradient’s source.

To automatically run a simulation, we set a overarching centralised system called

Overseer. The Overseer uses three timers to decide when to transition from phase 1 to

phase 2 and when to end the simulation: the “transition timer”, the “end timer” and the

“ultimate timer”. The “transition timer” is used to go from phase 1 to phase 2. It is set to

12 minutes. Every time a robot within the body changes its positional gradient value or

a positional gradient source changes robot, the Overseer reset the transition timer. When

the timer ends, the Overseer stops phase 1 and start phase 2. The “end timer” is started

as soon as phase 2 begins. It is set to 45 minutes. Every time an un-recruited Tlimb robot

is recruited, the timer is reset. When the timer ends, the Overseer ends the simulation.

Finally, the “ultimate timer” is set to 5 hours and started at the very beginning of the

simulation. When this timer ends, the Overseer ends the simulation regardless of which

phase it is in. This timer is a safety net in case the “transition timer” or the “end timer”

keep getting reset during the simulation, preventing it to advance normally or end. The

Overseer was put in place so several simulations could run without human input. It

was made to advance the simulation to Phase 2 and stop it as closely as a human would

do. It does not interact directly with the simulation, and has no power over anything

else expect continuing and stopping the simulation. In theory, it has no impact on the
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Figure 4.4: Multi-robotic organism growth in simulation Bottom: screenshots of the MORSE

display at t= 0min., 39min., 138min.. Top: custom 2D visualisation tool based on log files
at same time. Links: white links represent attraction neighbours, red links represent repulsion
neighbours and blue links represent hooks. Parameter values described in Table 4.1. From
left to right: Initial state, blue robots are body bots and black robots are free robots ready for
recruitment. Red dots represent the one of the gradient’s source; End of Phase 1: the body is
formed thanks to the spring forces. Colours represent which type (τn, τs, τe, τw) a robot is; End
of Phase 2: Using recruitment described in Section 4.1.4, the 2 limbs form where the GR are.
Yellow triangles represent GX

inward sources and blue squares represent GX
outward sources, where

X is its growth region. Video available at tinyurl.com/DevobotSuppMat

simulation. However, some problems could arise, such as the “transition timer” being

too short, which could result in misshaped bodies and failed experiments. All the times

were chosen based on past experience with the simulation, so they would have little to

no impact.

The simulated experiment shown in Figure 4.4 uses the parameters values described

in Table 4.1, and combine gradient propagation and spatial motion relying on the explo-

ration behaviour and the spring forces, as explained in Section4.1.

tinyurl.com/DevobotSuppMat
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Figure 4.5: Fitness representation Representation of the points used to calculated the fitness.
.

4.2.2 Results

To validate our model, we decided to run two medium-scale experiments: (1) A 20-runs

experiment using parameter values from Table 4.1 to evaluate the model’s stability;

(2) A 16-runs experiment where we varied parameters Dbody and Dlimb to study the im-

pact of those parameters on our model. We could only run short numbers of simulation

because of the computational cost of each simulation (around 5-8 hours per simulation)

on the equipement accessible to us when running the experiments.

First, we put in place a fitness value specific for our case, a multi-robotic organism

with 46 robots in its body and 2 limbs of 17 robots each (see Fig 4.5. The fitness is

composed of a spatial component from the simulation logs and set using 4 points within

the multi-robotic organism, and a cohesion component. The fitness value is comprised

between 0 and 10. The fitness is calculated as follows:

Distance = |B⃗C|+ (|A⃗B|+ |C⃗D|)× 1.5 (4.1)
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Angle = (⟨B⃗A, B⃗C⟩+ ⟨C⃗B, C⃗D⟩)× 2.5 (4.2)

Diff = ||A⃗B| − |C⃗D|| (4.3)

where A is the coordinate of the tip of the North limb, B the coordinate of the north

positional gradient’s source, C the coordinate of the south position gradient’s source, D

the coordinate of the tip of the South limb.

GeometryFactor =
Distance+ Angle−Diff

Ideal
× 10 (4.4)

Where Ideal is the ideal value for the fitness, and Distance, Angle and Diff are

calculated as described in Equation 4.1, 4.2 and 4.3, respectively. The closer to 10 the

fitness is, the better the multi-robotic organism is formed according to Ideal.

CohesionFactor = CB + CL + CT (4.5)

where CB is a factor taking into account the number of neighbours Tbody bots have,

CL is a factor taking into account the number of neighbours Tlimb bots have and CT is

the average difference between the number of robots of each type τ.

F = GeometryFactor − CohesionFactor (4.6)

Thus, GeometryFactor (Equation 4.4) takes into account the shape of the crea-

ture formed where CohesionFactor (Equation 4.5) looks into more defined factors.

Note that the closer to 0 CohesionFactor is, the better, hence the subtraction from
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Figure 4.6: Stability evaluation Top: Barchart and Boxplot compiling results for 20 simulation
runs using parameter values from Table 4.1. Bottom: From left to right, end of simulation’s logs
visualisation. Robots colour code identical as Fig. 4.4. Red dots and lines represent the points
and vectors used to calculate the fitness. Left F = 2.43. Here, the τs source ended up within the
body and not at the periphery of the body, preventing the τs limb to start its growth hence forming
a misshaped organism; Middle F = 5.51. Here both τn and τs limbs successfully formed
but grown close to the body and did not expend outward, thus forming a crooked organism;
Right F = 8.44. Here, τn and τs limbs formed and grew straight out of the body, forming a nicely
shaped multi-robotic organism. Full results available at tinyurl.com/DevobotSuppMat

.

GeometryFactor when calculating the fitness F (Equation 4.6). Figure 4.6 presents

the results for our first experiment. As the bar chart shows, most of the results have a

tinyurl.com/DevobotSuppMat
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fitness value comprised within (6.04, 8.44]. Moreover, the box plot indicates that more

than 50% of the results are included in [6.24, 8.01].

These results are encouraging, despite the low stability in higher fitness values, we can

see that our model yields correct results and misshaped organism can be explained (see

Figure 4.6). The lowest fitness values are due to a limb not growing in one region.

Indeed, in some cases, the super-gradient source of one region end up enclosed in the

body and not at its edge. This prevents the limb associated to the region to grow. This

occurs most likely because the super-gradient propagation during Phase 1 was not ideal

and a plateau was hit by the gradient during the propagation, preventing the source to

move to an edge robot. To prevent this issue, increasing the number of robots in the

body limits the risk of creating such plateaus within the gradient values.

For our second experiment, we decided to vary Dbody and Dlimb in order to study

their impact on our model. Both these parameters dictate the distance at which the

Delaunay triangulation will be trimmed, thus influencing the neighbourhood of robots.

Behind the scene, these parameters are calculated with Dm × f , where Dm is the av-

erage distance between NBotBody robots within an arena of size Ah × Aw and f is a

multiplying factor. For this experiment, we used values for f = [1, 2, 3, 4]. We chose

these values to cover different cases: with a value of 1, robots can detect one or two

other robots as neighbours and we wanted to compare this case with the other ex-

treme, 4, where robots can detect neighbours at great distances. A value of f lower

than 1 would prevent the robots to form a proper connected component, hence prevent-

ing any communications and capability of forming the multi-robotic organism, and a

value of f greater than 4 would result in a near-complete Delaunay triangulation, de-

feating the purpose of trimming certain connections. The chosen f result in value for
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Figure 4.7: Parameter exploration Left: Boxplots compiling the results of the parameter
exploration. Each parameter value (x axis) compile 4 experiments. Right: From top-left to
bottom-right, end of simulation’s logs visualisation. Robots colour code identical as Fig. 4.4.
Red dots and lines represent the points and vectors used to calculate the fitness. Top-left Dbody =
Dlimb = 0.944 and F = 3.46; Top-right Dbody = Dlimb = 1.888 and F = 7.11; Bottom-
left Dbody = Dlimb = 2.832 and F = 6.36; Bottom-right Dbody = Dlimb = 3.776 and
F = 6.74. The boxplots show that values Dbody = Dlimb = 1.888 and 2.832 yield higher
quality results than lower values of Dbody & Dlimb, whereas higher values demonstrate less
stability in the results. Full results available at tinyurl.com/DevobotSuppMat

Dbody = Dlimb = [0.944, 1.888, 2.832, 3.776] in MU . Figure 4.7 presents results for 4

runs with each value of f , for a total of 16 runs. As shown on the right part of Figure 4.7,

f = 1 result in deconstructed organism, misshaped and scattered, whereas f = 4 force

the creature’s limbs to form around the body resulting in a crooked organism. f = 2 and

f = 3 seems to be the sweet spot for these parameters, and further, more refined exper-

iments are needed to optimise their values. Concerning the body formation, low values

of f influence its formation, but with f = [2, 3, 4], issues with the creature formation

always come from the limb formation and the body manage to grow unimpeded.

tinyurl.com/DevobotSuppMat
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4.3 Physical experiments

(a) (b)

(c) (d)

(e)

Figure 4.8: Body formation (phase 1) in a flock of wheeled robots. (a-d) 26 PsiSwarms
robots execute the algorithms described in Section 4.1 inside a 170×180cm arena. Top views
from the ceiling camera at times t = 0, 30, 151, 314s. Neighbourhood (thin white) are au-
tomatically visualised by ARDebug in real time. Red inner circle indicate the robot is a
super-gradient source. Coloured outer circle’s colour indicate its type τ, while black outer
circle indicate a neutral robot. (a) At initialisation, robots are randomly scattered through-
out the arena and 4 robots are chosen as initial source for super-gradients. (b-c) Search
behaviour and spring forces bring robots closer, while the super-gradients start propagating
within the swarm. (d) The body continued its formation until it was complete and stabilised
(robots stopped moving) under the attractive/repulsive forces, with parameters Dbody = 25cm,
Lattr = 11cm, kattr = 0.6. (e) Same final state in perspective view. Coloured areas indicate
robots’ type τ and red dots indicate super-gradient sources robot. Videos of experiment avail-
able at tinyurl.com/DevobotSuppMat

The PsiSwarm platform, a disc-shaped robot on wheels, was designed by James

Hilder and Jon Timmis at the York Robotics Lab2. To centrally monitor the PsiSwarms

in real time, whether to read out their trajectories or intervene in the experiment, we

relied on the ARDebug softwareMillard et al. 2018, an augmented-reality tool that can

track the robots with ArUco square markers pasted on top of them Garrido-Jurado,
2https://www.york.ac.uk/robot-lab/psiswarm/

tinyurl.com/DevobotSuppMat
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Munoz-Salinas, et al. 2014; Garrido-Jurado, Muñoz-Salinas, et al. 2015; Romero-Ramirez,

Muñoz-Salinas, and Medina-Carnicer 2018 (each one carrying a binary pixel matrix that

encodes a unique ID number), and can exchange information with them via Bluetooth.

PsiSwarms, ARDebug and how they are used in our physical experiments are described

in details in Section 3.2.

Toward our goal of shape formation, we faced three technical issues: (1) the IR

sensors are not powerful enough to detect the positions of neighbouring robots beyond

a few cm; (2) PsiSwarms are not equipped to communicate locally with each other;

(3) they also lack a turret camera to spot the flock from afar. To compensate for these

shortcomings, we had to go against the principle of decentralisation by resorting to a

centralised method for detection & communication. Thanks to the ceiling camera and

ArUco markers, (1) the Delaunay neighbourhoods were computed centrally by ARDe-

bug and fed back to the robots (in the form of relative polar coordinates); (2) this in-

formation also served for ARDebug to broker peer-to-peer requests via the Bluetooth

links; and (3) stray robots received from ARDebug the direction back toward the group

by providing a set of polar coordinates to the centre of mass of the flock.

On the other hand, we also made sure to keep the intervention of ARDebug to a

minimum, i.e. only provide the robots with the raw, low-level information strictly from

their surroundings, that they could have otherwise gathered by themselves with more

hardware. In no instance was ARDebug actually controlling the robots and telling them

what messages to send and how to move; these calculations and decisions were made by

each of them. Based on the polar coordinates of its neighbours (obtained from its fictive

detectors via ARDebug), and its internal table of structural links and graph connections,
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each robot could compute its total vectorial force and next move. Three resulting shape

formation are shown in Fig. 4.8.

4.4 Discussion

In conclusion, we proposed a morphogenetic engineering model and a demonstration of

self-organised multi-robotic organism formation among small identical wheeled robots,

based on local neighbourhood perception and communication only. We showed that it

was possible to implement an abstract model of morphogenetic multi-robotic creature

growth in simulation and partly in physical experiments.

The technical problems encountered in the experiments were essentially due to lim-

itations in the PsiSwarm’s capabilities, but other issues were involved. These issues are

discussed further in Section 6.1, alongside the workaround used in this work and possi-

ble solutions. In Section 6.2, we investigate the future directions this project could take.

In the next Chapter, we will present a parallel study to DevoBot, Branched Structure

Formation in a Decentralised Flock of Wheeled Robots, where our aim shift from form-

ing a multi-robotic organism with a flock of robots to a specific and flexible chain-like

structure formation. This work was published at the Twelfth International Conference

on Swarm Intelligence ANTS20203 (Gaget, Montanier, and René Doursat 2020).

3https://www.iiia.csic.es/ants2020/



Chapter 5

Branched Structure Formation in a

Decentralised Flock of Wheeled Robots

In this contribution we focus on the process of morphogenesis per se, i.e. the pro-

grammable and reliable bottom-up emergence of shapes at a higher level of organi-

sation. This is based on a paper published at the Twelfth International Conference on

Swarm Intelligence ANTS20201 (Gaget, Montanier, and René Doursat 2020). We show

that simple abstract rules of behaviour executed by each agent (their “genotype”), in-

volving message passing, virtual link creation, and force-based motion, are sufficient to

generate various reproducible and scalable multi-agent branched structures (the “phe-

notypes”). On this basis, we propose a model of collective robot dynamics based on

“morphogenetic engineering” principles, in particular an algorithm of programmable

network growth, and how it allows a flock of self-propelled wheeled robots on the

ground to coordinate and function together. The model is implemented in simulation

and demonstrated in physical experiments with the PsiSwarm platform.

1https://www.iiia.csic.es/ants2020/

63
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Our focus is the following: we want to show here that simple abstract rules of be-

haviour executed by each agent (their “genotype”), involving message passing, link

creation, and force-based motion, are sufficient to generate various reproducible and

scalable multi-robot structures (the “phenotypes”) by aggregation. Ideally, agent rules

are independent of its physical embodiment—but of course we also present a proof of

concept using real robots.

In summary, between swarm and modular robotics, the goal of the present work

is to create flexible, yet at the same time highly specific spatial formations within a

larger group of small wheeled robots, based on Morphogenetic Engineering (ME) prin-

ciples. The field of ME (René Doursat, Sánchez, et al. 2012; René Doursat, Sayama,

and Michel 2013) investigates the subclass of complex systems that self-assemble into

nontrivial and reproducible structures, such as multicellular organisms built by cells, or

the nests built by colonies of social insects. These natural examples can serve as a source

of inspiration for the meta-design of self-organising artificial and techno-social systems.

In particular, we will follow here Doursat’s abstract ME algorithm of “programmable

network growth” (René Doursat and Ulieru 2008)—which was later modified and hypo-

thetically applied to the autonomous deployment of emergency response teams forming

chains of agents using IoT devices (Toussaint, Norling, and René Doursat 2019).

The remainder of this Chapter is organised as follows: In Section 5.1, we describe

the abstract model of collective robot dynamics based on ME principles applied to

network growth. We present the underlying mechanisms allowing a small swarm of

self-propelled robots on the ground to coordinate and function together to create non-

physical chains within a swarm of robots. Then, we show how the model unfolds in
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simulation (Section 5.2.1) and physical experiments (Section 5.2.2) to generate differ-

ent structures.

5.1 Model

The “meta-design” methodology of this project consists of hand-made rules programmed

in all agents to foster the development of a multi-robot structure. Given different rules,

robots are able to form different target shapes by making local decisions based on what

they detect and exchange with their neighbours.

The definition and computation of each agent’s neighbourhood is based on the de-

scription present in Section 3.1 (Figure 3.1).

Network Components: Ports, Links and Gradients. The morphogenetic core

of the model is derived from Doursat’s original algorithm of programmable network

growth René Doursat and Ulieru 2008. It involves input/output ports on the nodes, links

between nodes (on top of their neighbourhood connections), and gradients (integer val-

ues) sent and received by the nodes over the links through the ports. All agents are

endowed with the same set of pairs of input/output ports, denoted by (Xin, Xout), (Yin,

Yout), etc. A port can be in one of three states: “open”, where it accepts (in input) or cre-

ates (in output) links with neighbours; “busy”, where it is already linked to a maximum

number of agents (generally one) and cannot accept or create new links; and “closed”,

where it is disabled and devoid of links. An open input port on agent i can accept link

requests originating only from its mirror output port located on a neighbouring agent j,

for example: X i
in ← Xj

out (but not X i
in ← Y j

out or X i
in ← Xj

in).
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Each type of pair of ports is associated with a gradient field across the network, com-

posed of integer values representing important positional information about the nodes

relative to each other within the topology (essentially their hop distance), and denoted

by xi
g, yig, etc. When a link i← j is created between two agents, the gradient associated

with the ports is propagated through this link from j to i via an increment, i.e. xi
g=xj

g+1

if it concerns the X ports. Then both agents switch the corresponding ports to the busy

state.

In the context of collective robotics, this abstract port-link-gradient framework trans-

lates into the self-organisation of branched structures made of chains of robots (Fig-

ures 5.1 and 5.2). These structures are a subset of the background communication mesh

described above. Therefore, at every time step each agent may have two types of neigh-

bours: ones that are simply within signal range, or “connected” (thin black edges), and

ones that are formally and durably “linked” to it (thick green edges)—albeit not physi-

cally for lack of hooks or magnets.

Within a static connectivity graph, network growth proceeds by peer-to-peer recruit-

ment and aggregation of agents as follows: if agent j is already part of the growing

structure and has an open output port Xj
out, it will look if one of its neighbours i has

a corresponding open input port X i
in (i.e. is not yet in the structure) to request a link

creation—which it does by sending requests to each neighbour in turn.

The specifics of the growth process (which ports to open or update, how many links

to create in a chain, etc.) are prescribed by an identical set of rules, or “genome”,

executed by each agent. The genome dictates how an agent should behave, i.e. the local

decisions it should make at every time step, which will vary depending on its current

neighbourhood configuration and the gradient values it carries. In essence, a genomic

ruleset is composed of a list of condition→action clauses, where conditions are based



CHAPTER 5. BRANCHED STRUCTURE FORMATION 67

Figure 5.1: Simple chain formation among static agents. Each agent executes Alg. 1 (non-
bracketed parts) with xN = 4. Ports are symbolised by thick arrows (inputs as tails, outputs
as heads) and colour-coded states: open in blue, busy in green, closed in red. Nodes are also
coloured: recruiting in blue, accepting in grey, integrated in green. Edges can be of two types:
neighbourhood connections in black, structural links in green. (a) Initial state: gradient x1g is
set to 0 in a seed Agent 1 and undefined everywhere else. (b) Agents 1 and 3 agree on creating
a chain link and propagate the gradient, i.e. x3g = 1. (c,d) The chain continues to grow, with
Agent 3 recruiting 2, and 2 recruiting 4 in turn. This results in x2g =3, which reaches the given
threshold xN (the maximum length) prescribed in the genome, therefore shuts the output port
X2

out and ends the chain.

on gradients and port states, and actions update the ports. Examples of genomes and

structures developed from them are shown in the next section.

In the beginning, agents are scattered at random across the arena. One agent is

arbitrarily chosen to be the seed of the structure and is initialised differently from the

others. Typically its input port is closed, its output port open, and its gradient value set

to 0. Conversely, all other agents start with open inputs, closed outputs, and undefined

gradients at−1. Then, each agent repeatedly executes four main steps in a loop: (a) port

states are changed according to the genomic rules; (b) links are created where possible;

(c) gradient values are propagated and updated; and (d) the robot moves by applying

spring forces and/or a search behaviour. The latter step is explained below in the section

about mobile network growth.
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xN =prescribed chain length
yN =branch length
if t=0 then

if is seed then {close Xin, open Xout; xg=0; close Yin, Yout; yg=−1}
else {open Xin, close Xout; xg=−1; open Yin, close Yout; yg=−1}
return

if xg=xN − 1 then close Xout

else if xg ≥ 0 and Xout is closed then open Xout

if xg is odd then {open Yout; yg=0}
if [[yg=yN − 1 then close Yout]]

Algorithm 1: Genome of a simple chain/branched structure growth

Examples of Genomes and Structures. In this paragraph, we give two examples of

abstract network growth among static agents on top of their background communication

graph, omitting spring forces and motion. The first system involves four agents forming

a simple chain based on one pair of X ports (Figure 1). The genome is described in

Algorithm 1 (non-coloured parts only), where xN is set to 4. As explained above, at

first (t=0) the unique seed agent is initialised differently from the other agents. Then,

as soon as an agent is recruited into the structure, its gradient xg becomes positive by

propagation and triggers the opening of the output port Xout, unless xg=xN − 1, which

means that it found itself at the end of the chain and should close Xout.

The second example shows a slightly more complicated branched structure, or “crea-

ture” composed of a “body” chain of five agents and two short “leg” chains of two agents

each, sprouting from the even-positioned body agents (Figure 5.2). Ports X are used to

form the body, while different ports Y support the legs. The genomic rules are described

in Algorithm 1 (coloured parts included), with xN = 5 and yN = 3. Compared to the

previous example, the added complication consists of managing ports Y and their as-

sociated gradient yg depending on certain values of xg. Here, if xg = 1 or 3 it means
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Figure 5.2: Branched structure formation among static agents. Each agent possesses two
pairs of ports, X and Y (not represented), and executes Algorithm 1 with xN =5, yN =2. Colour
coding is the same as Figure 5.1, with red lines symbolising Y links (leg branches). (a) Initial
state with agent 1 as seed, having an output X port set to 0 (start of the chain); (b) Agent 1
recruits Agent 9 since the latter had a free input port on its pair of port X. Agent 1 thus pass to
green because all its ports are either closed or busy. Agent 9 then create a new link on its pair
of port X with agent 3, but remains blue because it still can create a link on its pair of port Y;
(c) Agent 9 recruit agent 4 on its pair of port Y, hence creating a red link and a sub-chain in the
structure. Additionally, agent 3 continue to recruit into the main chain (green links); (d) Finished
structure, where all agents have satisfied the rules and no more recruitment is attempted.

that the agent is second or fourth along the main chain, therefore it should open its other

output port Yout and set yg = 0 to start a branch by recruiting free agents via Yin. For

branch termination, the same condition is used in Y , i.e. closing Yout when yg=yN − 1.
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Mobile Network Growth in Space. In reality, as robots move around, the back-

ground mesh is not static but continually updated (as per Figure 3.1a) so that new

connections may appear and existing ones disappear. In spite of this, already created

structural links will persist: if communication between linked robots is accidentally in-

terrupted, they keep tabs on each other and resume regular gradient exchange whenever

possible. This should rarely happen, however, as elastic forces tend to keep them close

to each other, as if physically attached.

To maximise matching opportunities, agents not yet recruited navigate toward, and

stay close to, the existing structure. If an agent finds itself isolated far away without

neighbourhood connections, it uses the camera to search for the bulk of the flock and

head over there. When its front proximity sensors detect a close obstacle, then two

scenarios can happen: (α) in simulation (Section 5.2.1), it initiates a clockwise explo-

ration behavior by turning left and keeping its right-side sensors active until it receives

a link request; (β) in the physical experiments (Section 5.2.2), it just sticks near the first

encountered neighbor(s) by applying default elastic forces. In this last case, an added

condition is to receive a “connected-component” flag propagated from the seed agent

over the graph connections: if it does not get it, then it moves again toward the flock’s

centre.

To be more precise, different types of springs are used or not depending on the local

state of neighbouring nodes. Three cases can be distinguished: (i) if both nodes are inte-

grated into the structure and linked to each other, then a strong attractive elastic force is

applied between them with a coefficient katt and a length Latt significantly smaller than

the cutoff communication distance D to keep them close; (ii) if both nodes belong to the

structure but are not directly linked (yet spatially close, e.g. if the chain is folded), then a

weak repulsive force is used to pull them apart, with a coefficient krep and a length Lrep
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greater than or about equal to D; (iii) if one or both nodes are outside of the structure,

then two variants happen: (iii.γ) in simulation, no spring force is applied and the free

agents rely on proximity sensing for their search behaviour (the linked agents ignore

them when calculating their forces); (iii.δ) in the physical experiments, the repulsion

force Lrep, krep is used to keep them at an optimal distance.

Altogether, this combination of attractive and repulsive elastic forces leads the robot

flock to form a tight chain-like structure visible to the naked eye (although without

physical links) while at the same time making this structure unfold in space.

5.2 Results

In this section, we present our result obtained both in simulation and in real physical

experiments.

5.2.1 Simulations

Before trying our model with real robots (see Section 5.2.2.Physical Experiments), we

implemented it in a realistic simulation, as described in Section 3.3. Within the agent

controller (Figure 3.5) of the simulation, we implement the genome of Algorithm 1.

Each agent have access to an internal table listing its own neighbours and their last

known states. This table allows the agent to send a regular update of its state to its

neighbours, as well as send messages to ask for a recruitment if it’s needed. This table

is updated via the Delaunay computation unit that calculate the trimmed Delaunay for

the flock. Additionally, agents keep track of their current links and their types in order

to apply the correct spring forces.
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Figure 5.3: Branched structure formation in simulation. Bottom: screenshots of the MORSE

display at time steps t=0, 13, 94, 385. Top: custom 2D visualisation tool based on log files at
same time steps with colour code of Figure 5.2. Each virtual robot executes Algorithm 1 with
xN = 7, yN = 3. The 13 robots self-organise into a 7-robot chain body with three 2-robot legs
at odd-numbered positions. This network structure also unfolds in space under the influence of
the spring forces with parameters D = 3.56d, Latt = 1.8d, katt = 1, Lrep = 5.4d, krep = 0.5,
where d is a robot’s diameter and d= 0.5 MORSE unit. The simulation stops at t= 427 when
robots cannot form new links and elastic forces have reached equilibrium. Videos available at
https://tinyurl.com/gaget20.

The simulated experiment shown here is a flock of 13 robots forming a branched

structure based on the complete genome of Algorithm 1 (Figure 5.2). In addition to

the networking rules, spatial motion relied on the exploration behaviour and the spring

forces as explained above at the end of Section 5.1.Mobile Network Growth in Space in

items (α) and (i-iii.γ) with the parameter values specified in the caption.

5.2.2 Physical Experiments

The PsiSwarm platform, a disc-shaped robot on wheels, and the ARDebug controller

were both described in details in Section 3.3 and details about the setup and limitation

of the PsiSwarms can be found in Section 4.3.

https://tinyurl.com/gaget20
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We ran 3 experiments with different genomes, showed in Fig. 5.4-f, g and h. No

repetition or statistical analysis have been conducted so far, but such improvement and

stability proofs are discussed in Section 6.2.

Once again, in no instance was ARDebug actually controlling the robots and telling

them what messages to send and how to move; these calculations and decisions were

made by each of them. Based on the relative positions of its neighbours (obtained from

its fictive detectors via ARDebug), and its internal table of structural links and graph

connections, each robot could compute its total vectorial force and next move, as per

items (i-iii.δ) above—or head for the flock and apply protocol (β) if it was stranded far

away. Three resulting formations are shown in Fig. 5.4a-f.

5.3 Discussion

In conclusion, we proposed a morphogenetic engineering model and a demonstration

of self-organised branched structure formation among small identical wheeled robots,

based on local neighbourhood perception and communication only. We showed en-

couraging results of the implementation of an abstract model of programmable network

growth both in simulation and physical experiments, which demands further study to

validate the stability and scalability of our model.

The technical problems encountered in the experiments were essentially due to lim-

itations in the PsiSwarm’s capabilities. Its lack of hardware for mid-range peer-to-peer

detection & communication, and flock recognition, had to be remedied by the cen-

tral monitoring system ARDebug, which tracked robots and brokered information and

message-passing among them. ARDebug’s role, however, remained minimal in the

sense that it only emulated the neighbourhood data that would otherwise be handled by
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extra sensors and emitters, while the core computation and decision-making modules

remained on board. These issues are discussed further in Section 6.1.

The experiments presented so far in this work are encouraging, although at this

point they only constitute a proof of concept. To complete this study, an extended

statistical analysis over many trials, whether exploring different genotypes or variable

random conditions on the same genotype, should be conducted to adjust parameters and

establish the resilience of the model in real-world settings. In addition, simulations and

experiments with more robots must be conducted to insure the scalability of our model.

Further future work are explored in Chapter 6.2.

In this Chapter, we took inspiration from artificial network growth and showed the

self-organisation of branched structure formations, based on a single genome distributed

among a flock of small and identical robots, both in simulation and in physical experi-

ments. In the next and final part of this thesis, Chapter 6, we will summarise our work,

expose its flaws, limitations and obstacles we encountered and propose possible solu-

tions, and discuss possible direction this work could take in the future.
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Figure 5.4: Formation of linked structures in a flock of wheeled robots. (a-f) 20
PsiSwarm robots execute Algorithm 1-branched structure growth (coloured parts included)
with xN = 5, yN = 3 inside a 170×180cm arena. (a-e) Top views from the ceiling camera
at times t = 4, 13, 26, 45, 100s. Structural links (thick green & red) and graph connections
(thin white) are automatically visualised by ARDebug in real time. (a) Shortly after initiali-
sation, the seed robot psw 15 created a first link with a neighbour. (b) Search behaviour and
spring forces bring robots closer, while two more body links (green) and one leg link (red) ap-
peared. (c-e) The branched structure continued growing until it was complete and stabilised
(robots stopped moving) under the attractive/repulsive forces, with parameters D = 43.2cm,
Latt = 11cm, katt = 0.6, Lrep = 32.4cm, krep = 0.42. (f) Same final state in perspective view.
(g,h) Other examples of “phenotypes” based on Algorithm 1-branched structure growth: (g) a
simple 9-robot chain and (h) a 3+6-robot T-shape. Videos of all three experiments available at
https://tinyurl.com/gaget20.

https://tinyurl.com/gaget20


Chapter 6

Conclusion and Future Work

In this Chapter, we first summarise and review the work presented in this thesis (Sec-

tion 6.1). We give a quick summary of both contributions, then expose the limitations

and obstacles we encountered and discuss possible solutions. We also shed light on

potential future work that could be conducted within the DevoBot project, and explore

possible applications both in the near future and from an open-ended perspective.

6.1 Conclusion and discussion

The research undertaken during this thesis aimed at answering the following ques-

tion: Can we meta-design and implement a model of multi-robotic system able to self-

organise into a “creature” or a structure following Morphogenetic Engineering princi-

ples? In practical terms, our goal was to design and implement multi-agent models of

collective shape-formation applicable to flocks of robots, i.e. contributing to the field of

Morphogenetic Robotics. To attempt answering this question, we designed two mod-

els: one for the growth of a “multi-robotic organism”, formed of a body and two limbs

76
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emerging from a flock of identical robots; and another one for the self-assembly of

branched chain-like structures among the same group of robots.

For our main contribution to the DevoBot Project, we designed a multi-agent model

for a flock of robots developing into a multi-robotic organism composed of a body and

two limbs. Using several gradients (numerical values representing relative-position in-

formation) propagating throughout the flock, and simulated spring forces for trajectory

computation, we achieved the full growth of a multi-robotic body separated into four re-

gions (North, South, East and West in the model we presented). This multi-robotic body

growth was achieved both in simulation and in physical experiments using PsiSwarms,

a group of small two-wheeled robots. Once this body was grown, some of its regions

differentiated to allow the propagation of “sub-gradients”, allowing the recruitment of

free robots roaming around the body to incorporate into the limbs. Therefore, the limbs

developed via incremental aggregation of robots on “attractive” hot spots. The limb-

growing phase, also referred to as phase 2, however, was only realised in a simulation

environment. During this study, we also conducted a few statistical analyses on our sim-

ulations, producing encouraging results on the stability of our model and exploring the

impact of some parameters on the unfolding of the simulation and the results obtained.

Concerning the impact of parameters, however, the fitness function used to evaluate the

results was not ideal, as it was based on a geometry factor so that modifying Dlimb and

Dbody would deteriorate the fitness value. Therefore, the calculation was biased toward

the specific parameter values used in our first experiment. A more generic fitness should

be used for parameter exploration in order to better classify the results.

For our second contribution, we designed a multi-agent model of robot self-assembly

producing branched chain-like structures. We were inspired by Doursat’s “programmable

network growth”, and implemented it into a robotic system. All robots were equipped
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with virtual input and output ports, allowing them to establish connections among each

other if a pair of matching input and output ports was available. When these connections

were established, links were formed and through these links, spring forces were applied

and robots organised themselves into graph-like structures made of nodes and links. The

rules dictating the formation of links and application of spring forces were encoded by

a “genome” present in each robot of the system, supporting a complete decentralisation

of the computation.

We encountered a number of obstacles due to limitations in the PsiSwarm’s capabili-

ties. The lack of hardware for mid-range peer-to-peer detection and communication, and

flock recognition, had to be remedied by the central monitoring system ARDebug, an

existing tracking software for the PsiSwarm that we modified and tailored to our need.

ARDebug tracked robots and brokered information among them by message-passing.

Its role, however, remained minimal in the sense that it only emulated the neighbour-

hood data that would otherwise be handled by extra sensors and emitters, while the core

computation and decision-making modules remained on board the PsiSwarms.

Our models also presented one algorithmic problem, in addition to the PsiSwarm’s

physical constraints: the “trimmed Delaunay triangulation” used for neighbourhood

computation required a bird’s eye view of the entire flock, i.e. a certain degree of cen-

tralisation. If a pure local neighbourhood computation was used instead, one based

on distance only for example, links between neighbours could cross, whereas within

our trimmed Delaunay computation this could not happen. Having such crossing links

within the neighbourhood of the flock could result in erratic gradient propagation be-

haviours, and an overall review of the gradient systems we used would be necessary.

Concerning the first study on the growth of a “multi-robotic organism”, the low

number of robots used in physical experiments makes the different body areas unequal
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in size, giving rise to unbalanced shapes. In simulation, the possibility of separating

link properties using “hook” functions, such as ones that apply the spring forces do not

propagate gradient information, adds a layer of complexity to the model that could be

removed by using a significantly larger number of robots. Finally, inward GR
inward and

outward GR
outward gradients used in Phase 2 (limb formation) allow only the formation

of simple protrusions with no complex structure and limited possibilities for expansion.

In order to grow more complex limbs and reach intricate shapes and structures, a more

complex gradient system should be established, but it would increase the complexity of

the computation and put more strain on the limited hardware of the PsiSwarm platform.

Moreover, in-depth statistical analyses also need to be conducted to further prove the

stability of our model because the present analysis was limited to 20 runs. The same

improvements can be made in the parametric search, by including more parameters and

using a more appropriate method of selection of their values.

Regarding our work on the self-organisation of graph structures, as stated in Sec-

tion 5.3, further statistical analyses must also be conducted to prove the stability and

scalability of our model.

6.2 Future perspective and applications

This thesis presented two main contributions to the field of Morphogenetic Robotics: the

controlled growth of a “multi-robotic organism” and the self-assembly of chain-based

structures among a flock of identical and autonomous robots.

To extend our work on chain-like structures, more complex branched chains or loops

involving other port types and a larger swarm could be attempted. The purpose of such

experiments would be to validate the scalability of our model of branch formation in
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robotic swarms. Last but not least, the loose flocking structures thus created should

demonstrate their usefulness by moving across space and behaving as single cohesive

“creatures”. Even without physical attachments, the robots should be able, for example,

to encircle and push bulky objects—or interact in any other way with their environment

via specialisation and division of labour, similarly to multicellular organisms.

The first extension we can imagine for our “multi-robotic organism” is the imple-

mentation of the full growth of the organism with the PsiSwarms, hence fully crossing

the reality gap and achieving the full growth of a multi-robotic organism similar to a

multi-cellular organism. Before going further, one missing feature would need to be

implemented: robustness to failures. Indeed, as of now, if one robot within the body or

the limbs fails, other robots can ignore it and continue the growth of the multi-robotic

organism. However, if a key robot fails, such as a super-gradient source, there is no

fallback strategy or self-healing process and the growth will be impeded. A solution

would be that all sources’ neighbours would know of the source, and if they detect that

the source is missing, they can elect a candidate amongst them to take the role of the

source. Additionally, a more refined system can be devised for the limb formation, for

example by improving the existing gradient system, in order to grow more complex

limbs. A creature could use these limbs to achieve different tasks, for instance grabbing

and moving an object like a ball. Within the same scope, the creature should be able to

move as a whole in different directions and keep the same overall structure. This should

enable the completion of more complex tasks, like grabbing a ball and bringing it to a

goal location.

In both studies, evolutionary computation should be used to optimise several parts

of our models. For instance, the genomes of our branched structures could evolve via a

genetic algorithm to better adapt the structure to solving specific tasks. Such algorithms
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should also be used for parametric exploration, and generally to finely tune the models.

If we let our imagination run a little wild, we could imagine a large swarm of mini-

robots with strong communication and sensing capabilities, using gradient based algo-

rithms and developmental programming to self-organise into very complex creatures

capable of accomplishing complex tasks, like construction work or search and rescue

missions, and automatically adapt to any situation without reprogramming.
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